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Abstract 

This study develops a spatially varying coefficient model by extending the random effects 

eigenvector spatial filtering model. The developed model has the following properties: its 

spatially varying coefficients are defined by a linear combination of the eigenvectors 

describing the Moran coefficient; each of its coefficients can have a different degree of 

spatial smoothness; and it yields a variant of a Bayesian spatially varying coefficient 

model. Moreover, parameter estimation of the model can be executed with a relatively 

small computational burden. Results of a Monte Carlo simulation reveal that our model 

outperforms a conventional eigenvector spatial filtering (ESF) model and geographically 

weighted regression (GWR) models in terms of the accuracy of the coefficient estimates 

and computational time. We empirically apply our model to the hedonic land price 

analysis of flood hazards in Japan. 
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1. Introduction 1 

 Spatial heterogeneity is one of the important characteristics of spatial data 2 

(Anselin, 1988). Geographically weighted regression (GWR) (Fotheringham et al., 2002; 3 

Wheeler and Páez, 2009; Fotheringham and Oshan, 2016) is one useful approach for 4 

explicitly accounting for spatial heterogeneity of the model structure through spatially 5 

varying coefficients (SVCs). GWR has been widely applied in socioeconomic studies 6 

(e.g., Bitter et al., 2007; Huang et al., 2010), ecological studies (e.g., Wang et al., 2005; 7 

Austin, 2007), health studies (e.g., Nakaya et al., 2005; Hu et al., 2012), and many others. 8 

 Despite the wide-ranging set of applications, existing studies have shown that 9 

the basic (original) GWR specification has several drawbacks. First, the coefficients of 10 

the basic GWR typically suffer from multicollinearity (Páez et al., 2011; Wheeler and 11 

Tiefelsdorf, 2005). Second, the basic GWR assumes the same degree of spatial 12 

smoothness for each coefficient, which is a rather strong assumption that fails to hold in 13 

most empirical applications. Fortunately, several extended GWRs have been proposed to 14 

address these problems. With regard to the first problem, Wheeler (2007; 2009) proposes 15 
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regularized GWR, by combining ridge and/or lasso regression with GWR, and its 16 

robustness in terms of the multicollinearity problem has been demonstrated. The 17 

limitations of regularized GWR specifications are its bias in coefficient estimates, just 18 

like conventional ridge and/or lasso regression. With regard to the second problem 19 

concerning uniform smoothers, Yang et al. (2014) and Lu et al. (2015) attempted to 20 

overcome this limitation.  21 

The Bayesian spatially varying coefficients (B-SVC) model, based on a 22 

geostatistical (Gelfand et al., 2003) or lattice autoregressive approach (Assunçao, 2003), 23 

is another form of the spatially varying coefficients model that requires Markov chain 24 

Monte Carlo (MCMC). Wheeler and Calder (2007) and Wheeler and Waller (2009) 25 

suggest that the coefficient estimates for the B-SVC model of Gelfand et al. (2003) are 26 

robust in terms of multicollinearity. In contrast to the GWR model, the B-SVC model 27 

allows differential spatial smoothness across coefficients. However, this differential 28 

makes computational costs prohibitive if a sample size is moderate to large (Finley, 2011). 29 
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Although Integrated Nested Laplace Approximation (INLA)1 based SVC estimations are 30 

becoming available now (Congdon, 2014)2, their estimation accuracy and computational 31 

efficiency are largely unexplored. 32 

 Hence, a SVC model with the following properties still needs to be developed: 33 

(a) robust to multicollinearity; (b) the possibility for each coefficient to have a different 34 

degree of spatial smoothness; and, (c) computational efficiency. This study develops a 35 

model satisfying these requirements by combining an eigenvector spatial filtering (ESF; 36 

Griffith 2003; Chun and Griffith, 2014) based SVC model (Griffith, 2008) and a random 37 

effects ESF (RE-ESF: Murakami and Griffith, 2015) model. 38 

 The following sections are organized as follows. Sections 2 and 3 introduce the 39 

GWR model and ESF-based SVC model of Griffith (2008), respectively. Section 4 40 

introduces the RE-ESF model, and extends it to a SVC model. Section 5 compares the 41 

properties of our model with those of other SVC models. Section 6 summarizes results 42 

                                                   
1 See Rue et al. (2009) for details on the INLA approach and Blangiardo and Cameletti 
(2015) for its R programming. 
2  Congdon (2014) publishes an R code of an INLA to estimate a conditional 
autoregressive model-based SVC model (see Gamerman et al., 2003). 
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from a comparative Monte Carlo simulation experiment, and section 7 uses our model in 43 

a hedonic analysis. Section 8 concludes our discussion. 44 

 45 

2. GWR specifications 46 

The basic GWR model for a site 2ℜ⊂∈Dsi  is formulated as follows: 47 

 uXβGyG += )()()( 2/12/1
iii sss ,    0u =][E ,    Iu 2][ σ=Var , (1) 48 

where y is an N × 1 vector of continuous response variables, X is an N × K matrix of 49 

explanatory variables, β(si) is a K × 1 vector of geographically varying coefficients, u is 50 

a N × 1 vector of disturbances, 0 is an N × 1 vector of zeros, I is an N × N identity matrix, 51 

σ2 is a variance parameter, and G(si) is an N × N diagonal matrix whose j-th element is 52 

given by a geographically weighting function, g(si, sj). Eq.(1) is a regression linear model 53 

local weighted by g(si, sj). The weighted least squares (WLS) estimator of β(si) yields 54 

 yGXXGXβ )()])([)(ˆ 1
iii sss ′′= − , (2) 55 

where ' denotes the matrix transpose. 56 

Stone (1980) and Fan (1993) show that locally weighted regression, including 57 
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GWR, maximizes the rate of asymptotic convergence to a true function that is given by a 58 

local linear smoother of y, and the smoothness of g(si, sj) is required to identify the true 59 

function. Wheeler and Calder (2007) and Wheeler and Waller (2009) applied the 60 

following exponential function form, which weighs more heavily for neighboring 61 

samples than distant samples: 62 

 







−=

r
ssd

ssg ji
ji

),(
exp),( , (3) 63 

where d(si, sj) is the Euclidean distance between locations si and sj, and r is the bandwidth 64 

parameter, which is large if coefficients have global scale spatial variation, and small if 65 

they have local scale spatial variation.  66 

A standard estimation procedure for the basic GWR is as follows: (1) the 67 

bandwidth is calculated based on the leave-one-out cross-validation or a corrected AIC 68 

minimization (see Fotheringham et al., 2002), and (2) β(si) is estimated by substituting 69 

the estimated bandwidth into Eqs. (2) and (3). 70 

 After Wheeler and Tiefelsdorf (2005) demonstrate that GWR coefficients 71 

essentially are collinear, active discussion shifted to regularized GWR. For example, 72 
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Wheeler (2007) proposes a ridge regularization-based GWR that replaces Eq. (2) with the 73 

following equation: 74 

 yGXIXGXβ )())(()(ˆ 1
iKii sss ′+′= −η , (4) 75 

where η is the ridge regularization parameter, and IK is a K × K identity matrix. Wheeler 76 

(2009) and Gollini et al. (2015) extended the ridge GWR to vary η locally. Specifically, 77 

they propose the locally compensated ridge GWR (LCR-GWR) estimator, which is 78 

formulated as follows: 79 

 yGXIXGXβ )())()(()(ˆ 1
iKiii ssss ′+′= −η , (5) 80 

where η(si) is the ridge parameter for location si, and LCR-GWR calibrates η(si) based on 81 

the degree of multicollinearity in the corresponding local model. Because η(si) increases 82 

bias of the coefficient estimator, just like the standard ridge estimator, Gollini et al. (2015) 83 

suggest introducing η(si) only for local models whose multicollinearity is excessive. The 84 

estimation procedure for LCR-GWR is as follows (Gollini et al., 2015): (1) the bandwidth 85 

and ridge parameters are estimated by the leave-one-out cross-validation, and (2) β(si) is 86 

estimated by substituting them into Eq. (5). 87 
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 88 

3. ESF-based SVC specifications 89 

 Section 3.1 introduces the ESF approach 1, and section 3.2 presents an ESF-90 

based SVC model, which we extend to a RE-ESF-based model in section 4. 91 

 92 

3.1. The ESF approach 93 

Moran ESF is based on the Moran coefficient (MC; see, Anselin and Rey, 1991), 94 

which is a spatial dependence diagnostic statistic formulated as follows3: 95 

 
Myy

MCMyy
C11 ′

′
′

=
NMC . (6) 96 

where 1 is an N × 1 vector of ones, y is an N × 1 vector of variable values, C is an N ×N 97 

connectivity matrix whose diagonal elements are zero, and M = I –11'/N is an N × N 98 

matrix for double centering. MC is positive if the sample values in y display positive 99 

spatial dependence and negative if they display negative spatial dependence. Based on 100 

Griffith (2003) and Griffith and Chun (2014), the 1st eigenvector, e1, is the set of real 101 

                                                   
3 ESF also could be based on other indices, such as the Geary ratio (Geary, 1954). 
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numbers that has the largest MC value achievable by any set of real numbers for the 102 

spatial attunement defined by C; e2, is the set of real numbers that has the largest 103 

achievable MC value by any set that is orthogonal with e1; and so forth, the l-th 104 

eigenvector, el, is the set of real numbers that has the largest achievable MC value by any 105 

set that is orthogonal with {e1, ..., el-1}. Thus, Efull ={e1, ..., eN}, provides all the possible 106 

distinct map pattern descriptions of latent spatial dependence, with each magnitude being 107 

indexed by its corresponding eigenvalue in {λ1, ..., λN} (Griffith, 2003). 108 

M is replaced with MX = I–X(X' X)-1X' if y is a residual vector of a linear 109 

regression model. In that case, MC is positive if sample values in y have variations that 110 

are positively spatially dependent and orthogonal with X. The reverse is true for negative 111 

spatial dependence. The eigenvectors of MXCMX are defined as those for MCM except 112 

that they are orthogonal with X. In other words, el, is the set of real numbers that has the 113 

largest achievable MC value by any set that is orthogonal with {e1, ..., el-1} and X. 114 

