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Abstract

This paper proposes an empirical likelihood-based estimation method for semiparametric

conditional moment restriction models, which contain finite dimensional unknown parameters

and unknown functions. We extend the results of Donald, Imbens, and Newey (2003) by allowing

unknown functions to be included in the conditional moment restrictions. We approximate un-

known functions by a sieve method and estimate the finite dimensional parameters and unknown

functions jointly. We establish consistency and derive the convergence rate of the estimator. We

also show that the estimator of the finite dimensional parameters is
√
n-consistent, asymptoti-

cally normally distributed, and asymptotically efficient.
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1 Introduction

This paper is concerned with an empirical likelihood (EL)-based estimation method for semi-

parametric conditional moment restriction models given by the form:

E[ρ(Z, θ0, h0)|X] = 0, (1)

where Z = (Y,Xz), Xz is a subset of X, and ρ is a dρ dimensional vector of known (residual)

functions up to parameters. The conditional distribution of Y given X is not specified. The

parameters of interest α0 = (θ0, h0) contain a finite dimensional vector θ0 and a vector of

unknown functions h0(·) = (h01(·), . . . , h0q(·)). The model is semiparametric in the sense that it

contains unknown functions h0. Unknown functions h0 may depend on the endogenous variables

Y , conditioning (or instrumental) variables X, or known index functions δ(X;β0) up to an

unknown parameter β0.

Ai and Chen (2003) (hereafter AC, 2003) and Newey and Powell (2003) independently pro-

pose the sieve minimum distance (SMD) estimator for the model (1) using sieves to approximate

the unknown functions. Newey and Powell (2003) establish consistency of their estimator and

discuss a sufficient condition for the identification of h0. AC (2003) show that the SMD estima-

tor of the parametric component θ0 is
√
n-consistent and asymptotically normally distributed.

Furthermore, AC (2003) derive the semiparametric efficiency bound of the model (1) and show

that the optimally weighted SMD estimator of θ0 attains the bound. Chen and Pouzo (2009)

extend the results of AC (2003) and propose the penalized SMD estimator to deal with possibly

non-smooth residual functions. Blundell, Chen, and Kristensen (2007) apply the SMD estimator

to the estimation of a system of Engel curves.

Without unknown functions h0, (1) is reduced to

E[ρ(Z, θ0)|X] = 0. (2)

A large body of research has been conducted for analyzing the model (2), including Chamberlain

(1987), Robinson (1987), Newey (1990), Carrasco and Florens (2000), and Dominguez and

Lobato (2004). There are basically two approaches in the EL (Qin and Lawless, 1994) literature

to deal with (2). Donald, Imbens, and Newey (2003) (hereafter DIN, 2003) utilize the fact

that the conditional moment restriction is equivalent to a countable number of unconditional
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moment restrictions implied by (2) (Chamberlain, 1987). They show that their generalized

empirical likelihood (GEL) estimator attains the semiparametric efficiency bound when the

number of unconditional moment restrictions gets large with the sample size. Another approach

is proposed by Zhang and Gijbels (2003) and Kitamura, Tripathi, and Ahn (2004), who use

the kernel smoothing method to incorporate local restrictions implied by (2). Their estimator

also attains the semiparametric efficiency bound. Smith (2006) extends the idea of Kitamura,

Tripathi, and Ahn (2004) by replacing the log likelihood criterion with the general Cressie-Read

discrepancy family.

The purpose of this paper is to propose a GEL-based estimation method for (1) using a sieve

method to approximate unknown functions h0. Our GEL-based estimator is called the sieve

generalized empirical likelihood (SGEL) estimator. We utilize an expanding set of unconditional

moment restrictions based on approximating functions so that the optimal instrument is spanned

asymptotically. The estimator was suggested by Nishiyama, Liu, and Sueishi (2005), but we

did not provide the theoretical justification. We show that the SGEL estimator of θ0 is
√
n-

consistent, asymptotically normally distributed, and asymptotically efficient.

Otsu (2011) proposes the sieve conditional empirical likelihood (SCEL) estimator, which is

an extension of the conditional EL estimator of Kitamura, Tripathi, and Ahn (2004). Moreover,

the quadratic approximation of Zhang and Gijbels (2003) implies that the SCEL estimator is

an information-theoretic alternative to the SMD estimator. In contrast, our method is viewed

as an extension of DIN (2003).

The rest of the paper is organized as follows. Section 2 introduces the SGEL estimator.

Section 3 discusses consistency of the estimator and derives the rate of convergence under a

certain metric. Section 4 shows that the estimator of the parametric component is asymptotically

normally distributed. Section 5 concludes. The Appendix provides outlines of the proofs.

Detailed proofs and some definitions and assumptions are given in the supplemental material

that is available online.

2 SGEL estimator

The environment we consider is the same as that of AC (2003). In what follows, we assume

that the observations {(Yi, Xi) : i = 1, 2, . . . , n} are drawn independently from the distribution
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of (Y,X) with support Y × X , where Y is a subset of Rdy and X is a compact subset of Rdx .

The vector function ρ : Z ×A → Rdρ is known up to the unknown parameters α0 = (θ0, h0) ∈

A ≡ Θ×H. Assume that Θ ⊆ Rdθ is compact and H = H1 × · · · × Hq is a space of continuous

functions. We allow dependence of h0 on θ0. Assume that Z = (Y,Xz)
′ ∈ Z = Y × Xz and

Xz ⊆ X . Denote ∥A∥ = (tr(A′A))1/2 for any matrix A.

The conditional moment restriction (2) implies that

E[a(X)ρ(Z, θ0)] = 0 (3)

for an arbitrary matrix-valued function a(x). Then, θ0 can be estimated by using (3). How-

ever, this procedure has two deficiencies. First, an arbitrary choice of a(x) leads to efficiency

loss. Second, unconditional moment restrictions may fail to identify the parameter even when

an optimal instrument is used. Chamberlain (1987) shows that the estimator which solves∑n
i=1B(Xi)ρ(Zi, θ) = 0 with

B(X) = E

[
∂ρ(Z, θ0)

∂θ

∣∣X]′E [ρ(Z, θ0)ρ(Z, θ0)
′|X]

−1
(4)

is asymptotically efficient. Although the optimal instrument is estimable, it must be used with

caution. Dominguez and Lobato (2004) point out that there exists a case where (4) does not

identify the parameter of interest even though (2) holds for a single value θ0. Carrasco and

Florens (2000) address this issue by using a continuum of unconditional moment restrictions

rather than using a finite number of moment restrictions.

Let {p0j(X), j = 1, 2, . . . } be a sequence of basis functions. Motivated by DIN (2003), we

introduce the GEL-based estimator based on the unconditional moment restrictions:

E[ρ(Z,α0)⊗ pkn(X)] = 0,

where pkn(X) = (p01(X), . . . , p0kn(X))′ is a kn× 1 vector. Let s(v) be a concave function on its

domain V, which is an open interval containing 0. We normalize the function so that s(0) = 0

and s1(0) = s2(0) = −1, where sj(v) = ∂js(v)/∂vj . The SGEL estimator is given by

α̂n = arg min
α=(θ,h)∈Θ×Hn

max
λ∈Λ̂(α)

n∑
i=1

s (λ′gi(α)) ,

where gi(α) = ρ(Zi, α) ⊗ pkn(Xi) and Λ̂(α) = {λ : λ′gi(α) ∈ V, i = 1, . . . , n}. The minimum is

taken over a sieve space Hn = H1
n × · · · × Hq

n. Hence we utilize the sieve method in two ways:
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(i) approximation for the unknown best instrument and (ii) approximation for the unknown

functions h0.

3 Consistency and convergence rate

We first prove consistency of the SGEL estimator. We establish consistency of the estimator

under a metric ∥ · ∥s such as the sup or L2 metric. Then we derive a convergence rate of the

estimators under a certain metric, which is weaker than ∥·∥s. Following AC (2003), we introduce

a weaker metric ∥ · ∥w and establish that ∥α̂n−α0∥w = op(n
−1/4). It turns out that it is enough

to have the fast rate of convergence under ∥ · ∥w to derive the asymptotic normality of θ̂n.

Because most of the definitions and assumptions duplicate those of AC (2003) and DIN

(2003), we do not replicate them here. For complete definitions and assumptions, see the online

supplement. Only conditions that are different from those of AC (2003) and DIN (2003) are

discussed.

Let k1n = dim(Hn) denote the number of unknown sieve parameters in h ∈ Hn = H1
n×· · ·×

Hq
n. Also, let ζ(kn) be a constant satisfying supX∈X ∥pkn(X)∥ ≤ ζ(kn) and

√
kn ≤ ζ(kn). We

impose the following conditions.

Assumption 3.5 (i) There is a metric ∥ · ∥s such that A = Θ × H is compact under ∥ · ∥s;

(ii) there is a constant µ1 such that for any α ∈ A, there exists Πnα ∈ An = Θ×Hn such that

∥Πnα− α∥κs = O(k−µ1

1n ) with k−µ1

1n

√
kn → 0.

Assumption 3.8 (i) s(v) is twice continuously differentiable with Lipschitz second derivative

in a neighborhood of 0; (ii) there exists m > 2 such that E[supα∈A ∥ρ(Z,α)∥m] < ∞ and

ζ(kn)
2kn/n

1−2/m → 0; (iii) n1/mζ(kn)
√
knk

−µ1

1n → 0.

Assumption 3.5 (ii) is more restrictive than Assumption 3.5 (ii) of AC (2003) and Assump-

tion 3.2 of Otsu (2011), which only require that ∥Πnα − α∥s = o(1). We need Assump-

tion 3.5 (ii) and Assumption 3.8 (iii) to control the order of ∥λ̂n(Πnα0)∥, where λ̂n(α) =

argmaxλ∈Λ̂(α)

∑n
i=1 s(λ

′gi(α)). Instead of specifying a convergence rate for ∥Πnα − α∥s, Otsu

(2011) controls the order of the Lagrange multiplier by restricting its support (Assumption 3.5

in Otsu, 2011).
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Assumption 3.8 (iii) requires that the functions in H must be sufficiently smooth. Suppose

that h0 is a p-smooth real valued function on [0, 1]. It is known that if the sieve space Hn

is the space of splines of order r ≥ [p] + 1 with Jn knots, then ∥Πnh0 − h0∥s = O(J−p
n ) =

O(k−p1n ) with respect to the sup norm ∥h∥s ≡ supx∈[0,1] |h(x)|. Thus we have ∥Πnα − α∥κs =

O(k−κp1n ). Also, Assumption 3.8 (ii) requires that k2n/n
1−2/m → 0. We now suppose that m = 8.

Then Assumption 3.8 (ii) is satisfied with kn = o(n3/8). On the other hand, for identification,

k1n cannot grow faster than kn. Thus the rate of k1n is at most O(kn) = o(n3/8). Under

these conditions, Assumption 3.8 (iii) is satisfied if n1/8knk
−κp
n = n1/8n3/8−3κp/8 = o(1), which

requires κp > 4/3. Therefore if κ is small then we need the existence of high order derivatives

of h0. If X is multivariate, then it might be difficult to satisfy Assumption 3.8 (iii). In that

case, Assumption 3.8 is rather a “high-level” assumption. Note that Assumptions 3.5 (ii) and

3.8 (iii) are sufficient but not necessary conditions. We conjecture that consistency will hold

under more mild regularity conditions.

Theorem 3.1 Suppose that Assumptions 3.1-3.8 hold. Then, the SGEL estimator satisfies

∥α̂n − α0∥s = op(1).

Next, we obtain the rate of convergence of the estimator under a weak metric ∥ · ∥w (see

equation (14) in AC, 2003 or the online supplement).

Let m(X,α) = E[ρ(Z,α)|X] and Σ(X,α) = E[ρ(Z,α)ρ(Z,α)′|X]. Let Λpc(X ) be the Hölder

ball with radius c and smoothness p = m+ γ:

Λpc(X ) =

{
f ∈ Cm(X ) : sup

[a]≤m
sup
x∈X

|∇af(x)| ≤ c, sup
[a]=m

sup
x,y∈X ,x ̸=y

|∇af(x)−∇af(y)|
∥x− y∥γ

≤ c

}
.

Moreover, let A0n = {α ∈ An : ∥α− α0∥s = o(1)}.

The following assumption is imposed.

Assumption 3.9 (i) ∥Σ(X,α1)
1/2 − Σ(X,α2)

1/2∥ ≤ c∥α1 − α2∥κs for all α1, α2 ∈ A0n and

X ∈ X with some constant c < ∞; (ii) each element of Σ(·, α)−1/2 is in Λpc(X ) with p > dx/2

for all α ∈ An.

Assumption 3.9 is a smoothness condition for Σ(X,α)1/2, that is, the square root of Σ(X,α).

We impose Assumption 3.9 instead of Assumption 3.4 (iii) in AC (2003) because the SGEL es-

timator implicitly estimates the optimal weight. Assumption 3.9 is not necessary to obtain
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∥α̂n − α0∥w = op(n
−1/4), but is used to obtain the asymptotic normality of θ̂n. An intu-

ition is the following. Notice that the objective function of the SMD estimator is given by

n−1
∑n
i=1 m̂(Xi, α)

′Σ̂(Xi)
−1m̂(Xi, α), where m̂(X,α) is a sieve estimator of m(X,α) and Σ̂(X)

is a consistent estimator of Σ(X,α0). To get the convergence rate of the estimator, AC (2003)

utilize the result that

sup
α∈An

∣∣∣∣∣ 1n
n∑
i=1

m̂(Xi, α)
′Σ̂(Xi)

−1m̂(Xi, α)−
1

n

n∑
i=1

m(Xi, α)
′Σ(Xi, α0)

−1m(Xi, α)

∣∣∣∣∣ = op(n
−1/4)

under the assumption that Σ̂(X) = Σ(X,α0) + op(n
−1/4) (Assumption 3.4 (ii) of AC, 2003).

