
Kobe University Repository : Kernel

PDF issue: 2025-02-22

Network models of financial systemic risk: a
review

(Citation)
Journal of Computational Social Science,1(1):81-104

(Issue Date)
2018-01

(Resource Type)
journal article

(Version)
Version of Record

(Rights)
© The Author(s) 2017.
This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided you give…
appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.(URL)
https://hdl.handle.net/20.500.14094/90005005

Caccioli, Fabio
Barucca, Paolo
Kobayashi, Teruyoshi



SURVEY ARTICLE

Network models of financial systemic risk: a review

Fabio Caccioli1,2,3 • Paolo Barucca4,5 • Teruyoshi Kobayashi6

Received: 31 October 2017 / Accepted: 9 November 2017 / Published online: 21 November 2017

� The Author(s) 2017. This article is an open access publication

Abstract The global financial system can be represented as a large complex net-

work in which banks, hedge funds and other financial institutions are interconnected

to each other through visible and invisible financial linkages. Recently, a lot of

attention has been paid to the understanding of the mechanisms that can lead to a

breakdown of this network. This can happen when the existing financial links turn

from being a means of risk diversification to channels for the propagation of risk

across financial institutions. In this review article, we summarize recent develop-

ments in the modeling of financial systemic risk. We focus, in particular, on network

approaches, such as models of default cascades due to bilateral exposures or to

overlapping portfolios, and we also report on recent findings on the empirical

structure of interbank networks. The current review provides a landscape of the

newly arising interdisciplinary field lying at the intersection of several disciplines,

such as network science, physics, engineering, economics, and ecology.
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Introduction

Since the global financial crisis of 2008–2009, many studies on financial systemic

risk have been accumulated to date. One of the most distinctive features of this

newly arising field is its interdisciplinary nature, with researchers having

backgrounds in economics and finance, statistical physics, ecology, engineering,

applied mathematics, etc., [1–3]. The study of financial systemic risk has attracted

such a diversity of disciplines because financial markets are complex systems, and

the study of complex systems has traditionally been an interdisciplinary field.

In the financial market there is a wide variety of market participants, such as

commercial banks, insurance companies, hedge funds, individual investors, and

central banks. These participants are interacting with each other by selling and

buying financial assets, creating complex webs of financial liabilities, cross-asset

holdings, and correlations in asset returns. Financial systemic risk is, loosely

speaking, the risk associated with the occurrence of a breakdown of the financial

system. Looking at systemic risk from the point of view of complex systems means

thinking of it as emerging from the interactions between different players that

operate in the financial market. Moreover, individual participants react to the

aggregate dynamics of the market that they collectively create, so that to understand

systemic risk, the feedback loop between individual and collective dynamics has to

be accounted for. A key to understanding systemic risk is thus to uncover the

mechanisms that lie behind the micro–macro feedback. Because of the fact that

many interactions that take place in financial markets can be represented as a

network of financial linkages between institutions, a significant fraction of research

in systemic risk has been devoted to the study of financial networks [4, 5], which is

the focus of this short review.

In this article, we provide a review of recent studies on financial systemic risk.

Here, we focus on network models of financial markets that has been developed

outside traditional economics, although there are also many studies of systemic risk

in the literature of economics whose approaches are typically based on game theory,

finance and macroeconomic modeling. An advantage of modeling the financial

system as a complex network is that we can directly analyze complex feedback

between micro- and macroscopic phenomena without oversimplifying the structure

of financial linkages. It is the structure of networks that plays an essential role in

leading micro events to collective phenomena. Moreover, the empirical structure of

financial networks rarely takes a stylized form such as the Erd}os–Rényi random
graph and a star graph, but it takes more complex structures such as multiplex,

bipartite, core–periphery, and time-varying networks, depending on the property of

the financial linkage concerned. Such complex yet realistic network structures

cannot be treated in the traditional economic models.
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In section ‘‘Clearing algorithms’’, we first explain basic clearing algorithms that

are needed to compute the allocation of debtor’s assets among creditors. In normal

times, a bilateral credit contract is settled when a debtor repays in full the amount of

borrowed funds. However, if a debtor fails, then it is no longer straightforward to

know how to consistently allocate the debtor’s remaining assets across its creditors.

It may seem reasonable to allocate the remaining assets proportionally to the

amount of funds lent, but the losses that the creditors incur may also cause their

defaults. If such contagious defaults happen, the remaining assets of the failed

creditors should also be allocated proportionally to their creditors, which might in

turn lead to a collapse of the creditors’ creditors, and so on. Therefore, in the

presence of contagious default cascades, calculating the final allocation of funds is

essentially equivalent to computing a fixed point of an iterative map. We provide a

brief introduction to a widely known clearing algorithm, the Eisenberg–Noe

algorithm [6].

