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Abstract

A new branch-and-bound algorithm for the maximum weight clique problem

is proposed. The proposed algorithm consists of two phases, a precomputation

phase and a branch-and-bound phase. In the precomputation phase, the weights

of maximum weight cliques in many small subgraphs are calculated and stored

in optimal tables. In the branch-and-bound phase, each problem is divided

into smaller subproblems, and unnecessary subproblems are pruned using the

optimal tables. We performed experiments with the proposed algorithm and

five existing algorithms for several types of graphs. The results indicate that

only the proposed algorithm can obtain exact solutions for all graphs and that

it performs much faster than other algorithms for nearly all graphs.

Keywords: maximum weight clique, exact algorithm, branch-and-bound,

upper bound calculation, NP-hard

1. Introduction

A set of vertices V ′ in a graph G = (V,E) is called a clique if any pair of

vertices in V ′ are adjacent. The maximum clique problem (MCP) is to find the

clique of maximum cardinality of a given graph. Here, let w(v) denote the weight
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of v ∈ V . For a set of vertices V ′ ⊆ V , let w(V ′) =
∑

v∈V ′ w(v). Given an

undirected graph G = (V,E) and weight of vertices w(·), the maximum weight

clique problem (MWCP) is to find a clique C such that w(C) is the maximum.

Note that the MWCP is a generalization of the MCP.

The MCP and the MWCP are known to be NP-hard [1], and have many

applications in coding theory [2], network design [3], computer vision [4], bioin-

formatics [5], economics [6], etc. The maximum independent set problem and

the minimum vertex cover problem for general graphs are equivalent to the MCP

and have been well studied.

The branch-and-bound technique is often used in exact algorithms. The

branch procedure divides a problem into smaller subproblems and solves them

in a recursive manner. During this process, the upper bound of each subproblem

is calculated and pruned if it is proved that the subproblem does not contain the

global optimum solution (the bounding procedure). In previous studies, several

techniques have been investigated to obtain upper bounds for subproblems. For

the MCP, vertex coloring is used in numerous algorithms [7, 8, 9, 10, 11, 12,

13, 14, 15, 16]. They calculate vertex coloring in O(|V |2) or O(|V |3) time for

each subproblem. For the MWCP, some algorithms calculate vertex coloring

only once before starting branch-and-bound and use it to obtain upper bound

in O(|V |) for each subproblem [17, 18, 19, 20, 21]. Upper bound calculation of

O(1) time has also been proposed in [22, 23]. In these methods, |V | subproblems

are solved sequentially. During the execution, an upper bound of subpblem P is

calculated from an exact value of subproblems which are already solved. Some

algorithms uses some upper bounds shown above [17, 18, 21]. Other approaches

have been proposed by previous studies [24, 25, 26, 27, 28, 29, 30, 31, 32].

The computation time of algorithms including branch-and-bound procedures

strongly depends on tightness and computation time of upper bound calculation.
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Controlling their balance is very important for branch-and-bound algorithms.

In this paper, we propose a new exact branch-and-bound algorithm for

MWCP. Our algorithm consists of two phases, a precomputation phase and

a branch-and-bound phase. In the precomputation, the weights of maximum

weight cliques in many small subgraphs are calculated and stored in optimal

tables. In the branch-and-bound phase, each problem is divided into smaller

subproblems and solved in a recursive manner. The branch-and-bound phase is

nearly the same as other branch-and-bound algorithms, i.e., the upper bound

of each subproblem is calculated using the optimal tables, and the subproblem

is pruned if it is unnecessary.

The remainder of this paper is organized as follows. An outline of the pro-

posed algorithm, OTClique, is described in Section 2. Experimental results are

shown in Section 4. We conclude the paper in Section 5.

2. Proposed algorithm OTClique

The proposed OTClique algorithm is outlined as follows.

• Precomputation Phase: determines branching order and generates the

optimal tables

• Branch-and-bound Phase: solves the problem via a branch-and-bound

procedure by pruning unnecessary subproblems by their upper bounds

Before explaining the proposed algorithm, we define some notations and

analyze some properties of our upper bound function UB(·, ·). We then describe

the phases of the proposed algorithm in detail.

2.1. Notation

For an undirected graph G = (V,E) and a set of vertices V ′ ⊆ V , let G(V ′)

and wopt(V
′) denote the subgraph of G induced by V ′ and the weight of the
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maximum weight clique in G(V ′), respectively. For any vertex v ∈ V , N(v)

denotes the set of vertices adjacent to v in G. For any integer k ≥ 2, a k-tuple

Π = (P1, P2, . . . , Pk) is a partition of V if P1, P2, . . . , Pk are mutually disjoint

and
∪k

i=1 Pi = V .

2.2. Upper bound function UB(·, ·)

Here, we present an analysis of the following function for a subset of vertices

V ′ ⊆ V and a partition Π = (P1, P2, . . . , Pk) of V :

UB(Π, V ′) =

k∑
i=1

wopt(V
′ ∩ Pi) . (1)

The following lemma shows that UB(Π, V ′) is an upper bound of the weight

of the maximum weight clique in G(V ′).

Lemma 1. Let G = (V,E) be a vertex-weighted graph and Π = (P1, P2, . . . , Pk)

be a partition of V . Then, the following inequality holds for any V ′ ⊆ V :

wopt(V
′) ≤ UB(Π, V ′) . (2)

Proof. The following inequality is immediately obtained, where C is the max-
imum weight clique in G(V ′) :

wopt(V
′) = w(C) (3)

=

k∑
i=1

w(C ∩ Pi) (4)

≤
k∑

i=1

wopt(V
′ ∩ Pi) (5)

= UB(Π, V ′) . (6)
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2.2.1. Example

Let G = (V,E) be a graph shown in Figure 1 and Π = (P1, P2, P3) be

a partition of V , where P1, P2 and P3 are {v1, v2}, {v3, v4, v5} and {v6, v7, v8},

respectively. The weights of the vertices are shown in Figure 1. For example, the

value of UB(Π, V ′) for V ′ = {v1, v2, v3, v4, v6, v8} is calculated in the following

manner :

UB(Π, V ′) = wopt(V
′ ∩ P1) + wopt(V

′ ∩ P2) + wopt(V
′ ∩ P3) (7)

= wopt({v1, v2}) + wopt({v3, v4}) + wopt({v6, v8}) (8)

= 2 + 3 + 5 = 10 . (9)
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Figure 1: Weighted graph
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2.2.2. Optimal tables

The calculation of UB(Π, V ′) takes long time if wopt(V
′∩Pi) is calculated in

each bounding procedure. To avoid this, all the values of subproblems of each

Pi are stored in the optimal tables before starting branch-and-bound processes.

