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Abstract

In this paper we consider a regression model and propose estimators which are the weighted
averages of two estimators among three estimators; the Stein-rule (SR), the minimum mean squared
error (MMSE) and the adjusted minimum mean squared error (AMMSE) estimators. It is shown that
one of the proposed estimators has smaller mean squared error (MSE) than the positive-part Stein-
rule (PSR) estimator over a moderate region of parameter space when the number of the regression
coefficients is small (i.e., 3), and its MSE performance is comparable to the PSR estimator even when
the number of the regression coefficients is not so small.
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1 Introduction

In the context of a linear regression, the Stein-rule (SR) estimator proposed by Stein (1956) and James and

Stein (1961) dominates the ordinary least squares (OLS) estimator in terms of mean squared error (MSE)

if the number of the regression coefficients is larger than or equal to three. Though the SR estimator

dominates the OLS estimator, Baranchik (1970) showed that the SR estimator is further dominated by

the positive-part Stein-rule (PSR) estimator.

Also, as one of improved estimators, Theil (1971) proposed the minimum mean squared error (MMSE)

estimator. However, Theil’s (1971) MMSE estimator includes unknown parameters, Farebrother (1975)

suggested an operational variant of the MMSE estimator which is obtained by replacing the unknown

parameters by the OLS estimators. As an extension of the MMSE estimator, Ohtani (1996b) considered

the adjusted minimummean squared error (AMMSE) estimator which is obtained by adjusting the degrees

of freedom of the operational variant of the MMSE estimator. He showed by numerical evaluations that

the AMMSE estimator has smaller MSE than the SR and the PSR estimators in a wide region of the

noncentrality parameter when k ≤ 5, where k is the number of regression coefficients. In particular,

when k = 3, the MSE of the AMMSE estimator can be much smaller than that of the PSR estimator for

small values of noncentrality parameter. Therefore, Ohtani (1999) considered a heterogeneous pre-test

estimator such that the AMMSE estimator is used if the null hypothesis that all the regression coefficients

are zeros (in other words, the value of noncentrality parameter is zero) is accepted, and the SR estimator

is used if the null hypothesis is rejected. Although the results were obtained by numerical evaluations,

he showed that a heterogeneous pre-test estimator dominates the PSR estimator when k = 3 and the

critical value of the pre-test is chosen appropriately. Extending the result of Ohtani (1999), Namba (2000)

proposed another heterogeneous pre-test estimator and numerically showed that the proposed estimator

has smaller MSE than the PSR estimator even when k ≥ 4. However, since the estimators considered by

Ohtani (1999) and Namba (2000) connect two different estimators via a pre-test based on the F -statistic,

they are not smooth. This is a drawback of their estimators common to the PSR estimator because the

smoothness is required for the estimator to be admissible.

In this paper, we propose estimators which are weighted averages of different kinds of estimators.

The proposed estimators are smooth since they do not incorporate the pre-test. In the next section, we

introduce the estimators, and derive an explicit formula for MSEs of the estimators in section 3. Using

this formula, we examine the MSE performance of the estimators by numerical evaluations in section 4.

Our numerical results show that one of our estimators has smaller MSE than the PSR estimator over a

moderate region of parameter space. Finally, some concluding remarks are given in section 5.
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2 Model and estimators

Consider a linear regression model,

y = Xβ + ϵ, ϵ ∼ N(0, σ2In). (1)

where y is an n× 1 vector of observations on the dependent variable, X is an n× k matrix of full column

rank of observations on nonstochastic independent variables, β is a k × 1 vector of coefficients, and ϵ is

an n× 1 vector of normal error terms with E[ϵ] = 0 and E[ϵϵ′] = σ2In.