The allocation of funds achieved by the Eisenberg–Noe’ clearing algorithm is

economically sensible in the sense that the amounts of funds paid back to the

creditors are endogenously determined in proportion to the amounts of funds lent. In

the real world, however, such an ideal allocation may no be feasible, especially in

financial turmoil, because evaluating the assets of failed banks and negotiating

among creditors takes a long time. Therefore, many studies consider a fixed

exogenous recovery rate (i.e., creditors receive a fixed percentage of their payment),

which is often set to zero to analyze worst case scenarios. An advantage of imposing

the zero-recovery assumption is that it allows us to analyze financial contagion

using a model of social contagion that has been developed in network science.

Pioneers of this approach are Gai and Kapadia [7], who exploited the social cascade

model of Watts [8]. We review some of the models of this type of default cascades

in section ‘‘Cascades of bank defaults due to bilateral interbank exposures’’.

Propagation of distress between borrowers and creditors can also occur before the

borrower’s default, because of credit quality deterioration. In section ‘‘Distress

propagation due to credit quality deterioration’’, we review a model, the so-called

DebtRank [9], which has been introduced to account for this situations, together

with some of its extensions.

Stress does not only propagate between borrowers and lenders. In fact, losses can

also propagate between investors having common assets. For example, the

devaluation of an asset that is commonly held by many banks would simultaneously

undermine the balance sheets of the banks holding the asset. If the loss of a bank is

so severe that the bank is unable to meet the minimum requirement for its capital

ratio, then the bank will have to sell some of its assets. This liquidation has a

negative impact on the prices of the assets that are being sold, which causes losses to

other banks holding these assets. In this way, a cascade of defaults could be

triggered by the initial decline in the price of an asset, and fueled by the presence of

overlapping portfolios among banks. Modeling the hidden interbank linkages

formed through cross asset holdings is then important to understand systemic risk.

Recent studies in this domain are introduced in section ‘‘Overlapping portfolios and

price mediated contagion’’.
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In section ‘‘Empirical structure of interbank networks’’, we summarize recent

work on the structure of empirical interbank networks and its dynamics. Whether

the initial default of a bank can trigger a large-scale default contagion depends

largely on the way financial institutions are connected to each other. We introduce

studies that examined the empirical structure of networks formed by interbank

bilateral trades and explain the well-studied core–periphery structure and its

possible limitations. The necessity to analyze daily network dynamics is also

discussed. Section ‘‘Discussion’’ concludes.

Clearing algorithms

In the context of financial networks and systemic risk, clearing plays a central role

as the settlements of different transactions are entangled in a network of mutual

commitments. Hence, it constitutes the structural basis leading to observable

liquidity problems, failed payments, losses, and insolvencies. In full generality,

financial transactions can be over-the-counter (OTC) contracts, where each pair of

counterparties has to settle its own contract, or can be collected and managed by

Central-Clearing-Counterparties (CCPs)—absorbing all or some of the financial

risks—or be mediated by a market via an order book dynamics.

Here, we introduce a well-known clearing model, the one proposed by Eisenberg

and Noe [6], which led to a series of works on the problem of valuating systemic

risk in financial networks. In a schematic representation, a debt contract between

two counterparties is represented by an amount Lab to be paid at time T by the

financial institution A to financial institution B. Though this contract is simple in

nature, it is easy to realize the complexity that may arise by thinking that, in the case

of conflicting financial obligations, institution A might be unable, or even unwilling,

to repay B in full at the prescribed time T. It is, therefore, necessary to consider the

seniority of the debt, i.e., the priority of its repayment with respect to other

obligations. Besides deterministic quantities, the counterparty B is interested in

knowing ex-ante—before the maturity of the contract—the probability of default

(PD) of A, i.e., the probability of A not honoring the contract, and the loss given

default (LGD), that is the credit that B will be able to recover given the default

event.

In this section, we focus on a deterministic clearing procedure [6] and in

particular, we will investigate a specific case of an arbitrary number of financial

institutions entangled in a mono-layer network of simple bilateral debt contracts. All

institutions in the model need to clear their payments at the time of maturity, same

for all bilateral contracts. Eisenberg and Noe provide a solid set of assumptions to

study the basic properties of the solution of this kind of clearing procedure. This

methodology allows to compute cascades of defaults, reallocation of funds, and

systemic effects when dealing with network of contracts. It is important to stress

that these models constitute only one mathematical aspect of the complex and

multidisciplinary problem of ensuring financial stability, involving political, legal,

economic, financial, and infrastructural aspects. Opacity and information asymme-

try in markets cause a general discrepancy between credit risk estimations by
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different financial institutions and the real risks. It is arguable, given the complexity

of system, that even a fully-fledged structural model would not be able to correctly

compute credit risks. As a consequence, opacity and financial complexity lead to a

systematic inefficiency in risk taking, both in the construction of portfolios and in

the issuing of credit [10].