Thus they show that m̂(X,α) converges to m(X,α) at a certain rate. On the other hand,

we cannot estimate the weight matrix separately. Thus we show that a sieve estimator of

Σ(X,α)−1/2m(X,α) converges to the true function (see Lemma A.8 in the online supplement).

Assumption 3.9 is helpful to show the uniform convergence result.

Theorem 3.2 Suppose that Assumptions 3.1-3.11 hold. Then, the SGEL estimator satisfies

∥α̂n − α0∥w = op(n
−1/4).

4 Asymptotic normality and efficiency

Now we derive the asymptotic distribution of θ̂n. Following AC (2003), we introduce some

notations. Let V be the closure of the linear span of A− α0 under ∥ · ∥w. For v ∈ V , let

dρ(Z,α)

dα
[v] =

dρ(Z,α+ τv)

dτ

∣∣∣∣
τ=0

a.s. Z,

dm(Z,α)

dα
[v] = E

[
dρ(Z,α)

dα
[v]|X

]
a.s. X.

Then (V , ∥ · ∥w) is a Hilbert space with the inner product:

⟨v1, v2⟩ = E

[{
dm(X,α0)

dα
[v1]

}′

Σ(X,α0)
−1

{
dm(X,α0)

dα
[v2]

}]
.

With V = Rdθ ×W and W ≡ H− h0, we write

dm(X,α0)

dα
[α− α0] =

dm(X,α0)

dθ′
(θ − θ0) +

dm(X,α0)

dh
[h− h0].

For each θj , j = 1, . . . , dθ, let w
∗
j ∈ W be the solution to

min
wj∈W

E

[(
dm(X,α0)

dθj
− dm(X,α0)

dh
[wj ]

)′

Σ(X,α0)
−1

(
dm(X,α0)

dθj
− dm(X,α0)

dh
[wj ]

)]
.
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Also, we define

w∗ = (w∗
1 , . . . , w

∗
dθ
),

dm(X,α0)

dh
[w∗] =

(
dm(X,α0)

dh
[w∗

1 ], . . . ,
dm(X,α0)

dh
[w∗
dθ
]

)
,

Dw∗(X) ≡ dm(X,α0)

dθ′
− dm(X,α0)

dh
[w∗].

Let f(α) = ξ′θ for some fixed ξ ∈ Rdθ . Because f(α) is a linear functional, by the Riesz

representation theorem, we have

f(α)− f(α0) = ⟨v∗, α− α0⟩ for all α ∈ A,

where v∗ = (v∗θ , v
∗
h) ∈ V with v∗θ = (E[Dw∗(X)′Σ(X,α0)

−1Dw∗(X)])−1ξ and v∗h = −w × v∗θ .

Additional assumptions are imposed.

Assumption 4.7 s(v) is three times continuously differentiable with Lipschitz third derivative

in a neighborhood of 0.

Assumption 4.8 n−1/4+1/mζ(kn) = o(n−1/8).

Assumption 4.7 is satisfied for commonly used GEL estimators. Assumptions 4.7 and 4.8

are used to prove that the directional derivative of the objective function of the SGEL estimator

converges to the directional derivative of the objective function of the SMD estimator at the

order op(n
−1/2). Under these assumptions, we have the following results.

Theorem 4.1 Under Assumptions 3.1-3.11 and 4.1-4.8, the SGEL estimator satisfies
√
n(θ̂n−

θ0)
d→ N(0, V −1), where V = E[Dw∗(X)′Σ(X,α0)

−1Dw∗(X)].

The asymptotic variance is the same as that of the optimally weighted SMD estimator of

AC (2003). Therefore, the SGEL estimator is asymptotically efficient.

Now, we discuss an estimation method for the asymptotic variance of the SGEL estimator,

which is used for inference. The estimator can be obtained in the following way. For each θj ,

we can estimate w∗
j by solving the minimization problem:

min
wj∈Hj

n

(
1

n

n∑
i=1

{
dρ(Zi, α̂n)

dθj
− dρ(Zi, α̂n)

dh
[wj ]

}
⊗ pkn(Xi)

)′(
1

n

n∑
i=1

gi(α̂n)gi(α̂n)
′

)−1

×

(
1

n

n∑
i=1

{
dρ(Zi, α̂n)

dθj
− dρ(Zi, α̂n)

dh
[wj ]

}
⊗ pkn(Xi)

)
.
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Let ŵ∗ = (ŵ∗
1 , . . . , ŵ

∗
dθ
) be the estimator of w∗. The estimator of V −1 is obtained by

V̂ −1 =

[(
1

n

n∑
i=1

{
dρ(Zi, α̂n)

dθ′
− dρ(Zi, α̂n)

dh
[ŵ∗]

}
⊗ pkn(Xi)

)′(
1

n

n∑
i=1

gi(α̂n)gi(α̂n)
′

)−1

×

(
1

n

n∑
i=1

{
dρ(Zi, α̂n)

dθ′
− dρ(Zi, α̂n)

dh
[ŵ∗]

}
⊗ pkn(Xi)

)]−1

. (5)

In contrast to the covariance estimator of AC (2003), we do not need to estimate Σ(X,α0)

directly. AC (2003) recommend to estimate Σ(X,α0) by the least squares estimator. Although

the sieve estimator is consistent for Σ(X,α0), the fitted value can be negative or very close to

zero in a finite sample.

To prove consistency of the estimator, we need the following additional condition.

Assumption 4.9 For j = 1, . . . , dθ,

dρ(Z,α)

dθj
− dρ(Z,α)

dh
[wj ]

satisfies an envelope condition and is Hölder continuous in α ∈ N0 and wj ∈ {v ∈ W : ∥v∥s ≤

c <∞}.

Theorem 4.2 Under Assumptions 3.1-3.11, 4.1-4.2, and 4.9, V̂ −1 = V −1 + op(1).

Finally, we make a brief remark on another inference method. Chen and Pouzo (2009)

propose an alternative method for constructing a confidence region for θ0 that avoids estimating

the asymptotic variance of the estimator. Their confidence region is obtained by inverting

the objective function of the SMD estimator, which is asymptotically chi-square distributed.

Although we do not give a rigorous proof, it will also be possible to obtain a confidence region

by inverting the objecting function of the SGEL estimator.

5 Conclusion

In this paper, we propose a GEL-based estimation method for semiparametric conditional mo-

ment restriction models. We extend the GEL estimator of DIN (2003) by allowing unknown

functions to be included in the conditional moment restriction. Our SGEL estimator can be

viewed as complementary to the methods of Otsu (2011) and AC (2003). We show that the

SGEL estimator of the parametric component is asymptotically efficient.
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Newey and Smith (2004) show that the GEL estimator outperforms the two-step GMM

estimator in terms of the asymptotic bias for unconditional moment restriction models without

unknown functions. We conjecture that a similar result also holds for semiparametric conditional

moment restriction models. We can extend our theoretic result in this direction in future

research.

Detailed proofs and some definitions and other assumptions are provided online at Cam-

bridge Journals Online in supplementary material to this article. Readers may refer to the

supplementary material associated with this article, available at Cambridge Journals Online

(journals.cambridge.org/ect).
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A Appendix

Throughout the Appendix, C denotes a generic positive constant which may be different in

different uses. For conciseness, only key lemmas are presented and their proofs are omitted. See

the online supplement for the detailed proofs.

A.1 Consistency

Proof of Theorem 3.1 Let pi = pkn(Xi) and W =
(
n−1

∑n
i=1 I ⊗ pip

′
i

)−1
. Also, let

ĝ(α) = n−1
∑n
i=1 gi(α). We define

R̂(α) = ĝ(α)′Wĝ(α),

R(α) = E [E[ρ(Z,α)|X]′E[ρ(Z,α)|X]] .

By Assumption 3.3 in the online supplement, which is an assumption on the identification of

α0, we have

R(α) = E [E[ρ(Z,α)|X]′E[ρ(Z,α)|X]] > 0 = R(α0)

for all α ̸= α0. Also, Corollary 4.2 of Newey (1991) implies that R(α) is continuous and

supα∈A |R̂(α) − R(α)| p→ 0. Thus, by Lemma A.1 of DIN (2003), it suffices to show that

R̂(α̂n)
p→ 0. Because the minimum eigenvalue of W−1 is bound from below with probability

approaching one, it follows from Lemma A.4 in the online supplement that

ĝ(α̂n)
′Wĝ(α̂n) ≤ C∥ĝ(α̂n)∥2 = op(1)

and the desired result follows.

A.2 Rate of convergence

Let Q(Xi, α) = Σ(Xi, α)
1/2 ⊗ p′i and Q(α) = (Q(X1, α)

′, . . . , Q(Xn, α)
′)′. Also, let ψ(X,α) =

Σ(X,α)−1/2m(X,α) and ψ0(X,α) = Σ(X,α0)
−1/2m(X,α). We define

ψ̂(Xi, α) = Q(Xi, α)(Q(α)′Q(α))−1
n∑
j=1

Q(Xj , α)
′Σ(Xj , α)

−1/2ρ(Zj , α).
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Moreover, we denote

L̂n(α) = − sup
λ∈Λ̂(α)

1

n

n∑
i=1

s(λ′gi(α)),

L̄n(α) = −ĝ(α)′
(
1

n

n∑
i=1

gi(α0)gi(α0)
′

)−1

ĝ(α),

Ln(α) = − 1

n

n∑
i=1

ψ0(Xi, α)
′ψ0(Xi, α).

Let A0n = {α ∈ An : ∥α− α0∥s = o(1)} and αn0 = Πnα0. Let λ̂n(αn0) satisfy

λ̂n(αn0) = arg max
λ∈Λ̂(αn0)

n∑
i=1

s(λ′gi(αn0)).

Lemma A.6 Suppose that Assumptions 3.1-3.4, 3.6-3.7, 3.8 (ii), (iv), and 3.10-3.11 hold. Let

t(α) = −
(
n−1

∑n
i=1 gi(α0)gi(α0)

′)−1
ĝ(α). Then for any η0n = o(n−1/4),

max
1≤i≤n

sup
α∈A0n

|η0nt(α)′gi(α)|
p→ 0.

Lemma A.7 Suppose that Assumptions 3.1-3.7, 3.8 (i)-(iv), and 3.10-3.11 hold. Then we have

∥λ̂n(αn0)∥ = op(n
−1/4).

Lemma A.12 Suppose that Assumptions 3.1-3.4, 3.6-3.7, 3.8 (v), and 3.9-3.11 hold. Then we

have (i) L̄n(α)−Ln(α) = op(n
−1/4) uniformly over α ∈ A0n; (ii) L̄n(α)−Ln(α) = op(n

−1/4ηn)

uniformly over α ∈ A0n with ∥α− α0∥w = o(ηn).

Proof of Theorem 3.2 Let 0 < η0n = o(n−1/4). Define L̂0n(α) = −n−1
∑n
i=1 s(η0nt(α)

′gi(α)).

By Lemma A.6, for α ∈ A0n, we have

L̂0n(α) = η0nt(α)
′ĝ(α)− η20n

2
t(α)′

(
1

n

n∑
i=1

s2(η0nt
′gi(α))gi(α)gi(α)

′

)
t(α)

= η0nL̄n(α) + op(n
−1/2). (A.1)

Also, by Lemma A.7, a Taylor expansion yields

L̂n(αn0) = − 1

n

n∑
i=1

s(λ(αn0)
′gi(αn0))

= λ̂n(αn0)
′ĝ(αn0)−

1

2
λ̂n(αn0)

′

(
1

n

n∑
i=1

s2(λ̃
′gi(αn0))gi(αn0)gi(αn0)

′

)
λ̂n(αn0),
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for some λ̃ between 0 and λ̂n(αn0). Hence we have

∣∣∣L̂n(αn0)∣∣∣ ≤ ∥λ̂n(αn0)∥∥ĝ(αn0)∥+ C∥λ̂n(αn0)∥2 = op(n
−1/2). (A.2)

Now we show that ∥α̂n−α0∥w = op(n
−1/8). Let δ0n = 2

√
η0n = o(n−1/8). By the definition

of L̂n(α), L̂0n(α) ≥ L̂n(α) for all α ∈ A0n. Therefore, by using similar set inclusion relations as

in the proof of Theorem 3.2 of Otsu (2011), we have

P (∥α̂n − α0∥w ≥ Cδ0n)

≤ P

(
sup

∥α̂n−α0∥w≥Cδ0n,α∈A0n

L̂n(α) ≥ L̂n(αn0)

)

≤ P

(
sup

∥α̂n−α0∥w≥Cδ0n,α∈A0n

L̂0n(α) ≥ L̂n(αn0)

)

≤ P
(∣∣∣L̂n(αn0)− η0nLn(αn0)

∣∣∣ > η20n

)
+ P

(
sup
α∈A0n

∣∣∣L̂0n(α)− η0nLn(α)
∣∣∣ > η20n

)
+ P

(
sup

∥α−α0∥w≥Cδ0n,α∈A0n

η0nLn(α) ≥ η0nLn(αn0)− 2η20n

)
≡ P1 + P2 + P3, say.

Since n−1
∑n
i=1 ∥ψ0(Xi, αn0)∥2 = op(n

−1/2), it follows from (A.2) that

∣∣∣L̂n(αn0)− η0nLn(αn0)
∣∣∣ ≤

∥∥∥λ̂n(αn0)∥∥∥ ∥ĝ(αn0)∥+ C∥λ̂n(αn0)∥2 +
η0n
n

n∑
i=1

∥ψ0(Xi, αn0)∥2

= op(n
−1/2) = op(η

2
0n),

which implies P1 → 0. Also, it follows from Lemma A.12 and (A.1) that

sup
α∈A0n

∣∣∣L̂0n(α)− η0nLn(α)
∣∣∣ ≤ sup

α∈A0n

∣∣η0nL̄n(α)− η0nLn(α)
∣∣+ op(n

−1/2)

= op(n
−1/2) = op(η

2
0n).

