

PDF issue: 2025-05-09

A Moran coefficient-based mixed effects approach to investigate spatially varying relationships

Murakami, Daisuke Yoshida, Takahiro Seya, Hajime Griffith, Daniel A. Yamagata, Yoshiki

(Citation) Spatial Statistics, 19:68-89

(Issue Date) 2017-02

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights)
© 2017 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(URL)

https://hdl.handle.net/20.500.14094/90004941

A Moran coefficient-based mixed effects approach to investigate spatially varying relationships

Daisuke Murakami^{1,*}, Takahiro Yoshida^{1,2}, Hajime Seya³, Daniel A. Griffith⁴, and Yoshiki

Yamagata¹

¹Center for Global Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan Email: murakami.daisuke@nies.go.jp; yamagata@nies.go.jp

²Graduate School of Systems and Information Engineering, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
Email: yoshida.takahiro@sk.tsukuba.ac.jp

³ Department of Civil Engineering, Graduate School of Engineering, Kobe University,
1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
Email: hseya@people.kobe-u.ac.jp

⁴School of Economic, Political and Policy Science, The University of Texas, Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA Email: dagriffith@utdallas.edu

*: Corresponding author

Abstract

This study develops a spatially varying coefficient model by extending the random effects eigenvector spatial filtering model. The developed model has the following properties: its spatially varying coefficients are defined by a linear combination of the eigenvectors describing the Moran coefficient; each of its coefficients can have a different degree of spatial smoothness; and it yields a variant of a Bayesian spatially varying coefficient model. Moreover, parameter estimation of the model can be executed with a relatively small computational burden. Results of a Monte Carlo simulation reveal that our model outperforms a conventional eigenvector spatial filtering (ESF) model and geographically weighted regression (GWR) models in terms of the accuracy of the coefficient estimates and computational time. We empirically apply our model to the hedonic land price analysis of flood hazards in Japan.

Keywords

Random effects, eigenvector spatial filtering, spatially varying coefficient, geographically

weighted regression, Moran coefficient, hedonic price analysis

1. Introduction

2	Spatial heterogeneity is one of the important characteristics of spatial data
3	(Anselin, 1988). Geographically weighted regression (GWR) (Fotheringham et al., 2002;
4	Wheeler and Páez, 2009; Fotheringham and Oshan, 2016) is one useful approach for
5	explicitly accounting for spatial heterogeneity of the model structure through spatially
6	varying coefficients (SVCs). GWR has been widely applied in socioeconomic studies
7	(e.g., Bitter et al., 2007; Huang et al., 2010), ecological studies (e.g., Wang et al., 2005;
8	Austin, 2007), health studies (e.g., Nakaya et al., 2005; Hu et al., 2012), and many others.
9	Despite the wide-ranging set of applications, existing studies have shown that
-	
10	the basic (original) GWR specification has several drawbacks. First, the coefficients of
10 11	the basic (original) GWR specification has several drawbacks. First, the coefficients of the basic GWR typically suffer from multicollinearity (Páez et al., 2011; Wheeler and
10 11 12	the basic (original) GWR specification has several drawbacks. First, the coefficients of the basic GWR typically suffer from multicollinearity (Páez et al., 2011; Wheeler and Tiefelsdorf, 2005). Second, the basic GWR assumes the same degree of spatial
10 11 12 13	the basic (original) GWR specification has several drawbacks. First, the coefficients of the basic GWR typically suffer from multicollinearity (Páez et al., 2011; Wheeler and Tiefelsdorf, 2005). Second, the basic GWR assumes the same degree of spatial smoothness for each coefficient, which is a rather strong assumption that fails to hold in
10 11 12 13 14	the basic (original) GWR specification has several drawbacks. First, the coefficients of the basic GWR typically suffer from multicollinearity (Páez et al., 2011; Wheeler and Tiefelsdorf, 2005). Second, the basic GWR assumes the same degree of spatial smoothness for each coefficient, which is a rather strong assumption that fails to hold in most empirical applications. Fortunately, several extended GWRs have been proposed to

16	regularized GWR, by combining ridge and/or lasso regression with GWR, and its
17	robustness in terms of the multicollinearity problem has been demonstrated. The
18	limitations of regularized GWR specifications are its bias in coefficient estimates, just
19	like conventional ridge and/or lasso regression. With regard to the second problem
20	concerning uniform smoothers, Yang et al. (2014) and Lu et al. (2015) attempted to
21	overcome this limitation.
22	The Bayesian spatially varying coefficients (B-SVC) model, based on a
23	geostatistical (Gelfand et al., 2003) or lattice autoregressive approach (Assunçao, 2003),
24	is another form of the spatially varying coefficients model that requires Markov chain
25	Monte Carlo (MCMC). Wheeler and Calder (2007) and Wheeler and Waller (2009)
26	suggest that the coefficient estimates for the B-SVC model of Gelfand et al. (2003) are
27	robust in terms of multicollinearity. In contrast to the GWR model, the B-SVC model
28	allows differential spatial smoothness across coefficients. However, this differential
29	makes computational costs prohibitive if a sample size is moderate to large (Finley, 2011).

30	Although Integrated Nested Laplace Approximation (INLA) ¹ based SVC estimations are
31	becoming available now (Congdon, 2014) ² , their estimation accuracy and computational
32	efficiency are largely unexplored.
33	Hence, a SVC model with the following properties still needs to be developed:
34	(a) robust to multicollinearity; (b) the possibility for each coefficient to have a different
35	degree of spatial smoothness; and, (c) computational efficiency. This study develops a
36	model satisfying these requirements by combining an eigenvector spatial filtering (ESF;
37	Griffith 2003; Chun and Griffith, 2014) based SVC model (Griffith, 2008) and a random
38	effects ESF (RE-ESF: Murakami and Griffith, 2015) model.
39	The following sections are organized as follows. Sections 2 and 3 introduce the
40	GWR model and ESF-based SVC model of Griffith (2008), respectively. Section 4
41	introduces the RE-ESF model, and extends it to a SVC model. Section 5 compares the
42	properties of our model with those of other SVC models. Section 6 summarizes results

¹ See Rue et al. (2009) for details on the INLA approach and Blangiardo and Cameletti (2015) for its R programming.

² Congdon (2014) publishes an R code of an INLA to estimate a conditional autoregressive model-based SVC model (see Gamerman et al., 2003).

43from a comparative Monte Carlo simulation experiment, and section 7 uses our model in 44 a hedonic analysis. Section 8 concludes our discussion.

45

2. GWR specifications 46

The basic GWR model for a site $s_i \in D \subset \Re^2$ is formulated as follows: 47

48
$$\mathbf{G}(s_i)^{1/2}\mathbf{y} = \mathbf{G}(s_i)^{1/2}\mathbf{X}\boldsymbol{\beta}(s_i) + \mathbf{u}, \qquad E[\mathbf{u}] = \mathbf{0}, \qquad Var[\mathbf{u}] = \sigma^2 \mathbf{I}, \qquad (1)$$

where **y** is an $N \times 1$ vector of continuous response variables, **X** is an $N \times K$ matrix of 49explanatory variables, $\beta(s_i)$ is a $K \times 1$ vector of geographically varying coefficients, **u** is 50a $N \times 1$ vector of disturbances, **0** is an $N \times 1$ vector of zeros, **I** is an $N \times N$ identity matrix, 51 σ^2 is a variance parameter, and $\mathbf{G}(s_i)$ is an $N \times N$ diagonal matrix whose *j*-th element is 52given by a geographically weighting function, $g(s_i, s_j)$. Eq.(1) is a regression linear model 53local weighted by $g(s_i, s_i)$. The weighted least squares (WLS) estimator of $\beta(s_i)$ yields 54

55
$$\hat{\boldsymbol{\beta}}(s_i) = [\mathbf{X}'\mathbf{G}(s_i)\mathbf{X})]^{-1}\mathbf{X}'\mathbf{G}(s_i)\mathbf{y}, \qquad (2)$$

56where ' denotes the matrix transpose.

GWR, maximizes the rate of asymptotic convergence to a true function that is given by a local linear smoother of **y**, and the smoothness of $g(s_i, s_j)$ is required to identify the true function. Wheeler and Calder (2007) and Wheeler and Waller (2009) applied the following exponential function form, which weighs more heavily for neighboring samples than distant samples:

63
$$g(s_i, s_j) = \exp\left(-\frac{d(s_i, s_j)}{r}\right),$$
(3)

64 where $d(s_i, s_j)$ is the Euclidean distance between locations s_i and s_j , and r is the bandwidth 65 parameter, which is large if coefficients have global scale spatial variation, and small if 66 they have local scale spatial variation.

A standard estimation procedure for the basic GWR is as follows: (1) the bandwidth is calculated based on the leave-one-out cross-validation or a corrected AIC minimization (see Fotheringham et al., 2002), and (2) $\beta(s_i)$ is estimated by substituting the estimated bandwidth into Eqs. (2) and (3).

After Wheeler and Tiefelsdorf (2005) demonstrate that GWR coefficients
essentially are collinear, active discussion shifted to regularized GWR. For example,

Wheeler (2007) proposes a ridge regularization-based GWR that replaces Eq. (2) with the
following equation:

75
$$\hat{\boldsymbol{\beta}}(s_i) = (\mathbf{X}'\mathbf{G}(s_i)\mathbf{X} + \eta \mathbf{I}_K)^{-1}\mathbf{X}'\mathbf{G}(s_i)\mathbf{y}, \qquad (4)$$

where η is the ridge regularization parameter, and I_K is a $K \times K$ identity matrix. Wheeler (2009) and Gollini et al. (2015) extended the ridge GWR to vary η locally. Specifically, they propose the locally compensated ridge GWR (LCR-GWR) estimator, which is formulated as follows:

80
$$\hat{\boldsymbol{\beta}}(s_i) = (\mathbf{X}'\mathbf{G}(s_i)\mathbf{X} + \eta(s_i)\mathbf{I}_K)^{-1}\mathbf{X}'\mathbf{G}(s_i)\mathbf{y}, \qquad (5)$$

81 where $\eta(s_i)$ is the ridge parameter for location s_i , and LCR-GWR calibrates $\eta(s_i)$ based on 82 the degree of multicollinearity in the corresponding local model. Because $\eta(s_i)$ increases 83 bias of the coefficient estimator, just like the standard ridge estimator, Gollini et al. (2015) 84 suggest introducing $\eta(s_i)$ only for local models whose multicollinearity is excessive. The 85 estimation procedure for LCR-GWR is as follows (Gollini et al., 2015): (1) the bandwidth 86 and ridge parameters are estimated by the leave-one-out cross-validation, and (2) $\beta(s_i)$ is 87 estimated by substituting them into Eq. (5).