The Eisenberg–Noe model

Following closely the work by Eisenberg and Noe [6], let us consider an economy

composed of N financial institutions, hereafter called banks for the sake of

simplicity. Each bank has nominal liabilities to other banks that need to be settled at

the same time. Such structure of liabilities can be represented with a N � N matrix

of non-negative real numbers L, where each entry Lij stands for the nominal liability

of node i to node j. Nominal liabilities are all non-negative because a debt contract

Lij between bank i and bank j with a negative value would constitute an effective

credit for bank i, and therefore, a debt for bank j, and would simply appear as a

positive value of the entry Lji. A further realistic assumption is the absence of

nominal claims of a bank against itself, which results in having null elements on the

diagonal of the liabilities matrix.

Finally, each bank has a non-negative operating cash flow, ei, representing the net

cash received by each bank from the outside of the financial system under

consideration. External liabilities can be introduced either by setting a negative

value to cash flows or by adding an extra bank in the liabilities matrix. Such

fictitious bank has zero cash flow, i.e., e0 ¼ 0, and is supposed to receive an amount

Li0 from each financial institution i. Nevertheless, this choice is not entirely

equivalent to having a negative ei, as the seniority—the priority that a contract

takes—of the liabilities in the matrix L, including of the ones towards node 0, is

lower than the one that would result from simply subtracting Li0 from the non-

negative cash flow ei. In the following we will take the latter choice and consider the

possibility of an extra bank.

In this simplified picture, a financial system F is a pair of a non-negative

liabilities matrix and a operating cash flow vector, F ¼ ðL; eÞ. This framework

excludes the existence of many realistic characteristics of financial systems, such as:

multiple contracts between a given pair of banks, multiple levels of seniority, or

involving more than two banks, or also, different times to maturity. Further, it does

not model in detail the stochastic features of cash flows, nor their correlation

structure or the existence of common asset holdings among different institutions.

Despite its specificity, this framework successfully deals with the problem of

identifying a clearing vector of payments, i.e., a vector that associates to each bank

the total amount that it is able to repay to its debtors given the financial system,

ðL; eÞ, and, in doing so, it is able to introduce some crucial quantities and features of

systemic events in financial systems, such as the dynamics of the contagion process

and the conditions for the existence of unique solutions.
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Let us now enter in more detail into the definition of the clearing procedure as

defined in [6]. It is useful to introduce a few auxiliary variables, i.e., the total

nominal obligations �pi defined as:

�pi ¼
XN

j¼0

Lij; ð1Þ

and the relative liabilities matrix, quantifying the fraction of liabilities from bank i

that a bank j is entitled to receive in the case of full repayment,

Pij ¼
Lij

�pi
; if �pi [ 0

0 otherwise:

8
<

: ð2Þ

Finally, we define the payment vector p, the vector of unknown quantities that we

want to identify, that is the amount that each bank is actually able to repay. By

definition, all the elements of the payment vector are less than or equal to the

elements of the obligation vector �p and greater or equal to zero, or in formulas,

p� �p; p� 0. The clearing procedure may yield multiple solutions for p, but, by

making some intuitive and natural financial assumptions, it can be shown that the

solution is unique.

The financial requirements for the Eisenberg–Noe clearing procedure are the

following: (1) all the elements of the payment vector are less than or equal to the

available cash flow of the bank (Limited Liabilities), (2) banks repay as much as

they can, i.e., they are not allowed to keep cash in their balance as long as they have

not fully repaid all their liabilities; this can also be expressed that the equity has a

lower seniority with respect to interbank liabilities; (Absolute Priority) (3) the

individual payment of a given liability, i.e., the effective value repaid to a bank, has

to be proportional to the fraction of the total obligation that the liability represents,

as given by the relative liabilities matrix Pij (Proportionality). More explicitly, for

each institution the ratio between the liability repaid to a given counterparty and the

total amount repaid to all counterparties has to equate the ratio between the nominal

liability and the total amount of liabilities that the institution has.

From these simple assumptions, we can compute the net position of a bank

assuming a given payment vector p. In fact, the total assets of bank i will amount to

ei þ
P

j Pjipj, whilst having a total obligation in the interbank market �pi. Given

assumption (2), as long as the obligation is less than the total amount of assets then

the bank will repay in full, i.e., pi ¼ �pi, and will remain with a net position

ei þ
P

j Pjipj � �pi. Otherwise, when ei þ
P

j Pjipj\�pi, bank i will have to use all

its assets to repay its counterparties, i.e., pi ¼ ei þ
P

j Pjipj, leaving the bank with a

net position equal to zero and a total amount of unrepaid debt equal to

�pi � ei �
P

j Pjipj. Hence, if we require all banks to simultaneously satisfy the

same relations, we derive the following system of equations:
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pi ¼ min ei þ
X

j

Pjipj; �pi

( )
8 i ¼ 1; . . .;N; ð3Þ

which defines a fixed-point problem for the payment vector, whose components also

have to satisfy the conditions �pi � pi � 0 for each bank i.