Therefore, we obtain P2 → 0. Finally, using Theorem 1 of Shen and Wong (1994), we have

P3 → 0. Therefore we obtain ∥α̂n − α0∥w = op(n
−1/8).

We can refine the convergence rate by using the logic that is introduced by AC (2003) and

adopted in Otsu (2011). Then we obtain ∥α̂n−α0∥w = op(n
−1/8(1+1/2+1/4+··· )) = op(n

−1/4).
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A.3 Asymptotic normality

Let N0n = {α ∈ An : ∥α − α0∥s = o(1), ∥α − α0∥w = o(n−1/4)}. Let v∗n = (v∗θ ,−Πnw
∗ × v∗θ)

(see Assumption 4.2 in the online supplement). Denote

dψ(Xi, α)

dα
[v∗n] = Σ(Xi, α)

−1/2 dm(Xi, α)

dα
[v∗n]

dψ̂(Xi, α)

dα
[v∗n] = Q(Xi, α)(Q(α)′Q(α))−1

n∑
j=1

Q(Xj , α)
′Σ(Xj , α)

−1/2 dρ(Zj , α)

dα
[v∗n].

Moreover, we define

d2ρ(Zi, α)

dαdα
[v∗n, v

∗
n] =

d2ρ(Zi, α+ τv∗n)

dτ2

∣∣∣∣
τ=0

d2ψ̂(Xi, α)

dαdα
[v∗n, v

∗
n] = Q(Xi, α)(Q(α)′Q(α))−1

n∑
j=1

Q(Xj , α)Σ(Xj , α)
−1/2 d

2ρ(Zj , α)

dαdα
[v∗n, v

∗
n].

Lemma A.14 Suppose that Assumptions 3.1-3.2, 3.4, 3.7, 3.8 (ii), 3.9-3.10, and 4.1-4.4 hold.

Then

1

n

n∑
i=1

{
dψ̂(Xi, α)

dα
[v∗n]

}′

ψ̂(Xi, α) =
1

n

n∑
i=1

{
dψ(Xi, α)

dα
[v∗]

}′

ψ̂(Xi, α) + op(n
−1/2)

uniformly over α ∈ N0n.

Lemma A.15 Suppose that Assumptions 3.1-3.3, 3.6 (iv), 3.9 (ii), 4.1 (i), and 4.2-4.5 hold.

Then

1

n

n∑
i=1

{
dψ(Xi, α)

dα
[v∗]

}′

ψ̂(Xi, α) =
1

n

n∑
i=1

{
dψ(Xi, α0)

dα
[v∗]

}′

ψ̂(Xi, α0)

+ ⟨v∗, α− α0⟩+ op(n
−1/2)

uniformly over α ∈ N0n.

Lemma A.16 Suppose that Assumptions 3.1-3.4, 3.7, 3.9 (ii), 3.10, and 4.3 hold. Then

1

n

n∑
i=1

{
dψ(Xi, α0)

dα
[v∗]

}′

ψ̂(Xi, α0) =
1

n

n∑
i=1

{
dm(Xi, α0)

dα
[v∗]

}′

Σ(Xi, α0)
−1ρ(Zi, α0)+op(n

−1/2).
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Lemma A.17 Suppose that Assumptions 3.1-3.2, 3.4, 3.7, 3.8 (ii), 3.9-3.10, and 4.1-4.4 hold.

Then

sup
α∈N0n

∥∥∥∥∥ 1n
n∑
i=1

dρ(Zi, α)

dα
[v∗n]⊗ pi

∥∥∥∥∥ = Op(1),

sup
α∈N0n

∥∥∥∥∥ 1n
n∑
i=1

d2ρ(Zi, α)

dαdα
[v∗n, v

∗
n]⊗ pi

∥∥∥∥∥ = Op(1).

Proof of Theorem 4.1 Let λ̂n(α) = argmaxλ∈Λ̂(α)

∑n
i=1 s(λ

′gi(α)). Similarly to the proof

of Lemma A.7, we can show that max1≤i≤n |λ̂n(α)′gi(α)|
p→ 0 for α ∈ N0n. Then λ̂n(α) satisfies

the following first order condition

0 =
1

n

n∑
i=1

s1(λ̂n(α)
′gi(α))gi(α) (A.3)

for all α ∈ N0n.

By Assumption 4.7, expanding (A.3) yields

0 =
1

n

n∑
i=1

s1(λ̂n(α)
′gi(α))gi(α)

= −ĝ(α)−

(
1

n

n∑
i=1

gi(α)gi(α)
′

)
λ̂n(α) +

1

2n

n∑
i=1

s3(λ̃
′gi(α))(λ̂n(α)

′gi(α))
2gi(α)

for some λ̃ and for all α ∈ N0n. Assumption 4.8 implies that max1≤i≤n |λ̂n(α)′gi(α)| = op(n
−1/8)

for α ∈ N0n. Thus we obtain∥∥∥∥∥ 1n
n∑
i=1

s3(λ̃
′gi(α))(λ̂n(α)

′gi(α))
2gi(α)

∥∥∥∥∥ ≤ C

(
max
1≤i≤n

∣∣∣λ̂n(α)′gi(α)∣∣∣)2

∥ĝ(α)∥ = op(n
−1/2).

Hence it follows that λ̂n(α) = −(n−1
∑n
i=1 gi(α)gi(α)

′)−1ĝ(α) + op(n
−1/2). Also, it can be

shown that ∥∥∥∥∥ 1n
n∑
i=1

gi(α)gi(α)
′ − 1

n

n∑
i=1

Σ(Xi, α)⊗ pip
′
i

∥∥∥∥∥ = op(n
−1/4)

uniformly over α ∈ N0n. Moreover, by envelope conditions,∣∣∣∣∣λ̂n(α)′
(
1

n

n∑
i=1

s2(λ̃
′gi(α))

dρ(Zi, α)

dα
[u∗n]ρ(Zi, α)

′ ⊗ pip
′
i

)
λ̂n(α)

∣∣∣∣∣ ≤ C
∥∥∥λ̂n(α)∥∥∥2 = op(n

−1/2)

uniformly over α ∈ N0n.

Let 0 < ϵn = o(n−1/2) and u∗ ≡ ±v∗. Denote u∗n = Πnu
∗. By assumption, we can take a

continuous path {α(t) : t ∈ [0, 1]} in N0n such that α(0) = α̂n and α(1) = α̂n + ϵnu
∗
n ∈ N0n.
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By the definition of the SGEL estimator, a Taylor expansion yields

0 ≤ L̂n(α(0))− L̂n(α(1)) = − dL̂n(α(t))

dt

∣∣∣∣∣
t=0

− 1

2

d2L̂n(α(t))

dt2

∣∣∣∣∣
t=s

(A.4)

for some s ∈ [0, 1].

Let λ̂n = λ̂n(α̂n). By the envelope theorem and Lemmas A.14-A.16, we obtain

−dL̂n(α(t))
dt

∣∣∣∣∣
t=0

=
1

n

n∑
i=1

s1(λ̂
′
ngi(α̂n))λ̂

′
n

dρ(Zi, α̂n)

dα
[ϵnu

∗
n]⊗ pi

= −λ̂′n
1

n

n∑
i=1

dρ(Zi, α̂n)

dα
[ϵnu

∗
n]⊗ pi

+ λ̂′n

(
ϵn
n

n∑
i=1

s2(λ̃
′gi(α̂n))

dρ(Zi, α̂n)

dα
[u∗n]ρ(Zi, α̂n)

′ ⊗ pip
′
i

)
λ̂n + op(ϵnn

−1/2)

= ĝ(α̂n)
′

(
1

n

n∑
i=1

gi(α̂n)gi(α̂n)
′

)−1(
1

n

n∑
i=1

dρ(Zi, α̂n)

dα
[ϵnu

∗
n]⊗ pi

)
+ op(ϵnn

−1/2)

= ĝ(α̂n)
′

(
1

n

n∑
i=1

Σ(Xi, α̂n)⊗ pip
′
i

)−1(
1

n

n∑
i=1

dρ(Zi, α̂n)

dα
[ϵnu

∗
n]⊗ pi

)
+ op(ϵnn

−1/2)

=
1

n

n∑
i=1

ψ̂(Xi, α̂n)
′

{
dψ̂(Xi, α̂n)

dα
[ϵnu

∗
n]

}
+ op(ϵnn

−1/2)

=
ϵn
n

n∑
i=1

{
dm(Xi, α0)

dα
[u∗]

}′

Σ(Xi, α0)
−1ρ(Zi, α0)

+ ϵn⟨u∗, α̂n − α0⟩+ op(ϵnn
−1/2). (A.5)

Next we denote dλ̂n(α(τ))
dα [ϵnu

∗
n] =

dλ̂n(α(t))
dt

∣∣∣
t=τ

. By (A.3), we obtain

0 =
1

n

n∑
i=1

s2(λ̂n(α)
′gi(α))gi(α)gi(α)

′ dλ̂n(α)

dα
[v∗n]

+
1

n

n∑
i=1

s2(λ̂n(α)
′gi(α))gi(α)λ̂n(α)

′ dρ(Zi, α)

dα
[v∗n]⊗ pi

+
1

n

n∑
i=1

s1(λ̂n(α)
′gi(α))

dρ(Zi, α)

dα
[v∗n]⊗ pi.

Since the minimum eigenvalue of −n−1
∑n
i=1 s2(λ̂n(α)

′gi(α))gi(α)gi(α)
′ is greater than C with

probability approaching one, we have∥∥∥∥∥dλ̂n(α)dα
[v∗n]

∥∥∥∥∥ ≤ C

∥∥∥∥∥ 1n
n∑
i=1

s2(λ̂n(α)
′gi(α))gi(α)λ̂n(α)

′ dρ(Zi, α)

dα
[v∗n]⊗ pi

∥∥∥∥∥
+ C

∥∥∥∥∥ 1n
n∑
i=1

s1(λ̂n(α)
′gi(α))

dρ(Zi, α)

dα
[v∗n]⊗ pi

∥∥∥∥∥ .
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Here we have∥∥∥∥∥ 1n
n∑
i=1

s2(λ̂n(α)
′gi(α))gi(α)λ̂n(α)

′ dρ(Zi, α)

dα
[v∗n]⊗ pi

∥∥∥∥∥
=

λ̂n(α)′
(
1

n

n∑
i=1

s2(λ̂n(α)
′gi(α))

{
dρ(Zi, α)

dα
[v∗n]

}
ρ(Zi, α)

′ ⊗ pip
′
i

)2

λ̂n(α)


1/2

≤ C
∥∥∥λ̂n(α)∥∥∥ = op(n

−1/4)

uniformly over α ∈ N0n. Thus by Lemma A.17, supα∈N0n

∥∥∥dλ̂n(α)
dα [v∗n]

∥∥∥ = Op(1). Also, by the

envelope condition,∣∣∣∣∣λ̂n(α)′
(
1

n

n∑
i=1

s2(λ̂n(α)
′gi(α))

{
dρ(Zi, α)

dα
[v∗n]

}{
dρ(Zi, α)

dα
[v∗n]

}′

⊗ pip
′
i

)
λ̂n(α)

∣∣∣∣∣ = op(n
−1/2).

Denote λ̂′gi(s) = λ̂n(α(s))
′gi(α(s)). Then by Lemma A.17, we have

d2L̂n(α(t))

dt2

∣∣∣∣∣
t=s

=
1

n

n∑
i=1

s2(λ̂
′gi(s))

dλ̂′gi(s)

dα
[ϵnu

∗
n]λ̂n(α(s))

′ dρ(Zi, α(s))

dα
[ϵnu

∗
n]⊗ pi

+
1

n

n∑
i=1

s1(λ̂
′gi(s))

{
dλ̂n(α(s))

dα
[ϵnu

∗
n]

}′
dρ(Zi, α(s))

dα
[ϵnu

∗
n]⊗ pi

+
1

n

n∑
i=1

s1(λ̂
′gi(s))λ̂n(α(s))

′ d
2ρ(Zi, α(s))

dαdα
[ϵnu

∗
n, ϵnu

∗
n]⊗ pi

=

{
dλ̂n(α(s))

dα
[u∗n]

}′(
ϵ2n
n

n∑
i=1

s2(λ̂
′gi(s))ρ(Zi, α)

{
dρ(Zi, α(s))

dα
[u∗n]

}′

⊗ pip
′
i

)
λ̂n(α(s))

+λ̂n(α(s))
′

(
ϵ2n
n

n∑
i=1

s2(λ̂
′gi(s))

{
dρ(Zi, α(s))

dα
[u∗n]

}{
dρ(Zi, α(s))

dα
[u∗n]

}′

⊗ pip
′
i

)
λ̂n(α(s))

+
ϵ2n
n

n∑
i=1

s1(λ̂
′gi(s))

{
dλ̂n(α(s))

dα
[u∗n]

}′
dρ(Zi, α(s))

dα
[u∗n]⊗ pi

+
ϵ2n
n

n∑
i=1

s1(λ̂
′gi(s))λ̂n(α(s))

′ d
2ρ(Zi, α(s))

dαdα
[u∗n, u

∗
n]⊗ pi

= op(ϵ
2
n). (A.6)

Therefore, it follows from (A.4), (A.5) and (A.6) that

√
nξ′(θ̂n − θ0) =

√
n⟨α̂n − α0, v

∗⟩

= − 1√
n

n∑
i=1

{
dm(Xi, α0)

dα
[v∗]

}′

Σ(Xi, α0)
−1ρ(Zi, α0) + op(1)

for all ξ ̸= 0. The result follows from a central limit theorem.
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Proof of Theorem 4.2 Let Dw(X,α) = E
[
dρ(Z,α)
dθ′ − dρ(Z,α)

dh [w]|X
]
. Define

D̂w(X,α) = Q(Xi, α)(Q(α)′Q(α))−1
n∑
j=1

Q(Xj , α)Σ(Xj , α)
−1/2

{
dρ(Zj , α)

dθj
− dρ(Zj , α)

dh
[wj ]

}
.