Optimal tables of the graph in Figure 1 are shown in Figure 2. Vertex sets are

represented by bit vectors. Any S ⊆ Pi is represented by a bit vector whose

length is |Pi|. By this representation, the value wopt(S) for any S ⊆ Pi can be

obtained from the corresponding optimal table in O(1) time. Therefore, for any

V ′ ⊆ V , the value of UB(Π, V ′) can be calculated in O(k) time, where k is the

number of sets in Π. For example, the upper bound calculation shown in 2.2.1

can be done as following :

UB(Π, V ′) = table[1][11] + table[2][011] + table[3][101] (10)

= 2 + 3 + 5 = 10 . (11)

2.2.3. Tightness of upper bound

The tightness of the upper bound UB(·, ·) strongly depends on Π. If each Pi

in Π is an independent set, the upper bound by UB(Π, V ′) will be equivalent

to the upper bound used in previous studies[20], [21]. Here we show an idea to

obtain tighter upper bounds in the following.

Lemma 2. Let G = (V,E) be a vertex-weighted graph and Π = (P1, P2, . . . , Pk)

be a partition of V . The following inequality holds for any V ′ ⊂ V :

UB(Π, V ′) ≤ k · wopt(V
′) . (12)
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P1 P2

S ⊆ P1 Bits wopt(S) S ⊆ P2 Bits wopt(S)

∅ 00 0 ∅ 000 0
{v1} 01 1 {v3} 001 2
{v2} 10 1 {v4} 010 3
{v1, v2} 11 2 {v3, v4} 011 3

{v5} 100 3
{v3, v5} 101 3
{v4, v5} 110 3
{v3, v4, v5} 111 3

P3

S ⊆ P3 Bits wopt(S)

∅ 000 0
{v6} 001 2
{v7} 010 4
{v6, v7} 011 4
{v8} 100 5
{v6, v8} 101 5
{v7, v8} 110 5
{v6, v7, v8} 111 5

Figure 2: Optimal tables

Proof. The inequality (12) is immediately obtained in the following way :

UB(Π, V ′) =

k∑
i=1

wopt(V
′ ∩ Pi) (13)

≤
k∑

i=1

wopt(V
′) (14)

= k · wopt(V
′) . (15)

Lemma 2 shows that the tightness of UB(·, ·) depends on k, i.e., the number

of subsets contained in Π. Therefore, to obtain tight upper bounds, k should

be as small as possible. Algorithm 3 (shown later) makes k smaller by merging

small subsets in Π to obtain tighter upper bounds.
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Let us define the following notation :

Π(i) = (P1, . . . , Pi−1, Pi ∪ Pi+1, Pi+2, . . . , Pk) (16)

△(V ′,Π, i) = UB(Π, V ′)− UB(Π(i), V ′) . (17)

The function △(V ′,Π, i) denotes the difference in the upper bounds between

the partitions Π and Π(i). In the following, we describe an important property

of this function.

Lemma 3. For any vertex-weighted graph G = (V,E), any partition Π =

(P1, P2, . . . , Pk) of V and any subset V ′ of V , △(V ′,Π, i) satisfies the following

inequality :

△(V ′,Π, i) ≤ min{wopt(V
′ ∩ Pi), wopt(V

′ ∩ Pi+1)} . (18)

Proof. From the definition of △, the following inequality is easily obtained :

△(V ′,Π, i) = UB(Π, V ′)− UB(Π(i), V ′)

= wopt(V
′ ∩ Pi) + wopt(V

′ ∩ Pi+1)− wopt(V
′ ∩ (Pi ∪ Pi+1))

≤ wopt(V
′ ∩ Pi) + wopt(V

′ ∩ Pi+1)

−max{wopt(V
′ ∩ Pi), wopt(V

′ ∩ Pi+1)}
= min{wopt(V

′ ∩ Pi), wopt(V
′ ∩ Pi+1)} . (19)

2.2.4. Size of optimal tables

As subsets are merged, the value of UB(·, ·) gets tighter, and simultaneously,

optimal tables get larger. In the following, we analyze the size of the area used

by optimal tables. For each Pi, the values wopt(V
′) for all subsets V ′ ⊆ Pi are

stored in the optimal table for Pi. Therefore, the number of stored values is

2|Pi|for Pi and
∑

Pi∈Π 2|Pi| for all the optimal tables. By merging Pi and Pi+1,
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the difference of the total number of the stored values is following:

2|Pi|+|Pi+1| − (2|Pi| + 2|Pi+1|)

=2|Pi|+|Pi+1|(1− (2−|Pi+1| + 2−|Pi|))

≥2|Pi|+|Pi+1|(1− (2−1 + 2−1))

=0 . (20)

If there is a large subset in Π, the algorithm cannot run due to a lack of

memory. To avoid this problem, the upper bound l for the size of Pi should be

given as an input parameter according to the amount of available memory and

the number of vertices in V . Here, we show an example for calculating upper

bound of l. Suppose each element of the optimal tables requires 4 bytes. If

the available memory in the computer is 109 bytes, l must satisfy the following

inequality :

4 ·
⌈
|V |
l

⌉
· 2l ≤ 109 . (21)

For example, l ≤ 22 in case |V | = 1000.

2.3. Precomputation phase

The precomputation phase consists of several procedures. First, the algo-

rithm divides vertices into independent sets and assigns numbers to these ver-

tices (Algorithm 2). Vertices numbering determines which vertex will be chosen

as a branch variable in the branch-and-bound phase. Next, a partition of V is

constructed by merging some independent sets (Algorithm 3), where the param-

eter l is given as an input that satisfies (21). Finally, the algorithm generates

the optimal tables (Algorithm 4). The entire precomputation phase is shown in

Algorithm 1.

Algorithm 2 attempts to generate independent sets as large as possible; how-
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Algorithm 1 Precomputation phase

INPUT: An undirected graph G = (V,E), vertex weight w(·) and size
paramter l

OUTPUT: A sequence of vertices [vn, vn−1, . . . , v1], a partition of V : Π =
(P1, P2, . . . , Pk) and optimal tables for each Pi

1: Generating independent sets(G,w)
2: Generating partition(I1,I2,. . .,Ij)
3: for i from 1 to k do
4: Generating optimal table(Pi)
5: end for

ever, note that the cardinality of each independent set is limited to l. When

the current independent set becomes maximal or the cardinality becomes l, a

new independent set is created. Vertices are chosen in a weight-descending

order, so that vertices of large weights are chosen at early stage. If some ver-

tices are of maximum weight, one of the smallest degree is chosen (according

to results of preliminary experiments). During this process, vertices are named

vn, vn−1, · · · , v1 in sequence.

Algorithm 3 is to obtain tighter upper bounds by merging some subsets.

Some consecutive independent sets are chosen to be merged unless the size of

the new subset exceeds l. This process is performed until no subsets can be

merged. The sets P1, P2, . . . , Pk are returned as the partition Π.