ESF describes the latent map pattern in a georeferenced response variable y, using 115 

a linear combination of eigenvectors, Eγ, where E is a matrix composed of L eigenvectors 116 



12 
 

in Efull (L < N) that is given either from MCM or MXCMX, and γ = [γ1, ..., γL]' is an L × 1 117 

coefficient vector. The linear ESF model is given by 118 

 εEγXβy ++= ,      ),(~ 2I0ε σN , (7) 119 

where ε is a N × 1 vector of disturbances. Because Eq. (7) is in the form of the standard 120 

linear regression model, ordinary least squares (OLS) estimation is applicable for its 121 

parameter estimation4. The L eigenvectors in E may be selected as follows (see, Chun et 122 

al., 2016): (a) eigenvectors corresponding to small eigenvalues, which explain the 123 

inconsequential level of spatial dependence, are removed5 , and (b) Eigenvectors are 124 

chosen by applying an accuracy maximization (e.g., adjusted R2 maximization)–based or 125 

a residual MC minimization–based stepwise variable selection process to the candidate 126 

set prepared in (a). 127 

Many studies demonstrate the effectiveness of ESF in estimation and inference 128 

for β in the presence of spatial dependence (e.g., Chun, 2014; Griffith and Chun, 2014; 129 

                                                   
4 Another approach includes the model selection procedure based on LASSO (Seya et 
al., 2015). 
5 λl /λ1 > 0.25 and λl > 0 are commonly used criteria (e.g., Griffith, 2003; Tiefelsdorf and 
Griffith, 2007; Drey, 2006; Hughes and Haran, 2013). 
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Margaretic et al., 2015). For more details about ESF, see Griffith (2003), Griffith and 130 

Paelinck (2011), Griffith and Chun (2014), and Griffith and Chun (2016). 131 

 132 

3.2. ESF-based SVC specifications 133 

To capture possible spatially varying influences from explanatory variables, 134 

Griffith (2008) extended ESF to the following SVC model: 135 

 εγExxy ++= ∑∑
==

K

k
kkk

K

k
kk

11
)1( oo β ,

      
),(~ 2I0ε σN , (8) 136 

which also is expressed as  137 

 εβxy += ∑
=

K

k

ESF
kk

1
o ,

            
),(~ 2I0ε σN , (9) 138 

 kkk
ESF
k γE1β += β ,  139 

where xk is an N × 1 vector of the k-th explanatory variable (i.e., k-th column of X), Ek is 140 

an N × Lk matrix composed of Lk eigenvectors (Lk < N), γk is an Lk × 1 coefficient vector, 141 

and ‘ o’ denotes the element-wise (Hadamard) product operator. Note that ∑
=

K

k
kk

1
)1(βox  142 

in Eq.(8) equals Xβ. ESF
kβ = βk1 + Ekγk yields a vector of spatially varying coefficients, in 143 

which βk1 and Ekγk represent the constant component and spatially varying component, 144 
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respectively. The parameters can be estimated, as for the standard ESF specification, as 145 

follows: (a) eigenvectors corresponding to small eigenvalues are removed from each Ek; 146 

(b) significant variables in X, x1 oE1, ..., xK oEK are selected by applying an OLS-based 147 

forward variable selection technique, and β= [β1, ..., βK]' and γk are then estimated; and, 148 

(c) ESF
kβ̂  = kk γE1 ˆˆ +β   is calculated. Helbich and Griffith (2016) empirically 149 

demonstrated that spatial variation of the ESF-based coefficients can be significantly 150 

different from those for GWR. 151 

 152 

4. RE-ESF-based SVC specifications 153 

4.1. The RE-ESF approach 154 

While the conventional ESF model is a fixed effects model, Murakami and 155 

Griffith (2015) show that random effects versions of ESF increase the estimation accuracy 156 

of regression coefficients and their standard errors with shorter computational time. This 157 

section extends RE-ESF to a SVC model as follows: 158 

 εEγXβy ++= ,
     

))(,(~ 2 ασ γ Λ0γ LN ,
     

),(~ 2I0ε σN , (10) 159 
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where 0L is an L × 1 vector of zeros, E is given by the subset of L eigenvectors 160 

corresponding to positive eigenvalues, which capture positive spatial dependence 6 161 

(without applying the stepwise variable selection process), and Λ(α) is an L × L diagonal 162 

matrix whose l-th element is λl(α) = (Σlλl/Σlλl
α)λl

α, where α and σγ
2 are parameters. A large 163 

α shrinks the coefficients of the non-principal eigenvectors strongly toward 0, and the 164 

resulting Eγ describes a global map pattern. By contrast, when α is small, Eγ describes a 165 

local map pattern. Thus, α controls the spatial smoothness of the underlying map pattern. 166 

RE-ESF has two interpretations (Murakami and Griffith, 2015): it describes a map pattern 167 

explained by MC (see Section 5.1, for further details), and it describes a Gaussian process 168 

after a rank reduction (see, Appendix 1). 169 

Eq. (10) can be rewritten as follows: 170 

 εuθEVXβy ++= )( ,    ),(~ 2
LLN I0u σ ,     ),(~ 2I0ε σN , (11) 171 

where θ = {σγ
2/σ2, α}, IL is an L × L identity matrix, and V(θ) is a diagonal matrix whose 172 

                                                   
6 Since MCM and MCXM have N - 1 and N - K eigenvectors corresponding to non-zero eigenvectors 
respectively, keeping all eigenvectors, which drastically consumes degrees of freedom, is not sensible. 
Many of (RE-)ESF studies consider eigenvectors corresponding to positive eigenvalue because 
positive spatial dependence is dominant in most social-economic and natural science data (Griffith, 
2003; Griffith and Peres-Neto, 2006). 
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l-th element is (σγ/σ)λl(α)1/2. Note that V(θ)u in Eq. (11) equals γ. 173 

The parameters in Eq. (11) (or Eq. (10)) are estimated by using the residual 174 

maximum likelihood (REML) method of Bates (2010). Following his specification, the 175 

likelihood function is defined by loglik(β, θ) = ∫ uθβuy dp ),|,( , and the restricted log-176 

likelihood by loglikR(θ) = ∫ βθβ dliklog ),( . 177 

The estimation procedure is summarized as follows: (a) θ is estimated by 178 

maximizing the restricted log-likelihood Eq. (12) with the plugins of Eqs. (13) and (14); 179 

(b) β and γ = V(θ)u are estimated by substituting the estimated θ into Eq. (14); and, (c) 180 

σ2 is estimated by substituting the estimated parameters into Eq. (15). In other words, 181 

 















−
+

−
−








+′

′′
−=

KN
dKNliklog

L
R

)(2log1
2)()(

)(
log

2
1)( 2

θ
IθVXEθV

θEVXXX
θ π , (12) 182 

 22

,
||||||)(||min)( uuθEVXβyθ

uβ
+−−=d , (13) 183 

 







′

′








+′

′′
=







 −

yEθV
yX

IθVXEθV
θEVXXX

u
β

)()()(
)(

ˆ

ˆ 1

2
L

, and (14) 184 

 
KN −

−−
=

2
2 ||)(||ˆ uθEVXβyσ , (15) 185 

where 2|||| •  denotes the L2-norm of a vector • , and V(θ)2 = V(θ)V(θ) = V(θ)E' EV(θ). 186 
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Based on Murakami and Griffith (2015), the computational complexity of Eq. (12) is 187 

O((K+L)3), which is smaller than the complexity of the likelihood maximization in 188 

standard spatial statistical models (O(N3)). They also reveal that RE-ESF estimates β with 189 

smaller estimation error and a shorter computation time than ESF. 190 

Similar models have been used in the statistics literature (e.g., Hughes and Haran, 191 

2013; Johnson et al., 2013; Lee and Barran, 2015). They use E generated from MXCMX. 192 

This is because this specification eliminates confounders between X and E and stabilizes 193 

the parameter estimates. However, Murakami and Griffith (2015) show that the 194 

elimination leads to biased standard errors of β and recommend using MCM. Section 6 195 

examines which specification is more appropriate for SVC modeling. 196 

 197 

4.2. RE-ESF-based SVC models 198 

As with the basic RE-ESF, the RE-ESF-based SVC model is expected to 199 

outperform the ESF-based one in terms of estimation accuracy and computational time. 200 

Thus, we combine the RE-ESF model and the ESF-based SVC model (Eq. (9)): 201 
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 εβxy += ∑
=

−
K

k

ESFR
kk

1
o ,        ),(~ 2I0ε σN , (16) 202 

 kk
ESFR

k Eγ1β +=− β ,     ))(,(~ 2
)( kkLk N ασ γ Λ0γ ,  203 

where αk is a parameter that controls the spatial smoothness of the k-th coefficients, and 204 

σ2
k(γ) controls the variance. The k-th coefficients consist of the fixed constant, βk1, and 205 

random spatially varying components, Eγk. 206 

Eq. (16) can be expressed as (see Eqs. (8) and (9)) 207 

 εγEXβy ++= ~~ ,
         

),(~ 2I0ε σN , (17) 208 

where 209 

 [ ]ExExE oLo K1
~ = ,  








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
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)(