Then, similarly to the proof of Lemma A.8, which is given in the online supplement, we can

show that

∥∥∥D̂w(X,α)− Σ(X,α)−1/2Dw(X,α)
∥∥∥ = op(1)∥∥∥D̂w(X,α)− Σ(X,α0)

−1/2Dw(X,α0)
∥∥∥ = op(1)

uniformly over X ∈ X , α ∈ N0n and wj ∈ Hn, j = 1, . . . , dθ. As is noted by AC (2003), we

can also show that ∥ŵ∗
j (·)∥s < c by some constant c. Thus we only need to consider the subset

{v ∈ W : ∥v∥s ≤ c}. We use the sieve space Hn to approximate this subset. Observe that(
1

n

n∑
i=1

{
dρ(Zi, α)

dθ′
− dρ(Zi, α)

dh
[w]

}
⊗ pi

)′(
1

n

n∑
i=1

gi(α)gi(α)
′

)−1

×

(
1

n

n∑
i=1

{
dρ(Zi, α)

dθ′
− dρ(Zi, α)

dh
[w]

}
⊗ pi

)

=

(
1

n

n∑
i=1

{
dρ(Zi, α)

dθ′
− dρ(Zi, α)

dh
[w]

}
⊗ pi

)′(
1

n

n∑
i=1

Σ(Xi, α)⊗ pip
′
i

)−1

×

(
1

n

n∑
i=1

{
dρ(Zi, α)

dθ′
− dρ(Zi, α)

dh
[w]

}
⊗ pi

)
+ op(1)

=
1

n

n∑
i=1

D̂w(Xi, α)
′D̂w(Xi, α) + op(1)

uniformly over α ∈ N0n and w ∈ Hn with ∥w∥s ≤ c. Since α̂n ∈ N0n with probability

approaching one, we have(
1

n

n∑
i=1

{
dρ(Zi, α̂n)

dθ′
− dρ(Zi, α̂n)

dh
[w]

}
⊗ pi

)′(
1

n

n∑
i=1

gi(α̂n)gi(α̂n)
′

)−1

×

(
1

n

n∑
i=1

{
dρ(Zi, α̂n)

dθ′
− dρ(Zi, α̂n)

dh
[w]

}
⊗ pi

)

=
1

n

n∑
i=1

Dw(Xi, α0)
′Σ(Xi, α0)

−1Dw(Xi, α0) + op(1)

uniformly over w ∈ Hn with ∥w∥s ≤ c. Finally, by Lemma A.1 of Newey and Powell (2003), we

have ∥ŵ − w∗∥s = op(1) and hence the result follows.
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Online Supplement to “A Note on Generalized Empirical

Likelihood Estimation of Semiparametric Conditional Moment

Restriction Models”

Naoya Sueishi

Kobe University∗

Abstract

This supplement contains definitions, assumptions, and detailed proofs of the lemmas and

theorems in the main paper. Section 1 gives definitions. Section 2 lists assumptions and main

theorems. Section A provides proofs.

1 Definitions

First, we define a Hölder class. A real-valued function f on X ⊂ Rdx is said to satisfy a Hölder

condition with exponent γ ∈ (0, 1) if there is a constant c such that |f(x) − f(y)| ≤ c∥x − y∥γ

for all x, y ∈ X . Let a = (a1, . . . , adx)
′ and [a] = a1 + · · · + adx , we then define the differential

operator ∇a by

∇af(x) =
∂[a]f(x)

∂xa11 · · · ∂xadxdx

.

Let m be a nonnegative integer and set p = m + γ. A real-valued function f is said to be

p-smooth if it is m times continuously differentiable and ∇af satisfies a Hölder condition with

exponent γ for all a with [a] = m.

Denote by Λp(X ) the class of all p-smooth real-valued functions on X . Λp(X ) is called

a Hölder class. Also, denote by Cm(X ) the space of all m-times continuously differentiable

∗Graduate School of Economics, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan. Email: sueishi@econ.kobe-

u.ac.jp.
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real-valued functions on X . Define a Hölder ball with radius c and smoothness p = m+ γ as

Λpc(X ) =

{
f ∈ Cm(X ) : sup

[a]≤m
sup
x∈X

|∇af(x)| ≤ c, sup
[a]=m

sup
x,y∈X ,x ̸=y

|∇af(x)−∇af(y)|
∥x− y∥γ

≤ c

}
.

The Hölder class functions can be approximated well by various linear sieves such as power

series, Fourier series, and splines. For details, see Chen (2007).

Let A = Θ × H be the parameter space and let ∥ · ∥s be a metric on A. The following

definitions are borrowed from Ai and Chen (2003) (hereafter AC, 2003).

Definition 1.1 A real-valued measurable function f(Z,α) is Hölder continuous in α ∈ A if

there exists a constant κ ∈ (0, 1] and a measurable function c(Z) with E[c(Z)2|X] bounded, such

that |f(Z,α1)− f(Z,α2)| ≤ c(Z)∥α1 − α2∥κs for all Z ∈ Z and α1, α2 ∈ A.

Definition 1.2 A real-valued measurable function f(Z,α) satisfies an envelope condition over

α ∈ A if there exists a measurable function c(Z) with E[c(Z)4] <∞ such that |f(Z,α)| ≤ c(Z)

for all Z ∈ Z and α ∈ A.

Next, we define a pseudo-metric ∥ · ∥w, which is originally introduced by AC (2003). We

assume that A is connected in the sense that for any α1, α2 ∈ A, there exists a continuous path

{α(τ) : τ ∈ [0, 1]} in A such that α(0) = α1 and α(1) = α2. Suppose that A is convex at

α0 in the sense that for any α ∈ A, (1 − τ)α0 + τα ∈ A for small τ > 0. Moreover, suppose

that for almost all Z, ρ(Z, (1− τ)α0 + τα) is continuously differentiable at τ = 0. Under these

assumptions, we define the pathwise derivative at the direction [α− α0] at α0 by

dρ(Z,α0)

dα
[α− α0] =

dρ(Z, (1− τ)α0 + τα)

dτ

∣∣∣∣
τ=0

a.s. Z.

Also, for α1, α2 ∈ A, we denote

dρ(Z,α0)

dα
[α1 − α2] =

dρ(Z,α0)

dα
[α1 − α0]−

dρ(Z,α0)

dα
[α2 − α0],

dm(X,α0)

dα
[α1 − α2] = E

[
dρ(Z,α0)

dα
[α1 − α2]|X

]
.

For α1, α2 ∈ A, we define the pseudo-metric ∥ · ∥w as

∥α1 − α2∥w =

√√√√E

[{
dm(X,α0)

dα
[α1 − α2]

}′

Σ(X,α0)−1

{
dm(X,α0)

dα
[α1 − α2]

}]
.

2



2 Assumptions and main results

2.1 Consistency

We impose the following assumptions to prove consistency. Most of them are adopted from AC

(2003) and Donald, Imbens, and Newey (2003) (hereafter DIN, 2003).

Assumption 3.1 (i) The data {(Yi, Xi)
n
i=1} are i.i.d.; (ii) X is compact; (iii) the density of

X is bounded above and away from zero.

Assumption 3.2 (i) For each kn there is a constant ζ(kn) and matrix B such that p̃kn(X) =

Bpkn(X) for all X ∈ X , supX∈X ∥p̃kn(X)∥ ≤ ζ(kn), E[p̃kn(X)p̃kn(X)′] has smallest eigenvalue

bounded away from zero, and
√
kn ≤ ζ(kn); (ii) for any f(·) with E[f(X)2] < ∞, there exists

kn × 1 vector πkn such that E[{f(X)− pkn(X)′πkn}2] = o(1).

Assumption 3.3 α0 ∈ A is the only α ∈ A satisfying E[ρ(Z,α)|X] = 0 a.s. X.

Assumption 3.4 Σ(X,α) is finite positive definite uniformly over X ∈ X and α ∈ A.

Assumption 3.5 (i) There is a metric ∥ · ∥s such that A = Θ × H is compact under ∥ · ∥s;

(ii) there is a constant µ1 such that for any α ∈ A, there exists Πnα ∈ An = Θ×Hn such that

∥Πnα− α∥κs = O(k−µ1

1n ) with k−µ1

1n

√
kn → 0.

Assumption 3.6 (i) E[supα∈A ∥ρ(Z,α)∥4|X] <∞; (ii) ρ(Z,α) is Hölder continuous in α ∈ A

with respect to the metric given in Assumption 3.5.

Assumption 3.7 (i) dρkn ≥ dθ + k1n and kn/n = o(1).

Assumption 3.8 (i) s(v) is twice continuously differentiable with Lipschitz second derivative

in a neighborhood of 0; (ii) there exists m > 2 such that E[supα∈A ∥ρ(Z,α)∥m] < ∞ and

ζ(kn)
2kn/n

1−2/m → 0; (iii) n1/mζ(kn)
√
knk

−µ1

1n → 0.

Theorem 3.1 Suppose that Assumptions 3.1-3.8 hold. Then, the SGEL estimator satisfies

∥α̂n − α0∥s = op(1).
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2.2 Rate of convergence

Let N(δ,An, ∥ · ∥s) be the covering number of radius δ balls of An under ∥ · ∥s. To obtain the

convergence rate of the SGEL estimator, we impose additional assumptions.

Assumption 3.2 (iii) For any f(·) ∈ Λpc(X ) with p > dx/2, there exists pkn(·)′πkn ∈ Λpc(X )

such that supX∈X |f(X)− pkn(X)′πkn | = O(k
−p/dx
n ) and k

−p/dx
n = o(n−1/4).

Assumption 3.5 (iii) There is a constant µ2 > 0 such that for any α ∈ A, there is Πnα ∈ An

satisfying ∥Πnα− α∥w = O(k−µ2

1n ) and k−µ2

1n = o(n−1/4).

Assumption 3.6 (iii) Each element of ρ(Z,α) satisfies an envelope condition over α ∈ An;

(iv) each element of m(·, α) is in Λpc(X ) with p > dx/2 for all α ∈ An.

Assumption 3.7 (ii) k1n ln(n)ζ(kn)
2n−1/2 = o(1).

Assumption 3.8 (iv) n−1/4+1/mζ(kn) = o(1); (v) n−1/2k
1/2
n ζ(kn) = o(n−1/4).

Assumption 3.9 (i) ∥Σ(X,α1)
1/2 − Σ(X,α2)

1/2∥ ≤ c∥α1 − α2∥κs for all α1, α2 ∈ A0n and

X ∈ X with some constant c < ∞; (ii) each element of Σ(·, α)−1/2 is in Λpc(X ) with p > dx/2

for all α ∈ An.

Assumption 3.10 lnN(ϵ1/κ,An, ∥ · ∥s) ≤ const.× k1n ln(k1n/ϵ).

Assumption 3.11 (i) A is convex in α0 and ρ(Z,α) is pathwise differentiable at α0; (ii) for

some c1, c2 > 0,

c1E[m(X,α)′Σ(X,α0)
−1m(X,α)] ≤ ∥α− α0∥2w ≤ c2E[m(X,α)′Σ(X,α0)

−1m(X,α)]

for all α ∈ An with ∥α− α0∥s = o(1).

Theorem 3.2 Suppose that Assumptions 3.1-3.11 hold. Then, the SGEL estimator satisfies

∥α̂n − α0∥w = op(n
−1/4).
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3.3 Asymptotic normality

Let N0n = {α ∈ An : ∥α−α0∥s = o(1), ∥α−α0∥w = o(n−1/4)} and N0 = {α ∈ A : ∥α−α0∥s =

o(1), ∥α− α0∥w = o(n−1/4)}. Following additional assumptions are required for the asymptotic

normality.

Assumption 4.1 (i) E[Dw∗(X)′Σ(X,α0)
−1Dw∗(X)] is positive definite; (ii) θ0 ∈ int(Θ).

Assumption 4.2 There is a v∗n = (v∗θ ,−Πnw
∗×v∗θ) ∈ An−α0 such that ∥v∗n−v∗∥w = O(n−1/4).

Assumption 4.3 For all α ∈ N0, the pathwise first derivative (dρ(Z,α(t))/dα)[v] exists a.s.

Z ∈ Z. Also, (i) each element of (dρ(Z,α(t))/dα)[v∗n] satisfies an envelope condition and is

Hölder continuous in α ∈ N0n; (ii) each element of (dm(·, α)/dα)[v∗n] is in Λpc(X ), p > dx/2 for

all α ∈ N0.

Assumption 4.4 Uniformly over α ∈ N0n,

E

[∥∥∥∥Σ(X,α)−1/2 dm(X,α)

dα
[v∗n]− Σ(X,α0)

−1/2 dm(X,α0)

dα
[v∗n]

∥∥∥∥2
]
= o(n−1/2).

Assumption 4.5 Uniformly over α ∈ N0 and ᾱ ∈ N0n,

E

[{
dm(X,α0)

dα

}′

Σ(X,α0)
−1

{
dm(X,α)

dα
[ᾱ− α0]−

dm(X,α0)

dα
[ᾱ− α0]

}]
= o(n−1/2).

Assumption 4.6 For all α ∈ N0n, the pathwise second derivative d2ρ(Z,α + τv∗n)/dτ
2|τ=0

exists a.s. Z ∈ Z, and is bounded by a measurable function c(Z) with E[c(Z)2] <∞.