Algorithm 4 generates an optimal table for V ′ ⊆ V . The weights of the opti-

mal solution for all possible subsets for each Pi are calculated, and saved in the

optimal table corresponding to Pi. For example, the table for P1 = {v1, v2, v3}

has values of wopt(∅), wopt({v1}), wopt({v2}), wopt({v1, v2}), wopt({v3}), wopt({v1, v3}),

wopt({v2, v3}), and wopt({v1, v2, v3}). Note that the optimal tables are efficiently

constructed with dynamic programming.

• It is obvious that wopt(∅) = 0.

• If all the values of wopt(S) for S ⊆ V ′ \ {v} are known for a subset V ′

of V , wopt(Y ) for Y such that v ∈ Y ⊆ V ′ can be calculated from the
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Algorithm 2 Generating independent sets

INPUT: An undirected graph G = (V,E), vertex weight w(·) and size
paramter l

OUTPUT: A vertex sequence [vn, vn−1, · · · , v1] and Independent sets
I1, I2, . . .

1: procedure Generating independent sets
2: X ← V
3: j ← 0
4: while X is not empty do
5: j ← j + 1
6: Ij ← ∅
7: X ′ ← X
8: while X ′ ̸= ∅ and |Ij | < l do
9: i← |X|

10: Let vi be the vertex of maximum weight in X ′ (if there are some
vertices of maximum weight, one of the smallest degree is chosen)

11: Ij ← Ij ∪ {vi}
12: X ′ ← X ′\({vi} ∪N(vi))
13: X ← X\{vi}
14: end while
15: end while
16: return [vn, vn−1, . . . , v1] and I1, I2, . . . , Ij
17: end procedure

Algorithm 3 Generating a partition

INPUT: Independent sets I1, I2, . . . , Ij , size parameter l
OUTPUT: A partition of V : Π = (P1, P2, . . . , Pk)
1: procedure Generating partition
2: k ← 1
3: P1 ← ∅
4: for i from j downto 1 do
5: if |Pk|+ |Ii| > l then
6: k ← k + 1
7: Pk ← Ii
8: else
9: Pk ← Pk ∪ Ii

10: end if
11: end for
12: return (P1, P2, . . . , Pk)
13: end procedure
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following equation :

wopt(Y ) = max{w(v) + wopt(Y ∩N(v)) , wopt(Y \ {v})} . (22)

The first argument of max operator is the value of optimum solution in

case Y includes v, and the other is the one in case v is not included.

Algorithm 4 Generating an optimal table

INPUT: G = (V,E), w(·) and V ′ ⊆ V
OUTPUT: opt[·] for all subsets of V ′

1: procedure Generating optimal table
2: opt[∅]← 0
3: C ← {∅}
4: V ′′ ← ∅
5: while V ′′ is not V ′ do ▷ At the beginning of each loop, any subset of

V ′′ is in C.
6: u← an arbitrary vertex in V ′ \ V ′′

7: C′ ← ∅
8: for X ∈ C do ▷ For any X ∈ C, opt[X] is already calculated.
9: Y ← X ∪ {u}

10: opt[Y ]← max{w(u) + opt[X ∩N(vu)] , opt[X]}
11: C′ ← C′ ∩ {Y }
12: end for
13: C ← C ∪ C′
14: V ′′ ← V ′′ ∪ {u}
15: end while
16: return opt[·] for all subsets of V ′

17: end procedure

2.4. Branch-and-bound phase

Hereafter, for the vertex sequence [vn, vn−1, · · · , v1] obtained in the precom-

putation phase(Algorithm 2), Vi denotes {v1, v2, . . . , vi} for simplicity. For a

set of vertices V ′, M(V ′) is the maximum index of vertices in V ′. For example,

M({v1, v3, v4, v7}) = 7.

Algorithm 5 presents an outline of the branch-and-bound phase. The vari-

ables C,Cmax and c[·] are global and can be accessed in the EXPAND proce-
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dure. First, EXPAND(V1) is called and the value wopt(V1) is stored in c[1].

Next, EXPAND(V2) is called and the value wopt(V2) is stored in c[2]. Similarly,

the values are stored in c[3], c[4], . . . at each iteration. When EXPAND(Vi) is

called, the values wopt(V1), wopt(V2), . . ., wopt(Vi−1) are stored in c[1], c[2], . . .,

c[i−1], respectively. It is obvious that wopt(V
′) ≤ c[M(V ′)] for a subset V ′ ⊂ V

because V ′ ⊆ VM(V ′). Therefore, c[M(V ′)] can be used as upper bounds for the

subproblem G(V ′). A subproblem is pruned by the bounding procedure if the

upper bound is sufficiently small.

Algorithm 5 Branch-and-bound phase

INPUT: G = (V,E), w(·), Π = (P1, P2, . . . , Pk) opt[·] and a sequence of ver-
tices [vn, vn−1, · · · , v1]

OUTPUT: the maximum weight clique Cmax

GLOBAL VARIABLES: Cmax, C, c[·]
1: determine the parameter α
2: Cmax ← ∅
3: for i from 1 to ⌊αn⌋ do
4: C ← ∅ ▷ Initialize C to use in expand( )
5: expand(Vi)
6: c[i]← w(Cmax) ▷ After expand(Vi), Cmax is the maximum weight

clique of G(Vi).
7: end for
8: expand(V )

Note that the upper bound of c[M(V ′)] has been shown in a previous study

[22]. We introduce a new parameter α due to the following observation. By

some preliminary experiments, we confirmed that the value c[i] is frequently

used and causes pruning for small i; however it is rarely (or never) prunes sub-

problems for large i. Moreover, calculation of c[i] for large i needs to solve a

lot of subproblems. The results of preliminary experiments are shown in the

Tables 1, 2 and 3. In the tables, the columns used means the number of times

that c[·] is used as an upper bound. The columns bounded is the number of

times that subproblems are pruned by c[·]. The columns subproblems is the

number of solved subproblems to calculate c[·]. All values are the average of
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10 randomgraphs. For |V | = 200, edge density= 0.9, 81.89% of subproblems

are solved to calculate c[181] − c[200] and they pruned only 83.4 subproblems.

Therefore calculating such c[·] is not efficient strategy. Instead of calculating

such c[·], we propose calculating wopt(V ) directly after calculating c[⌊αn⌋]. We

have examined several different graphs and different values of α, and have de-

termined that the proposed algorithm performs well on average when α = 0.8.