Convergence to the payment vector

The system, (3) yielding the solutions to the clearing procedure, is a set of non-

linear equations, for which the dependence on each component of the payment

vector is piece-wise linear, monotone, bounded, and continuous. All these properties

allow to demonstrate the existence and uniqueness of the solution, by means of the

general Knaster–Tarski theorem [11].

To identify the solution, Eisenberg and Noe propose a simple iterative algorithm,

where each iteration is made of two-steps: first, an update that identifies the set of

defaulted banks

DðpÞ ¼ fi 2 f1; . . .Ng jpi\�pig: ð4Þ

Second, the payment vector is updated by looking for the fixed-point of the fol-

lowing map:

p0 ¼ Kðp0ÞðPðKðp0Þpþ ð1� Kðp0ÞÞ�pþ eÞ þ ð1� Kðp0ÞÞ�p; ð5Þ

where Kðp0Þ is a diagonal matrix, such that Kðp0Þii is one if i 2 Dðp0Þ, and zero

otherwise. Equation (5) admits a unique fixed-point if the financial network is

regular; the regularity condition is defined in full detail in [6], but for the sake of

brevity we just notice that such condition is easily respected when each bank in the

system has a strictly positive equity.

The fixed-point p� of the vector equation (5) then is used to update the set of

defaulted banks D accordingly. The two-steps are repeated until convergence to a

set of defaulted banks D and payment vector p satisfying (3), and under the

regularity condition such payment vector is the only solution to (3).

Related literature and generalizations

The seminal paper by Eisenberg and Noe (EN, hereafter) ignited research and many

generalizations have been proposed since its publication. Here we discuss only the

ones that introduce the most important effects and outline their consequences on the

properties of the systemic losses.

Rogers and Veraart [12] introduce default costs in the system. In fact, when

insolvency occurs it is unrealistic to assume—as EN do in their clearing model—the

absence of additional costs: an insolvent financial institution may (1) need to rapidly

liquidate valuable external assets at a lower price than its present market valuation,

e.g. due to the price impact of a fire-sale, and (2) need to withdraw their interbank

assets conceding their counterparty a discount related to the early repayment before
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maturity. With such motivation the EN system is modified, introducing two factors

a and b—both between zero and one—that discount, respectively, the external, and

the interbank assets of an insolvent institution. The resulting system of equations

reads:

pi ¼
�pi; if �pi\ei þ

P
j Pjipj;

aei þ b
P

j Pijpj otherwise:

(
ð6Þ

It is easy to recognize that when a ¼ b ¼ 1 the system of equations (6) is equivalent

to (3). Otherwise, these discount factors increase losses, introducing costs for

bailouts that exceed the initial losses of the financial system. In fact, while EN

simply redistributes losses across the financial system, as discussed in [13], Rogers

and Veraart clearing procedure recognizes the existence of extra costs, which are

exactly the ones that financial regulatory institutions want to minimize. The moti-

vation is that, while external losses coming from economic shocks are driven by

scarcely controllable complex economic dynamics, the possible endogenous loss

amplification due to the financial system interconnectedness could be avoided by

regulators by imposing specific policies.

Both the EN and the Rogers–Veraart models are completely deterministic. They

constitute a mechanism, respectively, for the redistribution and amplification of

losses in a financial system. Nevertheless, such mechanism is triggered only by an

actual insolvency, i.e., the liabilities have to exceed assets for a bank to propagate its

losses. They are default contagion mechanisms. This is a limitation of the clearing

framework that could or may be overcome in two ways: first, directly account for a

propagation that activates when a counterparty is in financial distress, as in

DebtRank [9], and define a distress contagion mechanism; secondly, account—

before maturity—for the uncertainty on the value that the external assets will take at

maturity, i.e., introduce a probability distribution over external assets. In the latter,

the propagation remains based on a default contagion mechanism.

Nevertheless, the distribution on the external assets will include scenarios that on

average will cause expected losses, that would have been absent, if the external

assets were taken at their present value before maturity. This is the approach taken

by Elsinger et al. [14]. A recent effort was made to consider the two kinds of

mechanisms in a unified framework of network valuation [15] accounting for

uncertainty, and default costs in a compact form.

Cascades of bank defaults due to bilateral interbank exposures

The Gai–Kapadia model

Since the work of Gai and Kapadia [7], many researchers have developed network

models of default cascades in financial networks, especially interbank networks in

which banks lend to and borrow from each other. The basic structure of the Gai–

Kapadia cascade model is heavily based on the Watts model of global cascades [8]

that would occur on networks formed by social interactions between humans. In the
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Watts model, the mechanism of how a node affects its neighbors is quite simple; a

node gets ‘‘activated’’ (or ‘‘infected’’) if and only if at least a certain fraction

R 2 ½0; 1� of its neighbors are activated. The Watts model of cascades is, therefore,

categorized as a linear threshold model or just a threshold model, which belongs to

the class of complex contagion.1 The main implication of the Watts model is that, on

randomly connected networks, even a vanishingly small fraction of initial active

nodes may lead a significant fraction of infinitely many nodes to get activated as

long as the network is not too sparse or too dense. This critical phenomenon is

called a global cascade, and the analytic condition under which a global cascade

may occur, called the cascade condition, can be computed by exploiting a mean-

field approximation.