The ordinary least squares (OLS) estimator of β is

b = S−1X ′y, (2)

where S = X ′X. In the context of linear regression, the Stein-rule (SR) estimator proposed by Stein

(1956) is defined as

bSR =

(
1− ae′e

b′Sb

)
b, (3)

where e = y −Xb, and a is a constant such that 0 ≤ a ≤ 2(k − 2)/(ν + 2), where ν = n − k. If we use

the loss function

L(β̄;β) = (β̄ − β)′S(β̄ − β), (4)

where β̄ is any estimator of β, the SR estimator dominates the OLS estimator in terms of mean squared

error (MSE) for k ≥ 3. As is shown in James and Stein (1961), the MSE of the SR estimator is minimized

when a = (k−2)/(ν+2). Thus we use this value of a hereafter. Although the SR estimator dominates the

OLS estimator, Baranchik (1970) showed that the SR estimator is further dominated by the positive-part

Stein-rule (PSR) estimator defined as

bPSR = max

[
0, 1− ae′e

b′Sb

]
b. (5)

As one of improved estimators, Theil (1971) proposed the minimum mean squared error (MMSE)

estimator. However, since Theil’s (1971) MMSE estimator includes unknown parameters, Farebrother

(1975) suggested the following operational variant of the MMSE estimator

bM =

(
b′Sb

b′Sb+ e′e/ν

)
b. (6)

Hereafter, we call the operational variant of the MMSE estimator the MMSE estimator simply. There are

several studies about the MMSE estimator and its variants. Some examples are Vinod (1976), Dwivedi

and Srivastava (1978), Tracy and Srivastava (1994) and Ohtani (1996a, 1996b, 1997). Ohtani (1996a)
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derived the exact MSE of the MMSE estimator and a sufficient condition for the MMSE estimator to

dominate the OLS estimator.

Furthermore, as an extension of the MMSE estimator, Ohtani (1996b) considered the following esti-

mator which is obtained by adjusting the degrees of freedom of b′Sb (i.e., k),

bAM =

(
b′Sb/k

b′Sb/k + e′e/ν

)
b. (7)

We call this estimator the adjusted MMSE (AMMSE) estimator. Ohtani (1996b) showed by numerical

evaluations that if k ≤ 5 the AMMSE estimator has smaller MSE than the SR, PSR and MMSE estimators

in a wide region of noncentrality parameter defined as λ = β′Sβ/σ2. Thus, Ohtani (1999) considered the

following heterogeneous pre-test estimator:

β̂PT(τ) = I(F ≤ τ)bAM + I(F > τ)bSR, (8)

where F = (b′Sb/k)/(e′e/ν) is the test statistic for H0 : β = 0 against H1 : β ̸= 0, τ is the critical value

of the pre-test, and I(A) is an indicator function such that I(A) = 1 if an event A occurs and I(A) = 0

otherwise. He showed by numerical evaluations that the heterogeneous pre-test estimator dominates the

PSR estimator for k = 3 if the critical values of the pre-test is chosen appropriately. Also, extending

the result of Ohtani (1999), Namba (2000) proposed another pre-test estimator obtained by replacing

the AMMSE estimator with the 2SHI estimator proposed by Tran Van Hoa and Chaturvedi (1990),

and showed the dominance of the proposed estimator over the PSR estimator by numerical evaluations.

Though the estimators proposed by Ohtani (1999) and Namba (2000) dominates the PSR estimator, they

are not smooth because of the pre-test. This is a drawback of their estimators, since the smoothness is

a necessary condition for the admissibility of an estimator.

Thus, in this paper, we propose the following two estimators which are weighted averages of the

estimators introduced above:

β̂WA1 =

(
F

1 + F

)
bM +

(
1− F

1 + F

)
bAM, (9)

β̂WA2 =

(
F

1 + F

)
bSR +

(
1− F

1 + F

)
bAM. (10)

These estimators are smooth since they do not incorporate any pre-test. Similar to β̂PT(τ) given in (8),

bAM plays an important role in both β̂WA1 and β̂WA2 when the value of F is small.

In the next section, we derive the explicit formula for the MSEs of β̂WA1 and β̂WA2.