Assumption 4.7 s(v) is three times continuously differentiable with Lipschitz third derivative

in a neighborhood of 0.

Assumption 4.8 n−1/4+1/mζ(kn) = o(n−1/8).

Theorem 4.1 Under Assumptions 3.1-3.11 and 4.1-4.8, the SGEL estimator satisfies
√
n(θ̂n−

θ0)
d→ N(0, V −1), where V = E[Dw∗(X)′Σ(X,α0)

−1Dw∗(X)].
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A Proofs

Throughout this section, C denotes a generic positive constant which may be different in different

uses. The qualifier “with probability approaching one” will be abbreviated as w.p.a.1. λmin(A)

and λmax(A) denote the minimum and maximum eigenvalues of a matrix A. Also, let pi =

pkn(Xi).

A.1 Consistency

The outline of the proof is the same as that of Theorem 5.5 in DIN (2003). There are two

main differences: (1) our parameter of interest is infinite dimensional; and (2) the minimization

problem is solved over the sieve space An rather than the original parameter space A.

Lemma A.1 Suppose that α ∈ An satisfies ∥α− α0∥s = o(1). Let

Ω̂(α) =
1

n

n∑
i=1

gi(α)gi(α)
′, Ω̄(α) =

1

n

n∑
i=1

Σ(Xi, α)⊗ pip
′
i,

Ω(α) = E [gi(α)gi(α)
′] .

Suppose that Assumptions 3.1 (i), 3.2 (i), 3.4, and 3.6 (i) are satisfied. Then we have∥∥∥Ω̂(α)− Ω̄(α)
∥∥∥ = Op(ζ(kn)

√
kn/n),

∥∥Ω̄(α)− Ω(α)
∥∥ = Op(ζ(kn)

√
kn/n).

Also, we obtain 1/C ≤ λmin(Ω(α)) ≤ λmax(Ω(α)) ≤ C. Moreover, if ζ(kn)
√
kn/n → 0, then

1/C ≤ λmin(Ω̂(α)) ≤ λmax(Ω̂(α)) ≤ C w.p.a.1.

Proof. The result is obtained from Lemma A.6 of DIN (2003). In their lemma, Ω̃, Ω̄, and Ω

are evaluated at the true parameter value β0, while Ω̂(α), Ω̄(α), and Ω(α) depend on general α,

which can be different from α0. Because of this, we impose Assumptions 3.4 and 3.6 (i), which

are stronger than the assumptions in DIN (2003). Then the proof is almost the same as that of

DIN (2003).

Lemma A.2 Suppose that Assumptions 3.1 (i) and 3.8 (ii) hold. Then for δn = o(n−1/mζ(kn)
−1)

and Λn = {λ : ∥λ∥ ≤ δn}, we have

max
1≤i≤n

sup
α∈A

sup
λ∈Λn

|λ′gi(α)|
p→ 0.

Also, w.p.a.1 we have Λn ⊂ Λ̂(α) for all α ∈ A.
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Proof. See Lemma A.10 of DIN (2003).

Hereafter, let δn = o(n−1/mζ(kn)
−1) and αn0 = Πnα0. Also, let ĝ(α) = n−1

∑n
i=1 gi(α) and

Ŝ(α, λ) = n−1
∑n
i=1 s(λ

′gi(α)).

Lemma A.3 Suppose that Assumptions 3.1 (i), 3.2 (i), 3.4, 3.5 (ii), 3.6 (i), (ii), and 3.8

hold. Then, supλ∈Λ̂(αn0)
Ŝ(αn0, λ) = op(δ

2
n), λ̃ = argmaxλ∈Λ̂(αn0)

Ŝ(αn0, λ) exists w.p.a.1, and

∥λ̃∥ = op(δn).

Proof. We modify Lemma A.11 of DIN (2003) to take into account the difference in con-

vergence rate between their and our estimators. By Lemma A.9 of DIN (2003), we have

∥ĝ(α0)∥ = Op(
√
kn/n). Also, by Assumptions 3.5 (ii) and 3.6 (ii),

∥ĝ(αn0)− ĝ(α0)∥ ≤ ∥αn0 − α0∥κs
1

n

n∑
i=1

c(Zi)∥pi∥ = Op(k
−µ1

1n

√
kn).

Thus by the triangular inequality, we have ∥ĝ(αn0)∥ = Op(
√
kn/n+ k−µ1

1n

√
kn).

It follows from Assumptions 3.8 (ii) and (iii) that we can choose
√
kn/n+k

−µ1

1n

√
kn = o(δn).

Also, we choose Λn as in Lemma A.2. Then λ̄ = argmaxλ∈Λn
Ŝ(αn0, λ) exists w.p.a.1. Moreover,

by Lemmas A.1 and A.2 and Assumptions 3.4 and 3.8, a Taylor expansion yields

0 = Ŝ(αn0, 0) ≤ Ŝ(αn0, λ̄) ≤ ∥λ̄∥∥ĝ(αn0)∥ − C∥λ̄∥2 (A.1)

and hence ∥λ̄∥ = op(δn). The remaining part of the proof follows DIN (2003).

Lemma A.4 Suppose that Assumptions 3.1 (i), 3.2 (i), 3.4, 3.5 (ii), 3.6, and 3.8 (i)-(iii) hold.

Then ∥ĝ(α̂n)∥ = Op(δn).

Proof. Wemodify Lemmas A.13 and A.14 of DIN (2003). In their proof, they use the fact that

supλ∈Λ̂(β̂) Ŝ(β̂, λ) ≤ supλ∈Λ̂(β0)
S(β0, λ), which is obtained by the definition of β̂. In contrast,

we may not have supλ∈Λ̂(α̂n)
Ŝ(α̂n, λ) ≤ supλ∈Λ̂(α0)

S(α0, λ) because the minimization problem

is solved over the sieve space. This requires a modification of the proof.

Choose k−µ1

1n

√
kn+

√
kn/n = o(δn) and let Λn = {λ : ∥λ∥ ≤ δn}. Let λ̄ = −δnĝ(α̂n)/∥ĝ(α̂n)∥.

Then λ̄′ĝ(α̂n) = −δn∥ĝ(α̂n)∥ and λ̄ ∈ Λn. By Lemma A.12 of DIN (2003) and definition of α̂n,

a Taylor expansion yields

δn∥ĝ(α̂n)∥ − Cδ2n ≤ Ŝ(α̂n, λ̄) ≤ sup
λ∈Λ̂(α̂n)

Ŝ(α̂n, λ) ≤ sup
λ∈Λ̂(αn0)

Ŝ(αn0, λ). (A.2)

7
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Then, it follows from Lemma A.3 that supλ∈Λ̂(αn0)
Ŝ(αn0, λ) = op(δ

2
n). Thus, we obtain

δn∥ĝ(α̂n)∥ − Cδ2n ≤ op(δ
2
n), and hence ∥ĝ(α̂n)∥ = Op(δn).

Proof of Theorem 3.1 Let W =
(
n−1

∑n
i=1 I ⊗ pip

′
i

)−1
. We define

R̂(α) = ĝ(α)′Wĝ(α),

R(α) = E [E[ρ(Z,α)|X]′E[ρ(Z,α)|X]] .

By Assumption 3.3, we have

R(α) = E [E[ρ(Z,α)|X]′E[ρ(Z,α)|X]] > 0 = R(α0)

for all α ̸= α0. Also, Corollary 4.2 of Newey (1991) implies that R(α) is continuous and

supα∈A |R̂(α) − R(α)| p→ 0. Thus, by Lemma A.1 of DIN (2003), it suffices to show that

R̂(α̂n)
p→ 0. Similarly to Lemma A.1, we can obtain λmin(W

−1) ≥ C w.p.a.1. Thus it follows

from Lemma A.4 that

ĝ(α̂n)
′Wĝ(α̂n) ≤ C∥ĝ(α̂n)∥2 = Op(δ

2
n)

and the desired result follows.

A.2 Rate of convergence

Let Qi = I ⊗ p′i and Q = (Q′
1, . . . , Q

′
n)

′. Also, let ρ(α) = (ρ(Z1, α)
′, . . . , ρ(Zn, α)

′)′. Denote a

sieve estimator of m(Xi, α) = E[ρ(Zi, α)|Xi] by

m̂(Xi, α) = Qi(Q
′Q)−1Q′ρ(α),

Also, let A0n = {α ∈ An : ∥α− α0∥s = o(1)} and ηn = o(n−τ ) with τ ≤ 1/4.

Lemma A.5 Suppose that Assumptions 3.1-3.4, 3.6-3.7, and 3.10-3.11 hold. Then we have (i)

∥ĝ(α)∥ = op(1) uniformly over α ∈ A0n; (ii) ∥ĝ(α)∥ = op(ηn) uniformly over α ∈ A0n with

∥α− α0∥w = o(ηn).

Proof. By using the similar argument as in the proof of Lemma A.1, we can show that

λmin(W ) ≥ C w.p.a.1. Hence

C∥ĝ(α)∥2 ≤ ĝ(α)′Wĝ(α) =
1

n
ρ(α)′Q(Q′Q)−1Q′ρ(α) =

1

n

n∑
i=1

∥m̂(Xi, α)∥2 .

8
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Also, we have

1

n

n∑
i=1

∥m(Xi, α)∥2 ≤ ∥α− α0∥2κs
1

n

n∑
i=1

E[c(Zi)|Xi]
2.

Then Corollary A.1 (i) of AC (2003) implies ∥ĝ(α)∥ = op(1) uniformly over α ∈ A0n. Moreover,

Assumption 3.11 implies that E[∥m(X,α)∥2] and ∥α−α0∥2w are equivalent. Then Corollary A.2

(i) of AC (2003) implies ∥ĝ(α)∥ = op(ηn) uniformly over α ∈ A0n with ∥α− α0∥w = o(ηn).

Lemma A.6 Suppose that Assumptions 3.1-3.4, 3.6-3.7, 3.8 (ii), (iv), and 3.10-3.11 hold. Let

t(α) = −
(
n−1

∑n
i=1 gi(α0)gi(α0)

′)−1
ĝ(α). Then for any η0n = o(n−1/4),

max
1≤i≤n

sup
α∈A0n

|η0nt(α)′gi(α)|
p→ 0.

Proof. By Assumption 3.8 (ii) and Lemma A.1, we have λmin(n
−1
∑n
i=1 gi(α0)gi(α0)

′) > C

w.p.a.1. Thus, it follows from Lemma A.5 that

∥t(α)∥2 = ĝ(α)′

(
1

n

n∑
i=1

gi(α0)gi(α0)
′

)−2

ĝ(α) ≤ C∥ĝ(α)∥2 = op(1)

uniformly over α ∈ A0n. Also, we have max1≤i≤n supα∈A ∥ρ(Zi, α)∥ = Op(n
1/m) by Assumption

3.8 (ii) and the Markov inequality. Therefore, by Assumption 3.8 (iv), we obtain

max
1≤i≤n

sup
α∈A0n

|η0nt(α)′gi(α)| ≤ η0n sup
α∈A0n

∥t(α)∥ max
1≤i≤n

sup
α∈A0n

∥ρ(Zi, α)∥ζ(kn)

= o(n−1/4)op(n
1/m)ζ(kn) = op(1),

and hence the desired result follows.

Let us define λ̂n(αn0) as Ŝ(αn0, λ̂n(αn0)) = supλ∈Λ̂(αn0)
Ŝ(αn0, λ).

Lemma A.7 Suppose that Assumptions 3.1-3.7, 3.8 (i)-(iv), and 3.10-3.11 hold. Then we have

∥λ̂n(αn0)∥ = op(n
−1/4).

Proof. The proof is similar to that of Lemma A.3. By Assumption 3.5 (iii) and Lemma A.5,

we have ∥ĝ(αn0)∥ = op(n
−1/4). Let λ̄ = argmaxλ∈Λn Ŝ(αn0, λ). Then by Lemma A.2, we have

max1≤i≤n supλ∈Λn
|λ′gi(αn0)| = op(1) and that λ̄ exists w.p.a.1. A Taylor expansion yields

0 = Ŝ(αn0, 0) ≤ Ŝ(αn0, λ̄) ≤ ∥λ̄∥∥ĝ(αn0)∥ − C∥λ̄∥2.

9
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Thus we have ∥λ̄∥ = op(n
−1/4). Also, by Assumption 3.8 (iv), ∥λ̄∥ < δn w.p.a.1. Hence we have

λ̄ = λ̂n(αn0) and the result follows.

Define ψ(X,α) = Σ(X,α)−1/2m(X,α). Let Q(Xi, α) = Σ(Xi, α)
1/2 ⊗ p′i and Q(α) =

(Q(X1, α)
′, . . . , Q(Xn, α)

′)′. We define the following sieve estimator for ψ(X,α):

ψ̂(Xi, α) = Q(Xi, α)(Q(α)′Q(α))−1
n∑
j=1

Q(Xj , α)
′Σ(Xj , α)

−1/2ρ(Zj , α).

Lemma A.8 Suppose that Assumptions 3.1-3.2, 3.4, 3.6-3.7, 3.8 (ii), and 3.9-3.10 hold. Then

we have n−1
∑n
i=1 ∥ψ̂(Xi, α)− ψ(Xi, α)∥2 = op(n

−1/2) uniformly over α ∈ A0n.

Proof. We modify Lemma A.1 of AC (2003) with δ1n = δ2n = o(n−1/4). We replace pkn(X)

in their lemma with Q(X,α). The main difference is that Q(X,α) depends on α while pkn(X)

does not, which produces some extra terms that do not appear in the proof of AC (2003).

Let N(ϵ,A0n, ∥ · ∥s) be the minimal number of ϵ-radius covering balls of A0n under the

metric ∥ · ∥s. Also, let ξ(kn) = supX∈X ∥∂pkn(X)/∂X∥. Define ϵi(α) = Σ(Xi, α)
−1/2[ρ(Zi, α)−

E[ρ(Zi, α)|Xi]] and ϵ(α) = (ϵ1(α)
′, . . . , ϵn(α)

′)′.