In this section, we fist explain the basic properties of the threshold model

developed by Watts [8]. Since the threshold of activation for humans can be

reinterpreted as the threshold of defaults for banks, understanding the threshold

model used in the social network literature is important to understand many existing

models of default contagion in interbank networks. Here, we explain two different

approaches to calculating the size of cascades, namely the tree-based approxima-

tion [16] and the generating function approach [7, 8]. While the Watts model

assumes that edges are undirected, extending its framework to directed networks is

straightforward [7].

Tree-based approximation

Here, we briefly explain a tree-like approximation method for solving the model of

social contagion [16]. The basic idea of a tree-like approximation is to calculate the

average final fraction q of activated nodes by assuming that the network is locally

tree-like. The probability of a randomly chosen node being active, or the average

size of global cascades, is calculated by the following equation:

q ¼ q0 þ ð1� q0Þ
X1

k¼1

pk
Xk

m¼0

k

m

� �
qmð1� qÞk�m

F
m

k

� �
; ð7Þ

where q is the probability that a randomly chosen neighbor is active, q0 is the

chance that a node is initially active (i.e., a seed node), pk is the degree distribution,

and k and m stand for the degree and the number of active neighbors, respectively.

At this point, the neighbors’ activation probabilities, which are considered to be

identical to the mean value, are regarded as independent since there is no cycle of

influence at least locally thanks to the assumption of a locally tree-like structure. In

the simple Watts model, the response function Fð�Þ takes 1 if m=k[R, and 0

otherwise.

The probability q is given as

1 In contrast, simple contagion refers to a contagion process in which the probability of a node being

affected by its neighbor is exogenously given.
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q ¼ q0 þ ð1� q0Þ
X1

k¼1

k

z
pk

Xk�1

m¼0

k � 1

m

� �
qmð1� qÞk�1�m

F
m

k

� �
; ð8Þ

where z denotes the mean degree, which is the connectivity parameter of the net-

work. Note that one should use the excess degree distribution kpk=z, as opposed to

the degree distribution pk, to compute the average fraction of active neighbors of a

neighbor. This can be understood as a situation in which a ‘‘child node’’ is influ-

enced by its ‘‘parent nodes’’ and then the child node affects the ‘‘grandchildren’’,

and so forth. The solution for q is then obtained as a fixed point of recursion

equation (8), which in turn gives the solution for the mean cascade size q from

Eq. (7).2 Regardless of its simplicity, the tree-based method can predict the final

size of a global cascade very accurately (Fig. 1).

The parameter space within which a global cascade may occur is called the

cascade region, and the analytical condition for the parameters to be satisfied in the

cascade region is called the cascade condition. To see the derivation of the cascade

condition, let us define S(q) as

SðqÞ 	
X1

k¼1

k

z
pk

Xk�1

m¼0

k � 1

m

� �
qmð1� qÞk�1�m

F
m

k

� �
: ð9Þ

Gleeson and Cahalane [16] argue that if the derivative of the RHS of Eq. (8) (i.e.,

q0 þ ð1� q0ÞSðqÞ) near q ¼ 0 takes a value larger than one, then a vanishingly

small initial seed q0 results in a large value of q. The first-order cascade condition
is, therefore, given by

ð1� q0Þ
X1

k¼1

kðk � 1Þ
z

pk F
1

k

� �
� Fð0Þ

� �
[ 1: ð10Þ

In fact, a comparison with simulation results reveals that this is not a very accurate

condition for the parameter space (R, z). Therefore, they also propose the second-

order cascade condition given by

2 When there are multiple fixed points, the smallest solution is selected as the valid solution. In fact,

depending on the model parameters, recursion equation (8) may exhibit a saddle-node bifurcation, which

could cause a phase transition [16]. Such a phase transition can be observed in a variety of threshold

models [17, 18].

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

ρ

cascade region

Fig. 1 Threshold cascade
model with a Poissonian degree
distribution. Line denotes the
value of q calculated from
Eq. (7), and circle represents the
simulated average cascade size,
averaged over 1000 runs with

N ¼ 105 and R ¼ 0:18. z is the
mean degree, and seed fraction

is q0 ¼ 10�4
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ðC1 � 1Þ2 � 4C0C2 þ 2q0ðC1 � C2
1 � 2C2 þ 4C0C2Þ\0; ð11Þ

where it is assumed that q20 
 0, and C‘ is defined such that SðqÞ ¼
P1

‘¼0 C‘q
‘ and

C‘ 	
X1

k¼‘þ1

X‘

n¼0

k � 1

‘

� �
‘

n

� �
ð�1Þ‘�n k

z
pkF

n

k

� �
: ð12Þ

Condition (11) states that the second-order approximation of Eq. (8),

q ¼ q0 þ ð1� q0ÞðC0 þ C1qþ C2q
2Þ, has no solution near q ¼ 0, because the

existence of a positive root near q ¼ 0 implies that a global cascade is impossible.3

Gleeson and Cahalane [16] showed that the second-order cascade condition (11)

well matches the cascade region predicted by the numerical simulation.