SF-based SVC specifications	89
Section 3.1 introduces the ESF approach 1, and section 3.2 presents an ESF-	90
SVC model, which we extend to a RE-ESF-based model in section 4.	91
	92
The ESF approach	93
Moran ESF is based on the Moran coefficient (MC; see, Anselin and Rey, 1991),	94
h is a spatial dependence diagnostic statistic formulated as follows ³ :	95
$MC = \frac{N}{\mathbf{1'} \mathbf{C} 1} \frac{\mathbf{y'} \mathbf{M} \mathbf{C} \mathbf{M} \mathbf{y}}{\mathbf{y'} \mathbf{M} \mathbf{y}}.$ (6)	96
e 1 is an $N \times 1$ vector of ones, y is an $N \times 1$ vector of variable values, C is an $N \times N$	97
ectivity matrix whose diagonal elements are zero, and $\mathbf{M} = \mathbf{I} - 11'/N$ is an $N \times N$	98
x for double centering. MC is positive if the sample values in \mathbf{y} display positive	99
al dependence and negative if they display negative spatial dependence. Based on	100
ith (2003) and Griffith and Chun (2014), the 1st eigenvector, \mathbf{e}_1 , is the set of real	101

 $^{^{3}}$ ESF also could be based on other indices, such as the Geary ratio (Geary, 1954).

102	numbers that has the largest MC value achievable by any set of real numbers for the
103	spatial attunement defined by C; e_2 , is the set of real numbers that has the largest
104	achievable MC value by any set that is orthogonal with e_1 ; and so forth, the <i>l</i> -th
105	eigenvector, \mathbf{e}_l , is the set of real numbers that has the largest achievable MC value by any
106	set that is orthogonal with $\{\mathbf{e}_1,, \mathbf{e}_{l-1}\}$. Thus, $\mathbf{E}_{full} = \{\mathbf{e}_1,, \mathbf{e}_N\}$, provides all the possible
107	distinct map pattern descriptions of latent spatial dependence, with each magnitude being
108	indexed by its corresponding eigenvalue in $\{\lambda_1,, \lambda_N\}$ (Griffith, 2003).
109	M is replaced with $\mathbf{M}_X = \mathbf{I} - \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'$ if y is a residual vector of a linear
110	regression model. In that case, MC is positive if sample values in \mathbf{y} have variations that
111	are positively spatially dependent and orthogonal with \mathbf{X} . The reverse is true for negative
112	spatial dependence. The eigenvectors of $M_X CM_X$ are defined as those for MCM except
113	that they are orthogonal with X . In other words, \mathbf{e}_l , is the set of real numbers that has the
114	largest achievable MC value by any set that is orthogonal with $\{e_1,, e_{l-1}\}$ and X .
115	ESF describes the latent map pattern in a georeferenced response variable y, using
116	a linear combination of eigenvectors, $\mathbf{E}\gamma$, where \mathbf{E} is a matrix composed of <i>L</i> eigenvectors

117 in \mathbf{E}_{full} (*L* < *N*) that is given either from **MCM** or $\mathbf{M}_X \mathbf{CM}_X$, and $\boldsymbol{\gamma} = [\gamma_1, ..., \gamma_L]'$ is an *L* × 1

118 coefficient vector. The linear ESF model is given by

119
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{E}\boldsymbol{\gamma} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}),$$
(7)

120 where ε is a $N \times 1$ vector of disturbances. Because Eq. (7) is in the form of the standard linear regression model, ordinary least squares (OLS) estimation is applicable for its 121parameter estimation⁴. The L eigenvectors in \mathbf{E} may be selected as follows (see, Chun et 122123al., 2016): (a) eigenvectors corresponding to small eigenvalues, which explain the inconsequential level of spatial dependence, are removed⁵, and (b) Eigenvectors are 124chosen by applying an accuracy maximization (e.g., adjusted R^2 maximization)-based or 125126a residual MC minimization-based stepwise variable selection process to the candidate 127set prepared in (a). Many studies demonstrate the effectiveness of ESF in estimation and inference 128

129 for β in the presence of spatial dependence (e.g., Chun, 2014; Griffith and Chun, 2014;

⁴ Another approach includes the model selection procedure based on LASSO (Seya et al., 2015).

⁵ $\lambda_l/\lambda_1 > 0.25$ and $\lambda_l > 0$ are commonly used criteria (e.g., Griffith, 2003; Tiefelsdorf and Griffith, 2007; Drey, 2006; Hughes and Haran, 2013).

Margaretic et al., 2015). For more details about ESF, see Griffith (2003), Griffith and

131Paelinck (2011), Griffith and Chun (2014), and Griffith and Chun (2016).

132

1333.2. ESF-based SVC specifications

To capture possible spatially varying influences from explanatory variables, 134Griffith (2008) extended ESF to the following SVC model: 135

136
$$\mathbf{y} = \sum_{k=1}^{K} \mathbf{x}_{k} \mathbf{o}(\boldsymbol{\beta}_{k} \mathbf{1}) + \sum_{k=1}^{K} \mathbf{x}_{k} \mathbf{o} \mathbf{E}_{k} \boldsymbol{\gamma}_{k} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^{2} \mathbf{I}), \qquad (8)$$

which also is expressed as 137

138
$$\mathbf{y} = \sum_{k=1}^{K} \mathbf{x}_{k} \ \mathbf{o} \boldsymbol{\beta}_{k}^{ESF} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^{2} \mathbf{I}), \qquad (9)$$

139
$$\boldsymbol{\beta}_{k}^{ESF} = \boldsymbol{\beta}_{k} \mathbf{1} + \mathbf{E}_{k} \boldsymbol{\gamma}_{k},$$

where \mathbf{x}_k is an $N \times 1$ vector of the k-th explanatory variable (i.e., k-th column of **X**), \mathbf{E}_k is 140 an $N \times L_k$ matrix composed of L_k eigenvectors ($L_k < N$), γ_k is an $L_k \times 1$ coefficient vector, 141and 'o' denotes the element-wise (Hadamard) product operator. Note that $\sum_{k=1}^{K} \mathbf{x}_k \mathbf{o}(\beta_k 1)$ 142

143 in Eq.(8) equals **X**
$$\boldsymbol{\beta}$$
. $\boldsymbol{\beta}_{k}^{\text{ESP}} = \beta_{k} \mathbf{1} + \mathbf{E}_{k} \boldsymbol{\gamma}_{k}$ yields a vector of spatially varying coefficients, in

144 which
$$\beta_k \mathbf{1}$$
 and $\mathbf{E}_k \gamma_k$ represent the constant component and spatially varying component,

respectively. The parameters can be estimated, as for the standard ESF specification, as follows: (a) eigenvectors corresponding to small eigenvalues are removed from each \mathbf{E}_k ; (b) significant variables in \mathbf{X} , $\mathbf{x}_1 \circ \mathbf{E}_1$, ..., $\mathbf{x}_K \circ \mathbf{E}_K$ are selected by applying an OLS-based forward variable selection technique, and $\boldsymbol{\beta} = [\beta_1, ..., \beta_K]'$ and γ_k are then estimated; and, (c) $\hat{\boldsymbol{\beta}}_k^{ESF} = \hat{\boldsymbol{\beta}}_k \mathbf{1} + \mathbf{E} \hat{\boldsymbol{\gamma}}_k$ is calculated. Helbich and Griffith (2016) empirically demonstrated that spatial variation of the ESF-based coefficients can be significantly different from those for GWR.

152

153 **4. RE-ESF-based SVC specifications**

154 4.1. The RE-ESF approach

While the conventional ESF model is a fixed effects model, Murakami and Griffith (2015) show that random effects versions of ESF increase the estimation accuracy of regression coefficients and their standard errors with shorter computational time. This section extends RE-ESF to a SVC model as follows:

159
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{E}\boldsymbol{\gamma} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\gamma} \sim N(\mathbf{0}_{L}, \sigma_{\gamma}^{2}\mathbf{\Lambda}(\alpha)), \qquad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^{2}\mathbf{I}), \qquad (10)$$

160	where 0_L is an $L \times 1$ vector of zeros, E is given by the subset of L eigenvectors
161	corresponding to positive eigenvalues, which capture positive spatial dependence
162	(without applying the stepwise variable selection process), and $\Lambda(\alpha)$ is an $L \times L$ diagonal
163	matrix whose <i>l</i> -th element is $\lambda_l(\alpha) = (\sum_l \lambda_l / \sum_l \lambda_l^{\alpha}) \lambda_l^{\alpha}$, where α and σ_{γ}^2 are parameters. A large
164	α shrinks the coefficients of the non-principal eigenvectors strongly toward 0, and the
165	resulting $\mathbf{E}\boldsymbol{\gamma}$ describes a global map pattern. By contrast, when α is small, $\mathbf{E}\boldsymbol{\gamma}$ describes a
166	local map pattern. Thus, α controls the spatial smoothness of the underlying map pattern.
167	RE-ESF has two interpretations (Murakami and Griffith, 2015): it describes a map pattern
168	explained by MC (see Section 5.1, for further details), and it describes a Gaussian process
169	after a rank reduction (see, Appendix 1).
170	Eq. (10) can be rewritten as follows:
171	$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{E}\mathbf{V}(\boldsymbol{\theta})\mathbf{u} + \boldsymbol{\varepsilon}, \qquad \mathbf{u} \sim N(\boldsymbol{0}_{L}, \sigma^{2}\mathbf{I}_{L}), \qquad \boldsymbol{\varepsilon} \sim N(\boldsymbol{0}, \sigma^{2}\mathbf{I}), \qquad (11)$

172 where $\mathbf{\theta} = \{\sigma_{\gamma}^2/\sigma^2, \alpha\}$, \mathbf{I}_L is an $L \times L$ identity matrix, and $\mathbf{V}(\mathbf{\theta})$ is a diagonal matrix whose

⁶ Since **MCM** and **MC**_{*X*}**M** have *N* - 1 and *N* - *K* eigenvectors corresponding to non-zero eigenvectors respectively, keeping all eigenvectors, which drastically consumes degrees of freedom, is not sensible. Many of (RE-)ESF studies consider eigenvectors corresponding to positive eigenvalue because positive spatial dependence is dominant in most social-economic and natural science data (Griffith, 2003; Griffith and Peres-Neto, 2006).

173 *l*-th element is $(\sigma_{\gamma}/\sigma)\lambda_l(\alpha)^{1/2}$. Note that **V**(θ)**u** in Eq. (11) equals γ .

The parameters in Eq. (11) (or Eq. (10)) are estimated by using the residual maximum likelihood (REML) method of Bates (2010). Following his specification, the likelihood function is defined by $loglik(\boldsymbol{\beta}, \boldsymbol{\theta}) = \int p(\mathbf{y}, \mathbf{u} | \boldsymbol{\beta}, \boldsymbol{\theta}) d\mathbf{u}$, and the restricted loglikelihood by $loglik_{R}(\boldsymbol{\theta}) = \int loglik(\boldsymbol{\beta}, \boldsymbol{\theta}) d\boldsymbol{\beta}$.