First we show that
∥∥Q(X,α)(Q(α)′Q(α))−1Q(α)′ϵ(α)

∥∥ = op(n
−1/4) uniformly over (X,α) ∈

X ×A0n. Let Wn = X ×A0n. For any pair (X1, α1) ∈ Wn and (X2, α2) ∈ Wn,

∥∥Q(X1, α1)(Q(α1)′Q(α1))−1Q(α1)′ϵ(α1)−Q(X2, α2)(Q(α2)′Q(α2))−1Q(α2)′ϵ(α2)
∥∥

≤
∥∥(Q(X1, α1)−Q(X1, α2)

)
(Q(α1)′Q(α1))−1Q(α1)′ϵ(α1))

∥∥
+
∥∥(Q(X1, α2)−Q(X2, α2)

)
(Q(α1)′Q(α1))−1Q(α1)′ϵ(α1))

∥∥
+
∥∥Q(X2, α2)(Q(α2)′Q(α2))−1[Q(α2)′Q(α2)−Q(α1)′Q(α1)]

× (Q(α1)′Q(α1))−1Q(α1)′ϵ(α1))
∥∥

+
∥∥Q(X2, α2)(Q(α2)′Q(α2))−1

[
Q(α1)′(ϵ(α1)− ϵ(α2))

]∥∥
+
∥∥Q(X2, α2)(Q(α2)′Q(α2))−1

[
(Q(α1)−Q(α2))′ϵ(α2)

]∥∥ .
By Assumption 3.9 (i),

∥∥Q(X1, α1)−Q(X1, α2)
∥∥2 ≤

∥∥∥Σ(X1, α1)1/2 − Σ(X1, α2)1/2
∥∥∥2 ζ(kn)2

≤ C∥α1 − α2∥2κs ζ(kn)2.
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Also by Assumption 3.4,

∥∥Q(X1, α2)−Q(X2, α2)
∥∥2 ≤ sup

α∈A0n,X∈X

∥∥∥Σ(X,α)1/2∥∥∥2 ∥X1 −X2∥2ξ(kn)2

≤ C∥X1 −X2∥2ξ(kn)2.

It follows from Assumption 3.6 (iii) and law of large numbers that n−1
∥∥ϵ(α1)′ϵ(α1)

∥∥2 = Op(1).

Also, by Assumption 3.8 (ii) and Lemma A.1, λmin(Q(α)′Q(α)/n) > C w.p.a.1 for α ∈ A0n.

Therefore, we have

∥∥(Q(α1)′Q(α1))−1Q(α1)′ϵ(α1)
∥∥2

= tr
(
ϵ(α1)′Q(α1)(Q(α1)′Q(α1)/n)−1(Q(α1)′Q(α1))−1Q(α1)′ϵ(α1)/n

)
≤ Ctr(ϵ(α1)′ϵ(α1)/n) = Op(1).

Then we have

P

(
sup

X∈X ,α1,α2∈A0n

∥∥(Q(X,α1)−Q(X,α2)
)
(Q(α1)′Q(α1))−1Q(α1)′ϵ(α1))

∥∥
∥α1 − α2∥κs

>Cζ(kn)

)
< η,

P

(
sup

X1,X2∈X ,α1,α2∈A0n

∥∥(Q(X1, α2)−Q(X2, α2)
)

×(Q(α1)′Q(α1))−1Q(α1)′ϵ(α1))
∥∥/∥α1 − α2∥κs > Cξ(kn)

)
< η

for any small η > 0 and sufficiently large n. Also,∥∥∥∥ 1nQ(α2)′Q(α2)− 1

n
Q(α1)′Q(α1)

∥∥∥∥ ≤ 1

n

n∑
i=1

∥∥Σ(Xi, α
1)− Σ(Xi, α

2)
∥∥ ∥pi∥2

≤ C∥α1 − α2∥κskn.

Hence, for sufficiently large n

P

(
sup

X∈X ,α1,α2∈A0n

∥∥∥∥Q(X,α2)(Q(α2)′Q(α2))−1[Q(α2)′Q(α2)−Q(α1)′Q(α1)]

×(Q(α1)′Q(α1))−1Q(α1)′ϵ(α1))

∥∥∥∥/∥α1 − α2∥κs > Cζ(kn)kn

)
< η.

Moreover, Assumption 3.6 (ii) implies that

∥∥∥∥ 1nQ(α1)′(ϵ(α1)− ϵ(α2))

∥∥∥∥ ≤ C∥α1 − α2∥κs ζ(kn)

√√√√ 1

n

n∑
i=1

c2(Zi)2,

where
∑n
i=1 c2(Zi)/n = Op(1) by the weak law of large numbers. Also,∥∥∥∥ 1n (Q(α1)−Q(α2))′ϵ(α2)

∥∥∥∥ ≤ C∥α1 − α2∥κs ζ(kn)
√

1

n
tr (ϵ(α2)′ϵ(α2)).
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Therefore, for sufficiently large n, we have

P

(
sup

X∈X ,α1,α2∈A0n

∥∥Q(X,α2)(Q(α2)′Q(α2))−1
[
Q(α1)′(ϵ(α1)− ϵ(α2))

]∥∥
∥α1 − α2∥κs

> Cζ(kn)
2

)
< η

and

P

(
sup

X∈X ,α1,α2∈A0n

∥∥Q(X,α2)(Q(α2)′Q(α2))−1
[
(Q(α1)−Q(α2))′ϵ(α2)

]∥∥
∥α1 − α2∥κs

> Cζ(kn)
2

)
< η.

Similarly to the proof of AC (2003), for any small ϵ, we divide Wn into bn mutually exclusive

subsets Wnm, m = 1, 2, . . . bn, where (X
1, α1) ∈ Wnm and (X2, α2) ∈ Wnm imply

∥∥X1 −X2
∥∥ ≤

ϵn−1/4/(Cξ(kn)) and ∥α1 − α2∥κs ≤ ϵn−1/4/(Cζ(kn)kn). Then w.p.a.1, we have

∥∥Q(X1, α1)(Q(α1)′Q(α1))−1Q(α1)′ϵ(α1)−Q(X2, α2)(Q(α2)′Q(α2))−1Q(α2)′ϵ(α2)
∥∥ ≤ 2ϵn−1/4.

For any (X,α), there exists an m such that ∥X −Xm∥ ≤ ϵn−1/4/(Cξ(kn)) and ∥α − αm∥κs ≤

ϵn−1/4/(Cζ(kn)kn). Thus, w.p.a.1,

sup
(X,α)∈X×A0n

∥∥Q(X,α)(Q(α)′Q(α))−1Q(α)′ϵ(α))
∥∥

≤ 2ϵn−1/4 +max
m

∥∥Q(Xm, αm)(Q(αm)′Q(αm))−1Q(αm)′ϵ(αm))
∥∥ .

Hence we have

P

(
sup

(X,α)∈X×A0n

∥∥Q(X,α)(Q(α)′Q(α))−1Q(α)′ϵ(α))
∥∥ > 4ϵn−1/4

)
≤ 5η + P

(
max
m

∥∥Q(X,α)(Q(α)′Q(α))−1Q(α)′ϵ(α))
∥∥ > 2ϵn−1/4

)
.

By a slight modification of the proof of AC (2003), we can show that the second term of the

right hand side can be arbitrarily small if

n1/2

ζ(kn)2
− ln bn → ∞. (A.3)

Since X is compact, we have

bn = O

((
n−1/4

ξ(kn)

)−dx

×N

({
n−1/4

ζ(kn)kn

}1/κ

,A0n, ∥ · ∥s

))
.

Therefore, (A.3) holds if{
ln(n1/4ξ(kn))

dx + ln
[
N
(
(n1/4ζ(kn)kn)

−1/κ,An, ∥ · ∥s
)]}

ζ(kn)
2n−1/2 = o(1),

which is implied by Assumptions 3.7 (ii) and 3.10. Hence we have

sup
(X,α)∈(X ,A0n)

∥∥Q(α,X)(Q(α)′Q(α))−1Q(α)′ϵ(α))
∥∥ = op(n

−1/4). (A.4)

12



Next, by Assumptions 3.2 (iii), 3.6 (iv), and 3.9 (ii), there exists Πkn(α) such that

ψ(Xi, α) = E[Σ(Xi, α)
−1/2ρ(Zi, α)|Xi] = Πkn(α)pi + op(n

−1/4)

for all X ∈ X and α ∈ An. Thus it follows that

1

n

n∑
i=1

∥∥∥∥∥∥Q(Xi, α)(Q(α)′Q(α))−1
n∑
j=1

Q(Xj , α)
′ψ(Xj , α)− ψ(Xi, α)

∥∥∥∥∥∥
2

=
1

n

n∑
i=1

∥ψ(Xi, α)−Πkn(α)pi∥
2
+ op(n

−1/2) = op(n
−1/2) (A.5)

uniformly over α ∈ A0n.

The result follows from (A.4) and (A.5).

Lemma A.9 Suppose that Assumptions 3.1-3.3, 3.4, 3.6 (iii)-(iv), 3.9 (ii), and 3.11 hold.

Then n−1
∑n
i=1 ∥ψ(Xi, α)∥2 − E

[
∥ψ(X,α)∥2

]
= op(n

−1/2) uniformly over α ∈ A0n with ∥α −

α0∥w = o(1).

Proof. The result can be obtained by replacing m(X,α) with ψ(X,α) in Corollary A.2 (i) of

AC (2003).

Lemma A.10 Suppose that Assumptions 3.1-3.4, 3.6-3.7, 3.8 (ii), and 3.9-3.11 hold. Then we

have n−1
∑n
i=1 ∥ψ̂(Xi, α)∥2 = op(η

2
n) uniformly over α ∈ A0n with ∥α− α0∥w ≤ ηn.

Proof. Assumptions 3.4 and 3.11 imply that E[∥ψ(X,α)∥2] is equivalent to ∥α−α0∥2w. Thus

the result follows from Lemmas A.8 and A.9.

Define ψ0(X,α) ≡ Σ(X,α0)
−1/2m(X,α) and denote

ψ̃0(Xi, α) ≡ Q(Xi, α0)(Q(α0)
′Q(α0))

−1
n∑
j=1

Q(Xj , α0)
′Σ(Xj , α0)

−1/2ρ(Zj , α).

Lemma A.11 Suppose that Assumptions 3.1-3.4, 3.6-3.7, 3.8 (ii), and 3.9-3.11 hold. Then

we have (i) n−1
∑n
i=1 ∥ψ̃0(Xi, α) − ψ0(Xi, α)∥2 = op(n

−1/2) uniformly over α ∈ A0n; (ii)

n−1
∑n
i=1 ∥ψ̃0(Xi, α)∥2 = op(η

2
n) uniformly over α ∈ A0n with ∥α− α0∥w ≤ ηn.
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Proof. The results follow immediately from Lemmas A.8 and A.10.

Hereafter, denote

L̂n(α) = − sup
λ∈Λ̂(α)

Ŝ(α, λ),

L̄n(α) = −ĝ(α)′
(
1

n

n∑
i=1

gi(α0)gi(α0)
′

)−1

ĝ(α),

Ln(α) = − 1

n

n∑
i=1

ψ0(Xi, α)
′ψ0(Xi, α).

Lemma A.12 Suppose that Assumptions 3.1-3.4, 3.6-3.7, 3.8 (v), and 3.9-3.11 hold. Then we

have (i) L̄n(α)−Ln(α) = op(n
−1/4) uniformly over α ∈ A0n; (ii) L̄n(α)−Ln(α) = op(n

−1/4ηn)

uniformly over α ∈ A0n with ∥α− α0∥w = o(ηn).

Proof. By Assumption 3.8 (v), we can choose ζ(kn)
√
kn/n = op(n

−1/4). Then by Lemma

A.1, we have ∥∥∥∥∥ 1n
n∑
i=1

gi(α0)gi(α0)
′ − 1

n

n∑
i=1

Σ(Xi, α0)⊗ pip
′
i

∥∥∥∥∥ = op(n
−1/4).

Also, we have λmin(n
−1
∑n
i=1 gi(α0)gi(α0)) > C and λmin(n

−1
∑n
i=1 Σ(Xi, α0) ⊗ pip

′
i) > C

w.p.a.1. Thus we obtain∣∣∣∣∣∣ĝ(α)′
(
1

n

n∑
i=1

gi(α0)gi(α0)
′

)−1

ĝ(α)− ĝ(α)′

(
1

n

n∑
i=1

Σ(Xi, α0)⊗ pip
′
i

)−1

ĝ(α)

∣∣∣∣∣∣
≤ C ∥ĝ(α)∥2

∥∥∥∥∥ 1n
n∑
i=1

gi(α0)gi(α0)
′ − 1

n

n∑
i=1

Σ(Xi, α0)⊗ pip
′
i

∥∥∥∥∥
= Op(∥ĝ(α)∥2)op(n−1/4).