3 MSE of the estimators

In this section, we derive the formula for the MSEs of β̂WA1 and β̂WA2.
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Noting that b′Sb/e′e = kF/ν, substituting (3), (6) and (7) into (9) and (10), and conducting some

calculations, we have

β̂WA1 =

[
F 2

(F + 1)(F + 1/k)
+

F

(1 + F )2

]
b (11)

and

β̂WA2 =

[
F − aν/k

F + 1
+

F

(1 + F )2

]
b. (12)

Thus, the MSE of β̂WA1 is given by

MSE[β̂WA1] = E[(β̂WA1 − β)′S(β̂WA1 − β)]

= E

[{
F 4

(F + 1)2(F + 1/k)2
+ 2

F 3

(F + 1)3(F + 1/k)
+

F 2

(F + 1)4

}
b′Sb

]
−2E

[{
F 2

(F + 1)(F + 1/k)
+

F

(F + 1)2

}
β′Sb

]
+ β′Sβ. (13)

Similarly,

MSE[β̂WA2] = E

[{
1

(F + 1)2(F − aν/k)−2
+ 2

F

(F + 1)3(F − aν/k)−1
+

F 2

(F + 1)4

}
b′Sb

]
−2E

[{
F 2

(F + 1)(F − aν/k)−1
+

F

(F + 1)2

}
β′Sb

]
+ β′Sβ. (14)

Here, we define the functions H(p, q, r,m;α) and J(p, q, r,m;α) as

H(p, q, r,m;α) = E

[
F r

(F + 1)p(F + α)q
(b′Sb)m

]
(15)

and

J(p, q, r,m;α) = E

[
F r

(F + 1)p(F + α)q
(b′Sb)mβ′Sb

]
. (16)

Then, we can express the MSEs of β̂WA1 and β̂WA2 as

MSE[β̂WA1] = H(2, 2, 4, 1; 1/k) + 2H(3, 1, 3, 1; 1/k) +H(4, 0, 2, 1; 1/k)

−2J(1, 1, 2, 0; 1/k)− 2J(2, 0, 1, 0; 1/k) + β′Sβ (17)

and

MSE[β̂WA1] = H(2,−2, 0, 1;−aν/k) + 2H(3,−1, 1, 1;−aν/k) +H(4, 0, 2, 1;−aν/k)

−2J(1,−1, 0, 0;−aν/k)− 2J(2, 0, 1, 0;−aν/k) + β′Sβ. (18)

As is shown in Appendix A, explicit formulae for H(p, q, r,m;α) and J(p, q, r,m;α) are given by

H(p, q, r,m;α) = (2σ2)m
(
k

ν

)p+q−r ∞∑
i=0

wi(λ)Gi(p, q, r,m;α), (19)

J(p, q, r,m;α) = β′Sβ(2σ2)m
(
k

ν

)p+q−r ∞∑
i=0

wi(λ)Gi+1(p, q, r,m;α), (20)
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where wi(λ) = exp(−λ/2)(λ/2)/i! and

Gi(p, q, r,m;α) =
Γ((ν + k)/2 +m+ i)

Γ(ν/2)Γ(k/2 + i)

∫ 1

0

tk/2+m+r+i−1(1− t)ν/2+p+q−r−1

[t+ k(1− t)/ν]p[t+ αk(1− t)/ν]q
dt. (21)

Substituting (19) and (20) into (17) and (18), we obtain explicit formulae for the MSEs of β̂WA1 and

β̂WA2.

Since further theoretical analysis of the MSEs of β̂WA1 and β̂WA2 is difficult, we execute numerical

evaluation in the next section.

4 Numerical results

In this section, we compare the MSEs of estimators by numerical evaluations1.

The parameter values used in the numerical evaluations were k = 3, 4, 5, 8, 10, n = 20, 30, 50,

and λ = various values. The numerical evaluations were executed on a personal computer, using the

FORTRAN code. In evaluating the integral in Gi(p, q, r,m;α) given in (21), we used Simpson’s rule with

500 equal subdivisions. The infinite series in H(p, q, r,m;α) and J(p, q, r,m;α) were judged to converge

when the increment of the series gets smaller than 10−12. In order to compare the MSE performances

of the estimators, we evaluated the values of relative MSE defined as MSE(β̄)/MSE(b), where β̄ is any

estimator of β. Thus, the estimator β̄ has smaller MSE than the OLS estimator when the value of relative

MSE is smaller than unity. Since the results for k = 3, k = 5 and n = 30 are qualitatively typical, we

show the results only for these cases.