The estimation procedure is summarized as follows: (a) θ is estimated by maximizing the restricted log-likelihood Eq. (12) with the plugins of Eqs. (13) and (14); (b) β and $\gamma = V(\theta)u$ are estimated by substituting the estimated θ into Eq. (14); and, (c)

181 σ^2 is estimated by substituting the estimated parameters into Eq. (15). In other words,

182
$$loglik_{R}(\boldsymbol{\theta}) = -\frac{1}{2} log \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{E}\mathbf{V}(\boldsymbol{\theta}) \\ \mathbf{V}(\boldsymbol{\theta})\mathbf{E}'\mathbf{X} & \mathbf{V}(\boldsymbol{\theta})^{2} + \mathbf{I}_{L} \end{bmatrix} - \frac{N-K}{2} \left(1 + log \left(\frac{2\pi d(\boldsymbol{\theta})}{N-K}\right)\right), \quad (12)$$

183
$$d(\boldsymbol{\theta}) = \min_{\boldsymbol{\beta}, \mathbf{u}} \| \mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{E}\mathbf{V}(\boldsymbol{\theta})\mathbf{u} \|^2 + \| \mathbf{u} \|^2, \qquad (13)$$

184
$$\begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{E}\mathbf{V}(\boldsymbol{\theta}) \\ \mathbf{V}(\boldsymbol{\theta})\mathbf{E}'\mathbf{X} & \mathbf{V}(\boldsymbol{\theta})^2 + \mathbf{I}_L \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{V}(\boldsymbol{\theta})\mathbf{E}'\mathbf{y} \end{bmatrix}, \text{ and}$$
(14)

185
$$\hat{\sigma}^2 = \frac{\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{E}\mathbf{V}(\boldsymbol{\theta})\mathbf{u}\|^2}{N - K},$$
 (15)

186 where $\|\cdot\|^2$ denotes the *L*₂-norm of a vector \cdot , and $\mathbf{V}(\mathbf{\theta})^2 = \mathbf{V}(\mathbf{\theta})\mathbf{V}(\mathbf{\theta}) = \mathbf{V}(\mathbf{\theta})\mathbf{E}'\mathbf{E}\mathbf{V}(\mathbf{\theta})$.

187	Based on Murakami and Griffith (2015), the computational complexity of Eq. (12) is
188	$O((K+L)^3)$, which is smaller than the complexity of the likelihood maximization in
189	standard spatial statistical models (O(N^3)). They also reveal that RE-ESF estimates β with
190	smaller estimation error and a shorter computation time than ESF.
191	Similar models have been used in the statistics literature (e.g., Hughes and Haran,
192	2013; Johnson et al., 2013; Lee and Barran, 2015). They use E generated from $M_X CM_X$.
193	This is because this specification eliminates confounders between \mathbf{X} and \mathbf{E} and stabilizes
194	the parameter estimates. However, Murakami and Griffith (2015) show that the
195	elimination leads to biased standard errors of β and recommend using MCM. Section 6
196	examines which specification is more appropriate for SVC modeling.
197	
198	4.2. RE-ESF-based SVC models
199	As with the basic RE-ESF, the RE-ESF-based SVC model is expected to

- 200 outperform the ESF-based one in terms of estimation accuracy and computational time.
- 201 Thus, we combine the RE-ESF model and the ESF-based SVC model (Eq. (9)):

202
$$\mathbf{y} = \sum_{k=1}^{K} \mathbf{x}_{k} \ \mathbf{0} \boldsymbol{\beta}_{k}^{R-ESF} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^{2} \mathbf{I}), \qquad (16)$$

203
$$\boldsymbol{\beta}_{k}^{R-ESF} = \boldsymbol{\beta}_{k} \mathbf{1} + \mathbf{E} \boldsymbol{\gamma}_{k}, \qquad \boldsymbol{\gamma}_{k} \sim N(\boldsymbol{0}_{L}, \sigma_{k(\gamma)}^{2} \boldsymbol{\Lambda}(\boldsymbol{\alpha}_{k})),$$

where α_k is a parameter that controls the spatial smoothness of the *k*-th coefficients, and $\sigma^2_{k(\gamma)}$ controls the variance. The *k*-th coefficients consist of the fixed constant, $\beta_k \mathbf{1}$, and random spatially varying components, $\mathbf{E} \boldsymbol{\gamma}_k$.

208
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \widetilde{\mathbf{E}}\widetilde{\boldsymbol{\gamma}} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}), \qquad (17)$$

209 where

210
$$\widetilde{\mathbf{E}} = \begin{bmatrix} \mathbf{x}_1 \ \mathbf{O}\mathbf{E} \ \mathbf{L} \ \mathbf{x}_K \ \mathbf{O}\mathbf{E} \end{bmatrix}, \quad \widetilde{\mathbf{\gamma}} = \begin{bmatrix} \mathbf{\gamma}_1 \\ \mathbf{M} \\ \mathbf{\gamma}_K \end{bmatrix} \sim N \begin{bmatrix} \mathbf{0}_L \\ \mathbf{M} \\ \mathbf{0}_L \end{bmatrix}, \begin{bmatrix} \sigma_{1(\gamma)}^2 \mathbf{\Lambda}(\alpha_1) & & \\ & \mathbf{O} \\ & & \sigma_{K(\gamma)}^2 \mathbf{\Lambda}(\alpha_K) \end{bmatrix} \end{bmatrix}.$$

Eq. (17) essentially is identical to Eq. (10). Hence, it is further rewritten similar to the

212 rewriting from Eq. (10) to Eq. (11):

213
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \widetilde{\mathbf{E}}\widetilde{\mathbf{V}}(\boldsymbol{\Theta})\widetilde{\mathbf{u}} + \boldsymbol{\varepsilon}, \qquad \widetilde{\mathbf{u}} \sim N(\mathbf{0}_{LK}, \sigma^2 \mathbf{I}_{LK}), \qquad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}), \quad (18)$$

214
$$\widetilde{\mathbf{V}}(\mathbf{\Theta}) = \begin{bmatrix} \mathbf{V}(\mathbf{\theta}_1) & & \\ & \mathbf{O} & \\ & & \mathbf{V}(\mathbf{\theta}_K) \end{bmatrix}, \qquad \widetilde{\mathbf{u}} = \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{M} \\ \mathbf{u}_K \end{bmatrix},$$

where $\Theta = \{ \theta_1, ..., \theta_K \}, \theta_k = \{ \sigma_{k(\gamma)}^2 / \sigma^2, \alpha_k \}, \theta_{LN}$ is an $L_K \times 1$ vector of zeros, \mathbf{I}_{LN} is an $L_K \times 1$ 215 L_K identity matrix, and $\mathbf{V}(\mathbf{\theta}_k)$ is a diagonal matrix whose *l*-th element is $(\sigma_{\gamma(\gamma)}/\sigma)\lambda_l(\alpha_k)^{1/2}$. 216Because Eq. (17) is identical to the RE-ESF model, Eq. (10), the REML 217estimation for RE-ESF is readily applicable to the proposed model. The estimation 218procedure is summarized as follows: (a) Θ is estimated by maximizing the profile 219restricted log-likelihood, Eq. (19), with the plugins of Eqs. (20) and (21); (b) β and $\tilde{\gamma} =$ 220 $\tilde{\mathbf{V}}(\boldsymbol{\Theta})\tilde{\mathbf{u}}$ are estimated by substituting the estimated $\boldsymbol{\Theta}$ into Eq. (21); and, (c) σ^2 is 221estimated by substituting the estimated parameters into Eq. (22). In other words, 222

223
$$loglik_{R}(\mathbf{\Theta}) = -\frac{1}{2}log \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\widetilde{\mathbf{E}}\widetilde{\mathbf{V}}(\mathbf{\Theta}) \\ \widetilde{\mathbf{V}}(\mathbf{\Theta})\widetilde{\mathbf{E}}'\mathbf{X} & \widetilde{\mathbf{V}}(\mathbf{\Theta})\widetilde{\mathbf{E}}'\widetilde{\mathbf{E}}\widetilde{\mathbf{V}}(\mathbf{\Theta}) + \mathbf{I}_{LK} \end{bmatrix} - \frac{N-K}{2} \left(1 + log\left(\frac{2\pi \widetilde{d}(\mathbf{\Theta})}{N-K}\right)\right) , (19)$$

224
$$\widetilde{d}(\boldsymbol{\Theta}) = \min_{\boldsymbol{\beta}, \widetilde{\mathbf{u}}} \| \mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \widetilde{\mathbf{E}}\widetilde{\mathbf{V}}(\boldsymbol{\Theta})\widetilde{\mathbf{u}} \|^2 + \| \widetilde{\mathbf{u}} \|^2, \qquad (20)$$

225
$$\begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\hat{\mathbf{u}}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\tilde{\mathbf{E}}\tilde{\mathbf{V}}(\boldsymbol{\Theta}) \\ \tilde{\mathbf{V}}(\boldsymbol{\Theta})\tilde{\mathbf{E}}'\mathbf{X} & \tilde{\mathbf{V}}(\boldsymbol{\Theta})\tilde{\mathbf{E}}'\tilde{\mathbf{E}}\tilde{\mathbf{V}}(\boldsymbol{\Theta}) + \mathbf{I}_{LK} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \tilde{\mathbf{V}}(\boldsymbol{\Theta})\tilde{\mathbf{E}}'\mathbf{y} \end{bmatrix}, \text{ and} \qquad (21)$$

226
$$\hat{\sigma}^2 = \frac{\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \widetilde{\mathbf{E}}\widetilde{\mathbf{V}}(\boldsymbol{\Theta})\widetilde{\mathbf{u}}\|^2}{N - K}.$$
 (22)

Although the REML estimation requires a determinant calculation, computational complexity is only $O((K+KL)^3)$, which can be decreased by reducing the number of eigenvectors in **E**. The computational burden also can be reduced by replacing some $\beta_k^{R-ESF} = \beta_k \mathbf{1} + \mathbf{E} \gamma_k$ with $\beta_k \mathbf{1}$, which means restricting some coefficients to be constants across a given geographic landscape.

232

The variance-covariance matrices of the coefficients are

233
$$Cov\begin{bmatrix}\boldsymbol{\beta}\\ \boldsymbol{\tilde{\gamma}}\end{bmatrix} = Cov\begin{bmatrix}\boldsymbol{\beta}\\ \boldsymbol{\tilde{V}}(\boldsymbol{\Theta})\boldsymbol{\tilde{u}}_k\end{bmatrix} = \sigma^2\begin{bmatrix}\mathbf{X'X} & \mathbf{X'\tilde{E}}\\ \boldsymbol{\tilde{E}'X} & \boldsymbol{\tilde{E}'\tilde{E}} + \boldsymbol{\tilde{V}}(\boldsymbol{\Theta})^{-2}\end{bmatrix}^{-1}, \quad (23)$$

where is the inverse of . Because is a diagonal matrix, its inverse is easily calculated. As for = $\beta_k \mathbf{1} + \mathbf{E} \mathbf{\gamma}_k$, the variance of the constant component, $\beta_k \mathbf{1}$, is estimated in Eq. (23). The covariance matrix of the spatially varying components, $\mathbf{E} \mathbf{\gamma}_k$, is estimated as follows: , (24)

where *Cov*[], which is the covariance matrix of γ_k , is a sub-matrix of *Cov*[] in Eq.(23). The diagonals of *Cov*[**E** γ_k] are useful to test if = $\beta_k \mathbf{1} + \mathbf{E} \gamma_k$ has statistically significant spatial variation, whereas the diagonals of *Cov*[γ_k] indicate which eigenvectors are statistically significant.

A problem is how to estimate Θ efficiently. For example, when five explanatory variables are considered, we need to optimize 10 parameters in { $\sigma_1^2_{(\gamma)}$, ..., $\sigma_5^2_{(\gamma)}$, α_1 , ..., α_5 }

244	simultaneously, which can be computationally expensive. Hence, in addition to
245	simultaneous estimation, we apply an approximation that estimates the coefficient's
246	variance parameters, $\sigma_k^2(\gamma)$ s, first, and the spatial smoothness parameters, α_k s, thereafter.
247	In the first step, we impose $\alpha_k = 1$, which implicitly has been assumed in RE-ESF-type
248	models (e.g., Hughes and Haran, 2013). Assuming a unique value for each α_k , which
249	implies the same degree of spatial smoothness for each coefficient, is another way to
250	increase computational efficiency. Section 6 compares the effectiveness of these
251	simplifications.