Table 1: effectiveness of upper bounds c[·] for |V | = 200, edge density= 0.9 (α = 1)

used bounded subproblems
c[1]− c[20] 826.9 0 104.6 (<0.01%)
c[21]− c[40] 3042.3 24.3 257.0 (<0.01%)
c[41]− c[60] 33572 454.2 971.7 (<0.01%)
c[61]− c[80] 362613.7 6463.6 5206.2 (<0.01%)
c[81]− c[100] 4312548.7 128316.1 33524.3 (0.02%)
c[101]− c[120] 42676994.1 1024640.3 166424.1 (0.1%)
c[121]− c[140] 253930088 8351456.5 1033750.7 (0.65%)
c[141]− c[160] 73743921.1 1695526.3 4973929.2 (3.11%)
c[161]− c[180] 1311731.8 19625.4 22738721.7 (14.23%)
c[181]− c[200] 2314.4 83.4 130887702.5 (81.89%)

Table 2: effectiveness of upper bounds c[·] for |V | = 8000, edge density= 0.1 (α = 1)

used bounded subproblems
c[1]− c[800] 52558.4 15127.9 7419.0 (0.37%)

c[801]− c[1600] 246376.6 37310.2 25023.0 (1.26%)
c[1601]− c[2400] 429166.7 58495.4 35537.4 (1.79%)
c[2401]− c[3200] 769166.1 88722.5 50853.9 (2.56%)
c[3201]− c[4000] 1372352.4 128977.3 79919.4 (4.03%)
c[4001]− c[4800] 2060687.6 118745.2 129617.7 (6.54%)
c[4801]− c[5600] 2511924.6 96418.2 210840.0 (10.63%)
c[5601]− c[6400] 1947118.8 3455.8 330369.8 (16.66%)
c[6401]− c[7200] 855274.5 530.2 455283.4 (22.96%)
c[7201]− c[8000] 128104.9 0.0 657799.3 (33.18%)

The recursive procedure EXPAND(·) is shown in Algorithm 6. The steps

from line 2 to line 7 correspond to process for leaf nodes in a search tree of

branch-and-bound procedure. If a better solution is found, Cmax is updated.
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Table 3: effectiveness of upper bounds c[·] for |V | = 1000, edge density= 0.5 (α = 1)

used bounded subproblems
c[1]− c[100] 5528.2 397.1 427.9 (<0.01%)
c[101]− c[200] 119690.4 10320.7 5817.6 (0.02%)
c[201]− c[300] 928299.7 96030.8 38283.9 (0.10%)
c[301]− c[400] 4329700.3 481179.8 132128.6 (0.36%)
c[401]− c[500] 14513157.3 2000919.5 484471 (1.31%)
c[501]− c[600] 40029819.7 3549796.3 1027140.8 (2.78%)
c[601]− c[700] 57663230.7 2105972.5 2529338.4 (6.85%)
c[701]− c[800] 28002863.9 130138.7 5343812.8 (14.48%)
c[801]− c[900] 4155355.9 1406 10555860.2 (28.60%)
c[901]− c[1000] 102980.4 27.6 16785686.5 (45.49%)

The bounding procedure is the steps from line 8 to line 10. In line 8, the upper

bounds UB(·, ·) and c[·] are calculated, and the subproblem is pruned if one of

the upper bounds is sufficiently small. In line 11, the vertex of the maximum

index is chosen as a branching variable u, so that M(V ′) gets smaller. In the

rest of the algorithm, subproblems of G(V ′) are examined in the following order.

• search the optimum solution in the subgraph G(V ′ ∩N(u)). (line 13)

• search the optimum solution in the subgraph G(V ′ \ {u}). (line 15)

For example, if G(V ) in Figure 1 is given, the algorithm searches the optimum

solution in G(V ∩N(v8)), i.e., G({v1, v3, v4, v5}). Next, the algorithm searches

the optimum solution in G(V7).
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Algorithm 6 Solving a subproblem

INPUT: V ′ ∈ V ▷ For any v ∈ V ′, C ⊆ N(v)
OUTPUT: Update Cmax if better cliques are found.
GLOBAL VARIABLES: Cmax, C, c[·]
1: procedure expand(V ′)
2: if V ′ = ∅ then ▷ Recursive calls finished.
3: if w(C) > w(Cmax) then
4: Cmax ← C
5: end if
6: return
7: end if
8: if UB(Π, V ′) + w(C) ≤ w(Cmax) or c[M(V ′)] + w(C) ≤ w(Cmax) then

▷ Bounding procedure by two upper bounds.
9: return

10: end if
11: u← vM(V ′)

12: C ← C ∪ {u}
13: expand(V ′ ∩N(u)) ▷ Solve subproblems where C includes u.
14: C ← C \ {u}
15: expand(V ′ \ {u}) ▷ Solve subproblems where C does not includes u.
16: end procedure

16



3. A case study

In this section, we show an example for OTClique.

3.1. Precomputation phase example

Given an undirected graph shown in of Figure 3a, OTClique constructs a

vertex sequence and independent sets shown in Figure 3b by Algorithm 2. When

the input parameter l is given as 3, Algotirhm 3 merges I2 and I3 to P2. Also,

I4 and I5 are merged to P1.

Any vertex set is represented by an array of bit vectors. Each bit vector

corresponds to a vertex subset Pi and each bit is corresponds to a vertex in Pi.

For the vertex partition shown in Figure 3b, bit vector representations for some

vertex sets are shown in Figure 3c.

Optimal Tables is implemented with two-dimensional arrays shown in Figure

3d. Any subsets of Pi is represented by a bit vector. For example, 011 for P2

means {v5, v4}. Therefore, wopt({v5, v4}) = 8 can be obtained from table[2][011]

in O(1) time.

3.2. Upper bound calculation example

For the graph shown in Figure 3a, a vertex subset S = {v2, v3, v5, v6, v7} is

represented by an array of bit vectors {01, 110, 110}. Hence, an upper bound

UB(Π, S) can be calculated with optimal tables as follows:

UB(Π, S) = table[3][01] + table[2][110] + table[1][110]

= 5 + 6 + 3

= 14 . (23)
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(a) An undirected graph

vertex v8 v7 v6 v5 v4 v3 v2 v1
weight 7 5 6 4 4 3 1 2

independent sets I1 I2 I3 I4 I5
partition P3 P2 P1

(b) Vertex sequence, independent sets and partition

V : {11, 111, 111}
P3 : {11, 000, 000}
P2 : {00, 111, 000}
P1 : {00, 000, 111}

N(v3) : {01, 101, 001}
V5 : {00, 011, 111}

(c) Bit vector representation
examples

3 2 1
000 0 0 0
001 5 4 2
010 7 4 1
011 7 8 2
100 - 6 3
101 - 6 5
110 - 6 3
111 - 8 5

(d) Optimal tables

Figure 3: A precomputation example
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4. Numerical experiments

We implemented OTClique in C. We determined l = 25 for graphs with

n ≤ 1500, otherwise l = 20. We compared OTClique with Österg̊ard’s algo-

rithm [22], Yamaguchi/Masuda’s algorithm [32] (denoted YM), Kumlander’s

algorithm [20] (denoted DK), our previous algorithm VCTable [21] and IBM’s

mixed integer programming solver CPLEX. For CPLEX, we formulated MWCP

with integer programming as follows :

maximize :
∑
vi∈V

w(vi) · xi

s.t. : xi + xj ≤ 1, (vi, vj) /∈ E

xi ∈ {0, 1}, ∀vi ∈ V .