)(

,
~~

2
)(

1
2

)(11

KKL

L

K

N
ασ

ασ

γ

γ

Λ

Λ

0

0

γ

γ
γ OMM .  210 

Eq. (17) essentially is identical to Eq. (10). Hence, it is further rewritten similar to the 211 

rewriting from Eq. (10) to Eq. (11): 212 

 εuΘVEXβy ++= ~)(~~ ,     ),(~~ 2
LKLKN I0u σ ,    ),(~ 2I0ε σN , (18)

 
213 
















=

)(

)(
)(~ 1

KθV

θV
ΘV O ,    
















=

Ku

u
u M

1
~ , 214 
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where Θ = {θ1, ..., θK}, θk = {σk(γ)
2/σ2, αk}, 0LN is an LK × 1 vector of zeros, ILN is an LK × 215 

LK identity matrix, and V(θk) is a diagonal matrix whose l-th element is (σγ(γ)/σ)λl(αk)1/2.  216 

Because Eq. (17) is identical to the RE-ESF model, Eq. (10), the REML 217 

estimation for RE-ESF is readily applicable to the proposed model. The estimation 218 

procedure is summarized as follows: (a) Θ is estimated by maximizing the profile 219 

restricted log-likelihood, Eq. (19), with the plugins of Eqs. (20) and (21); (b) β and γ~ =220 

uΘV ~)(~   are estimated by substituting the estimated Θ into Eq. (21); and, (c) σ2 is 221 

estimated by substituting the estimated parameters into Eq. (22). In other words, 222 

 


















−
+

−
−









+′′
′′

−=
KN

dKNliklog
LK

R
)(~2log1

2)(~~~)(~~)(~
)(~~

log
2
1)( Θ

IΘVEEΘVXEΘV
ΘVEXXXΘ π  ,(19) 223 

 22
~,

||~||||~)(~~||min)(~ uuΘVEXβyΘ
uβ

+−−=d , (20) 224 
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
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
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



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


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ΘVEXXX
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)(~~~)(~~)(~
)(~~

~̂
ˆ 1

LK

, and (21) 225 

 
KN −

−−
=

2
2 ||~)(~~||ˆ uΘVEXβyσ . (22) 226 

Although the REML estimation requires a determinant calculation, computational 227 

complexity is only O((K+KL)3), which can be decreased by reducing the number of 228 
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eigenvectors in E. The computational burden also can be reduced by replacing some 229 

ESFR
k
−β = βk1 + Eγk with βk1, which means restricting some coefficients to be constants 230 

across a given geographic landscape. 231 

The variance-covariance matrices of the coefficients are 232 

 
1

2
2

)(~~~~
~

~)(~~

−

− 



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



+′′
′′

=



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


=








ΘVEEXE

EXXX
uΘV

β
γ
β

σ
k

CovCov , (23) 233 

where  is the inverse of . Because  is a diagonal matrix, its inverse is easily calculated. 234 

As for = βk1 + Eγk, the variance of the constant component, βk1, is estimated in Eq. (23). 235 

The covariance matrix of the spatially varying components, Eγk, is estimated as follows: 236 

 , (24) 237 

where Cov[], which is the covariance matrix of γk, is a sub-matrix of Cov[] in Eq.(23). 238 

The diagonals of Cov[Eγk] are useful to test if = βk1 + Eγk has statistically significant 239 

spatial variation, whereas the diagonals of Cov[γk] indicate which eigenvectors are 240 

statistically significant. 241 

 A problem is how to estimate Θ efficiently. For example, when five explanatory 242 

variables are considered, we need to optimize 10 parameters in {σ1
2

(γ), ..., σ5
2

(γ), α1, ..., α5} 243 
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simultaneously, which can be computationally expensive. Hence, in addition to 244 

simultaneous estimation, we apply an approximation that estimates the coefficient’s 245 

variance parameters, σk
2

(γ)s, first, and the spatial smoothness parameters, αks, thereafter. 246 

In the first step, we impose αk = 1, which implicitly has been assumed in RE-ESF-type 247 

models (e.g., Hughes and Haran, 2013). Assuming a unique value for each αk, which 248 

implies the same degree of spatial smoothness for each coefficient, is another way to 249 

increase computational efficiency. Section 6 compares the effectiveness of these 250 

simplifications. 251 

 252 

5. Properties of RE-ESF-based SVC model 253 

 This section clarifies advantages and disadvantages of our SVC model by 254 

comparing it with the ESF-based SVC specification (section 5.1), GWR specifications 255 

(section 5.2), and the B-SVC model of Gelfand (2003) (section 5.3). 256 

 257 

5.1. A comparison with the ESF-based specification 258 



22 
 

Both the ESF-based model and our model describe their k-th coefficients using 259 

βk 1 + Eγk. The ESF approach regards Eγk as fixed effects, whereas ours considers it as 260 

random effects, where γk ~ N(0L, σk(γ)
2Λ(αk)). Our specification has additional variance 261 

parameters, σk(γ)
2 and αk. They shrink Eγk strongly toward zero when σk(γ)

2 is small and αk 262 

is large. Owing to these parameters, our estimator might be more robust to 263 

multicollinearity than the estimator of ESF, which is a fundamental problem in SVC 264 

models (Wheeler and Tiefelsdorf, 2005). 265 

The parameter αk also controls the spatial smoothness of each varying coefficient. 266 

A large αk shrinks the coefficients γk,l corresponding to the non-principal eigenvectors 267 

strongly toward zero, where γk,l is the l-th element of γk. As a result, Eγk has a global 268 

(smoother) map pattern. Interestingly, αk is interpretable in terms of MC. MC[Eγk] can be 269 

calculated by substituting Eγk into Eq. (6) as follows (see Griffith, 2003): 270 

 . (25) 271 

MC[Eγk] is proportional to the average of the L eigenvalues, which are weighted by γ2
k,l 272 

= Var[γk,l] . As αk grows, the weights γ2
k,l on greater eigenvalues are inflated, along with 273 
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MC[Eγk]. In particular, MC[Eγk] takes its maximum value if αk = ∞. By contrast, if αk = 274 

0, σk(γ)
2 shrinks all coefficients equally. In short, αk is an MC-based shrinkage parameter 275 

that intensifies the underlying spatial dependence of = βk1 + Eγk. 276 

Computational efficiency is another advantage of our approach. Unlike the ESF-277 

based SVC model, ours does not require the stepwise variable selection, which can be 278 

very slow especially for large datasets. 279 

 280 

5.2. A comparison with GWR specifications 281 

A major advantage of our model relative to GWR is its capability of allowing 282 

different spatial smoothness of SVCs. GWR studies usually assume the same degree of 283 

spatial smoothness for each coefficient, which is unlikely in many real-world situations. 284 

Moreover, our approach estimates coefficients based on a global estimation, whereas 285 

GWR iterates with local estimations. The global estimation that considers all observations 286 

might be more robust than local estimations that consider nearby observations only. 287 

Indeed, the efficiency of local estimations depends on the rank sufficiency and 288 



24 
 

collinearity of the (geographically weighted) explanatory variables around each site. Our 289 

global estimation is not compromised by such problems.  290 

By contrast, GWR is simpler and easier to extend for non-Gaussian data 291 

modeling, spatial interpolation, and other purposes (Fotheringham et al., 2002; Nakaya et 292 

al., 2005). Besides, GWR is applicable to a large data set, and can be made faster with 293 

parallel computing (Harris et al., 2010), whereas our model is not parallelizable because 294 

it requires an eigen-decomposition. Furthermore, GWR approaches are easily 295 

implemented (e.g., using the Spatial Statistics Toolbox in ArcGIS (http://www.esri.com/), 296 

or spgwr (Bevand et al., 2006), gwrr (Wheeler, 2013), and GWmodel (Gollini et al., 2015) 297 

in the R packages). Our model needs to be extended to overcome these disadvantages. 298 

 299 

5.3. A comparison with the B-SVC models 300 

5.3.1. Model  301 

The B-SVC model is formulated as follows: 302 

 ,   , (26) 303 
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 ,        , (27) 304 

where δ2
k and τ2

k are variance parameters. Here, C is assumed to be known. B-SVC 305 

describes both SVCs with [a constant term: βk1] + [a centered Gaussian process, Mek], 306 

and residuals with another Gaussian process. 307 

 As described in Appendix 1, Mek ~ N(0N, δk
2MCM+τ2

kM) can be expanded as 308 

follows, after reducing eigen-functions corresponding to 7: 309 

 ,    ,    . (28) 310 

Eqs. (27) and (28) indicate that = βk1 + Eγk + εk (after a rank reduction), whereas our 311 

model yields =βk1 + Eγk (see Eq. (16)). , which does not include εk, captures a smoother 312 

map pattern than . The difference between  and  arises because our model is based on 313 

the MC, which does not consider variances within each sample, whereas the B-SVC 314 

model describes Gaussian processes, which capture within sample variance with δk
2 and 315 

τk
2.  316 

Let us assume that x1 is a constant. Then, our model, Eq. (16), can be expanded 317 

                                                   
7 Here, MM'= M is used. It holds because M is a symmetric and idempotent matrix. 
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using Eqs. (27) and (28), as follows: 318 

 ,       .  319 

 ,    .  320 

 ,       , (29) 321 

Thus, our model is a variant of the B-SVC model whose  is replaced with , and the 322 