252

5. Properties of RE-ESF-based SVC model 253

This section clarifies advantages and disadvantages of our SVC model by 254comparing it with the ESF-based SVC specification (section 5.1), GWR specifications 255(section 5.2), and the B-SVC model of Gelfand (2003) (section 5.3). 256

257

5.1. A comparison with the ESF-based specification 258

259	Both the ESF-based model and our model describe their k-th coefficients using
260	$\beta_k 1 + \mathbf{E} \mathbf{\gamma}_k$. The ESF approach regards $\mathbf{E} \mathbf{\gamma}_k$ as fixed effects, whereas ours considers it as
261	random effects, where $\gamma_k \sim N(0_L, \sigma_{k(\gamma)}^2 \Lambda(\alpha_k))$. Our specification has additional variance
262	parameters, $\sigma_{k(\gamma)}^2$ and α_k . They shrink $\mathbf{E}\boldsymbol{\gamma}_k$ strongly toward zero when $\sigma_{k(\gamma)}^2$ is small and α_k
263	is large. Owing to these parameters, our estimator might be more robust to
264	multicollinearity than the estimator of ESF, which is a fundamental problem in SVC
265	models (Wheeler and Tiefelsdorf, 2005).
266	The parameter α_k also controls the spatial smoothness of each varying coefficient.
267	A large α_k shrinks the coefficients $\gamma_{k,l}$ corresponding to the non-principal eigenvectors
268	strongly toward zero, where $\gamma_{k,l}$ is the <i>l</i> -th element of γ_k . As a result, $\mathbf{E}\gamma_k$ has a global
269	(smoother) map pattern. Interestingly, α_k is interpretable in terms of MC. $MC[\mathbf{E}\boldsymbol{\gamma}_k]$ can be
270	calculated by substituting $\mathbf{E}\boldsymbol{\gamma}_k$ into Eq. (6) as follows (see Griffith, 2003):
271	. (25)

- $MC[\mathbf{E}\gamma_k]$ is proportional to the average of the *L* eigenvalues, which are weighted by $\gamma_{k,l}^2$
- 273 = $Var[\gamma_{k,l}]$. As α_k grows, the weights $\gamma^2_{k,l}$ on greater eigenvalues are inflated, along with

274	$MC[\mathbf{E}\boldsymbol{\gamma}_k]$. In particular, $MC[\mathbf{E}\boldsymbol{\gamma}_k]$ takes its maximum value if $\alpha_k = \infty$. By contrast, if $\alpha_k =$
275	0, $\sigma_{k(\gamma)}^2$ shrinks all coefficients equally. In short, α_k is an MC-based shrinkage parameter
276	that intensifies the underlying spatial dependence of $= \beta_k 1 + \mathbf{E} \boldsymbol{\gamma}_k$.
277	Computational efficiency is another advantage of our approach. Unlike the ESF-
278	based SVC model, ours does not require the stepwise variable selection, which can be
279	very slow especially for large datasets.
280	
281	5.2. A comparison with GWR specifications
282	A major advantage of our model relative to GWR is its capability of allowing
283	different spatial smoothness of SVCs. GWR studies usually assume the same degree of
284	spatial smoothness for each coefficient, which is unlikely in many real-world situations.
285	Moreover, our approach estimates coefficients based on a global estimation, whereas
286	GWR iterates with local estimations. The global estimation that considers all observations
287	might be more robust than local estimations that consider nearby observations only.
288	Indeed, the efficiency of local estimations depends on the rank sufficiency and

collinearity of the (geographically weighted) explanatory variables around each site. Ourglobal estimation is not compromised by such problems.

291	By contrast, GWR is simpler and easier to extend for non-Gaussian data
292	modeling, spatial interpolation, and other purposes (Fotheringham et al., 2002; Nakaya et
293	al., 2005). Besides, GWR is applicable to a large data set, and can be made faster with
294	parallel computing (Harris et al., 2010), whereas our model is not parallelizable because
295	it requires an eigen-decomposition. Furthermore, GWR approaches are easily
296	implemented (e.g., using the Spatial Statistics Toolbox in ArcGIS (http://www.esri.com/),
297	or spgwr (Bevand et al., 2006), gwrr (Wheeler, 2013), and GWmodel (Gollini et al., 2015)
298	in the R packages). Our model needs to be extended to overcome these disadvantages.
299	
300	5.3. A comparison with the B-SVC models
301	5.3.1. Model
302	The B-SVC model is formulated as follows:

303 , , (26)

where δ^2_k and τ^2_k are variance parameters. Here, **C** is assumed to be known. B-SVC 305 describes both SVCs with [a constant term: $\beta_k \mathbf{1}$] + [a centered Gaussian process, \mathbf{Me}_k], 306 307 and residuals with another Gaussian process. As described in Appendix 1, $\mathbf{Me}_k \sim N(\mathbf{0}_N, \delta_k^2 \mathbf{MCM} + \tau^2_k \mathbf{M})$ can be expanded as 308 follows, after reducing eigen-functions corresponding to ⁷: 309 310(28) , , . Eqs. (27) and (28) indicate that $= \beta_k \mathbf{1} + \mathbf{E} \gamma_k + \boldsymbol{\varepsilon}_k$ (after a rank reduction), whereas our 311model yields $=\beta_k \mathbf{1} + \mathbf{E} \boldsymbol{\gamma}_k$ (see Eq. (16))., which does not include $\boldsymbol{\varepsilon}_k$, captures a smoother 312map pattern than. The difference between and arises because our model is based on 313the MC, which does not consider variances within each sample, whereas the B-SVC 314 model describes Gaussian processes, which capture within sample variance with δ_k^2 and 315 τ_k^2 . 316

,

317 Let us assume that \mathbf{x}_1 is a constant. Then, our model, Eq. (16), can be expanded

⁷ Here, $\mathbf{MM'} = \mathbf{M}$ is used. It holds because \mathbf{M} is a symmetric and idempotent matrix.

318 using Eqs. (27) and (28), as follows:

319	, .
320	, .
321	, , (29)
322	Thus, our model is a variant of the B-SVC model whose is replaced with , and the
323	Gaussian process, e_1 , with a centered Gaussian process, Me_1 .
324	An important distinction between these two models is that ours approximates
325	SVCs with a linear equation, $\mathbf{E}\boldsymbol{\gamma}_k$, whereas the B-SVC model usually does not. The linear
326	specification allows us to apply the computationally efficient REML estimation (see
327	section 5.3.2).
328	
329	5.3.2. Estimation method
330	While our model is estimated by the REML method, the B-SVC model must be
331	estimated with MCMC. Because MCMC is robust, even if a sample size is small, the B-
332	SVC model is preferable for small-to-medium size samples. However, MCMC is

333	computationally expensive, particularly when different degrees of spatial smoothness are
334	allowed for each coefficient (Finley, 2011). Therefore, our model is more suitable for
335	medium-to-large size samples. Because our method does not require iterative sampling,
336	unlike MCMC, it is preferable to B-SVC in terms of simplicity, too.
337	
338	6. Results from a Monte Carlo simulation experiment
339	This section summarizes a Monte Carlo simulation experiment comparing our
340	model with GWRs and the ESF-based model in terms of SVCs estimation accuracy and
341	computational efficiency.
342	
343	6.1. Outline
344	This section compares the conventional GWR, LCR-GWR, and ESF-based SVC
345	models with \mathbf{M} and \mathbf{M}_X , respectively (ESF and ESF _X), to our RE-ESF-based models with
346	M and \mathbf{M}_X (RE-ESF and RE-ESF _X), respectively. We also compare the following
347	approximations of RE-ESF with M : the RE-ESF that estimates $\sigma_{k(y)}^2$ first and α_k s

thereafter (RE-ESF (A1)), and the RE-ESF whose α_k s are assumed to be uniform (RE-349 ESF (A2)).

The exponential model, Eq. (3), is used to evaluate the geographical weights in the GWR and LCR-GWR. Regarding RE-ESF, a similar exponential model, Eq.(30), is used to evaluate the (i, j)-th element of the proximity matrix **C**, c_i :

354Following Dray et al. (2006), the range parameter r is given by the maximum distance in the minimum spanning tree connecting all sample sites. E in RE-ESF consists of the 355eigenvectors corresponding to positive eigenvalues. The same eigenvectors are regarded 356as candidates to be entered into the ESF model, and they are selected by the adjusted- R^2 357based forward variable selection technique. This distance-based ESF often is called 358Moran's eigenvector maps, a popular approach in ecology (see, Dray et al., 2006; Griffith 359and Peres-Neto, 2006; Legendre and Legendre, 2012). Regarding ESF, to cope with 360 multicollinearity, variables with variance inflation factors (VIFs) above 10 are excluded 361362from the candidates in each variable selection step. As for LCR-GWR, following Gollini

363	et al. (2015), the ridge term is introduced only for local models whose condition number
364	exceeds 30.
365	We generate data using Eq.(31):
366	, , (31)
367	, ,
368	, ,
369	, .
370	\mathbf{x}_1 , whose coefficients take –2 on average, accounts for more of the variation in \mathbf{y} , whereas
371	\mathbf{x}_2 , whose coefficients take 0.5 on average, accounts for less variation.
372	The covariates in Eq. (31) are generated from Eq. (32):
373	, (32)
374	, ,
375	Eq. (32) assumes that \mathbf{x}_k equals [the centered disturbance, $\mathbf{Me}_{k(ns)}$] + [the centered spatially
376	dependent component, $\mathbf{E} \boldsymbol{\gamma}_0$ (= $\mathbf{M} \mathbf{E} \boldsymbol{\gamma}_0$)], whose contribution ratios are $1w_s$ and w_s ,
377	respectively. \mathbf{x}_k has strong spatial dependence when w_s is near 1. Some studies (e.g.,

378	Hughes and Haran, 2013) reveal that coefficient estimates tend to be unstable when
379	explanatory variables are spatially dependent. This is because spatially dependent
380	explanatory variables can confound with spatially dependent errors. However, no study
381	has examined the extent to which such spatial confounding influences the spatially
382	varying coefficient estimates. We examine it by varying the intensity of spatial
383	dependence in \mathbf{x}_k with w_s .
384	Table 1 summarizes DGPs employed in SVC-related simulation studies. This
385	table shows that multicollinearity has been considered. By contrast, spatial confounding
386	has never been analyzed in the context of SVC estimation as far as the authors know.
387	Because we do not know how to control the degrees of multicollinearity and spatial
388	confounding simultaneously, this simulation focuses on only the latter.
389	
390	[Table 1 around here]
391	
392	The response variable and covariates are generated on N sample sites whose two

geocoded coordinates are given by two random samples from $N(0, I)^8$. Then, SVC models 393 are fitted to these variables, and β_0 , β_1 and β_2 are estimated iteratively while varying the 394sample size N {50, 150, 400}, the ratio of the spatial dependence component in \mathbf{x}_k , w_s {0.0, 395396 0.4, 0.8}, and the spatial smoothness of the coefficients: β_1 and β_2 ; $(\alpha_1, \alpha_2) = \{(0.5, 1.0), (0.5, 1.0)$ 397 (1.0, 1.0), (2.0, 1.0). In each case, estimations are iterated 200 times. In addition to the RE-ESF-based data generating process (DGP), which can be 398 399 too optimistic for our model, a spatial moving average (SMA)-based DGP is also tested. The latter generates data from the SVC model, Eq.(31), whose spatially varying 400 components, $\mathbf{E}\gamma_k$, are replaced with the SMA process, where $\varepsilon_0 \sim N(\mathbf{0}, \mathbf{I})$ and is a matrix 401 402that row-standardizes $\mathbf{I} + \mathbf{C}(r_k)$. Estimations are iterated 200 times while varying N {50, 150, 400}, w_s {0.0, 0.4, 0.8} and $(r_1, r_2) =$ {(0.5, 1.0), (1.0, 1.0), (2.0, 1.0)}. Unlike RE-403 ESF, which describes a reduced rank spatial process, SMA describes a spatial process 404 405without approximation; the SMA-based simulation is needed to examine the coefficient

⁸ An assumption of N(0, I) implies fewer samples near periphery areas. It is likely for many socioeconomic data including land price data, which typically have fewer samples in suburban areas.