We used the C program Cliquer [33] for Österg̊ard’s algorithm. For YM, we

used a C++ implementation [32]. For VCTable, we used our own C implemen-

tation [21]. Although Kumlander presents a Visual Basic 6.0 implementation

[34], we independetly implemented DK in C to avoid performance variations

between VB and C. We used an Intel(R) Core(TM) i7-2600 3.40 GHz, 8 GB of

main memory, and GNU/Linux. The compiler was gcc 4.4.6 (optimization op-

tion -O2). In addition, version 12.5.0.0. of CPLEX was used. Note that CPLEX

is a multi-thread solver, and the others are single-thread solvers. In our com-

puter experiments, the CPU usage was approximately 800% for CPLEX, and

the CPU usage for the others was approximately 100%.

In the result tables, n denotes the number of vertices, d denotes the edge

density 2|E|
|V |(|V |−1) , pre denotes the computation time for the precomputation

phase, and total denotes the total computation time, which includes the pre-

computation phase.
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4.1. Random graphs

We generated uniform random graphs with various numbers of vertices and

edge density. The vertex weights were integer values ranging from 1 to 10. In

each case, we generated 10 instances and calculated the average computation

time and number of branches.

The computation times and their summary are shown in Table 4 and 5,

respectively. In Table 5, the values of minimum, geometric mean and maximum

value of the ratio of each algorithm to OTClique are shown. Some unknown

values (over 1000) are assumed 1000 for convenience in that calculation.

As can be seen, the proposed OTClique algorithm and VCTable can solve

all instances; however, the others cannot solve some instances. For most graphs

with 0.3 ≤ d ≤ 0.9, OTClique is faster than the other algorithms. Although the

computation time for the precomputation phase is exponential to the size of Pi,

it is actually performed in less than 2 seconds. For graphs with d ≤ 0.2, Cliquer

is faster than OTClique. However, Cliquer is very slow for dense graphs.

For graphs with d ≥ 0.95, CPLEX is faster than OTClique. We also per-

formed some experiments for CPLEX with a fixed number of vertices and the

results are shown in Table 6. CPLEX is very slow even if the graph is sparse.

Note that CPLEX is a branch-and-cut based solver; thus, it behaves quite dif-

ferently from other branch-and-bound-based algorithms.

The number of search tree nodes and its summary are shown in Table 7

and 8, respectively. The number of nodes of Cliquer is not shown because the

program does not provide this information. In most cases, the YM algorithm

demonstrates the smallest number of search tree nodes. However, OTClique is

faster than the YM algorithm because OTClique calculates an upper bound in

O(|V ′|) time for a subproblem V ′, whereas the YM algorithm requires O(|V ′|2)

time for the upper bound calculation. Since similar tendency is also seen in the
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Table 4: Computation time for random graphs [sec]

OTClique
n d l pre total VCTable Cliquer YM DK CPLEX

8000 0.1 20 0.97 5.09 6.54 2.69 13.24 12.01 >1000
6000 0.1 20 0.68 1.98 2.47 1.14 4.55 4.05 >1000
4000 0.2 20 0.43 6.72 9.04 4.15 25.78 20.94 >1000
3000 0.2 20 0.30 2.03 2.70 1.36 6.08 5.99 >1000
2500 0.3 20 0.07 9.38 15.95 10.03 37.84 44.53 >1000
2000 0.3 20 0.05 3.00 8.37 3.47 12.30 14.61 >1000
1500 0.4 25 1.51 9.08 14.45 15.06 42.29 58.04 >1000
1000 0.4 25 0.98 1.69 1.24 1.58 3.62 5.30 >1000
1000 0.5 25 0.88 11.67 17.85 28.67 61.50 94.84 >1000
900 0.5 25 0.74 5.74 10.29 15.29 31.46 50.73 >1000
700 0.6 25 0.49 17.02 29.99 64.38 99.07 212.70 >1000
500 0.6 25 0.38 1.72 2.48 5.62 7.11 17.12 >1000
500 0.7 25 0.44 36.57 66.35 212.79 201.98 674.06 >1000
300 0.7 25 0.31 0.72 0.96 3.13 2.01 6.49 769.63
300 0.8 25 0.33 18.85 52.88 242.38 93.70 511.97 >1000
200 0.8 25 0.23 0.45 0.71 3.29 1.11 5.45 24.97
200 0.9 25 0.30 10.63 60.44 >1000 89.85 409.55 11.24
150 0.9 25 0.21 0.46 0.96 20.32 1.58 7.20 0.89
200 0.95 25 0.30 144.11 909.88 >1000 >1000 >1000 1.96
150 0.95 25 0.21 2.06 6.49 >1000 22.57 48.09 0.27
200 0.98 25 0.34 18.75 40.44 >1000 >1000 967.34 0.02
150 0.98 25 0.26 0.43 0.47 >1000 18.70 5.09 0.01

Table 5: Summary: Computation time comparison for random graphs

VCTable Cliquer YM DK CPLEX
min 0.73 0.53 2.14 2.05 0.014

mean 1.87 >4.10 >4.68 >8.79 >49.4
max 6.31 >2325.6 >53.3 >53.3 >2222.2

experiments with other data, we do not show the summary of number of search

tree nodes hereafter.

4.2. Graphs from error-correcting codes

Error-correcting codes are important in the field of coding theory. The prob-

lem of constructing error-correcting codes of maximum size can be formulated

with the MWCP [22].