Also, let ρ̂i(α) = Σ(Xi, α0)
−1/2ρ(Zi, α) and ρ̂(α) = (ρ̂i(α)

′, . . . , ρ̂n(α)
′)′. Then we have

ĝ(α)′

(
1

n

n∑
i=1

Σ(Xi, α0)⊗ pip
′
i

)−1

ĝ(α) =
1

n

n∑
i=1

ψ̃0(Xi, α)
′ψ̃0(Xi, α).
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Thus it follows that

∣∣L̄n(α)− Ln(α)
∣∣

=

∣∣∣∣∣ 1n
n∑
i=1

ψ̃0(Xi, α)
′ψ̃0(Xi, α)−

1

n

n∑
i=1

ψ0(Xi, α)
′ψ0(Xi, α)

∣∣∣∣∣+ op(n
−1/4)Op(∥ĝ(α)∥2)

≤

∣∣∣∣∣ 1n
n∑
i=1

(
ψ̃0(Xi, α)− ψ0(Xi, α)

)′
ψ̃0(Xi, α)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

ψ0(Xi, α)
′
(
ψ̃0(Xi, α)− ψ0(Xi, α)

)∣∣∣∣∣+ op(n
−1/4)Op(∥ĝ(α)∥2)

≤

(
1

n

n∑
i=1

∥∥∥ψ̃0(Xi, α)− ψ0(Xi, α)
∥∥∥2)1/2(

1

n

n∑
i=1

∥ψ̃0(Xi, α)∥2
)1/2

+

(
1

n

n∑
i=1

∥∥∥ψ̃0(Xi, α)− ψ0(Xi, α)
∥∥∥2)1/2(

1

n

n∑
i=1

∥ψ0(Xi, α)∥2
)1/2

+ op(n
−1/4)Op(∥ĝ(α)∥2).

Therefore the result follows from Lemmas A.5 and A.11.

Proof of Theorem 3.2 Let 0 < η0n = o(n−1/4). Define L̂0n(α) = −n−1
∑n
i=1 s(η0nt(α)

′gi(α)).

By Lemma A.6, for α ∈ A0n, we have

L̂0n(α) = η0nt(α)
′ĝ(α)− η20n

2
t(α)′

(
1

n

n∑
i=1

s2(η0nt
′gi(α))gi(α)gi(α)

′

)
t(α)

= η0nL̄n(α) + op(n
−1/2). (A.6)

Also, by Lemma A.7, a Taylor expansion yields

L̂n(αn0) = − 1

n

n∑
i=1

s(λ(αn0)
′gi(αn0))

= λ̂n(αn0)
′ĝ(αn0)−

1

2
λ̂n(αn0)

′

(
1

n

n∑
i=1

s2(λ̃
′gi(αn0))gi(αn0)gi(αn0)

′

)
λ̂n(αn0),

for some λ̃ between 0 and λ̂n(αn0). Hence we have

∣∣∣L̂n(αn0)∣∣∣ ≤ ∥∥∥λ̂n(αn0)∥∥∥ ∥ĝ(αn0)∥+ C
∥∥∥λ̂n(αn0)∥∥∥2 = op(n

−1/2). (A.7)

Now we show that ∥α̂n−α0∥w = op(n
−1/8). Let δ0n = 2

√
η0n = o(n−1/8). By the definition

of L̂n(α), L̂0n(α) ≥ L̂n(α) for all α ∈ A0n. Therefore, by using similar set inclusion relations as
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in the proof of Theorem 3.2 of Otsu (2011), we have

P (∥α̂n − α0∥w ≥ Cδ0n)

≤ P

(
sup

∥α̂n−α0∥w≥Cδ0n,α∈A0n

L̂n(α) ≥ L̂n(αn0)

)

≤ P

(
sup

∥α̂n−α0∥w≥Cδ0n,α∈A0n

L̂0n(α) ≥ L̂n(αn0)

)

≤ P
(∣∣∣L̂n(αn0)− η0nLn(αn0)

∣∣∣ > η20n

)
+ P

(
sup
α∈A0n

∣∣∣L̂0n(α)− η0nLn(α)
∣∣∣ > η20n

)
+ P

(
sup

∥α−α0∥w≥Cδ0n,α∈A0n

η0nLn(α) ≥ η0nLn(αn0)− 2η20n

)
≡ P1 + P2 + P3, say.

Since n−1
∑n
i=1 ∥ψ0(Xi, αn0)∥2 = op(n

−1/2), it follows from (A.7) that

∣∣∣L̂n(αn0)− η0nLn(αn0)
∣∣∣ ≤

∥∥∥λ̂n(αn0)∥∥∥ ∥ĝ(αn0)∥+ C
∥∥∥λ̂n(αn0)∥∥∥2 + η0n

n

n∑
i=1

∥ψ0(Xi, αn0)∥2

= op(n
−1/2) = op(η

2
0n),

which implies P1 → 0. Also, it follows from Lemma A.12 and (A.6) that

sup
α∈A0n

∣∣∣L̂0n(α)− η0nLn(α)
∣∣∣ ≤ sup

α∈A0n

∣∣η0nL̄n(α)− η0nLn(α)
∣∣+ op(n

−1/2)

= op(n
−1/2) = op(η

2
0n).

Therefore, we obtain P2 → 0. Finally, using Theorem 1 of Shen and Wong (1994), we have

P3 → 0. Therefore we obtain ∥α̂n − α0∥w = op(n
−1/8).

We can refine the convergence rate by using the logic that is introduced by AC (2003) and

adopted in Otsu (2011). Then we obtain ∥α̂n−α0∥w = op(n
−1/8(1+1/2+1/4+··· )) = op(n

−1/4).

A.3 Asymptotic normality

Denote

dψ(Xi, α)

dα
[v∗n] = Σ(Xi, α)

−1/2 dm(Xi, α)

dα
[v∗n]

dψ̂(Xi, α)

dα
[v∗n] = Q(Xi, α)(Q(α)′Q(α))−1

n∑
j=1

Q(Xj , α)
′Σ(Xj , α)

−1/2 dρ(Zj , α)

dα
[v∗n].

Lemma A.13 Suppose that Assumptions 3.1-3.2, 3.4, 3.7, 3.8 (ii), 3.9-3.10, and 4.1-4.4 hold.
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Then

sup
α∈N0n

1

n

n∑
i=1

∥∥∥∥∥dψ̂(Xi, α)

dα
[v∗n]−

dψ(Xi, α)

dα
[v∗n]

∥∥∥∥∥
2

= op(n
−1/2),

sup
α∈N0n

1

n

n∑
i=1

∥∥∥∥dψ(Xi, α)

dα
[v∗n]−

dψ(Xi, α0)

dα
[v∗n]

∥∥∥∥2 = op(n
−1/2).

Proof. The first equation can be proved by replacing ρ(Zi, α) with (dρ(Zi, α)/dα)[v
∗
n] in

Lemma A.8. The proof of the second equality is almost the same as that of Corollary C.1 of

AC (2003).

Denote

d2ρ(Zi, α)

dαdα
[v∗n, v

∗
n] =

d2ρ(Zi, α+ τv∗n)

dτ2

∣∣∣∣
τ=0

d2ψ̂(Xi, α)

dαdα
[v∗n, v

∗
n] = Q(Xi, α)(Q(α)′Q(α))−1

n∑
j=1

Q(Xj , α)Σ(Xj , α)
−1/2 d

2ρ(Zj , α)

dαdα
[v∗n, v

∗
n].

Lemma A.14 Suppose that Assumptions 3.1-3.2, 3.4, 3.7, 3.8 (ii), 3.9-3.10, and 4.1-4.4 hold.

Then

1

n

n∑
i=1

{
dψ̂(Xi, α)

dα
[v∗n]

}′

ψ̂(Xi, α) =
1

n

n∑
i=1

{
dψ(Xi, α)

dα
[v∗]

}′

ψ̂(Xi, α) + op(n
−1/2)

uniformly over α ∈ N0n.

Proof. Observe that

1

n

n∑
i=1

{
dψ̂(Xi, α)

dα
[v∗n]

}′

ψ̂(Xi, α)−
1

n

n∑
i=1

{
dψ(Xi, α)

dα
[v∗]

}′

ψ̂(Xi, α)

=
1

n

n∑
i=1

{
dψ̂(Xi, α)

dα
[v∗n]−

dψ(Xi, α)

dα
[v∗n]

}′

ψ̂(Xi, α)

+
1

n

n∑
i=1

{
dψ(Xi, α)

dα
[v∗n − v∗]

}′

ψ̂(Xi, α).

Thus the result follows from Lemmas A.10, A.13, and Assumption 4.2.

Lemma A.15 Suppose that Assumptions 3.1-3.3, 3.6 (iv), 3.9 (ii), 4.1 (i), and 4.2-4.5 hold.

Then

1

n

n∑
i=1

{
dψ(Xi, α)

dα
[v∗]

}′

ψ̂(Xi, α) =
1

n

n∑
i=1

{
dψ(Xi, α0)

dα
[v∗]

}′

ψ̂(Xi, α0)

+ ⟨v∗, α− α0⟩+ op(n
−1/2)

uniformly over α ∈ N0n.
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Proof. We modify the proof of Corollary C.3 (ii) in AC (2003). The main difference is that

dψ(X,α)
dα [v∗] depend on α while g(X, v∗) in AC (2003) does not. Define the following set of

functions:

F =

{{
dψ(X,α)

dα
[v∗]

}′ (
ψ̂(X,α)− ψ(X,α)

)
: α ∈ N0n

}
.

Assumptions 3.6 (iv), 3.9 (ii), and 4.3 (ii) imply that F is a Donsker class. Also,

E

∣∣∣∣∣
{
dψ(Xi, α)

dα
[v∗]

}′ (
ψ̂(Xi, α)− ψ(Xi, α)

)∣∣∣∣∣
2
 = op(1)

uniformly over α ∈ N0n. Thus, as in AC (2003), we have

1

n

n∑
i=1

{
dψ(Xi, α)

dα
[v∗]

}′ (
ψ̂(Xi, α)− ψ(Xi, α)

)
= E

[{
dψ(Xi, α)

dα
[v∗]

}′ (
ψ̂(Xi, α)− ψ(Xi, α)

)]
+ op(n

−1/2)

uniformly over α ∈ N0n. Also,

1

n

n∑
i=1

{
dψ(Xi, α0)

dα
[v∗]

}′ (
ψ̂(Xi, α0)− ψ(Xi, α0)

)
= E

[{
dψ(Xi, α0)

dα
[v∗]

}′ (
ψ̂(Xi, α0)− ψ(Xi, α0)

)]
+ op(n

−1/2).

Hence we obtain

1

n

n∑
i=1

{{
dψ(Xi, α)

dα
[v∗]

}′

ψ̂(Xi, α)−
{
dψ(Xi, α0)

dα
[v∗]

}′

ψ̂(Xi, α0)

}

=
1

n

n∑
i=1

{{
dψ(Xi, α)

dα
[v∗]

}′

ψ(Xi, α)−
{
dψ(Xi, α0)

dα
[v∗]

}′

ψ(Xi, α0)

}

+ E

[{
dψ(Xi, α)

dα
[v∗]

}′

ψ̂(Xi, α)−
{
dψ(Xi, α0)

dα
[v∗]

}′

ψ̂(Xi, α0)

]

− E

[{
dψ(Xi, α)

dα
[v∗]

}′

ψ(Xi, α)−
{
dψ(Xi, α0)

dα
[v∗]

}′

ψ(Xi, α0)

]
+ op(n

−1/2).

Note that

E

[{
dψ(Xi, α)

dα
[v∗]

}′

ψ̂(Xi, α)

]

= E

Q(Xi, α)(Q(α)′Q(α))−1
n∑
j=1

Q(Xj , α)
dψ(Xj , α)

dα
[v∗]


′

ψ(Xi, α)

 .
Also, by Assumptions 3.2 (iii), 3.6 (iv), and 3.9 (ii),∥∥∥∥∥∥Q(X,α)(Q(α)′Q(α))−1

n∑
j=1

Q(Xj , α)
′ dψ(Xj , α)

dα
[v∗]− dψ(X,α)

dα
[v∗]

∥∥∥∥∥∥ = op(n
−1/4)
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uniformly over X ∈ X and α ∈ N0n. Hence, by the Cauchy-Schwarz inequality,

E

Q(Xi, α)(Q(α)′Q(α))−1
n∑
j=1

Q(Xj , α)
′ dψ(Xj , α)

dα
[v∗]


′

ψ(Xi, α)


−E

Q(Xi, α0)(Q(α0)
′Q(α0))

−1
n∑
j=1

Q(Xj , α0)
′ dψ(Xj , α0)

dα
[v∗]


′

ψ(Xi, α0)


−E

[{
dψ(Xi, α)

dα
[v∗]

}′

ψ(Xi, α)−
{
dψ(Xi, α0)

dα
[v∗]

}′

ψ(Xi, α0)

]

= E

Q(Xi, α)(Q(α)′Q(α))−1
n∑
j=1

Q(Xj , α)
′ dψ(Xj , α)

dα
[v∗]− dψ(Xi, α)

dα
[v∗]


′

ψ(Xi, α)


= op(n

−1/2)

uniformly over α ∈ N0n. Therefore, we obtain

1

n

n∑
i=1

{{
dψ(Xi, α)

dα
[v∗]

}′

ψ̂(Xi, α)−
{
dψ(Xi, α0)

dα
[v∗]

}′

ψ̂(Xi, α0)

}

=
1

n

n∑
i=1

{{
dψ(Xi, α)

dα
[v∗]

}′

ψ(Xi, α)−
{
dψ(Xi, α0)

dα
[v∗]

}′

ψ(Xi, α0)

}
+ op(n

−1/2).

Now we consider the following class of functions:

G =

{{
dψ(X,α)

dα
[v∗]

}′

ψ(X,α) : α ∈ N0n

}
.

Again G is a Donsker class. Hence, we obtain

sup
α∈N0n

∣∣∣∣∣ 1n
n∑
i=1

{
dψ(Xi, α)

dα
[v∗]

}′

ψ(Xi, α)− E

[{
dψ(Xi, α)

dα
[v∗]

}′

ψ(Xi, α)

]∣∣∣∣∣ = op(n
−1/2).