406	estimation accuracy for a non-approximated spatial process. Although we do not discuss
407	it, simulation with GWR-based DGP would be an interesting future topic.
408	These simulations are performed using R version 3.1.1 (https://cran.r-
409	project.org/) on a 64 bit PC whose memory is 48 GB.
410	
411	6.2. Results
412	The estimation accuracy is evaluated by the root mean squared error (RMSE),
413	, (33)
414	where $\beta_{k,i}$ is the <i>i</i> -th element of the true β_k , and is the estimate. Tables 2 and 3 summarize
415	the RMSEs in cases of RE-ESF-based DGP and SMA-based DGP, respectively.
416	
417	[Table 2 around here]
418	[Table 3 around here]
419	
420	When SMA is used for data generation, the estimates of RE-ESF models are

421 more accurate than those of GWR and LCR-GWR for a medium-to-large sample size (N422 = 150 or 400). This tendency is significant if the explanatory variables are spatially 423 dependent (i.e., w_s is large). By contrast, when N = 50, although the RE-ESF is still better 424 than GWR specifications, their gaps are relatively small because RE-ESF relies on an 425 REML estimation, which is less efficient for small samples. On the other hand, if RE-426 ESF is used for data generation, the estimates of RE-ESF models are more accurate than 427 GWR and LCR-GWR across cases.

Even though use of M_X is recommended in Hughes and Haran (2013) and 428 Johnson et al. (2013), among others, ESF_X and RE-ESF_X are worse than ESF and RE-ESF, 429respectively. This is because SVCs estimated by ESF_X and $RE-ESF_X$ are always 430uncorrelated with (centered) X even if true SVCs are strongly correlated with X. The 431result clearly suggests that using models with M_X is not appropriate for SVC estimation. 432Tables 2 and 3 also show the large RMSEs of the ESF coefficients. This may be 433434because ESF does not consider eigenvalues, which act as deflators for coefficients on 435eigenvectors corresponding to small (in absolute value) eigenvalues in our model.

436	Among RE-ESF models with \mathbf{M} , which indicate small RMSEs, the RE-ESF without an
437	approximation and RE-ESF(A1) outperform the opponents in many cases. RE-ESF (A1)
438	would be a good alternative.
439	β_2 conveys relatively minor effects. tends to be small in RE-ESF (A2), which
440	assumes constant α_k s, rather than RE-ESF and RE-ESF (A1), which assume non-constant
441	α_k s, especially when SMA-based DGP is assumed. In other words, the estimation of the
442	coefficient smoothness parameters (α_k s) can fail to capture the spatial variation of the
443	SVCs, accounting for a small portion of variations in y. Nevertheless, the gaps in their
444	RMSEs are marginal, and their RMSEs are smaller than those of the GWR and LCR-
445	GWR.
446	β_1 describes relatively strong impacts. The of RE-ESF and RE-ESF (A1) are
447	smaller than those of RE-ESF (A2). This tendency is substantial when the covariates have
448	strong spatial dependence (i.e., w_s is large). This result suggests that non-uniform
449	smoothness parameters, α_k s, in RE-ESF and RE-ESF (A1) play an important role in
450	appropriately capturing SVCs, accounting for a large portion of variations in y.

451	In each model, RMSE increases in the presence of strong spatial dependence in
452	the covariates, which can confound with spatial dependence in residuals. This result
453	reveals the importance of considering the confounding factor typically ignored in SVC-
454	related studies. Increases in the RMSEs are relatively small in RE-ESF and RE-ESF (A1),
455	including the coefficient smoothness parameter, α_k , which thus might be helpful in
456	mitigating this problem.
457	We then compare mean bias, which is defined as follows:
458	. (34)
459	Table 4 summarizes mean bias estimated in cases with RE-ESF-based DGP and $e_1=2$. In
460	each model, mean biases of β_2 and β_3 are small relative to their true mean values (-2 and
461	0.5). It is verified that estimators of these SVC models are nearly unbiased. While it is
462	suggested that use of \mathbf{M}_X reduces bias in regression coefficients, such a reduction is not
463	conceivable in our result probably because the bias is sufficiently small even if \mathbf{M} is used.
464	

[Table 4 around here]
467	Finally, Table 5 summarizes average computational times. RE-ESF (A2), RE-
468	ESF (A1), and RE-ESF are the first, second and third fastest, respectively. The
469	computational efficiency of RE-ESF does not hold when either the sample size, N , or the
470	number of SVCs, K , is large because RE-ESF requires optimizing the $2K$ parameters
471	simultaneously. Base on Table 5, RE-ESF is slower than GWR if N 5000. Still, RE-ESF
472	(A1), whose coefficient estimates are as accurate as those for RE-ESF, is faster than GWR.
473	Use of RE-ESF (A1), which allows spatial variation only for several focused coefficients,
474	is a sensible option to reduce computational cost. Note that although ESF involves the
475	computing slowest because of the eigenvector selection step, this step can be replaced
476	with computationally more efficient approaches, such as lasso estimation (Seya et al.,
477	2015).
478	
479	[Table 5 around here]

481 **7.** An application to a land price analysis

482	This section empirically compares SVC models. Results show that ESF-based
483	and RE-ESF-based SVC models are robust to multicollinearity, and they furnish
484	reasonable SVC estimates for actual data.
485	

486 7.1. Outline

This section presents an application of GWR, LCR-GWR, the ESF-based SVC model, and the RE-ESF-based SVC model to analyze land price and flood hazard in Ibaraki prefecture, Japan. The western part of Ibaraki was seriously damaged by a river flood in September 2015 (see Figure 1). By December 21, 2015, 54 residences were totally destroyed, 3,752 suffered large-scale partial destruction, and 208 were partially destroyed, while about 10,390 people were in shelters at the peak of the disaster.

496	Our goal here is to assess whether high hazard areas were appropriately
497	recognized as less attractive areas before the flood. To examine this concern, we analyze
498	the relationship between flood hazards and land prices. Specifically, logged officially
499	assessed land prices in 2015 (sample size: 647; see Figure 1 and Table 6) are described
500	using the aforementioned SVC models. The response variables are flood depth (Flood),
501	distance to the nearest railway station in km (Station_D), and railway distance between
502	the nearest station and Tokyo station (Tokyo_D), which is located about 30 km from the
503	southwestern border of Ibaraki. All of these variables measures are available from the
504	National Land Numerical Information download service provided by the Ministry of
505	Land, Infrastructure, Transport and Tourism (http://nlftp.mlit.go.jp/ksj-e/index.html). The
506	VIFs of these variables for an OLS model with all covariates included are 1.09, 1.02 and
507	1.07, respectively. Thus, serious multicollinearity is not present among them. Since the
508	main objective of this analysis is to compare the SVC models, including GWR approaches,
509	which loses degrees of freedom drastically as the number of explanatory variables
510	increases (Griffith, 2008), we restricted the number of explanatory variables to three.

512	[Table 6 around here]
513	
514	This empirical analysis is performed by employing R version 3.1.1 for
515	computation purposes, and ArcGIS version 10.3 (http://www.esri.com/) for visualization.
516	R and ArcGIS were executed on a 64 bit PC whose memory is 48 GB. The 'GWmodel'
517	package in R was used to estimate GWR and LCR-GWR parameters.
518	
519	7.2. Results
520	Hereafter, the vector of the spatially varying intercepts is denoted by β_0 and those
521	of the spatially varying coefficients for Tokyo_D, Station_D, and Flood are denoted by
522	β_{Tk} , β_{St} , and β_{Fl} , respectively.
523	Table 7 summarizes the variance parameters ($\sigma_{k(\gamma)}^2$ and α_k) estimated by RE-ESF.
524	$\sigma_{k(\gamma)}^{2} = 0$ regarding β_{Tk} shows that the impact of <i>Tokyo_D</i> is constant across the target

525	area. ⁹ The positive $\sigma^2_{k(\gamma)}$ values for β_0 , β_{St} , and β_{Fl} suggest that each has spatial variation.
526	
527	[Table 7 around here]
528	
529	The spatial smoothness (or scale) of β_{Fl} is strongly intensified by a large α_k value.
530	In contrast, the spatial smoothness of β_{St} , whose α_k equals zero, is not intensified.
531	Although the bandwidths estimated by GWR and LCR-GWR (1.53 km and 2.77 km,
532	respectively) suggest the existence of local spatial variations in each coefficient; based on
533	the α_k values, bandwidths might actually differ across coefficients. More specifically, the
534	bandwidths of β_{St} , β_{Fl} , and β_{Tk} are likely to be small, moderate and very large, ¹⁰
535	respectively.
536	Figure 2 displays the boxplots of the estimated coefficients. While the boxplots
537	of β_{St} are similar across the models, the variance of β_{Fl} is inflated in GWR, and those of
538	β_0 and β_{Tk} are highly inflated in GWR and LCR-GWR. For example, while logged land

⁹ The variance becomes zero even when we apply RE-ESF (A1).
¹⁰ The coefficients of GWR are constant when the bandwidth is extremely large.

539	prices take values between 8.57 and 12.58, β_0 estimated by GWR ranges between -5.76
540	and 26.15.
541	
542	[Figure 2 around here]
543	
544	The variance inflation might be because GWR and LCR-GWR rely on local
545	estimations. Because Tokyo_D has a global map pattern, its variations tend to be small in
546	each local subsample. As a result, GWR might fail to differentiate influences from
547	Tokyo_D, with small variations, and intercepts with no variation. Wheeler (2010) also
548	reports a similar problem. Although Fotheringham and Oshan (2016) report the
549	robustness of GWR to multicollinearity, it might not be true when explanatory variables
550	have global map patterns. Because ESF and RE-ESF consider all samples in their
551	estimation, their coefficients are more stable, even if some of the covariates have global
552	patterns. Interestingly, the boxplots of the ESF coefficients are similar to those of the RE-
553	ESF coefficients.