The computation time, its summary and number of search tree nodes are

shown in Tables 9, 10 and 11, respectively. OTClique, VCTable, and Cliquer can
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Table 6: Computation time and number of search tree nodes of CPLEX

CPLEX
n d time[sec] iterations nodes

200 0.1 5.57 2753.7 0.0
200 0.2 7.54 5380.3 0.0
200 0.3 10.76 36948.7 350.5
200 0.4 12.44 83930.5 818.8
200 0.5 11.16 108395.2 1303.2
200 0.6 12.31 260316.9 3355.7
200 0.7 14.76 524246.0 7251.2
200 0.8 25.78 1185288.8 21259.0
200 0.9 11.46 886880.4 17404.3
200 0.95 2.00 116176.7 2642.0
200 0.98 0.02 238.1 0.0

Table 7: Number of search tree nodes for random graphs

CPLEX
n d OTClique VCTable YM DK iterations nodes

8000 0.1 1569577.2 1969224 2984515.8 1945414.9
6000 0.1 538047.3 662396.4 1476080.5 650523.3
4000 0.2 4209559.4 5242273.7 2914794.5 5959659.5
3000 0.2 1600052.8 1962662 1093185.9 2281087.4
2500 0.3 12634956.5 16158044.8 9341501.7 20388682.5
2000 0.3 4499188 5931297.5 3174379.3 7096941.7
1500 0.4 15814530.7 22526798.8 9558008.3 29162795.8
1000 0.4 1850807 2818775 1494500.5 3295741.8
1000 0.5 28515581.8 42783759.7 15942518.3 57438717
900 0.5 15621489.3 25828420.6 8696737.4 31984389.3
700 0.6 64268108 110461661.2 25579875.4 142408095.5
500 0.6 5855125.4 10794560.6 3112917.3 13138380.5
500 0.7 174437626.4 345544601.4 57386087.3 490450681.3
300 0.7 2166003 5486785.2 1398292.1 6078605.7 13761832 199887.2
300 0.8 115162693.3 369686388.9 39410102.6 470340625.1
200 0.8 1325098.1 5282665.4 1098077 6256181.4 1185288.8 21259
200 0.9 92658142.3 593489366.4 24300759.4 513470878.2 886880.4 17404.3
150 0.9 2249004.1 9622659.3 1210309.3 11607417.5 39049.1 999.7
200 0.95 1648509971.5 10439082379 116176.7 2642
150 0.95 23690554.4 80717090.8 5716143.1 94504883 2190.3 34.9
200 0.98 252017914.8 590062099.6 1755388755.3 238.1 0.0
150 0.98 2914216.4 6804953.8 2538974.4 11978621.5 84.9 0.0

Table 8: Summary: Comparison of Number of search tree nodes (random graph, 0.1 ≤ d ≤ 0.9)

VCTable YM DK
min 1.226623271 0.262262536 1.209044818

mean 1.914480733 0.642868328 2.254038621
max 6.405150715 2.743402857 5.541562408
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solve all instances; however, YM, DK and CPLEX cannot solve some instances

within 1000 seconds. There is a difference from the experiments for random

graphs; Cliquer is the fastest for random sparse graphs. However, in these

experiments OTClique is often faster than Cliquer even though all graphs are

very sparse.

Table 9: Computation time for graphs from error-correcting codes[sec]

OTClique
instance n d l pre total VCTable Cliquer YM DK CPLEX
11-4-4 150 0.089 25 0.17 3.50 13.96 18.45 11.52 151.45 2.49
12-4-6 230 0.038 25 0.20 18.62 92.56 18.22 54.67 >1000 8.14
14-4-7 223 0.040 25 0.17 24.84 71.98 248.41 58.29 455.17 177.13
14-6-6 807 0.0031 25 0.58 11.62 18.18 12.56 33.05 183.83 >1000
16-4-5 156 0.083 25 0.15 0.23 0.22 0.11 0.34 1.72 0.51
16-8-8 2246 0.00040 20 0.21 0.30 0.37 0.13 0.24 0.40 >1000
17-4-4 132 0.12 25 0.09 0.09 0.03 0.03 0.02 0.12 0.21
17-6-6 558 0.0064 25 0.34 8.43 50.52 45.00 11.65 57.66 563.01
19-4-6 263 0.029 25 0.25 1.55 1.75 0.43 >1000 >1000 12.37
19-8-8 2124 0.00044 20 0.20 1.44 2.03 1.11 4.58 5.03 >1000
20-6-5 1302 0.0012 25 2.22 15.55 16.07 8.48 13.76 71.58 >1000
20-6-6 1490 0.00090 25 1.28 35.98 36.15 39.42 27.53 122.47 >1000
20-8-10 2510 0.00032 20 0.26 0.67 0.68 0.47 0.44 0.93 >1000
21-10-9 5098 0.000077 20 0.57 30.80 36.48 22.30 45.58 81.61 >1000
22-10-10 8914 0.000025 20 1.07 2.18 2.45 2.72 4.99 3.98 >1000

Table 10: Summary: Computation time comparison for error-correcting codes

VCTable Cliquer YM DK CPLEX
min 0.33 0.28 0.22 1.33 0.44

mean 1.51 1.03 >2.11 >7.54 >32.5
max 5.99 10.0 >645.1 >645 >3333

4.3. Combinatorial auction test suite (CATS)

The winner determination problem (WDP) is a problem to find the winner

in a combinatorial auction, which allows a bidder to bid on some combinations

of items. In the WDP, a set of items S and a set of bids B are given. Each

bid is given as a subset Ai of items and a price p[i]. Any two bids containing

the same item cannot simultaneously be winners. Winners are determined to

maximize the sum of the profit.
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Table 11: Number of search tree nodes for graphs from error-correcting codes

CPLEX
instance n d OTClique VCTable YM DK iterations nodes
11-4-4 150 0.089 30163536 180331784 25070647 275400718 397710 8549
12-4-6 230 0.038 121920915 668899369 17792987 751526 10948
14-4-7 223 0.04 143755269 458811161 41662592 515680460 19249470 563040
14-6-6 807 0.0031 30487685 46843021 4601492 79528959
16-4-5 156 0.083 398777 1540169 338154 2316548 31621 542
16-8-8 2246 0.0004 124722 149419 179727 169038
17-4-4 132 0.12 24780 178479 56609 189553 32334 1925
17-6-6 558 0.0064 49123059 364028794 5854424 46348199 8681379 75387
19-4-6 263 0.029 14506697 18569063 1213989 22654
19-8-8 2124 0.00044 3197921 4590127 2613216 1824505
20-6-5 1302 0.0012 36969905 41428506 15508514 47977328
20-6-6 1490 0.0009 72883176 78077559 21910613 75449886

20-8-10 2510 0.00032 567832 611175 402282 510480
21-10-9 5098 0.000077 48434957 59905383 19987039 45192855
22-10-10 8914 0.000025 244678 243124 2134959 198318

The WDP can be formulated by integer programming as follows:

maximize :
∑
bi∈B

p[i]xi

s.t. :
∑

Ai∋sj

xi ≤ 1, for ∀sj ∈ S

xi ∈ {0, 1}, ∀bi ∈ B .

CATS, the benchmark set of the WDP, is available online [6]. CATS can cre-

ate instances of the CPLEX integer programming format. We obtained MWCP

with graph G = (V,E) and weights for each vertex w(·) from the WDP by

transforming in the following manner. Vertices corresponds to bids, and for any

two bids bi, bj ∈ B, there exists an edge (vi, vj) iff Ai ∩ Aj = ∅. Each vertex

weight is the price of each corresponding bid.