Gaussian process, e1, with a centered Gaussian process, Me1. 323 

An important distinction between these two models is that ours approximates 324 

SVCs with a linear equation, Eγk, whereas the B-SVC model usually does not. The linear 325 

specification allows us to apply the computationally efficient REML estimation (see 326 

section 5.3.2). 327 

 328 

5.3.2. Estimation method 329 

While our model is estimated by the REML method, the B-SVC model must be 330 

estimated with MCMC. Because MCMC is robust, even if a sample size is small, the B-331 

SVC model is preferable for small-to-medium size samples. However, MCMC is 332 
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computationally expensive, particularly when different degrees of spatial smoothness are 333 

allowed for each coefficient (Finley, 2011). Therefore, our model is more suitable for 334 

medium-to-large size samples. Because our method does not require iterative sampling, 335 

unlike MCMC, it is preferable to B-SVC in terms of simplicity, too. 336 

 337 

6. Results from a Monte Carlo simulation experiment 338 

 This section summarizes a Monte Carlo simulation experiment comparing our 339 

model with GWRs and the ESF-based model in terms of SVCs estimation accuracy and 340 

computational efficiency. 341 

 342 

6.1. Outline 343 

This section compares the conventional GWR, LCR-GWR, and ESF-based SVC 344 

models with M and MX, respectively (ESF and ESFX), to our RE-ESF-based models with 345 

M and MX (RE-ESF and RE-ESFX), respectively. We also compare the following 346 

approximations of RE-ESF with M: the RE-ESF that estimates σ2
k(γ)s first and αks 347 
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thereafter (RE-ESF (A1)), and the RE-ESF whose αks are assumed to be uniform (RE-348 

ESF (A2)). 349 

The exponential model, Eq. (3), is used to evaluate the geographical weights in 350 

the GWR and LCR-GWR. Regarding RE-ESF, a similar exponential model, Eq.(30), is 351 

used to evaluate the (i, j)-th element of the proximity matrix C, ci: 352 

 
.
 (30) 353 

Following Dray et al. (2006), the range parameter r is given by the maximum distance in 354 

the minimum spanning tree connecting all sample sites. E in RE-ESF consists of the 355 

eigenvectors corresponding to positive eigenvalues. The same eigenvectors are regarded 356 

as candidates to be entered into the ESF model, and they are selected by the adjusted-R2 357 

based forward variable selection technique. This distance-based ESF often is called 358 

Moran’s eigenvector maps, a popular approach in ecology (see, Dray et al., 2006; Griffith 359 

and Peres-Neto, 2006; Legendre and Legendre, 2012). Regarding ESF, to cope with 360 

multicollinearity, variables with variance inflation factors (VIFs) above 10 are excluded 361 

from the candidates in each variable selection step. As for LCR-GWR, following Gollini 362 
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et al. (2015), the ridge term is introduced only for local models whose condition number 363 

exceeds 30. 364 

We generate data using Eq.(31): 365 

 ,
    

, (31) 366 

,         , 367 

,      , 368 

,     . 369 

x1, whose coefficients take –2 on average, accounts for more of the variation in y, whereas 370 

x2, whose coefficients take 0.5 on average, accounts for less variation.  371 

The covariates in Eq. (31) are generated from Eq. (32): 372 

 ,  (32) 373 

,      , 374 

Eq. (32) assumes that xk equals [the centered disturbance, Mek(ns)] + [the centered spatially 375 

dependent component, Eγ0 (=MEγ0)], whose contribution ratios are 1ws and ws, 376 

respectively. xk has strong spatial dependence when ws is near 1. Some studies (e.g., 377 
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Hughes and Haran, 2013) reveal that coefficient estimates tend to be unstable when 378 

explanatory variables are spatially dependent. This is because spatially dependent 379 

explanatory variables can confound with spatially dependent errors. However, no study 380 

has examined the extent to which such spatial confounding influences the spatially 381 

varying coefficient estimates. We examine it by varying the intensity of spatial 382 

dependence in xk with ws. 383 

Table 1 summarizes DGPs employed in SVC-related simulation studies. This 384 

table shows that multicollinearity has been considered. By contrast, spatial confounding 385 

has never been analyzed in the context of SVC estimation as far as the authors know. 386 

Because we do not know how to control the degrees of multicollinearity and spatial 387 

confounding simultaneously, this simulation focuses on only the latter. 388 

 389 

[Table 1 around here] 390 

 391 

 The response variable and covariates are generated on N sample sites whose two 392 
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geocoded coordinates are given by two random samples from N(0, I)8. Then, SVC models 393 

are fitted to these variables, and β0, β1 and β2 are estimated iteratively while varying the 394 

sample size N {50, 150, 400}, the ratio of the spatial dependence component in xk, ws{0.0, 395 

0.4, 0.8}, and the spatial smoothness of the coefficients: β1 and β2; (α1, α2) ={(0.5, 1.0), 396 

(1.0, 1.0), (2.0, 1.0)}. In each case, estimations are iterated 200 times. 397 

In addition to the RE-ESF-based data generating process (DGP), which can be 398 

too optimistic for our model, a spatial moving average (SMA)-based DGP is also tested. 399 

The latter generates data from the SVC model, Eq.(31), whose spatially varying 400 

components, Eγk, are replaced with the SMA process, , where ε0 ~ N(0, I) and  is a matrix 401 

that row-standardizes I + C(rk). Estimations are iterated 200 times while varying N {50, 402 

150, 400}, ws{0.0, 0.4, 0.8} and (r1, r2) ={(0.5, 1.0), (1.0, 1.0), (2.0, 1.0)}. Unlike RE-403 

ESF, which describes a reduced rank spatial process, SMA describes a spatial process 404 

without approximation; the SMA-based simulation is needed to examine the coefficient 405 

                                                   
8 An assumption of N(0, I) implies fewer samples near periphery areas. It is likely for 
many socioeconomic data including land price data, which typically have fewer samples 
in suburban areas. 
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estimation accuracy for a non-approximated spatial process. Although we do not discuss 406 

it, simulation with GWR-based DGP would be an interesting future topic. 407 

These simulations are performed using R version 3.1.1 (https://cran.r-408 

project.org/) on a 64 bit PC whose memory is 48 GB. 409 

 410 

6.2. Results 411 

The estimation accuracy is evaluated by the root mean squared error (RMSE), 412 

 , (33) 413 

where βk,i is the i-th element of the true βk, and  is the estimate. Tables 2 and 3 summarize 414 

the RMSEs in cases of RE-ESF-based DGP and SMA-based DGP, respectively.  415 

 416 

[Table 2 around here] 417 

[Table 3 around here] 418 

 419 

When SMA is used for data generation, the estimates of RE-ESF models are 420 
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more accurate than those of GWR and LCR-GWR for a medium-to-large sample size (N 421 

= 150 or 400). This tendency is significant if the explanatory variables are spatially 422 

dependent (i.e., ws is large). By contrast, when N = 50, although the RE-ESF is still better 423 

than GWR specifications, their gaps are relatively small because RE-ESF relies on an 424 

REML estimation, which is less efficient for small samples. On the other hand, if RE-425 

ESF is used for data generation, the estimates of RE-ESF models are more accurate than 426 

GWR and LCR-GWR across cases. 427 

 Even though use of MX is recommended in Hughes and Haran (2013) and 428 

Johnson et al. (2013), among others, ESFX and RE-ESFX are worse than ESF and RE-ESF, 429 

respectively. This is because SVCs estimated by ESFX and RE-ESFX are always 430 

uncorrelated with (centered) X even if true SVCs are strongly correlated with X. The 431 

result clearly suggests that using models with MX is not appropriate for SVC estimation. 432 

Tables 2 and 3 also show the large RMSEs of the ESF coefficients. This may be 433 

because ESF does not consider eigenvalues, which act as deflators for coefficients on 434 

eigenvectors corresponding to small (in absolute value) eigenvalues in our model. 435 
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Among RE-ESF models with M, which indicate small RMSEs, the RE-ESF without an 436 

approximation and RE-ESF(A1) outperform the opponents in many cases. RE-ESF (A1) 437 

would be a good alternative. 438 

β2 conveys relatively minor effects.  tends to be small in RE-ESF (A2), which 439 

assumes constant αks, rather than RE-ESF and RE-ESF (A1), which assume non-constant 440 

αks, especially when SMA-based DGP is assumed. In other words, the estimation of the 441 

coefficient smoothness parameters (αks) can fail to capture the spatial variation of the 442 

SVCs, accounting for a small portion of variations in y. Nevertheless, the gaps in their 443 

RMSEs are marginal, and their RMSEs are smaller than those of the GWR and LCR-444 

GWR. 445 

β1 describes relatively strong impacts. The  of RE-ESF and RE-ESF (A1) are 446 

smaller than those of RE-ESF (A2). This tendency is substantial when the covariates have 447 

strong spatial dependence (i.e., ws is large). This result suggests that non-uniform 448 

smoothness parameters, αks, in RE-ESF and RE-ESF (A1) play an important role in 449 

appropriately capturing SVCs, accounting for a large portion of variations in y. 450 
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In each model, RMSE increases in the presence of strong spatial dependence in 451 

the covariates, which can confound with spatial dependence in residuals. This result 452 

reveals the importance of considering the confounding factor typically ignored in SVC-453 

related studies. Increases in the RMSEs are relatively small in RE-ESF and RE-ESF (A1), 454 

including the coefficient smoothness parameter, αk, which thus might be helpful in 455 

mitigating this problem. 456 

We then compare mean bias, which is defined as follows: 457 

 . (34) 458 

Table 4 summarizes mean bias estimated in cases with RE-ESF-based DGP and e1=2. In 459 

each model, mean biases of β2 and β3 are small relative to their true mean values (-2 and 460 