554	Although the variance of β_{Fl} in GWR also is inflated, it is moderated for LCR-
555	GWR. Effectiveness of the regularized GWR approach is verified. ESF and RE-ESF also
556	provide stable coefficient estimates.
557	Table 8 summarizes correlation coefficients among SVCs. β_0 and β_{Tk} have strong
558	negative correlations for the GWR and LCR-GWR. The greater variations of β_0 and β_{Tk} ,
559	portrayed in Figure 2, are attributable to their multicollinearity. By contrast, correlation
560	coefficients for the ESF and RE-ESF models are reasonably small, and no serious
561	multicollinearity was found. The result is consistent with a suggestion by Griffith (2008)
562	that the ESF-based specification is robust to multicollinearity.
563	
564	[Table 8 around here]
565	
566	Figure 3 plots the estimated coefficients. In each model, the estimated β_0
567	demonstrates greater land prices in the nearby Tokyo area and around Mito city, which is
568	the prefectural capital. The spatial distributions of β_{St} suggest that land prices decline

569	rapidly as distance to the nearest station increases in nearby station areas, whereas this
570	reduction is moderated in suburban areas. The estimated β_0 and β_{St} are similar across
571	models.
572	
573	[Figure 3 around here]
574	
575	Consistent with the expected negative sign of β_{Tk} , 643/648 of its elements for
576	ESF, and all of its elements for RE-ESF are negative. In contrast, 465/648 and 10/648
577	elements are positive in the GWR and LCR-GWR, respectively, probably because of the
578	variance inflation previously discussed. Another notable difference is that RE-ESF β_{Tk}
579	estimates have no spatial variation (i.e., $\sigma_{k}^{2}(\gamma) = 0$), whereas the other β_{Tk} estimates that
580	have significant spatial variation.
581	The elements of β_{FI} are negative if flood-prone areas have lower land prices. β_{FI}
582	obtained from RE-ESF displays a smoother map pattern than for the other models because

583 of the large α_k value (3.02). The β_{Fl} for RE-ESF is negative around Mito, where high

584	hazard areas are appropriately recognized as less attractive. In contrast, β_{Fl} is positive in
585	the western area, including the area flooded in September 2015. In other words, high
586	hazard areas are recognized as attractive areas. This result implies that benefits of rivers
587	(e.g., natural environment, landscape) are emphasized more than flood hazard. This
588	situation may have increased the resulting damage from the 2015 flood. In contrast, the
589	β_{Fl} estimated by the other models takes both positive and negative values in the flooded
590	area.
591	Finally, Table 9 summarizes the computational times. For reference, the
592	computational time of RE-ESF (A1) also is calculated and included. This table shows that
593	RE-ESF is computationally more efficient than LCR-GWR and ESF in the case of $N =$
594	647 and three covariates. Furthermore, computation of estimates for RE-ESF (A1) is more
595	than three times faster than for GWR in this case. Of note is that GWR calculations are
596	faster than RE-ESF(A1) if sample size is large. This timing difference is because of the
597	requirement of an eigen-decomposition.

599	[Table 9 around here]
600	
601	In summary, we empirically verified that each SVC model can provide different
602	results, and that the estimates of RE-ESF seem reliable (i.e., interpretable and displaying
603	smaller variance).
604	
605	8. Concluding remarks
606	This study proposes an RE-ESF-based SVC model whose coefficients are
607	interpretable based on the MC. A simulation analysis and an empirical analysis involving
608	land prices suggest advantages of our model in terms of estimation accuracy,
609	computational time, and interpretability of coefficient estimates.
610	Unlike GWR models and the typical B-SVC model, RE-ESF estimates the
611	smoothness of each SVC in a computationally efficient manner. Although coefficient
612	smoothness parameters also can be introduced into the B-SVC model, their estimation is
613	computationally prohibitive. Thus, our approach is useful as a flexible and relatively

614	simple procedure. Meanwhile, computationally efficient and flexible alternatives,
615	including the integrated nested Laplace approximation (INLA: Rue et al., 2009)-based
616	SVC model (Congdon, 2014), have been proposed recently. Therefore, the comparison of
617	our model with these is therefore an important future research topic.
618	Another remaining issue is to compare our model with other SVC models from
619	the viewpoint of statistical inference for the β_k s. We also need to examine the validity of
620	our model in cases with many covariates for which multicollinearity among SVCs can be
621	serious. Furthermore, extension of our model to a wide range of applications would be an
622	interesting next step. These extensions might include change of support problems (e.g.,
623	Murakami and Tsutsumi, 2012; 2015), interaction data modeling (Chun and Griffith,
624	2011), non-Gaussian data modeling (Fotheringham et al., 2002; Nakaya et al., 2005;
625	Griffith, 2011), multilevel modeling (e.g., Dong et al., 2016), spatiotemporal data
626	modeling (Fotheringham et al., 2015; Huang et al., 2010; Griffith, 2012).

628 Acknowledgements

629	This work was supported by Grants-in-Aid for Scientific Research from JSPS
630	(Research Project Number: 15H04054). We thank Professor Morito Tsutsumi (University
631	of Tsukuba) and Professor Takahisa Yokoi (Tohoku University) for their suggestive
632	advices.

633	Appendix 1: Relationship between the RE-ESF model and the geostatistical model.
634	The standard Gaussian process model is formulated as follows:
635	, , (A1)
636	where \mathbf{X}_{-1} is a (<i>K</i> -1) × <i>N</i> matrix of explanatory variables without intercept term (i.e., \mathbf{X} =
637	[1, X ₋₁]), β_{-1} is a (<i>K</i> -1)×1 vector of regression coefficients, and β_0 is a parameter. e can
638	be expanded as follows:
639	
640	, , (A2)
641	where is the mean of e. Murakami and Griffith (2015) reveals the following
642	relationship:
643	, (A3)
644	where $\mathbf{I}(\lambda_l \neq 0)$ is a $N \times N$ diagonal matrix whose <i>l</i> -th entry is 1 if $\lambda_l \neq 0$, and 0 otherwise.
645	Eq.(A3) becomes $\mathbf{E}(\delta^2 \mathbf{\Lambda} + \tau^2 \mathbf{I}_L)\mathbf{E}' = \delta^2 \mathbf{E} \mathbf{\Lambda} \mathbf{E}' + \tau^2 \mathbf{I}$ after reducing eigen-functions
646	corresponding to . Thus, Me with the rank reduction, Me_{red} , behaves as
647	, (A4)

648 which equals

649	, , . (A5
650	By substituting Eq.(A5) into Me in Eq.(A2), Eq.(A1) yields
651	,
652	, (A6
653	where $\boldsymbol{\beta} = [\beta_0 +, \beta_{-1}]'$. Thus, our model, which is identical with Eq.(A6), is a low ran
654	approximation of Eq.(A1). Similar discussion holds even if M_X is used (see, Murakam
655	and Griffith, 2015).

656	Ref	erences
657	1)	Anselin L (1988) Spatial Econometrics, Methods and Models. Kluwer Academic,
658		Dordrecht.
659	2)	Anselin L and Rey S (1991) Properties of tests for spatial dependence in linear
660		regression models. Geographical Analysis 23(2): 112–131.
661	3)	Assunçao, R. M. (2003). Space varying coefficient models for small area data.
662		Environmetrics, 14(5), 453-473.
663	4)	Austin M (2007) Species distribution models and ecological theory: a critical
664		assessment and some possible new approaches. <i>Ecological Modeling</i> 200(1–2): 1–
665		19.
666	5)	Bates DM (2010) lme4: Mixed-effects modeling with R. http://lme4.r-forge.r-
667		project.org/book.
668	6)	Bivand R., Yu D, Nakaya T and Garcia-Lopez M-A (2006) Package 'spgwr'.
669		https://cran.r-project.org/web/packages/spgwr/spgwr.pdf.
670	7)	Bitter C, Mulligan GF and Dall'erba S (2007) Incorporating spatial variation in

671		housing attribute prices: a comparison of geographically weighted regression and the
672		spatial expansion method. Journal of Geographical Systems 9(1): 7–27.
673	8)	Blangiardo, M., & Cameletti, M. (2015). Spatial and spatio-temporal Bayesian
674		models with R-INLA. John Wiley & Sons.
675	9)	Chun Y (2014) Analyzing space-time crime incidents using eigenvector spatial
676		filtering: an application to vehicle burglary. <i>Geographical Analysis</i> 46(2): 165–184.
677	10)	Chun Y and Griffith DA (2011) Modeling network autocorrelation in space-time
678		migration flow data: an eigenvector spatial filtering approach. Annals of the
679		Association of American Geographers 101(3): 523–536.
680	11)	Chun Y and Griffith DA (2014) A quality assessment of eigenvector spatial filtering
681		based parameter estimates for the normal probability model. Spatial Statistics, 10, 1–
682		11.
683	12)	Chun Y, Griffith DA, Lee M and Sinha P (2016) Eigenvector selection with stepwise

regression techniques to construct eigenvector spatial filters. *Journal of Geographical Systems*. 18 (1): 67–85.

- 14) Cressie N and Wikle CK (2011) *Statistics for spatio-temporal data*. New York: John
- 688 Wiley & Sons.
- 689 15) Dong G, Ma J, Harris R and Pryce G (2016) Spatial random slope multilevel
- 690 modeling using multivariate conditional autoregressive models: A case study of
- 691 subjective travel satisfaction in Beijing. Annals of the American Association of
- 692 *Geographers* 106(1): 19–35.
- 16) Dray S, Legendre P and Peres–Neto PR (2006) Spatial modelling: a comprehensive
- 694 framework for principal coordinate analysis of neighbour matrices (PCNM).
- 695 *Ecological Modeling* 196(3–4): 483–493.
- 17) Fan J (1993) Local linear regression smoothers and their minimax efficiencies. The
- 697 *Annals of Statistics*, 21(1): 196–216.
- 18) Farber S and Páez A (2007) A systematic investigation of cross-validation in GWR
- 699 model estimation: empirical analysis and Monte Carlo simulations. Journal of
- 700 *Geographical Systems*, 9(4): 371–396.

- ecological data with non-stationary and anisotropic residual dependence. *Methods in*
- 703 *Ecology and Evolution* 2(2): 143–154.
- 20) Fotheringham AS, Brunsdon C and Charlton M (2002) Geographically weighted
- regression: the analysis of spatially varying relationships. Chichester, UK: John
- Wiley & Sons.
- 21) Fotheringham AS, Crespo R and Yao J (2015) Geographical and Temporal Weighted
- Regression (GTWR). *Geographical Analysis* 47(4): 431–452.
- 22) Fotheringham AS and Oshan TM (2016) Geographically weighted regression and
- multicollinearity: Dispelling the myth. *Journal of Geographical Systems* 18(4): 303–
 329.
- 712 23) Gamerman D, Moreira AR, and Rue H (2003) Space-varying regression models:
- specifications and simulation. *Computational Statistics and Data Analysis*, 42(3):
- **513–533**.
- 715 24) Geary RC (1954) The contiguity ratio and statistical mapping. The incorporated

statistician 5(3): 115–146.