In the experiments, 10 instances were generated for each condition, and the

average computation time, its summary and number of search tree nodes are

shown in Tables 12, 13 and 14, respectively. In the tables, arbitrary-400-250

denotes the instance of the arbitrary distribution with 400 items and 250 bids.
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CATS does not produce instances of an exact number of bids; thus, the numbers

in column “n” differ slightly from the expected numbers.

In these experiments CPLEX was the fastest for almost all instances, prob-

ably because of small n and large d. In addition, the outputs of CATS might

be in a more desirable formulation for CPLEX. Among the branch-and-bound

algorithms, OTClique is significantly faster than other algorithms.

Table 12: Computation time for CATS [sec]

OTClique
instance n d l pre total VCTable Cliquer YM DK CPLEX

arbitrary-400-250 251.5 0.71 25 0.25 0.38 0.71 16.95 0.44 2.36 5.27
arbitrary-700-200 202.1 0.81 25 0.18 0.21 0.57 224.92 0.08 0.27 1.09
matching-400-300 304.7 0.96 25 0.11 0.13 >1000 >1000 115.52 6.74 0.01
matching-700-250 251.9 0.96 25 0.05 0.05 >1000 >1000 0.13 1.14 0.01

paths-100-200 201.4 0.85 25 0.19 2.41 71.62 >1000 38.30 44.84 0.01
paths-150-200 202.1 0.86 25 0.16 5.10 209.27 >1000 17.98 70.55 0.01

regions-500-300 302.1 0.86 25 0.22 6.48 >1000 >1000 21.62 200.18 0.28
regions-700-250 252.3 0.90 25 0.20 0.72 725.61 >1000 3.21 27.86 0.09

scheduling-30-600 614.0 0.60 25 0.83 1.86 4.35 5.95 19.67 3.91 0.02
scheduling-50-500 516.9 0.71 25 0.65 2.84 3.33 7.72 32.14 2.47 0.08

Table 13: Summary: Computation time comparison for CATS

VCTable Cliquer YM DK CPLEX
min 1.17 2.72 0.38 0.87 0.002

mean >57.7 >254 6.32 9.39 0.083
max >20000 >20000 889 51.8 13.87

Table 14: Number of search tree nodes for CATS

CPLEX
instance n d OTClique VCTable YM DK iterations nodes

arbitrary-400-250 251.5 0.71 888981.3 5656266.7 188516.6 3516208.6 640828.9 12708.4
arbitrary-700-200 202.1 0.81 163751.7 5009649.8 22621.2 473788.1 52123.4 829.5
matching-400-300 304.7 0.96 266306.1 5085000.7 4456469.6 10.2 0.0
matching-700-250 251.9 0.96 105082.2 5988.5 1644554.7 2.6 0.0

paths-100-200 201.4 0.85 19408098.7 643188530.2 18514793.1 85357910.2 82.2 0.0
paths-150-200 202.1 0.86 45093901.5 2071898703 9021836.7 129116819.3 85.3 0.0

regions-500-300 302.1 0.86 50251614.2 1787653.7 206599782.9 3793.3 47.7
regions-700-250 252.3 0.90 5090924.0 6315728338.5 363420.6 35247529.6 543.4 0.0

scheduling-30-600 614.0 0.60 5114551.6 33353543.8 1939830.5 2924728.7 99.8 0.0
scheduling-50-500 516.9 0.71 16712513.2 40218416.4 2811068.1 2435736.2 907.1 61.3
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4.4. DIMACS benchmark graphs

The DIMACS benchmarks for the MCP can be obtained online [35]. We used

the DIMACS benchmarks to compare weighted algorithms. Note that there are

some faster algorithms for the MCP (e.g., [14]) than algorithms for the MWCP.

The computation time, its summary and the number of search tree nodes

are shown in Tables 15, 16 and 17, respectively. In the tables, “easy instance”

means the instance which at least one of algorithms can solve less than 0.1

second (26 insntaces) and “hard instance” means all the algorithm takes at

least 0.1 second (16 instances). In Table 15, we put ”*” at the end of each row

for ”easy instance”. In Table 16, the number of times that each algorithm is

the fastest is shown.

For “easy instances”, OTClique is not the fastest because the time required

to perform the precomputation phase is relatively long for easy instances (still

less than a second). However, for “hard instances”, OTClique is several times

faster than other algorithms in most cases. For example, previous algorithms

require at least 13 hours to solve p-hat500-3 ; however, OTClique can solve the

problem within 30 minutes.
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Table 15: Computation time for DIMACS graphs [sec]

OTClique
instance n d l pre total VCTable Cliquer YM DK CPLEX easy

brock200 1 200 0.75 25 0.23 0.75 2.14 3.78 3.03 12.99 155.13
brock200 2 200 0.50 25 0.05 0.06 0.02 0.01 0.02 0.02 29.48 *
brock200 3 200 0.61 25 0.20 0.22 0.09 0.07 0.09 0.28 44.33 *
brock200 4 200 0.66 25 0.13 0.17 0.12 0.27 0.25 0.60 57.00
brock400 1 400 0.75 25 0.27 627.16 2959.93 13192.62 1801.04 35059.79 >24h
brock400 2 400 0.75 25 0.36 99.37 1540.65 3354.88 1927.09 13208.17 out of memory
brock400 3 400 0.75 25 0.40 474.01 337.01 994.56 1718.99 3485.41 out of memory
brock400 4 400 0.75 25 0.32 41.29 672.79 146.68 1855.58 3148.39 out of memory
c-fat200-1 200 0.08 25 0.02 0.02 0.01 <0.01 <0.01 <0.01 4.25 *
c-fat200-2 200 0.16 25 0.02 0.02 0.01 <0.01 <0.01 <0.01 2.97 *
c-fat200-5 200 0.43 25 0.26 0.26 48.54 0.11 <0.01 <0.01 1.44 *

c-fat500-10 500 0.37 25 0.50 0.51 0.22 <0.01 0.01 0.01 30.60 *
c-fat500-1 500 0.04 25 0.97 0.97 0.05 <0.01 <0.01 <0.01 40.41 *
c-fat500-2 500 0.07 25 0.06 0.07 0.06 <0.01 <0.01 <0.01 52.04 *
c-fat500-5 500 0.19 25 0.50 0.50 0.01 <0.01 <0.01 <0.01 50.34 *

hamming6-2 64 0.90 25 0.06 0.07 0.04 <0.01 <0.01 <0.01 0.01 *
hamming6-4 64 0.35 25 0.06 0.07 <0.01 <0.01 <0.01 <0.01 0.09 *
hamming8-4 256 0.64 25 0.26 0.26 <0.01 <0.01 0.06 <0.01 0.31 *

johnson16-2-4 120 0.76 25 0.10 0.11 0.06 0.02 0.02 0.09 0.01 *
johnson8-2-4 28 0.56 25 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 *
johnson8-4-4 70 0.77 25 0.11 0.11 <0.01 <0.01 <0.01 <0.01 0.01 *