Figure 1 shows the results for k = 3 and n = 30. We can see that all estimators considered here

except for bAM dominate the OLS estimator b in terms of MSE, and β̂WA2 has smaller MSE than the

other estimators considered here except for bAM when λ is small (i.e., λ ≤ 2.0). Moreover, β̂WA2 has

smaller MSE than bPSR when λ is small and moderate (i.e., λ ≤ 8.0). Though bAM has smallest MSE

among all the estimators when λ is small and moderate (i.e., λ ≤ 12.0), it has slightly larger MSE than

the OLS estimator for large values of λ (i.e., λ ≥ 22.0). Also, though β̂WA2 has smaller MSE than β̂WA1

around λ = 0, the region where β̂WA1 has smaller MSE than bPSR (i.e., λ ≤ 10.0) is slightly wider than

that of β̂WA2 (i.e., λ ≤ 8.0). Comparing β̂WA1 and β̂WA2, the MSE of β̂WA2 around λ = 0 is smaller than

that of β̂WA1 while the MSE of β̂WA2 is slightly larger than that of β̂WA1 for λ ≥ 3.0. Comparing the

gain and the loss of MSE, β̂WA2 may be preferred to bPSR and β̂WA1.

Figure 2 shows the results for k = 5 and n = 30. Comparing Figures 1 and 2, we see that when

k increases from 3 to 5, the MSE performance changes largely. Though all estimators considered here

1As is suggested by an anonymous referee, we also calculated the squared lengths of bias of the estimators under the
simplified assumptions. See Appendix B for details.
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Figure 1: MSEs for k = 3 and n = 30.
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dominate the OLS estimator, β̂WA1 is dominated by bPSR, and both β̂WA1 and β̂WA2 no longer have

smaller MSE than bPSR around λ = 0. Also, β̂WA2 dominates β̂WA1 and bM, and β̂WA2 has smaller MSE

than bPSR for 0.4 ≤ λ ≤ 22.0. This indicates that the MSE performances of two estimators, β̂WA2 and

bPSR, are comparable.

When it is difficult to derive an exact distribution of an estimator, the bootstrap methods proposed

by Efron (1979) have often been applied. (Some examples are Chi and Judge (1985), Brownstone (1990)

and Yi (1991).) However, as is shown in Zaman (1996), the bootstrap methods are not so valid when an

estimator is not smooth. Since the MSE performances of β̂WA2 and bPSR are comparable and β̂WA2 is

smooth while bPSR is not smooth, we can say that β̂WA2 can be a good smooth alternative to the PSR

estimator, in particular when we apply the bootstrap methods.

5 Concluding remarks

In this paper, we proposed estimators for regression coefficients which are weighted averages of two

shrinkage estimators. Our numerical results show that the estimator β̂WA2 which is a weighted average

of the SR and the AMMSE estimators has smaller MSE than the PSR estimator over a moderate region
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Figure 2: MSEs for k = 5 and n = 30.
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of parameter space when k = 3. Even when k > 3, β̂WA2 has comparable MSE performance to the

PSR estimator bPSR. Also, the proposed estimators β̂WA1 and β̂WA2 have smaller MSE than the OLS

estimator for all parameter values considered in this paper. Moreover, because of their structure, the

proposed estimators are smooth. Compared with the PSR estimator, this is the virtue of proposed

estimators.

Considering this result, we may able to construct smooth estimators which have more preferable

performance by taking weighted averages of possibly some other estimators. However, seeking for such

estimators is beyond the scope of this research and a remaining problem for future research.

Appendix A

First, we derive the formula forH(p, q, r,m;α). Let u1 = b′Sb/σ2 and u2 = e′e/σ2. Then, u1 is distributed

as the noncentral chi-square distribution with k degrees of freedom and noncentrality parameter λ =

β′Sβ/σ2, and u2 is distributed as the chi-square distribution with ν = n− k degrees of freedom.