0.5). It is verified that estimators of these SVC models are nearly unbiased. While it is 461 

suggested that use of MX reduces bias in regression coefficients, such a reduction is not 462 

conceivable in our result probably because the bias is sufficiently small even if M is used. 463 

 464 

[Table 4 around here] 465 
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 466 

 Finally, Table 5 summarizes average computational times. RE-ESF (A2), RE-467 

ESF (A1), and RE-ESF are the first, second and third fastest, respectively. The 468 

computational efficiency of RE-ESF does not hold when either the sample size, N, or the 469 

number of SVCs, K, is large because RE-ESF requires optimizing the 2K parameters 470 

simultaneously. Base on Table 5, RE-ESF is slower than GWR if N 5000. Still, RE-ESF 471 

(A1), whose coefficient estimates are as accurate as those for RE-ESF, is faster than GWR. 472 

Use of RE-ESF (A1), which allows spatial variation only for several focused coefficients, 473 

is a sensible option to reduce computational cost. Note that although ESF involves the 474 

computing slowest because of the eigenvector selection step, this step can be replaced 475 

with computationally more efficient approaches, such as lasso estimation (Seya et al., 476 

2015). 477 

 478 

[Table 5 around here] 479 

 480 
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7. An application to a land price analysis 481 

 This section empirically compares SVC models. Results show that ESF-based 482 

and RE-ESF-based SVC models are robust to multicollinearity, and they furnish 483 

reasonable SVC estimates for actual data. 484 

 485 

7.1. Outline 486 

This section presents an application of GWR, LCR-GWR, the ESF-based SVC 487 

model, and the RE-ESF-based SVC model to analyze land price and flood hazard in 488 

Ibaraki prefecture, Japan. The western part of Ibaraki was seriously damaged by a river 489 

flood in September 2015 (see Figure 1). By December 21, 2015, 54 residences were 490 

totally destroyed, 3,752 suffered large-scale partial destruction, and 208 were partially 491 

destroyed, while about 10,390 people were in shelters at the peak of the disaster. 492 

 493 

[Figure 1 around here] 494 

 495 
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Our goal here is to assess whether high hazard areas were appropriately 496 

recognized as less attractive areas before the flood. To examine this concern, we analyze 497 

the relationship between flood hazards and land prices. Specifically, logged officially 498 

assessed land prices in 2015 (sample size: 647; see Figure 1 and Table 6) are described 499 

using the aforementioned SVC models. The response variables are flood depth (Flood), 500 

distance to the nearest railway station in km (Station_D), and railway distance between 501 

the nearest station and Tokyo station (Tokyo_D), which is located about 30 km from the 502 

southwestern border of Ibaraki. All of these variables measures are available from the 503 

National Land Numerical Information download service provided by the Ministry of 504 

Land, Infrastructure, Transport and Tourism (http://nlftp.mlit.go.jp/ksj-e/index.html). The 505 

VIFs of these variables for an OLS model with all covariates included are 1.09, 1.02 and 506 

1.07, respectively. Thus, serious multicollinearity is not present among them. Since the 507 

main objective of this analysis is to compare the SVC models, including GWR approaches, 508 

which loses degrees of freedom drastically as the number of explanatory variables 509 

increases (Griffith, 2008), we restricted the number of explanatory variables to three. 510 
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 511 

[Table 6 around here] 512 

 513 

This empirical analysis is performed by employing R version 3.1.1 for 514 

computation purposes, and ArcGIS version 10.3 (http://www.esri.com/) for visualization. 515 

R and ArcGIS were executed on a 64 bit PC whose memory is 48 GB. The ‘GWmodel’ 516 

package in R was used to estimate GWR and LCR-GWR parameters. 517 

 518 

7.2. Results 519 

Hereafter, the vector of the spatially varying intercepts is denoted by β0 and those 520 

of the spatially varying coefficients for Tokyo_D, Station_D, and Flood are denoted by 521 

βTk, βSt, and βFl, respectively. 522 

Table 7 summarizes the variance parameters (σ2
k (γ) and αk) estimated by RE-ESF. 523 

σ2
k (γ) = 0 regarding βTk shows that the impact of Tokyo_D is constant across the target 524 



40 
 

area.9 The positive σ2
k(γ) values for β0, βSt, and βFl suggest that each has spatial variation. 525 

 526 

[Table 7 around here] 527 

 528 

The spatial smoothness (or scale) of βFl is strongly intensified by a large αk value. 529 

In contrast, the spatial smoothness of βSt, whose αk equals zero, is not intensified. 530 

Although the bandwidths estimated by GWR and LCR-GWR (1.53 km and 2.77 km, 531 

respectively) suggest the existence of local spatial variations in each coefficient; based on 532 

the αk values, bandwidths might actually differ across coefficients. More specifically, the 533 

bandwidths of βSt, βFl, and βTk are likely to be small, moderate and very large, 10 534 

respectively. 535 

Figure 2 displays the boxplots of the estimated coefficients. While the boxplots 536 

of βSt are similar across the models, the variance of βFl is inflated in GWR, and those of 537 

β0 and βTk are highly inflated in GWR and LCR-GWR. For example, while logged land 538 

                                                   
9 The variance becomes zero even when we apply RE-ESF (A1). 
10 The coefficients of GWR are constant when the bandwidth is extremely large. 
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prices take values between 8.57 and 12.58, β0 estimated by GWR ranges between –5.76 539 

and 26.15. 540 

 541 

[Figure 2 around here] 542 

 543 

The variance inflation might be because GWR and LCR-GWR rely on local 544 

estimations. Because Tokyo_D has a global map pattern, its variations tend to be small in 545 

each local subsample. As a result, GWR might fail to differentiate influences from 546 

Tokyo_D, with small variations, and intercepts with no variation. Wheeler (2010) also 547 

reports a similar problem. Although Fotheringham and Oshan (2016) report the 548 

robustness of GWR to multicollinearity, it might not be true when explanatory variables 549 

have global map patterns. Because ESF and RE-ESF consider all samples in their 550 

estimation, their coefficients are more stable, even if some of the covariates have global 551 

patterns. Interestingly, the boxplots of the ESF coefficients are similar to those of the RE-552 

ESF coefficients. 553 
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Although the variance of βFl in GWR also is inflated, it is moderated for LCR-554 

GWR. Effectiveness of the regularized GWR approach is verified. ESF and RE-ESF also 555 

provide stable coefficient estimates. 556 

Table 8 summarizes correlation coefficients among SVCs. β0 and βTk have strong 557 

negative correlations for the GWR and LCR-GWR. The greater variations of β0 and βTk, 558 

portrayed in Figure 2, are attributable to their multicollinearity. By contrast, correlation 559 

coefficients for the ESF and RE-ESF models are reasonably small, and no serious 560 

multicollinearity was found. The result is consistent with a suggestion by Griffith (2008) 561 

that the ESF-based specification is robust to multicollinearity. 562 

 563 

[Table 8 around here] 564 

 565 

Figure 3 plots the estimated coefficients. In each model, the estimated β0 566 

demonstrates greater land prices in the nearby Tokyo area and around Mito city, which is 567 

the prefectural capital. The spatial distributions of βSt suggest that land prices decline 568 
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rapidly as distance to the nearest station increases in nearby station areas, whereas this 569 

reduction is moderated in suburban areas. The estimated β0 and βSt are similar across 570 

models. 571 

 572 

[Figure 3 around here] 573 

 574 

Consistent with the expected negative sign of βTk, 643/648 of its elements for 575 

ESF, and all of its elements for RE-ESF are negative. In contrast, 465/648 and 10/648 576 

elements are positive in the GWR and LCR-GWR, respectively, probably because of the 577 

variance inflation previously discussed. Another notable difference is that RE-ESF βTk 578 

estimates have no spatial variation (i.e., σ2
k (γ) = 0), whereas the other βTk estimates that 579 

have significant spatial variation. 580 

The elements of βFl are negative if flood-prone areas have lower land prices. βFl 581 

obtained from RE-ESF displays a smoother map pattern than for the other models because 582 

of the large αk value (3.02). The βFl for RE-ESF is negative around Mito, where high 583 
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hazard areas are appropriately recognized as less attractive. In contrast, βFl is positive in 584 

the western area, including the area flooded in September 2015. In other words, high 585 

hazard areas are recognized as attractive areas. This result implies that benefits of rivers 586 

(e.g., natural environment, landscape) are emphasized more than flood hazard. This 587 

situation may have increased the resulting damage from the 2015 flood. In contrast, the 588 

βFl estimated by the other models takes both positive and negative values in the flooded 589 

area. 590 

Finally, Table 9 summarizes the computational times. For reference, the 591 

computational time of RE-ESF (A1) also is calculated and included. This table shows that 592 

RE-ESF is computationally more efficient than LCR-GWR and ESF in the case of N = 593 

647 and three covariates. Furthermore, computation of estimates for RE-ESF (A1) is more 594 

than three times faster than for GWR in this case. Of note is that GWR calculations are 595 

faster than RE-ESF(A1) if sample size is large. This timing difference is because of the 596 

requirement of an eigen-decomposition. 597 

 598 
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[Table 9 around here] 599 

 600 

In summary, we empirically verified that each SVC model can provide different 601 

results, and that the estimates of RE-ESF seem reliable (i.e., interpretable and displaying 602 

smaller variance). 603 

 604 

8. Concluding remarks 605 

This study proposes an RE-ESF-based SVC model whose coefficients are 606 

interpretable based on the MC. A simulation analysis and an empirical analysis involving 607 

land prices suggest advantages of our model in terms of estimation accuracy, 608 

computational time, and interpretability of coefficient estimates. 609 

Unlike GWR models and the typical B-SVC model, RE-ESF estimates the 610 

smoothness of each SVC in a computationally efficient manner. Although coefficient 611 

smoothness parameters also can be introduced into the B-SVC model, their estimation is 612 

computationally prohibitive. Thus, our approach is useful as a flexible and relatively 613 
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simple procedure. Meanwhile, computationally efficient and flexible alternatives, 614 

including the integrated nested Laplace approximation (INLA: Rue et al., 2009)-based 615 