Generating function approach

Now, we explain the generating function approach to calculate the expected cascade

size. In doing so, we compute the probability that a randomly chosen node is

vulnerable; we say a node is vulnerable if its degree, k, satisfies R� 1=k. That is, if a
node is vulnerable, then the node will get activated if at least one neighbor is active.

Let lk ¼ P½R� 1=k� denote the probability of a node having k edges being

vulnerable. Since the probability that a randomly chosen node has degree k is pk, the

generating function of vulnerable node degree is given as

G0ðxÞ ¼
X1

k¼0

lkpkx
k: ð13Þ

Generating function G0ðxÞ has information on all of the moments of the degree

distribution only of vulnerable nodes.4 The generating function for the excess

degree distribution for the vulnerable nodes leads to

G1ðxÞ ¼
P1

k¼1 klkpkx
k�1

P
k¼1 kpk

¼ G0
0ðxÞ
z

; ð14Þ

where G0 represents derivative. Note that G1ð1Þ is equal to the probability that a

randomly chosen neighbor is vulnerable.

We now introduce the generating function for the vulnerable cluster size:

H0ðxÞ ¼
X1

n¼0

hnx
n; ð15Þ

H1ðxÞ ¼
X1

n¼0

~hnx
n; ð16Þ

3 To obtain the second-order condition, we can simply approximate S(q) near q ¼ 0 up to the second

order: SðqÞ ¼ Sð0Þ þ S0ð0Þqþ 1
2
S00ð0Þq2, where C0 ¼ Sð0Þ, C1 ¼ S0ð0Þ, and C2 ¼ 1

2
S00ð0Þ.

4 See Ch. 13 of Newman [19] for the basic explanation of generating functions.
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where hn denotes the probability that a randomly chosen node belongs to a vul-

nerable cluster of size n, and ~hn is the corresponding probability for a neighbor of a

randomly chosen node. The generating function for the probability that a randomly

selected neighbor belongs to a vulnerable cluster should satisfy the following self-

consistency equation [8, 20]:

H1ðxÞ ¼ 1� G1ð1Þ þ xG1ðH1ðxÞÞ: ð17Þ

The first term represents the probability that a neighbor is not vulnerable, and the

second term corresponds to the size distribution of vulnerable clusters to which a

chosen neighbor belongs. Note that if a node belongs to a vulnerable cluster of size

n, then its neighbors must also belong to a vulnerable cluster of size n. Therefore,

the generating function for the probability that a randomly chosen neighbor belongs

to a vulnerable cluster of size n depends on the second- and higher-order neighbor’s

generating function, resulting in a self-consistent determination (17) [8, 20]. Here,

the assumption of a locally tree-like structure is needed to obtain the generating

function, in which case different neighbors belong to (locally) independent subsets

of a vulnerable cluster. Once H1ðxÞ is obtained, H0ðxÞ is computed as

H0ðxÞ ¼ 1� G0ð1Þ þ xG0ðH1ðxÞÞ; ð18Þ

We note that, roughly speaking, the procedure for calculating H1 (H0) corresponds

to the derivation of fixed point q (q) in the recursion equation (8) (Eq. (7)) in the

Gleeson–Cahalane’s [16] tree-based method.5

The average vulnerable cluster size is given by

hni ¼ H0
0ð1Þ

¼ G0ð1Þ þ
ðG0

0ð1ÞÞ
2

z� G00
0ð1Þ

:
ð19Þ

It follows that the cascade condition is expressed as

z\G00
0ð1Þ ¼

X

k¼1

kðk � 1Þlkpk: ð20Þ

Note that since lk ¼ Fð1=kÞ for k[ 0, Eq. (20) is equivalent to the previous cas-

cade condition derived from the Gleeson–Cahalane’s method (Eq. (10)) as long as

the threshold value is strictly positive (i.e., R[ 0 and Fð0Þ ¼ 0) and the seed

fraction is sufficiently small (i.e., q0 ! 0).

Financial contagion

In models of financial contagion, nodes and directed edges represent banks and

lending–borrowing relationships, respectively, and an activation of a node is

interpreted as a bank default. In fact, the Gai–Kapadia model is isomorphic to the

5 This correspondence between the generating function approach and the tree-based method is not

rigorous in the sense that the size of a vulnerable cluster is not identical to the average cascade size [8].
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Watts model, the difference being that the former treats a directed random graph

while the latter focuses on an undirected random graph. To see this, let us consider a

stylized balance sheet of a bank (Fig. 2). Suppose that each bank may have two

types of assets: interbank assets, AIB, and external assets, AE (such as stocks, bonds,

etc). On the liability side, there can be interbank liabilities, LIB, and deposits from

customers, D. Then, the solvency condition for bank i is given by

AIB
i þ AE

i � LIBi � Di [ 0; ð21Þ

which is equivalent to saying that the net worth (or the capital) of a bank should be

positive.