keller4 171 0.65 25 0.13 0.13 0.06 0.06 0.04 0.31 1.86 *
MANN a9 45 0.93 25 0.04 0.04 0.01 <0.01 <0.01 <0.01 0.01 *

p hat1000-1 1000 0.24 25 0.19 0.58 0.49 0.68 0.78 2.05 out of memory
p hat1000-2 1000 0.49 25 0.58 5473.09 22235.24 >24h >24h >24h out of memory
p hat1500-1 1500 0.25 25 0.49 3.47 4.47 5.02 7.25 13.37 2316.46
p hat300-1 300 0.24 25 0.07 0.07 0.03 0.01 <0.01 <0.01 197.70 *
p hat300-2 300 0.49 25 0.16 0.17 0.08 0.16 1.55 1.57 201.27 *
p hat300-3 300 0.74 25 0.30 2.30 32.88 290.47 1214.72 3284.28 out of memory
p hat500-1 500 0.25 25 0.06 0.08 0.06 0.04 0.04 0.07 5901.71 *
p hat500-2 500 0.50 25 0.27 0.68 3.51 79.55 407.64 171.05 out of memory
p hat500-3 500 0.75 25 0.46 1688.62 47835.44 >24h >24h >24h out of memory
p hat700-1 700 0.25 25 0.10 0.13 0.08 0.06 0.12 0.17 70610.60 *
p hat700-2 700 0.50 25 0.37 25.02 103.99 9095.34 54845.59 14432.73 out of memory

san200 0.7 1 200 0.70 25 0.13 0.14 0.21 0.48 0.01 10.79 0.07 *
san200 0.7 2 200 0.70 25 0.10 0.10 <0.01 <0.01 0.04 509.60 1.43 *
san200 0.9 1 200 0.90 25 0.28 0.28 2.01 0.06 0.21 296.46 0.02 *
san200 0.9 2 200 0.90 25 0.22 0.24 9.21 6.96 33.05 100.63 0.03 *
san200 0.9 3 200 0.90 25 0.33 39.16 3216.09 288.78 353.92 66606.68 1.16
san400 0.5 1 400 0.50 25 0.43 0.43 86.11 <0.01 0.07 9.51 20.09 *
sanr200 0.7 200 0.70 25 0.15 0.30 0.56 1.14 0.78 3.37 81.45
sanr400 0.5 400 0.50 25 0.31 0.54 0.61 0.61 0.75 1.78 out of memory

Table 16: Number of times the algorithm is fastest

OTClique VCTable Cliquer YM DK CPLEX
easy instance 0 6 18 15 13 4
hard instance 12 3 0 0 0 1
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Table 17: Number of search tree nodes for DIMACS graphs

CPLEX
instance n d OTClique VCTable YM DK iterations nodes

Brock200 1 200 0.75 2566471 13661530 6059104 15797409 7436306 208755
Brock200 2 200 0.50 9657 31882 15590 30566 661974 9741
Brock200 3 200 0.61 89289 315209 198252 340176 1344242 33307
brock200 4 200 0.66 172145 442065 515922 802497 2017472 51940
brock400 1 400 0.75 3488294654 16039214046 2200796435 35382562365
brock400 2 400 0.75 553204147 8052675173 2576827212 13386023608
brock400 3 400 0.75 2879648537 1962741399 2400677118 3904864834
brock400 4 400 0.75 238804823 3890878794 2721130159 3302953612
c-fat200-1 200 0.08 82 83 19 102 803 0
c-fat200-2 200 0.16 300 300 55 324 708 0
c-fat200-5 200 0.43 1712 308553765 528 1923 846 0
c-fat500-10 500 0.37 8001 8001 186 8127 3029 0
c-fat500-1 500 0.04 108 128 34 119 3838 0
c-fat500-2 500 0.07 351 351 91 377 4129 0
c-fat500-5 500 0.19 2080 2080 97 2144 3251 0

hamming6-2 64 0.90 528 548 32 584 87 0
hamming6-4 64 0.35 49 80 106 88 470 0
hamming8-4 256 0.64 972 1171 38508 1179 1351 0

johnson16-2-4 120 0.76 218423 541587 228719 547373 47 0
johnson8-2-4 28 0.56 10 45 24 51 10 0
johnson8-4-4 70 0.77 232 323 363 499 117 0

keller4 171 0.65 39213 181697 82173 437495 175708 3006
MANN a9 45 0.93 204 704 1893 2845 97 0

p hat1000-1 1000 0.24 1220187 1450847 986204 1589646
p hat1000-2 1000 0.49 20048937586 143300483577
p hat1500-1 1500 0.25 6923351 13656285 7116928 9335304 28604 0
p hat300-1 300 0.24 3986 5276 5229 6282 402470 4936
p hat300-2 300 0.49 53829 213246 1597449 1702352 737357 8884
p hat300-3 300 0.74 11044720 219293999 708443913 4411515345
p hat500-1 500 0.25 48296 67740 56053 62412 4300997 70519
p hat500-2 500 0.50 1830991 19329531 99860159 223499388
p hat500-3 500 0.75 9900409369 308959913207
p hat700-1 700 0.25 71443 158620 134150 141524 24148763 363967
p hat700-2 700 0.50 106049123 621465294 6995805088 17558655841

san200 0.7 1 200 0.70 78107 1204248 2393 75571516 588 0
san200 0.7 2 200 0.70 248 225 31353 1273043561 44602 668
san200 0.9 1 200 0.90 7052 22252694 11224 1601201049 319 0
san200 0.9 2 200 0.90 268649 98942797 14354090 347488437 520 0
san200 0.9 3 200 0.90 332503947 27913769597 235811036 140175563921 101776 1737
san400 0.5 1 400 0.50 1123 119048473 4892 5318885 207102 920
sanr200 0.7 200 0.70 709769 3139173 1626325 4235239 2930622 73971
sanr400 0.5 400 0.50 973190 2476362 1252324 1715154
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5. Conclusions

We have proposed a new maximum clique extraction algorithm OTClique.

OTClique consists of two phases, the precomputation phase and the branch-and-

bound phase. In the precomputation phase, the proposed OTClique algorithm

generates a vertex partition and optimal tables. In the branch-and-bound phase,

OTClique calculates the upper bound in a very short time using the optimal

tables. Because the computation time for each branch is very short and the

bounding procedure can prune significant search space; thus, OTClique can

solve instances quickly.

From the experiments, we have confirmed that OTClique is significantly

faster than other algorithms for almost all instances. For some instances, OT-

Clique is not the fastest; however, the differences are not significant. OTClique

solves such instances nearly as fast as the fastest performing algorithm in such

cases. Previous algorithms cannot find the optimum solution for some instances;

however, OTClique can find the optimum solution for all instances used in the

experiments.
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