SVC model (Congdon, 2014), have been proposed recently. Therefore, the comparison of 616 

our model with these is therefore an important future research topic. 617 

Another remaining issue is to compare our model with other SVC models from 618 

the viewpoint of statistical inference for the βks. We also need to examine the validity of 619 

our model in cases with many covariates for which multicollinearity among SVCs can be 620 

serious. Furthermore, extension of our model to a wide range of applications would be an 621 

interesting next step. These extensions might include change of support problems (e.g., 622 

Murakami and Tsutsumi, 2012; 2015), interaction data modeling (Chun and Griffith, 623 

2011), non-Gaussian data modeling (Fotheringham et al., 2002; Nakaya et al., 2005; 624 

Griffith, 2011), multilevel modeling (e.g., Dong et al., 2016), spatiotemporal data 625 

modeling (Fotheringham et al., 2015; Huang et al., 2010; Griffith, 2012). 626 
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Appendix 1: Relationship between the RE-ESF model and the geostatistical model. 633 

The standard Gaussian process model is formulated as follows: 634 

 ,      , (A1) 635 

where X-1 is a (K-1) × N matrix of explanatory variables without intercept term (i.e., X = 636 

[1, X-1]), β-1 is a (K-1) × 1 vector of regression coefficients, and β0 is a parameter. e can 637 

be expanded as follows: 638 

 639 

 ,      , (A2) 640 

where  is the mean of e. Murakami and Griffith (2015) reveals the following 641 

relationship: 642 

 , (A3) 643 

where I(λl≠0) is a N × N diagonal matrix whose l-th entry is 1 if λl ≠ 0, and 0 otherwise. 644 

Eq.(A3) becomes E(δ2Λ+τ2IL)E' = δ2EΛE' + τ2I after reducing eigen-functions 645 

corresponding to . Thus, Me with the rank reduction, Mered, behaves as 646 

 , (A4) 647 
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which equals 648 

 ,   ,   . (A5) 649 

By substituting Eq.(A5) into Me in Eq.(A2), Eq.(A1) yields 650 

 ,  651 

 , (A6) 652 

where β = [β0 +, β-1']'. Thus, our model, which is identical with Eq.(A6), is a low rank 653 

approximation of Eq.(A1). Similar discussion holds even if MX is used (see, Murakami 654 

and Griffith, 2015).  655 



50 
 

References 656 

1) Anselin L (1988) Spatial Econometrics, Methods and Models. Kluwer Academic, 657 

Dordrecht. 658 

2) Anselin L and Rey S (1991) Properties of tests for spatial dependence in linear 659 

regression models. Geographical Analysis 23(2): 112–131. 660 

3) Assunçao, R. M. (2003). Space varying coefficient models for small area data. 661 

Environmetrics, 14(5), 453-473. 662 

4) Austin M (2007) Species distribution models and ecological theory: a critical 663 

assessment and some possible new approaches. Ecological Modeling 200(1–2): 1–664 

19. 665 

5) Bates DM (2010) lme4: Mixed-effects modeling with R. http://lme4.r-forge.r-666 

project.org/book.  667 

6) Bivand R., Yu D, Nakaya T and Garcia-Lopez M-A (2006) Package ‘spgwr’. 668 

https://cran.r-project.org/web/packages/spgwr/spgwr.pdf. 669 

7) Bitter C, Mulligan GF and Dall'erba S (2007) Incorporating spatial variation in 670 



51 
 

housing attribute prices: a comparison of geographically weighted regression and the 671 

spatial expansion method. Journal of Geographical Systems 9(1): 7–27. 672 

8) Blangiardo, M., & Cameletti, M. (2015). Spatial and spatio-temporal Bayesian 673 

models with R-INLA. John Wiley & Sons. 674 

9) Chun Y (2014) Analyzing space-time crime incidents using eigenvector spatial 675 

filtering: an application to vehicle burglary. Geographical Analysis 46(2): 165–184. 676 

10) Chun Y and Griffith DA (2011) Modeling network autocorrelation in space-time 677 

migration flow data: an eigenvector spatial filtering approach. Annals of the 678 

Association of American Geographers 101(3): 523–536. 679 

11) Chun Y and Griffith DA (2014) A quality assessment of eigenvector spatial filtering 680 

based parameter estimates for the normal probability model. Spatial Statistics, 10, 1–681 

11. 682 

12) Chun Y, Griffith DA, Lee M and Sinha P (2016) Eigenvector selection with stepwise 683 

regression techniques to construct eigenvector spatial filters. Journal of 684 

Geographical Systems. 18 (1): 67–85. 685 



52 
 

13) Congdon P (2014) Applied Bayesian modelling. Chichester, UK: John Wiley & Sons. 686 

14) Cressie N and Wikle CK (2011) Statistics for spatio-temporal data. New York: John 687 

Wiley & Sons. 688 

15) Dong G, Ma J, Harris R and Pryce G (2016) Spatial random slope multilevel 689 

modeling using multivariate conditional autoregressive models: A case study of 690 

subjective travel satisfaction in Beijing. Annals of the American Association of 691 

Geographers 106(1): 19–35. 692 

16) Dray S, Legendre P and Peres–Neto PR (2006) Spatial modelling: a comprehensive 693 

framework for principal coordinate analysis of neighbour matrices (PCNM). 694 

Ecological Modeling 196(3–4): 483–493. 695 

17) Fan J (1993) Local linear regression smoothers and their minimax efficiencies. The 696 

Annals of Statistics, 21(1): 196–216. 697 

18) Farber S and Páez A (2007) A systematic investigation of cross-validation in GWR 698 

model estimation: empirical analysis and Monte Carlo simulations. Journal of 699 

Geographical Systems, 9(4): 371–396. 700 



53 
 

19) Finley AO (2011) Comparing spatially-varying coefficients models for analysis of 701 

ecological data with non–stationary and anisotropic residual dependence. Methods in 702 

Ecology and Evolution 2(2): 143–154. 703 

20) Fotheringham AS, Brunsdon C and Charlton M (2002) Geographically weighted 704 

regression: the analysis of spatially varying relationships. Chichester, UK: John 705 

Wiley & Sons. 706 

21) Fotheringham AS, Crespo R and Yao J (2015) Geographical and Temporal Weighted 707 

Regression (GTWR). Geographical Analysis 47(4): 431–452. 708 

22) Fotheringham AS and Oshan TM (2016) Geographically weighted regression and 709 

multicollinearity: Dispelling the myth. Journal of Geographical Systems 18(4): 303–710 

329. 711 

23) Gamerman D, Moreira AR, and Rue H (2003) Space-varying regression models: 712 

specifications and simulation. Computational Statistics and Data Analysis, 42(3): 713 

513–533. 714 

24) Geary RC (1954) The contiguity ratio and statistical mapping. The incorporated 715 



54 
 

statistician 5(3): 115–146. 716 

25) Gelfand AE, Kim HJ, Sirmans CF and Banerjee S (2003) Spatial modeling with 717 

spatially varying coefficient processes. Journal of the American Statistical 718 

Association 98(462): 378–396. 719 

26) Gollini I, Lu B, Charlton M, Brunsdon C and Harris P (2015) GWmodel: an R 720 

package for exploring spatial heterogeneity using geographically weighted models. 721 

Journal of Statistical Software 63: 17. 722 

27) Gomez-Rubio V, Bivand RS and Rue H (2014) Spatial models using Laplace 723 

approximation methods. In: Fischer MM and Nijkamp P (eds). Handbook of Regional 724 

Science. Berlin, Springer. 725 

28) Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining 726 

understanding through theory and scientific visualization. Berlin: Springer. 727 

29) Griffith DA (2008) Spatial-filtering-based contributions to a critique of 728 

geographically weighted regression (GWR). Environment and Planning A 40(11): 729 

2751–2769. 730 



55 
 

30) Griffith DA (2011) Positive spatial autocorrelation impacts on attribute variable 731 

frequency distributions. Chilean Journal of Statistics 2(2): 3–28. 732 

31) Griffith DA (2012) Space, time, and space-time eigenvector filter specifications that 733 

account for autocorrelation. Estadística española 54(177): 7–34. 734 

32) Griffith DA and Chun Y (2014) Spatial autocorrelation and spatial filtering. In: 735 

Fischer MM and Nijkamp P (eds) Handbook of Regional Science. Berlin: Springer, 736 

pp.1435–1459. 737 

33) Griffith DA and Chun Y (2016) Evaluating eigenvector spatial filter corrections for 738 

omitted georeferenced variables. Econometrics, 4(2), 29. 739 

34) Griffith DA and Paelinck JHP (2011) Non–standard spatial statistics and spatial 740 

econometrics. Berlin: Springer. 741 

35) Griffith DA and Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of 742 

eigenfunction spatial analyses in exploiting relative location information. Ecology 743 

87(10): 2603–2613. 744 

36) Harris R, Singleton A, Grose D, Brunsdon C and Longley P (2010) Grid-enabling 745 



56 
 

geographically weighted regression: A case study of participation in higher education 746 

in England. Transactions in GIS. 14 (1): 43–61. 747 

37) Helbich, M and Griffith DA (2016) Spatially varying coefficient models in real estate: 748 