Now, consider the situation in which the amounts of loans extended from a bank

to other banks are evenly distributed, so that each interbank exposure is simply

written as AIB
i =jN ij, where N i denotes the set of borrowers to which bank i lends.

We assume that the ratio of total interbank assets, AIB
i , to net worth, Ki, is common

across banks and is given by AIB
i =Ki ¼ 1=R 8i for R[ 0. Under these assumptions,

the default condition for bank i leads to

/i [
Ki

AIB
i

¼ R; ð22Þ

where /i is the fraction of bank i’s counterparties that have defaulted. The loss given

default is assumed to be 100% for simplicity; the lender would loose the full amount

of funds lent to a defaulted bank. Eq. (22) states that bank i will default if the actual

fraction of defaulted counterparties exceeds a constant threshold level R, which is

essentially the same mechanism as that of social contagion in the Watts model (i.e.,

just replacing R with R). Note that if bank i holds a sufficient amount of capital

buffer such that R[ 1, then there is no chance for bank i to (contagious) default

simply because the capital buffer can fully absorb the maximum possible losses.

Since edges exposed to the risk of bank default are out-going edges (i.e., lending to

other banks), the mechanism of social contagion applies here in a straightforward

manner as long as there are no bidirectional edges.6 The trick here is that the

volumes of interbank exposures, or edge weights, are evenly distributed between

Interbank asset

External asset

Interbank 
liability

Deposit

Capital

AIB

AE

K

D

LIB

Fig. 2 Stylized balance sheet of
a bank

6 The presence of bidirectional edges, although they rarely appear in empirical financial networks [21],

could affect the size of contagion [22, 23].
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borrowers to which a bank lends. This greatly simplifies the analysis because

otherwise we have to replace /i in the default condition (22) with the total fraction

of losses that bank i incurs. A more general case of heterogeneous edge weights will

be discussed in the following section.

Given the isomorphic property, it is straightforward to analyze cascades of bank

defaults in the same way with the methods developed by Gleeson and Cahalane [16]

and Watts [8]. Due to its simplicity and analytical tractability, over the past years

the Gai–Kapadia model has been frequently used as a baseline framework of more

sophisticated models of financial contagion. We review some of these extensions in

the next section.

Extensions of the threshold cascade model

The Gai–Kapadia model spurred a flurry of research on financial contagion due to

interbank exposures. Before reviewing these works, let us summarize some of the

important assumptions made in the simplest version of the Gai–Kapadia model; (1)

loans are evenly distributed, (2) interbank lending forms a Erd}os–Rényi random
graph, and (3) the risk of external assets is not considered. Recently, various models

are proposed to make the cascade model more realistic by relaxing these

assumptions. In considering the possible extensions of the threshold financial

cascades, we can take advantage of the isomorphic property that characterizes the

Watts and Gai–Kapadia models. That is, any models proposed as extensions of the

Watts model could be applied to the model of financial contagion as well.

Heterogeneous edge weights

When a heterogeneity of loan weights is introduced in the Gai–Kapadia model, the

default condition is no longer captured by Eq. (22). The condition (22) is valid only

if the amounts of interbank loans that a bank has lent to other banks are identical.

Otherwise, the default condition cannot be expressed just by the fraction of

defaulted borrowers, but rather expressed by the ratio of losses to total interbank

assets:
P

j2N def
i
AIB
ij

AIB
i

[R; ð23Þ

where AIB
ij denotes the amount of funds lent from bank i to bank j (i.e.,

AIB
i ¼

P
j A

IB
ij ), and N def

i is the set of bank i’s borrowers that have defaulted. Note

that assuming identical edge weights, AIB
ij ¼ AIB

i =jN ij, recovers condition (22) since

the LHS would reduce to jN def
i j=jN ij 	 /i.

Under a generic default condition (23), the standard mean-field approximation

will not be appropriate since different borrowers have different weights, meaning

that the number of defaulted banks itself is not informative. One obvious way to

analyze such a more general environment is to rely on numerical simulations. Hurd

and Gleeson [24], Hurd [25] and Unicomb et al. [26], however, proposed
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alternative approximation methods to compute the solution of cascade dynamics.

Hurd and Gleeson [24, 25] consider a situation in which edge weights w are random

variables, whose CDFs Gkk0 ðwÞ depend on the degrees of nodes in both sides of an

edge k and k0. They show that by imposing additional assumptions, one can obtain

the analytical solutions for the mean cascade size. Unicomb et al. [26] extend

Gleeson’s [27, 28] approximate master equation, showing that an increased weight

heterogeneity will reduce the size of cascades.