717	25)	Gelfand AE,	Kim HJ,	Sirmans	CF an	d Banerjee	S	(2003)	Spatial	modeling	with
-----	-----	-------------	---------	---------	-------	------------	---	--------	---------	----------	------

- spatially varying coefficient processes. *Journal of the American Statistical Association* 98(462): 378–396.
- 26) Gollini I, Lu B, Charlton M, Brunsdon C and Harris P (2015) GWmodel: an R
- package for exploring spatial heterogeneity using geographically weighted models.
- *Journal of Statistical Software* 63: 17.
- 723 27) Gomez-Rubio V, Bivand RS and Rue H (2014) Spatial models using Laplace
- approximation methods. In: Fischer MM and Nijkamp P (eds). *Handbook of Regional*
- 725 *Science*. Berlin, Springer.
- 726 28) Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining
 727 understanding through theory and scientific visualization. Berlin: Springer.
- 728 29) Griffith DA (2008) Spatial-filtering-based contributions to a critique of
- geographically weighted regression (GWR). *Environment and Planning A* 40(11):
- 730 2751–2769.

731	30) Griffith	DA	(2011)	Positive	spatial	autocorrelation	impacts	on	attribute	variabl	e
-----	--------------	----	--------	----------	---------	-----------------	---------	----	-----------	---------	---

- frequency distributions. *Chilean Journal of Statistics* 2(2): 3–28.
- 31) Griffith DA (2012) Space, time, and space-time eigenvector filter specifications that
- account for autocorrelation. *Estadística española* 54(177): 7–34.
- 735 32) Griffith DA and Chun Y (2014) Spatial autocorrelation and spatial filtering. In:
- Fischer MM and Nijkamp P (eds) *Handbook of Regional Science*. Berlin: Springer,
 pp.1435–1459.
- 738 33) Griffith DA and Chun Y (2016) Evaluating eigenvector spatial filter corrections for

omitted georeferenced variables. *Econometrics*, 4(2), 29.

- 740 34) Griffith DA and Paelinck JHP (2011) Non-standard spatial statistics and spatial
- 741 *econometrics*. Berlin: Springer.
- 35) Griffith DA and Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of
- eigenfunction spatial analyses in exploiting relative location information. *Ecology*
- 744 87(10): 2603–2613.
- 745 36) Harris R, Singleton A, Grose D, Brunsdon C and Longley P (2010) Grid-enabling

- geographically weighted regression: A case study of participation in higher education
- in England. *Transactions in GIS*. 14 (1): 43–61.
- 748 37) Helbich, M and Griffith DA (2016) Spatially varying coefficient models in real estate:
- Eigenvector spatial filtering and alternative approaches. *Computers, Environment*
- *and Urban Systems*, 57, 1–11.
- 751 38) Hu M, Li Z, Wang J, Jia L, Lian Y et al. (2012) Determinants of the incidence of
- hand, foot and mouth disease in China using geographically weighted regression
 models. *Plos One* 7(6): e38978.
- 754 39) Huang B, Wu B and Barry M (2010) Geographically and temporally weighted
- regression for modeling spatio-temporal variation in house prices. International
- *Journal of Geographical Information Science* 24(3): 383–401.
- 40) Hughes J and Haran M (2013) Dimension reduction and alleviation of confounding
- for spatial generalized linear mixed models. *Journal of the Royal Statistical Society:*
- 759 Series B (Statistical Methodology) 75(1): 139–159.
- 41) Johnson DS, Conn PB, Hooten MB, Ray JC and Pond BA (2013) Spatial occupancy

models for large data sets. *Ecology*. 94 (4): 801–808.

- 42) Lee D and Sarran C (2015) Controlling for unmeasured confounding and spatial
 misalignment in long-term air pollution and health studies. *Environmetrics*. 26 (7):
 477–487.
- 43) Legendre P and Legendre L (2012) *Numerical Ecology (Third Edition)*. Amsterdam:
- Elsevier.
- 44) Lu B, Harris P, Charlton M and Brunsdon C (2015) Calibrating a geographically
- weighted regression model with parameter-specific distance metrics. *Procedia*
- *Environmental Sciences*, 26, 109–114.
- 45) Margaretic P, Thomas–Agnan C, Doucet R and Villotta Q (2015) Spatial dependence
- in (origin-destination) air passenger flows. Papers in Regional Science. DOI:
- 772 10.1111/pirs.12189.
- 46) Murakami D and Griffith DA (2015) Random effects specifications in eigenvector
- spatial filtering: a simulation study. *Journal of Geographical Systems* 17(4): 311–331.
- 47) Murakami D and Tsutsumi M (2012) Practical spatial statistics for areal interpolation.

Environment and Planning B: Planning and Design, 39(6): 1016–1033.

- 48) Murakami D and Tsutsumi M (2015) Area-to-point parameter estimation with
 geographically weighted regression. *Journal of Geographical Systems* 17(3): 207–
 225.
- 49) Nakaya T, Fotheringham AS, Charlton M and Brunsdon C (2005) Geographically
- weighted Poisson regression for disease associative mapping. *Statistics in Medicine*24(17): 2695–2717.
- 50) Páez A, Farber S and Wheeler DC (2011) A simulation–based study of geographically
- weighted regression as a method for investigating spatially varying relationships.
- *Environment and Planning A* 43(12): 2992–3010.
- 51) Rue H, Martino S and Chopin N (2009) Approximate Bayesian inference for latent
- Gaussian models by using integrated nested Laplace approximations. *Journal of the*
- royal statistical society: Series b (statistical methodology), 71(2): 319–392.
- 52) Stone CJ (1980) Optimal rates of convergence for nonparametric estimators. The
- 790 *Annals of Statistics*, 8(6): 1348–1360.

791	53) Seya H, Murakami D,	Tsutsumi M and Yamagata Y	(2015) Application of LASSO to

- the eigenvector selection problem in eigenvector based spatial filtering. *Geographical Analysis* 47(3): 284–299.
- 54) Tiefelsdorf M and Griffith DA (2007) Semiparametric filtering of spatial
- autocorrelation: the eigenvector approach. *Environment and Planning A* 39(5): 1193.
- 55) Wang Q, Ni J and Tenhunen J (2005) Application of a geographically-weighted
- regression analysis to estimate net primary production of Chinese forest ecosystems.
- Global Ecology and Biogeography 14(4): 379–393.
- 56) Wheeler DC (2007) Diagnostic tools and a remedial method for collinearity in
- geographically weighted regression. *Environment and Planning A* 39(10): 2464–
 2481.
- 57) Wheeler DC (2009) Simultaneous coefficient penalization and model selection in
- 803 geographically weighted regression: the geographically weighted lasso. *Environment*
- 804 *and Planning A* 41(3): 722–742.
- 805 58) Wheeler DC (2010) Visualizing and diagnosing coefficients from geographically

806	weighted re	egression. In	n: Jiang B and	Yao X (eds) Ge	eospatial Analy	sis and Modeling
	0	0	0		1 2	

- 807 *of Urban Structure and Dynamics*, Springer.
- 808 59) Wheeler DC and Calder CA (2007) An assessment of coefficient accuracy in linear
- 809 regression models with spatially varying coefficients. Journal of Geographical
- 810 *Systems* 9(2): 145–166.
- 811 60) Wheeler DC and Páez A (2009). Geographically Weighted Regression. In: Fischer
- 812 MM and Getis A (eds) Handbook of Applied Spatial Analysis: Software Tools,
- 813 *Methods and Applications*. Berlin: Springer, pp.461–484.
- 61) Wheeler DC and Tiefelsdorf M (2005) Multicollinearity and correlation among local
- 815 regression coefficients in geographically weighted regression. *Journal of*
- 816 *Geographical Systems* 7(2): 161–187.
- 62) Wheeler DC and Waller L (2009) Comparing spatially varying coefficient models: a
- case study examining violent crime rates and their relationships to alcohol outlets and
- 819 illegal drug arrests. *Journal of Geographical Systems* 11(1): 1–22.
- 820 63) Wheeler DC (2013) Package 'gwrr'. https://cran.r-

821 project.org/web/packages/gwrr/gwrr.pdf.

- 822 64) Yang W, Fotheringham AS and Harris P (2014) An extension of geographically
- 823 weighted regression with flexible bandwidths. Proceedings of GISRUK 20th Annual
- 824 Conference.

Study	Model for SVC generation	Spatial dependence in X	Multi- collinearity in X	Model						
Farber and Paez (2007)	Trend surface			GWR						
Wheeler and Calder (2007)	Gaussian process and trend surface		×	GWR and B-SVC						
Finley et al. (2009)	Gaussian process									
Paez et al. (2010)	Spatial eigenvector (e _l)									
Fotheringham and Oshan (2016)	SMA with white noise	_	×	GWR						
Our study	RE-ESF (Ey) and SMA	×		GWR, ESF, and RE-ESF						

Table 1. Summary of SVC-related simulation studies

N	Coef.	r_1	Ws	GWR	LCR-	ESF	RE-ESF	RE-ESF	RE-ESF	ESF_X	$RE-ESF_x$
					GWR			(A1)	(A2)		
			0.0	1.70	1.69	1.43	1.16	1.15	1.58	1.62	1.41
		0.5	0.4	1.99	1.97	2.01	1.51	1.52	2.11	2.28	1.90
	ß,		0.8	2.46	2.32	2.70	1.77	1.76	2.47	2.87	2.35
	\mathbf{P}_1	2.0	0.0	1.33	1.34	1.31	0.89	0.90	1.53	1.51	1.11
			0.4	1.62	1.63	1.82	1.19	1.20	1.87	2.09	1.64
50			0.8	2.26	2.18	2.62	1.65	1.66	2.36	3.03	2.36
50			0.0	1.15	1.11	1.34	0.94	0.92	0.91	1.37	0.94
		0.5	0.4	1.30	1.28	1.91	1.14	1.13	1.10	1.98	1.22
	0		0.8	2.00	1.86	2.46	1.29	1.32	1.34	2.42	1.54
	β_2		0.0	0.97	0.94	1.24	0.82	0.81	0.81	1.29	0.87
		2.0	0.4	1.34	1.32	1.88	1.09	1.07	1.06	1.92	1.18
			0.8	1.74	1.62	2.31	1.28	1.28	1.23	2.32	1.51
			0.0	1.36	1.37	1.08	0.86	0.87	1.33	1.15	0.97
		0.5	0.4	1.64	1.63	1.55	1.17	1.18	1.72	1.74	1.41
	0		0.8	2.10	2.07	2.38	1.45	1.45	2.21	2.55	1.86
	$\boldsymbol{\beta}_1$		0.0	1.02	1.02	0.91	0.62	0.61	0.86	1.01	0.71
		2.0	0.4	1.25	1.25	1.42	0.90	0.89	1.19	1.55	1.11
150			0.8	1.56	1.55	2.13	1.08	1.08	1.41	2.37	1.58
150			0.0	0.91	0.87	1.02	0.61	0.61	0.65	1.03	0.65
		0.5	0.4	1.11	1.08	1.42	0.82	0.81	0.82	1.49	0.89
	ß.		0.8	1.65	1.58	2.12	1.00	0.99	1.08	2.13	1.13
	\mathbf{p}_2	2.0	0.0	0.78	0.77	0.96	0.63	0.63	0.62	1.00	0.65
			0.4	0.96	0.95	1.39	0.79	0.79	0.76	1.43	0.83
			0.8	1.30	1.27	2.03	0.93	0.93	0.94	2.00	1.10
			0.0	1.22	1.22	0.85	0.72	0.72	1.20	0.88	0.76
		0.5	0.4	1.47	1.46	1.27	1.00	1.00	1.55	1.38	1.13
	ß,		0.8	1.85	1.79	1.94	1.20	1.20	1.75	2.10	1.48
	\mathbf{h}_1		0.0	0.80	0.79	0.77	0.48	0.48	0.54	0.81	0.53
		2.0	0.4	0.98	0.97	1.16	0.65	0.65	0.76	1.23	0.79
400			0.8	1.23	1.21	1.71	0.78	0.78	0.92	1.87	1.11
400			0.0	0.83	0.79	0.81	0.51	0.51	0.54	0.82	0.52
		0.5	0.4	0.99	0.97	1.16	0.65	0.65	0.68	1.18	0.69
	ßa		0.8	1.46	1.35	1.73	0.77	0.77	0.82	1.79	0.88
	P2		0.0	0.64	0.63	0.78	0.48	0.48	0.48	0.80	0.49
		2.0	0.4	0.79	0.79	1.15	0.63	0.63	0.62	1.16	0.66
			0.8	1.03	1.00	1.64	0.73	0.73	0.71	1.72	0.81

Table 2. RMSEs of the estimated coefficients (DGP: RE-ESF)

Note: w_s intensifies the spatial dependence in **X**; r_1 determines the spatial scale of β_1 . Dark gray denotes the minimum RMSE in each case, and light gray denotes the second minimum RMSE.