Eigenvector spatial filtering and alternative approaches. Computers, Environment 749 

and Urban Systems, 57, 1–11. 750 

38) Hu M, Li Z, Wang J, Jia L, Lian Y et al. (2012) Determinants of the incidence of 751 

hand, foot and mouth disease in China using geographically weighted regression 752 

models. Plos One 7(6): e38978. 753 

39) Huang B, Wu B and Barry M (2010) Geographically and temporally weighted 754 

regression for modeling spatio–temporal variation in house prices. International 755 

Journal of Geographical Information Science 24(3): 383–401. 756 

40) Hughes J and Haran M (2013) Dimension reduction and alleviation of confounding 757 

for spatial generalized linear mixed models. Journal of the Royal Statistical Society: 758 

Series B (Statistical Methodology) 75(1): 139–159. 759 

41) Johnson DS, Conn PB, Hooten MB, Ray JC and Pond BA (2013) Spatial occupancy 760 



57 
 

models for large data sets. Ecology. 94 (4): 801–808. 761 

42) Lee D and Sarran C (2015) Controlling for unmeasured confounding and spatial 762 

misalignment in long-term air pollution and health studies. Environmetrics. 26 (7): 763 

477–487. 764 

43) Legendre P and Legendre L (2012) Numerical Ecology (Third Edition). Amsterdam: 765 

Elsevier. 766 

44) Lu B, Harris P, Charlton M and Brunsdon C (2015) Calibrating a geographically 767 

weighted regression model with parameter-specific distance metrics. Procedia 768 

Environmental Sciences, 26, 109–114. 769 

45) Margaretic P, Thomas–Agnan C, Doucet R and Villotta Q (2015) Spatial dependence 770 

in (origin–destination) air passenger flows. Papers in Regional Science. DOI: 771 

10.1111/pirs.12189. 772 

46) Murakami D and Griffith DA (2015) Random effects specifications in eigenvector 773 

spatial filtering: a simulation study. Journal of Geographical Systems 17(4): 311–331. 774 

47) Murakami D and Tsutsumi M (2012) Practical spatial statistics for areal interpolation. 775 



58 
 

Environment and Planning B: Planning and Design, 39(6): 1016–1033. 776 

48) Murakami D and Tsutsumi M (2015) Area-to-point parameter estimation with 777 

geographically weighted regression. Journal of Geographical Systems 17(3): 207–778 

225. 779 

49) Nakaya T, Fotheringham AS, Charlton M and Brunsdon C (2005) Geographically 780 

weighted Poisson regression for disease associative mapping. Statistics in Medicine 781 

24(17): 2695–2717. 782 

50) Páez A, Farber S and Wheeler DC (2011) A simulation–based study of geographically 783 

weighted regression as a method for investigating spatially varying relationships. 784 

Environment and Planning A 43(12): 2992–3010. 785 

51) Rue H, Martino S and Chopin N (2009) Approximate Bayesian inference for latent 786 

Gaussian models by using integrated nested Laplace approximations. Journal of the 787 

royal statistical society: Series b (statistical methodology), 71(2): 319–392. 788 

52) Stone CJ (1980) Optimal rates of convergence for nonparametric estimators. The 789 

Annals of Statistics, 8(6): 1348–1360. 790 



59 
 

53) Seya H, Murakami D, Tsutsumi M and Yamagata Y (2015) Application of LASSO to 791 

the eigenvector selection problem in eigenvector based spatial filtering. 792 

Geographical Analysis 47(3): 284–299. 793 

54) Tiefelsdorf M and Griffith DA (2007) Semiparametric filtering of spatial 794 

autocorrelation: the eigenvector approach. Environment and Planning A 39(5): 1193. 795 

55) Wang Q, Ni J and Tenhunen J (2005) Application of a geographically-weighted 796 

regression analysis to estimate net primary production of Chinese forest ecosystems. 797 

Global Ecology and Biogeography 14(4): 379–393. 798 

56) Wheeler DC (2007) Diagnostic tools and a remedial method for collinearity in 799 

geographically weighted regression. Environment and Planning A 39(10): 2464–800 

2481. 801 

57) Wheeler DC (2009) Simultaneous coefficient penalization and model selection in 802 

geographically weighted regression: the geographically weighted lasso. Environment 803 

and Planning A 41(3): 722–742.  804 

58) Wheeler DC (2010) Visualizing and diagnosing coefficients from geographically 805 



60 
 

weighted regression. In: Jiang B and Yao X (eds) Geospatial Analysis and Modeling 806 

of Urban Structure and Dynamics, Springer. 807 

59) Wheeler DC and Calder CA (2007) An assessment of coefficient accuracy in linear 808 

regression models with spatially varying coefficients. Journal of Geographical 809 

Systems 9(2): 145–166. 810 

60) Wheeler DC and Páez A (2009). Geographically Weighted Regression. In: Fischer 811 

MM and Getis A (eds) Handbook of Applied Spatial Analysis: Software Tools, 812 

Methods and Applications. Berlin: Springer, pp.461–484. 813 

61) Wheeler DC and Tiefelsdorf M (2005) Multicollinearity and correlation among local 814 

regression coefficients in geographically weighted regression. Journal of 815 

Geographical Systems 7(2): 161–187. 816 

62) Wheeler DC and Waller L (2009) Comparing spatially varying coefficient models: a 817 

case study examining violent crime rates and their relationships to alcohol outlets and 818 

illegal drug arrests. Journal of Geographical Systems 11(1): 1–22. 819 

63) Wheeler DC (2013) Package ‘gwrr’. https://cran.r-820 



61 
 

project.org/web/packages/gwrr/gwrr.pdf. 821 

64) Yang W, Fotheringham AS and Harris P (2014) An extension of geographically 822 

weighted regression with flexible bandwidths. Proceedings of GISRUK 20th Annual 823 

Conference.824 



62 
 

Table 1. Summary of SVC-related simulation studies 

Study 
Model for SVC 

generation 

Spatial 
dependence  

in X 

Multi- 
collinearity  

in X 
Model 

Farber and Paez (2007) Trend surface 

 

 GWR 

Wheeler and Calder 
(2007) 

Gaussian process and 
trend surface 

× 
GWR and B-SVC 

Finley et al. (2009) Gaussian process  

Paez et al. (2010) Spatial eigenvector (el) 
× GWR Fotheringham and 

Oshan (2016) SMA with white noise 

Our study RE-ESF (Eγ) and SMA ×  GWR, ESF, and 
RE-ESF 
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Table 2. RMSEs of the estimated coefficients (DGP: RE-ESF) 

N Coef. r1 ws GWR LCR- 
GWR ESF RE-ESF RE-ESF 

(A1) 
RE-ESF 

(A2) ESFX RE-ESFX 

50 

β1 

0.5 
0.0 1.70  1.69  1.43  1.16  1.15  1.58  1.62  1.41  
0.4 1.99  1.97  2.01  1.51  1.52  2.11  2.28  1.90  
0.8 2.46  2.32  2.70  1.77  1.76  2.47  2.87  2.35  

2.0 
0.0 1.33  1.34  1.31  0.89  0.90  1.53  1.51  1.11  
0.4 1.62  1.63  1.82  1.19  1.20  1.87  2.09  1.64  
0.8 2.26  2.18  2.62  1.65  1.66  2.36  3.03  2.36  

β2 

0.5 
0.0 1.15  1.11  1.34  0.94  0.92  0.91  1.37  0.94  
0.4 1.30  1.28  1.91  1.14  1.13  1.10  1.98  1.22  
0.8 2.00  1.86  2.46  1.29  1.32  1.34  2.42  1.54  

2.0 
0.0 0.97  0.94  1.24  0.82  0.81  0.81  1.29  0.87  
0.4 1.34  1.32  1.88  1.09  1.07  1.06  1.92  1.18  
0.8 1.74  1.62  2.31  1.28  1.28  1.23  2.32  1.51  

150 

β1 

0.5 
0.0 1.36  1.37  1.08  0.86  0.87  1.33  1.15  0.97  
0.4 1.64  1.63  1.55  1.17  1.18  1.72  1.74  1.41  
0.8 2.10  2.07  2.38  1.45  1.45  2.21  2.55  1.86  

2.0 
0.0 1.02  1.02  0.91  0.62  0.61  0.86  1.01  0.71  
0.4 1.25  1.25  1.42  0.90  0.89  1.19  1.55  1.11  
0.8 1.56  1.55  2.13  1.08  1.08  1.41  2.37  1.58  

β2 

0.5 
0.0 0.91  0.87  1.02  0.61  0.61  0.65  1.03  0.65  
0.4 1.11  1.08  1.42  0.82  0.81  0.82  1.49  0.89  
0.8 1.65  1.58  2.12  1.00  0.99  1.08  2.13  1.13  

2.0 
0.0 0.78  0.77  0.96  0.63  0.63  0.62  1.00  0.65  
0.4 0.96  0.95  1.39  0.79  0.79  0.76  1.43  0.83  
0.8 1.30  1.27  2.03  0.93  0.93  0.94  2.00  1.10  

400 

β1 

0.5 
0.0 1.22  1.22  0.85  0.72  0.72  1.20  0.88  0.76  
0.4 1.47  1.46  1.27  1.00  1.00  1.55  1.38  1.13  
0.8 1.85  1.79  1.94  1.20  1.20  1.75  2.10  1.48  

2.0 
0.0 0.80  0.79  0.77  0.48  0.48  0.54  0.81  0.53  
0.4 0.98  0.97  1.16  0.65  0.65  0.76  1.23  0.79  
0.8 1.23  1.21  1.71  0.78  0.78  0.92  1.87  1.11  