Using u1 and u2, H(p, q, r, α) is expressed as

H(p, q, r,m;α) = E

[
(νk

u1

u2
)r

(νk
u1

u2
+ 1)p(νk

u1

u2
+ α)q

(σ2u1)
m

]
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= νrkp+q−r(σ2)m
∞∑
i=0

Ki

×
∫ ∞

0

∫ ∞

0

u
k/2+m+r+i−1
1 u

ν/2+p+q−r−1
2

(νu1 + ku2)p(νu1 + αku2)q
exp[−(u1 + u2)/2]du1 du2, (22)

where

Ki =
wi(λ)

2(ν+k)/2+iΓ(ν/2)Γ(k/2 + i)
, (23)

and wi(λ) = exp(−λ/2)(λ/2)i/i !.

Making use of the change of variables, v1 = u1/u2 and v2 = u2, the integral in (22) reduces to∫ ∞

0

∫ ∞

0

v
k/2+m+r+i−1
1 v

(ν+k)/2+m+i−1
2

(νv1 + k)p(νv1 + αk)q
exp[−(v1 + 1)/2]dv1 dv2. (24)

Again, making use of the change of variable, z = (1 + v1)v2/2, (24) reduces to

2(ν+k)/2+m+1Γ((ν + k)/2 +m+ i)

∫ ∞

0

v
k/2+m+r+i−1
1

(νv1 + k)p(νv1 + αk)q(v1 + 1)(ν+k)/2+m+1
dv1. (25)

Further, making use of the change of variable, t = v1/(1+v1), and substituting (25) in (22) and performing

some manipulations, (22) reduces to (19) in the text.

Next, we derive the formula for J(p, q, r,m;α). Differentiating H(p, q, r, α) given in (19) with respect

to β, we obtain

∂H(p, q, r, α)

∂β
= (2σ2)m

(
k

ν

)p+q−r ∞∑
i=0

[
∂wi(λ)

∂β

]
Gi(p, q, r,m;α)

= (2σ2)m
(
k

ν

)p+q−r ∞∑
i=0

[
−Sβ

σ2
wi(λ) +

Sβ

σ2
wi−1(λ)

]
Gi(p, q, r,m;α)

= −Sβ

σ2
H(p, q, r,m;α) +

Sβ

σ2
(2σ2)m

(
k

ν

)p+q−r ∞∑
i=0

wi(λ)Gi+1(p, q, r,m;α), (26)

where we define w−1(λ) = 0.

Expressing H(p, q, r,m;α) by b′Sb and e′e, we have:

H(p, q, r,m;α) = E

[
(νk

b′Sb
e′e )r

(νk
b′Sb
e′e + 1)p(νk

b′Sb
e′e + α)q

(b′Sb)m

]

=

∫ ∞

0

∫ ∞

−∞

(νk
b′Sb
e′e )r

(νk
b′Sb
e′e + 1)p(νk

b′Sb
e′e + α)q

(b′Sb)mfN (b)fe(e
′e)db d(e′e), (27)

where fe(e
′e) is the density function of e′e, and

fN (b) =
1

(2π)k/2|σ2S−1|1/2
exp

[
− (b− β)′S(b− β)

2σ2

]
. (28)

Differentiating H(p, q, r,m;α) given in (27) with respect to β, we obtain:

∂H(p, q, r,m;α)

∂β
=

1

σ2
E

[
(νk

b′Sb
e′e )r

(νk
b′Sb
e′e + 1)p(νk

b′Sb
e′e + α)q

(b′Sb)mSb

]
− Sβ

σ2
H(p, q, r,m;α). (29)

Equating (26) and (29), and multiplying β′ from left, we obtain (20) in the text.
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Appendix B

In this Appendix, we explain the way to calculate the squared lengths of bias of the estimators under

some simplified conditions. In order to make the calculation tractable, we assume S = X ′X = I,

β = β[1, 1, . . . , 1]′ = βι, where β is a scalar and ι is a k × 1 column vector whose elements are 1s. In

addition, we assume σ2 = 1 for simplicity. These conditions are assumed only when we calculate the the

squared lengths of bias of the estimators. Under these assumptions, we have

λ = β′Sβ/σ2 = β
2
ι′ι = kβ

2
.