N	Coef	r 1	142	GWR	LCR-	ESE	RE-ESE	RE-ESF	RE-ESF	ESE,	RE-ESE
1 V	COEI.	/1	WV S	OWK	GWR	LOL	KE-ESI	(A1)	(A2)	LSIX	KE-ESI-X
			0.0	2.32	2.32	2.65	2.23	2.25	2.58	2.73	2.37
		0.5	0.4	2.45	2.45	3.12	2.40	2.40	2.70	3.20	2.74
	Ø		0.8	2.83	2.78	4.06	2.63	2.64	3.05	3.83	2.96
	\mathbf{p}_1		0.0	2.43	2.44	2.87	2.44	2.46	2.66	2.84	2.48
		2.0	0.4	2.56	2.56	3.35	2.59	2.60	2.80	3.34	2.77
50			0.8	2.71	2.68	4.07	2.68	2.71	2.96	3.91	3.11
			0.0	1.13	1.12	1.92	1.11	1.14	1.12	1.80	1.12
		0.5	0.4	1.25	1.24	2.49	1.23	1.26	1.18	2.25	1.32
	0		0.8	1.57	1.53	3.42	1.48	1.52	1.42	3.00	1.56
	β_2		0.0	1.09	1.09	1.94	1.12	1.14	1.12	1.84	1.14
		2.0	0.4	1.22	1.22	2.58	1.26	1.29	1.18	2.64	1.36
			0.8	1.40	1.36	3.35	1.37	1.39	1.30	2.66	1.42
			0.0	1.87	1.87	2.00	1.77	1.78	1.99	1.98	1.75
		0.5	0.4	2.04	2.04	2.40	1.92	1.93	2.23	2.62	2.15
	0		0.8	2.44	2.41	3.63	2.11	2.13	2.75	3.69	2.69
	$\mathbf{\beta}_1$		0.0	1.75	1.76	2.05	1.75	1.76	1.91	2.08	1.82
		2.0	0.4	1.85	1.85	2.28	1.81	1.81	2.03	2.54	2.06
150			0.8	2.15	2.15	3.33	1.98	2.00	2.51	3.49	2.75
150			0.0	0.88	0.87	1.33	0.80	0.81	0.78	1.35	0.82
		0.5	0.4	1.05	1.04	1.84	0.95	0.96	0.91	1.90	1.03
	ßa		0.8	1.49	1.44	3.24	1.20	1.23	1.24	3.07	1.51
	\mathbf{P}^2	2.0	0.0	0.81	0.81	1.29	0.80	0.80	0.79	1.34	0.79
			0.4	0.94	0.93	1.70	0.93	0.93	0.88	1.84	1.05
			0.8	1.27	1.27	2.86	1.10	1.12	1.16	2.55	1.34
			0.0	1.44	1.45	1.53	1.36	1.36	1.55	1.54	1.39
		0.5	0.4	1.63	1.61	1.85	1.49	1.49	1.76	2.09	1.75
	B 1		0.8	2.25	2.15	3.21	1.74	1.75	2.31	3.29	2.35
	P		0.0	1.23	1.24	1.40	1.20	1.19	1.25	1.44	1.21
		2.0	0.4	1.37	1.37	1.71	1.31	1.31	1.42	2.12	1.71
400			0.8	1.72	1.71	2.63	1.46	1.46	1.90	3.16	2.45
		~ ~	0.0	0.75	0.74	1.01	0.58	0.59	0.59	1.06	0.62
		0.5	0.4	0.92	0.90	1.40	0.71	0.71	0.68	1.50	0.84
	B ₂		0.8	1.51	1.43	2.84	0.99	0.99	1.03	2.55	1.22
	• -	•	0.0	0.61	0.61	0.93	0.55	0.56	0.55	0.96	0.57
		2.0	0.4	0.79	0.79	1.32	0.69	0.70	0.67	1.54	0.86
			0.8	1.28	1.26	2.41	0.92	0.93	0.95	2.35	1.21

Table 3. RMSEs of the estimated coefficients (DGP: SMA)

Note: See Table 2.

N	Coef.	Ws	GWR	LCR- GWR	ESF	RE-ESF	RE-ESF (A1)	RE-ESF (A2)	ESF _X	RE-ESF _x
		0.0	0.03	0.06	0.02	0.04	0.04	0.02	0.06	0.05
50	$\boldsymbol{\beta}_1$	0.4	-0.02	0.01	0.04	0.04	0.05	0.00	0.09	0.08
		0.8	0.11	0.21	0.05	0.06	0.04	0.01	0.27	0.22
		0.0	-0.03	-0.04	0.01	0.00	0.01	-0.04	0.02	0.00
	β ₂	0.4	0.04	0.03	0.07	0.05	0.05	0.04	0.09	0.09
		0.8	0.02	-0.01	0.01	-0.02	0.01	0.07	0.01	-0.07
		0.0	0.01	0.04	0.00	0.00	0.00	0.00	-0.01	0.00
	β_1	0.4	-0.01	0.00	-0.02	0.00	0.01	0.03	0.01	0.02
150		0.8	-0.01	0.02	-0.07	0.01	0.00	0.04	-0.02	0.04
150		0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	β_2	0.4	-0.04	-0.04	-0.05	-0.03	-0.02	-0.02	-0.05	-0.02
		0.8	0.04	0.04	0.08	0.07	0.07	0.04	0.06	0.06
		0.0	-0.01	0.00	-0.02	-0.02	-0.02	-0.02	-0.03	-0.02
	β_1	0.4	-0.06	-0.05	-0.04	-0.04	-0.04	-0.04	-0.05	-0.05
400		0.8	-0.06	-0.04	0.00	-0.03	-0.03	-0.04	-0.03	-0.04
400		0.0	-0.01	-0.01	0.00	0.00	0.00	0.00	0.00	0.00
	β_2	0.4	0.00	-0.01	0.00	0.00	-0.01	0.00	-0.02	-0.01
	-	0.8	-0.05	-0.06	0.05	-0.04	-0.03	-0.05	-0.01	-0.04

Table 4. Bias of the estimated coefficients ($r_1 = 2$; DGP: SMA)

Note: w_s intensifies the spatial dependence in **X**. Dark gray denotes the minimum bias in each case and light gray denotes the second minimum bias.

Ν	GWR	LCR-GWR	ESF	RE-ESF	RE-ESF (A1)	RE-ESF (A2)
50	0.30	0.80	0.82	0.20	0.10	0.10
150	2.05	3.88	5.15	0.79	0.39	0.35
400	13.18	20.40	32.39	5.04	2.49	2.12
1,000	79.00	115.21	275.48	24.40	15.81	12.78
2,000	326.42	495.61	2056.01	75.33	122.06	65.96
5,000	1984.99	3465.37	56324.66	2241.90	1110.97	883.26

Table 5. Mean computational time in seconds (DGP: RE-ESF; $r_1 = 2$; $r_2 = 1$).

Note: Because computational times were very similar across iterations, regarding cases with $N = \{1,000, 2,000, 5000\}$, we performed five replicates, and averaged the resulting five computational times.

Statistics	Value			
Mean	35.68			
Median	29.50			
Standard error	27.14			
Maximum	290.00			
Minimum	5.28			
Sample size	647			

Table 6. Summary statistics for land prices $(100 \text{ JPY}/\text{m}^2)$.

 $\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline & \pmb{\beta}_{0} & \pmb{\beta}_{Tk} & \pmb{\beta}_{St} & \pmb{\beta}_{Fl} \\ \hline \sigma^{2}_{k\,(\gamma)} & 1.71 & 0.00 & 0.35 & 0.61 \\ \hline \alpha_{k} & 0.27 & \text{N.A.}^{1)} & 0.00 & 3.02 \\ \hline \end{array}$

Table 7. Estimates of the variance parameters in RE-ESF: $\sigma_{k(\gamma)}^2$ controls the variance of

each coefficient, and α_k controls the spatial scale of their variations.

¹⁾ Because β_{St} lacks spatial variation (i.e., $\sigma_{k(\gamma)}^2 = 0.00$), α_k for β_{St} is undefined.

		GWR				L	CR-GWF	ĸ	
	β 0	$\boldsymbol{\beta}_{Tk}$	$\boldsymbol{\beta}_{St}$	$\beta_{\rm Fl}$		βο	$\boldsymbol{\beta}_{Tk}$	$\boldsymbol{\beta}_{St}$	$\beta_{\rm Fl}$
βο		-0.87	-0.27	0.03	βο		-0.74	-0.45	-0.18
$\boldsymbol{\beta}_{Tk}$			0.23	-0.03	$\boldsymbol{\beta}_{Tk}$			0.24	0.26
β_{St}				-0.08	β_{St}				0.34
		ESF					RE-ESF		
	βο	$\boldsymbol{\beta}_{\mathrm{Tk}}$	β_{St}	$\beta_{\rm Fl}$		βο	$\boldsymbol{\beta}_{Tk}$	$\boldsymbol{\beta}_{St}$	$\beta_{\rm Fl}$
βο		0.01	-0.44	0.08	βο		NA ¹⁾	-0.41	-0.29
$\boldsymbol{\beta}_{Tk}$			-0.24	-0.23	$\boldsymbol{\beta}_{Tk}$			NA	NA
β_{St}				-0.01	$\boldsymbol{\beta}_{\mathrm{St}}$				-0.10

 Table 8. Correlation coefficients among SVCs.

¹⁾ Regarding RE-ESF, correlation coefficients between β_{Tk} and other coefficients cannot be calculated because it lacks spatial variations (i.e., $\sigma_{k}^{2}(\gamma) = 0$).

 Table 9. Computational time in seconds.

GWR	LCR-GWR	ESF	RE-ESF	RE-ESF (A1)
36.2	62.3	107	51.7	11.8

Figure 1. Anticipated flood depth (left) and officially assessed land prices in 2015 (right) in the Ibaraki prefecture.

Figure 2. Boxplots of the estimated spatially varying coefficients.

Figure 3. Spatial plots of the estimated coefficients. In each legend, positive values are denoted by bold text.

Figure 3. Spatial plots of the estimated coefficients (continued). In each legend, positive values are denoted by bold text.