β2 

0.5 
0.0 0.83  0.79  0.81  0.51  0.51  0.54  0.82  0.52  
0.4 0.99  0.97  1.16  0.65  0.65  0.68  1.18  0.69  
0.8 1.46  1.35  1.73  0.77  0.77  0.82  1.79  0.88  

2.0 
0.0 0.64  0.63  0.78  0.48  0.48  0.48  0.80  0.49  
0.4 0.79  0.79  1.15  0.63  0.63  0.62  1.16  0.66  
0.8 1.03  1.00  1.64  0.73  0.73  0.71  1.72  0.81  

Note: ws intensifies the spatial dependence in X; r1 determines the spatial scale of β1. Dark gray 
denotes the minimum RMSE in each case, and light gray denotes the second minimum RMSE.  
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Table 3. RMSEs of the estimated coefficients (DGP: SMA) 

N Coef. r1 ws GWR LCR- 
GWR ESF RE-ESF RE-ESF 

(A1) 
RE-ESF 

(A2) ESFX RE-ESFX 

50 

β1 

0.5 
0.0 2.32  2.32  2.65  2.23  2.25  2.58  2.73  2.37  
0.4 2.45  2.45  3.12  2.40  2.40  2.70  3.20  2.74  
0.8 2.83  2.78  4.06  2.63  2.64  3.05  3.83  2.96  

2.0 
0.0 2.43  2.44  2.87  2.44  2.46  2.66  2.84  2.48  
0.4 2.56  2.56  3.35  2.59  2.60  2.80  3.34  2.77  
0.8 2.71  2.68  4.07  2.68  2.71  2.96  3.91  3.11  

β2 

0.5 
0.0 1.13  1.12  1.92  1.11  1.14  1.12  1.80  1.12  
0.4 1.25  1.24  2.49  1.23  1.26  1.18  2.25  1.32  
0.8 1.57  1.53  3.42  1.48  1.52  1.42  3.00  1.56  

2.0 
0.0 1.09  1.09  1.94  1.12  1.14  1.12  1.84  1.14  
0.4 1.22  1.22  2.58  1.26  1.29  1.18  2.64  1.36  
0.8 1.40  1.36  3.35  1.37  1.39  1.30  2.66  1.42  

150 

β1 

0.5 
0.0 1.87  1.87  2.00  1.77  1.78  1.99  1.98  1.75  
0.4 2.04  2.04  2.40  1.92  1.93  2.23  2.62  2.15  
0.8 2.44  2.41  3.63  2.11  2.13  2.75  3.69  2.69  

2.0 
0.0 1.75  1.76  2.05  1.75  1.76  1.91  2.08  1.82  
0.4 1.85  1.85  2.28  1.81  1.81  2.03  2.54  2.06  
0.8 2.15  2.15  3.33  1.98  2.00  2.51  3.49  2.75  

β2 

0.5 
0.0 0.88  0.87  1.33  0.80  0.81  0.78  1.35  0.82  
0.4 1.05  1.04  1.84  0.95  0.96  0.91  1.90  1.03  
0.8 1.49  1.44  3.24  1.20  1.23  1.24  3.07  1.51  

2.0 
0.0 0.81  0.81  1.29  0.80  0.80  0.79  1.34  0.79  
0.4 0.94  0.93  1.70  0.93  0.93  0.88  1.84  1.05  
0.8 1.27  1.27  2.86  1.10  1.12  1.16  2.55  1.34  

400 

β1 

0.5 
0.0 1.44  1.45  1.53  1.36  1.36  1.55  1.54  1.39  
0.4 1.63  1.61  1.85  1.49  1.49  1.76  2.09  1.75  
0.8 2.25  2.15  3.21  1.74  1.75  2.31  3.29  2.35  

2.0 
0.0 1.23  1.24  1.40  1.20  1.19  1.25  1.44  1.21  
0.4 1.37  1.37  1.71  1.31  1.31  1.42  2.12  1.71  
0.8 1.72  1.71  2.63  1.46  1.46  1.90  3.16  2.45  

β2 

0.5 
0.0 0.75  0.74  1.01  0.58  0.59  0.59  1.06  0.62  
0.4 0.92  0.90  1.40  0.71  0.71  0.68  1.50  0.84  
0.8 1.51  1.43  2.84  0.99  0.99  1.03  2.55  1.22  

2.0 
0.0 0.61  0.61  0.93  0.55  0.56  0.55  0.96  0.57  
0.4 0.79  0.79  1.32  0.69  0.70  0.67  1.54  0.86  
0.8 1.28  1.26  2.41  0.92  0.93  0.95  2.35  1.21  

Note: See Table 2.  
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Table 4. Bias of the estimated coefficients (r1 = 2; DGP: SMA) 

N Coef. ws GWR LCR- 
GWR ESF RE-ESF RE-ESF 

(A1) 
RE-ESF 

(A2) ESFX RE-ESFX 

50 

β1 
0.0 0.03  0.06  0.02  0.04  0.04  0.02  0.06  0.05  
0.4 -0.02  0.01  0.04  0.04  0.05  0.00  0.09  0.08  
0.8 0.11  0.21  0.05  0.06  0.04  0.01  0.27  0.22  

β2 
0.0 -0.03  -0.04  0.01  0.00  0.01  -0.04  0.02  0.00  
0.4 0.04  0.03  0.07  0.05  0.05  0.04  0.09  0.09  
0.8 0.02  -0.01  0.01  -0.02  0.01  0.07  0.01  -0.07  

150 

β1 
0.0 0.01  0.04  0.00  0.00  0.00  0.00  -0.01  0.00  
0.4 -0.01  0.00  -0.02  0.00  0.01  0.03  0.01  0.02  
0.8 -0.01  0.02  -0.07  0.01  0.00  0.04  -0.02  0.04  

β2 
0.0 0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  
0.4 -0.04  -0.04  -0.05  -0.03  -0.02  -0.02  -0.05  -0.02  
0.8 0.04  0.04  0.08  0.07  0.07  0.04  0.06  0.06  

400 

β1 
0.0 -0.01  0.00  -0.02  -0.02  -0.02  -0.02  -0.03  -0.02  
0.4 -0.06  -0.05  -0.04  -0.04  -0.04  -0.04  -0.05  -0.05  
0.8 -0.06  -0.04  0.00  -0.03  -0.03  -0.04  -0.03  -0.04  

β2 
0.0 -0.01  -0.01  0.00  0.00  0.00  0.00  0.00  0.00  
0.4 0.00  -0.01  0.00  0.00  -0.01  0.00  -0.02  -0.01  
0.8 -0.05  -0.06  0.05  -0.04  -0.03  -0.05  -0.01  -0.04  

Note: ws intensifies the spatial dependence in X. Dark gray denotes the minimum bias in each 
case and light gray denotes the second minimum bias. 
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Table 5. Mean computational time in seconds (DGP: RE-ESF; r1 = 2; r2 = 1). 

N GWR LCR-GWR ESF RE-ESF RE-ESF (A1) RE-ESF (A2) 

50 0.30  0.80  0.82  0.20  0.10  0.10  
150 2.05  3.88  5.15  0.79  0.39  0.35  
400 13.18  20.40  32.39  5.04  2.49  2.12  

1,000 79.00 115.21 275.48 24.40 15.81 12.78 
2,000 326.42 495.61 2056.01 75.33 122.06 65.96 
5,000 1984.99 3465.37 56324.66 2241.90 1110.97 883.26 

Note: Because computational times were very similar across iterations, regarding cases with N = 
{1,000, 2,000, 5000}, we performed five replicates, and averaged the resulting five computational 
times. 
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Table 6. Summary statistics for land prices (100 JPY/m2). 

Statistics Value  

Mean 35.68 
Median 29.50 
Standard error 27.14 
Maximum 290.00 
Minimum 5.28 
Sample size 647 
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Table 7. Estimates of the variance parameters in RE-ESF: σ2
k (γ) controls the variance of 

each coefficient, and αk controls the spatial scale of their variations. 

 β0 βTk βSt βFl 

σ2
k (γ) 1.71 0.00 0.35 0.61 

αk 0.27 N.A.1) 0.00 3.02 

1) Because βSt lacks spatial variation (i.e., σ2
k (γ) = 0.00), αk for βSt is undefined. 
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Table 8. Correlation coefficients among SVCs. 

GWR  LCR-GWR 
 β0 βTk βSt βFl   β0 βTk βSt βFl 

β0  -0.87  -0.27  0.03   β0  -0.74  -0.45  -0.18  

βTk    0.23  -0.03   βTk    0.24  0.26  

βSt     -0.08   βSt     0.34  
   

ESF  RE-ESF 
 β0 βTk βSt βFl   β0 βTk βSt βFl 

β0  0.01  -0.44  0.08   β0  NA 1) -0.41  -0.29  

βTk   -0.24  -0.23   βTk   NA NA 

βSt    -0.01   βSt     -0.10  

1) Regarding RE-ESF, correlation coefficients between βTk and other coefficients cannot be calculated 

because it lacks spatial variations (i.e., σ2
k (γ) = 0). 
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Table 9. Computational time in seconds. 

GWR LCR-GWR ESF RE-ESF RE-ESF (A1) 
36.2 62.3 107 51.7 11.8 
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Figure 1. Anticipated flood depth (left) and officially assessed land prices in 2015 
(right) in the Ibaraki prefecture. 
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Figure 2. Boxplots of the estimated spatially varying coefficients.  
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Figure 3. Spatial plots of the estimated coefficients. In each legend, positive values are denoted by bold text. 
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Figure 3. Spatial plots of the estimated coefficients (continued). In each legend, positive values are denoted by bold text. 