Also, equation (16) can be transformed as follows

J(p, q, r, 0;α) = E

[
F r

(F + 1)p(F + α)q
β′Sb

]
= E

[
F r

(F + 1)p(F + α)q
β′b

]
= βι′E

[
F r

(F + 1)p(F + α)q
b

]
under the above mentioned conditions. Moreover, under the same conditions, all the k elements of

F r

(F+1)p(F+α)q b are distributed as the same distribution, and accordingly, all the elements of E
[

F r

(F+1)p(F+α)q b
]

are the same. Thus, if we denote the elements of E
[

F r

(F+1)p(F+α)q b
]
by ξ, we have:

J(p, q, r, 0;α) = kβξ

Similarly, if we denote the elements of E
[

F r′

(F+1)p′ (F+α′)q′
b
]
as ζ, we have

J(p′, q′, r′, 0;α′) = kβζ

Thus, we obtain{
E

[
F r

(F + 1)p(F + α)q
b

]}′

E

[
F r′

(F + 1)p′(F + α′)q′
b

]
= kξζ

=
J(p, q, r, 0;α)J(p′, q′, r′, 0;α′)

kβ
2 .

Since the bias of β̂WA1 is

Bias[β̂WA1] = E

[
F 2

(F + 1)(F + 1/k)
b

]
+ E

[
F

(F + 1)2
b

]
− β,

the squared length of the bias is given by

Bias[β̂WA1]
′Bias[β̂WA1] =

{
E

[
F 2

(F + 1)(F + 1/k)
b

]}′

E

[
F 2

(F + 1)(F + 1/k)
b

]
+

{
E

[
F

(F + 1)2
b

]}′

E

[
F

(F + 1)2
b

]
+ β′β

9



+2

{
E

[
F 2

(F + 1)(F + 1/k)
b

]}′

E

[
F

(F + 1)2
b

]
−2β′E

[
F 2

(F + 1)(F + 1/k)
b

]
−2β′E

[
F

(F + 1)2
b

]
= J(1, 1, 2, 0; 1/k)J(1, 1, 2, 0; 1/k)/kβ

2

+J(2, 0, 1, 0; 1/k)J(2, 0, 1, 0; 1/k)/kβ
2
+ kβ

2

+2J(1, 1, 2, 0; 1/k)J(2, 0, 1, 0; 1/k)/kβ
2

−2J(1, 1, 2, 0; 1/k)− 2J(2, 0, 1, 0; 1/k).

The squared lengths of the bias vectors of the other estimators are obtained in a similar way.

Using the formula obtained above, we calculated the squared bias lengths of the estimators defined as

[Bias[β̃]′Bias[β̃]/MSE[b],

where, β̃ is any estimator for β. The results for k = 3 and 5, n = 30, and various values of λ = kβ
2
are

given in Figures 3 and 4. From the Figures, we can see:

1. The bias of the MMSE estimator is smaller than that of the AMMSE estimator. As a whole, the

bias of the MMSE estimator is small compared with those of the other estimators.

2. The SR estimator has smaller bias than the AMMSE estimator for k = 3, however, the former has

larger bias than the latter for k = 5.

3. Generally, the bias of β̂WA1 exists between those of the MMSE and the AMMSE estimators, and

the bias of β̂WA1 exists between those of the AMMSE and the SR estimators.

The bias of an estimator is mostly determined by the shrink factor which is a functions of F . Also,

F will be large when λ is large. Further, β̂WA1 is an weighted average of bM and bAM, and β̂WA2 is an

weighted average of bSR and bAM. From these facts, we can consider most of the above results on bias

vectors are as expected.
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Figure 3: Squared lengths of bias of the estimators for k = 3 and n = 30.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25 30 35 40

S
q
u
ar
ed

le
n
gt
h
of

b
ia
s

λ

β̂WA1

β̂WA2

bSR
bPSR

bM
bAM

Figure 4: Squared lengths of bias of the estimators for k = 5 and n = 30.
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