Therefore by Assumptions 4.1 (ii), 4.4, and 4.5, we obtain

1

n

n∑
i=1

{{
dψ(Xi, α)

dα
[v∗]

}′

ψ̂(Xi, α)−
{
dψ(Xi, α0)

dα
[v∗]

}′

ψ̂(Xi, α0)

}

= E

[{
dψ(Xi, α)

dα
[v∗]

}′

ψ(Xi, α)−
{
dψ(Xi, α0)

dα
[v∗]

}′

ψ(Xi, α0)

]
+ op(n

−1/2)

= E

[{
dm(Xi, α0)

dα
[v∗]

}′

Σ(Xi, α0)
−1 {m(Xi, α)−m(Xi, α0)}

]
+ op(n

−1/2)

= E

[{
dm(Xi, α0)

dα
[v∗]

}′

Σ(Xi, α0)
−1

{
dm(Xi, ᾱ)

dα
[α− α0]−

dm(Xi, α0)

dα
[α− α0]

}]
+⟨v∗, α− α0⟩+ op(n

−1/2)

= ⟨v∗, α− α0⟩+ op(n
−1/2)

for some ᾱ ∈ N0 between α and α0.
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Lemma A.16 Suppose that Assumptions 3.1-3.4, 3.7, 3.9 (ii), 3.10, and 4.3 hold. Then

1

n

n∑
i=1

{
dψ(Xi, α0)

dα
[v∗]

}′

ψ̂(Xi, α0)=
1

n

n∑
i=1

{
dm(Xi, α0)

dα
[v∗]

}′

Σ(Xi, α0)
−1ρ(Zi, α0) + op(n

−1/2).

Proof. Notice that∥∥∥∥∥∥Q(X,α0)(Q(α0)
′Q(α0))

−1
n∑
j=1

Q(Xj , α0)
dψ(Xj , α0)

dα
[v∗]− dψ(X,α0)

dα
[v∗]

∥∥∥∥∥∥ = op(n
−1/4)

uniformly over X ∈ X . Then we can prove the result by replacing g(X, v∗) and m̂(X,α0) in

Corollary C.3 (iii) of AC (2003) with dψ(Xi,α0)
dα [v∗] and ψ̂(Xi, α0), respectively.

Lemma A.17 Suppose that Assumptions 3.1-3.2, 3.4, 3.7, 3.8 (ii), 3.9-3.10, and 4.1-4.4 hold.

Then

sup
α∈N0n

∥∥∥∥∥ 1n
n∑
i=1

dρ(Zi, α)

dα
[v∗n]⊗ pi

∥∥∥∥∥ = Op(1),

sup
α∈N0n

∥∥∥∥∥ 1n
n∑
i=1

d2ρ(Zi, α)

dαdα
[v∗n, v

∗
n]⊗ pi

∥∥∥∥∥ = Op(1).

Proof. Some calculation yields

1

n

n∑
i=1

∥∥∥∥∥dψ̂(Xi, α)

dα
[v∗n]

∥∥∥∥∥
2

=

(
1

n

n∑
i=1

dρ(Zi, α)

dα
[v∗n]⊗ pi

)′(
1

n

n∑
i=1

Σ(Xi, α)
−1 ⊗ pip

′
i

)−1

×

(
1

n

n∑
i=1

dρ(Zi, α)

dα
[v∗n]⊗ pi

)
.

By Lemma A.1, λmin((
∑n
i=1 Σ(Xi, α)

−1 ⊗ pip
′
i/n)

−1) > C w.p.a.1. Thus we have∥∥∥∥∥ 1n
n∑
i=1

dρ(Zi, α)

dα
[v∗n]⊗ pi

∥∥∥∥∥
2

≤ C

n

n∑
i=1

∥∥∥∥∥dψ̂(Xi, α)

dα
[v∗n]

∥∥∥∥∥
2

= Op(1)

by Lemma A.13 and Assumption 4.3. Similarly∥∥∥∥∥ 1n
n∑
i=1

d2ρ(Zi, α)

dαdα
[v∗n, v

∗
n]⊗ pi

∥∥∥∥∥
2

≤ C

n

n∑
i=1

∥∥∥∥∥d2ψ̂(Xi, α)

dαdα
[v∗n, v

∗
n]

∥∥∥∥∥
2

= Op(1)

by Assumption 4.6.

Proof of Theorem 4.1 Let λ̂n(α) = argmaxλ∈Λ̂(α) Ŝ(α, λ). Similarly to the proof of

Lemma A.7, we can show that λ̂n(α) ∈ Λn and max1≤i≤n |λ̂n(α)′gi(α)|
p→ 0 for α ∈ N0n. Then

λ̂n(α) satisfies the following first order condition

0 =
1

n

n∑
i=1

s1(λ̂n(α)
′gi(α))gi(α) (A.8)
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for all α ∈ N0n.

By Assumption 4.7, expanding (A.8) yields

0 =
1

n

n∑
i=1

s1(λ̂n(α)
′gi(α))gi(α)

= −ĝ(α)−

(
1

n

n∑
i=1

gi(α)gi(α)
′

)
λ̂n(α) +

1

2n

n∑
i=1

s3(λ̃
′gi(α))(λ̂n(α)

′gi(α))
2gi(α)

for some λ̃ and for all α ∈ N0n. Assumption 4.8 implies that max1≤i≤n |λ̂n(α)′gi(α)| = op(n
−1/8)

for α ∈ N0n. Thus we obtain∥∥∥∥∥ 1n
n∑
i=1

s3(λ̃
′gi(α))(λ̂n(α)

′gi(α))
2gi(α)

∥∥∥∥∥ ≤ C

(
max
1≤i≤n

∣∣∣λ̂n(α)′gi(α)∣∣∣)2

∥ĝ(α)∥ = op(n
−1/2).

Hence it follows that λ̂n(α) = −(n−1
∑n
i=1 gi(α)gi(α)

′)−1ĝ(α) + op(n
−1/2). Also, by Lemma

A.1, we obtain ∥∥∥∥∥ 1n
n∑
i=1

gi(α)gi(α)
′ − 1

n

n∑
i=1

Σ(Xi, α)⊗ pip
′
i

∥∥∥∥∥ = op(n
−1/4)

uniformly over α ∈ N0n. Moreover, by envelope conditions,∣∣∣∣∣λ̂n(α)′
(
1

n

n∑
i=1

s2(λ̃
′gi(α))

dρ(Zi, α)

dα
[u∗n]ρ(Zi, α)

′ ⊗ pip
′
i

)
λ̂n(α)

∣∣∣∣∣ ≤ C
∥∥∥λ̂n(α)∥∥∥2 = op(n

−1/2)

uniformly over α ∈ N0n.

Let 0 < ϵn = o(n−1/2) and u∗ ≡ ±v∗. Denote u∗n = Πnu
∗. By assumption, we can take a

continuous path {α(t) : t ∈ [0, 1]} in N0n such that α(0) = α̂n and α(1) = α̂n + ϵnu
∗
n ∈ N0n.

By the definition of the SGEL estimator, a Taylor expansion yields

0 ≤ L̂n(α(0))− L̂n(α(1)) = − dL̂n(α(t))

dt

∣∣∣∣∣
t=0

− 1

2

d2L̂n(α(t))

dt2

∣∣∣∣∣
t=s

(A.9)

for some s ∈ [0, 1].
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Let λ̂n = λ̂n(α̂n). By the envelope theorem and Lemmas A.14-A.16, we obtain

−dL̂n(α(t))
dt

∣∣∣∣∣
t=0

=
1

n

n∑
i=1

s1(λ̂
′
ngi(α̂n))λ̂

′
n

dρ(Zi, α̂n)

dα
[ϵnu

∗
n]⊗ pi

= −λ̂′n
1

n

n∑
i=1

dρ(Zi, α̂n)

dα
[ϵnu

∗
n]⊗ pi

+ λ̂′n

(
ϵn
n

n∑
i=1

s2(λ̃
′gi(α̂n))

dρ(Zi, α̂n)

dα
[u∗n]ρ(Zi, α̂n)

′ ⊗ pip
′
i

)
λ̂n + op(ϵnn

−1/2)

= ĝ(α̂n)
′

(
1

n

n∑
i=1

gi(α̂n)gi(α̂n)
′

)−1(
1

n

n∑
i=1

dρ(Zi, α̂n)

dα
[ϵnu

∗
n]⊗ pi

)
+ op(ϵnn

−1/2)

= ĝ(α̂n)
′

(
1

n

n∑
i=1

Σ(Xi, α̂n)⊗ pip
′
i

)−1(
1

n

n∑
i=1

dρ(Zi, α̂n)

dα
[ϵnu

∗
n]⊗ pi

)
+ op(ϵnn

−1/2)

=
1

n

n∑
i=1

ψ̂(Xi, α̂n)
′

{
dψ̂(Xi, α̂n)

dα
[ϵnu

∗
n]

}
+ op(ϵnn

−1/2)

=
ϵn
n

n∑
i=1

{
dm(Xi, α0)

dα
[u∗]

}′

Σ(Xi, α0)
−1ρ(Zi, α0)

+ ϵn⟨u∗, α̂n − α0⟩+ op(ϵnn
−1/2). (A.10)

Next we denote dλ̂n(α(τ))
dα [ϵnu

∗
n] =

dλ̂n(α(t))
dt

∣∣∣
t=τ

. By (A.8), we obtain

0 =
1

n

n∑
i=1

s2(λ̂n(α)
′gi(α))gi(α)gi(α)

′ dλ̂n(α)

dα
[v∗n]

+
1

n

n∑
i=1

s2(λ̂n(α)
′gi(α))gi(α)λ̂n(α)

′ dρ(Zi, α)

dα
[v∗n]⊗ pi

+
1

n

n∑
i=1

s1(λ̂n(α)
′gi(α))

dρ(Zi, α)

dα
[v∗n]⊗ pi.

Since λmin(−n−1
∑n
i=1 s2(λ̂n(α)

′gi(α))gi(α)gi(α)
′) > C w.p.a.1, we have∥∥∥∥∥dλ̂n(α)dα

[v∗n]

∥∥∥∥∥ ≤ C

∥∥∥∥∥ 1n
n∑
i=1

s2(λ̂n(α)
′gi(α))gi(α)λ̂n(α)

′ dρ(Zi, α)

dα
[v∗n]⊗ pi

∥∥∥∥∥
+ C

∥∥∥∥∥ 1n
n∑
i=1

s1(λ̂n(α)
′gi(α))

dρ(Zi, α)

dα
[v∗n]⊗ pi

∥∥∥∥∥ .
Here we have∥∥∥∥∥ 1n

n∑
i=1

s2(λ̂n(α)
′gi(α))gi(α)λ̂n(α)

′ dρ(Zi, α)

dα
[v∗n]⊗ pi

∥∥∥∥∥
=

λ̂n(α)′
(
1

n

n∑
i=1

s2(λ̂n(α)
′gi(α))

{
dρ(Zi, α)

dα
[v∗n]

}
ρ(Zi, α)

′ ⊗ pip
′
i

)2

λ̂n(α)


1/2

≤ C
∥∥∥λ̂n(α)∥∥∥ = op(n

−1/4)
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uniformly over α ∈ N0n. Thus by Lemma A.17, supα∈N0n

∥∥∥dλ̂n(α)
dα [v∗n]

∥∥∥ = Op(1). Also, by the

envelope condition,∣∣∣∣∣λ̂n(α)′
(
1

n

n∑
i=1

s2(λ̂n(α)
′gi(α))

{
dρ(Zi, α)

dα
[v∗n]

}{
dρ(Zi, α)

dα
[v∗n]

}′

⊗ pip
′
i

)
λ̂n(α)

∣∣∣∣∣ = op(n
−1/2).

Denote λ̂′gi(s) = λ̂n(α(s))
′gi(α(s)). Then we have

d2L̂n(α(t))

dt2

∣∣∣∣∣
t=s

=
1

n

n∑
i=1

s2(λ̂
′gi(s))

dλ̂′gi(s)

dα
[ϵnu

∗
n]λ̂n(α(s))

′ dρ(Zi, α(s))

dα
[ϵnu

∗
n]⊗ pi

+
1

n

n∑
i=1

s1(λ̂
′gi(s))

{
dλ̂n(α(s))

dα
[ϵnu

∗
n]

}′
dρ(Zi, α(s))

dα
[ϵnu

∗
n]⊗ pi

+
1

n

n∑
i=1

s1(λ̂
′gi(s))λ̂n(α(s))

′ d
2ρ(Zi, α(s))

dαdα
[ϵnu

∗
n, ϵnu

∗
n]⊗ pi

=

{
dλ̂n(α(s))

dα
[u∗n]

}′(
ϵ2n
n

n∑
i=1

s2(λ̂
′gi(s))ρ(Zi, α)

{
dρ(Zi, α(s))

dα
[u∗n]

}′

⊗ pip
′
i

)
λ̂n(α(s))

+λ̂n(α(s))
′

(
ϵ2n
n

n∑
i=1

s2(λ̂
′gi(s))

{
dρ(Zi, α(s))

dα
[u∗n]

}{
dρ(Zi, α(s))

dα
[u∗n]

}′

⊗ pip
′
i

)
λ̂n(α(s))

+
ϵ2n
n

n∑
i=1

s1(λ̂
′gi(s))

{
dλ̂n(α(s))

dα
[u∗n]

}′
dρ(Zi, α(s))

dα
[u∗n]⊗ pi

+
ϵ2n
n

n∑
i=1

s1(λ̂
′gi(s))λ̂n(α(s))

′ d
2ρ(Zi, α(s))

dαdα
[u∗n, u

∗
n]⊗ pi

= op(ϵ
2
n). (A.11)

Therefore, it follows from (A.9), (A.10) and (A.11) that

√
nξ′(θ̂n − θ0) =

√
n⟨α̂n − α0, v

∗⟩

= − 1√
n

n∑
i=1

{
dm(Xi, α0)

dα
[v∗]

}′

Σ(Xi, α0)
−1ρ(Zi, α0) + op(1)

for all ξ ̸= 0. The result follows from a central limit theorem.
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