Non-Erd}os–Rényi networks

The Erd}os–Rényi random graph [29] is probably the most widely used network

structure in the analytical models of global cascades, yet no empirical financial

networks exhibit the Erd}os–Rényi structure. For example, it has been shown that the

degree distribution of interbank networks follows fat-tail distributions such as a

power-law distribution and a log-normal distribution [30–32]. Moreover, although

the most analytical methods assume a locally tree-like structure, empirical networks

have local clusters, and edges have a degree–degree correlation called

assortativity [19].

It is natural to think that the tree-based method could be extended to the

configuration graphs with arbitrary degree distribution pk as long as the network has

a locally tree-like structure. A possible problem is that the tree-like assumption

might no longer hold true once a more realistic network structure is considered.

Even in the configuration model, for example, the clustering coefficient can be large

when a fat-tail degree distribution is assumed [19].7 Fortunately, recent studies

develop several ways in which the presence of local cycles would not affect the

accuracy of the analytical solutions. Melnik et al. [33] provide some conditions

under which the tree-like approximation works ‘‘unreasonably’’ well even in

networks with high levels of clustering. Radicci and Castellano [34] develop an

alternative technique based on a message-passing algorithm, which gives an

accurate approximation in networks with local clusters. Ikeda et al. [35] also show

that the presence of local clusters will enhance the chance of global cascades.

Another possible departure from the Erd}os–Rényi graph is that there are negative

degree–degree correlations (or disassortativity) in real-world financial net-

works [36, 37]. That is, banks with high degrees are likely to trade with low-

degree banks. Dodds and Payne [38], Payne et al. [23, 39] and Hurd et al. [40]

study the effect of (dis)assortativity on the level of systemic risk, allowing for an

arbitrary degree distribution. They show that assortativity of financial linkages

strongly affects the expected cascade size.

We can extend the tree-based method to even a multiplex structure of interbank

networks. A multiplex network is a networked system consisting of multiple layers,

on each of which nodes are connected by edges.8 Interbank networks may exhibit a

7 In the configuration model, the clustering coefficient will approach 0 as the network size goes to infinity

if the second moment of the degree distribution takes a finite value. See Eq. (13.47) of [19] for details.
8 The essential difference between multiplex networks and multilayer networks is that in the latter,

different layers can have different nodes while each layer has the same set of nodes in the former [41].
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multiplex structure when banks trade different types of assets. For example, if there

is a seniority in interbank assets (i.e., difference in the risk of loans), a ‘‘monoplex’’

model would no longer suffice. Brummitt and Kobayashi [42] generalized the Gai–

Kapadia model in a way that allows for different seniority levels, where different

risk assets are traded in different layers. They consider a general case in which there

are M seniority levels, showing that the cascade condition is generally given by the

trace of the Jacobian ofM many recursion equations. Of course, variety of interbank

assets is not limited to seniority levels. There can be other ‘‘layers’’ in which banks

trade long- and short-term assets, foreign exchange exposures, derivatives, and

etc., [43, 44]. The multiplex structure of financial networks, however, is a relatively

pre-matured research area in the sense that analytical models of financial contagion

are still scarce.

Risk of external assets

The only contagion channel considered in the Gai–Kapadia model is a cascade of

repayment failures in the interbank market. In reality, however, this channel is just a

part of the source of systemic risk. The risk of devaluation in external assets is one

of the major concerns not only for the portfolio management of individual banks,

but also for the systemic risk of the entire financial system. In recent years, lots of

works have been done on the contagion channel through overlapping portfolios, in

which a fall in the price of an asset will simultaneously affect many banks holding

the same (or a correlated) asset [45–48]. Such a simultaneous shock to multiple

banks has a potential to accelerate the traditional contagion process through

interbank exposures. We will explain these studies in detail in sections ‘‘Distress

propagation due to credit quality deterioration’’ and ‘‘Overlapping portfolios and

price mediated contagion’’.

In the Gai–Kapadia model, it is considered that the risk of external assets plays a

role in initiating a contagion. Suppose that returns of external assets held by

different banks are independent, and the price of an asset held by bank i falls. If the

devaluation of the asset is so large that the default condition (22) is satisfied (due to

a reduction in Ki), then it may cause bank i’s creditors to default, initiating a

contagion process. However, the role of external assets in reality is not that simple

because the actual external assets are correlated, and the volatility of assets makes

the health of balance sheets differ from bank to bank. To take into account these

more realistic situations, many studies conduct simulations to understand the impact

that a correlation in external assets has on systemic risk [49]. Kobayashi [50]

provides a simple way to generalize response function F to include the possibility

that the value of external assets follow a probability distribution, which in fact

corresponds to the Watts model in which the threshold for contagion is a random

variable [16].
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Distress propagation due to credit quality deterioration

The importance of counterparty default contagion for practical purposes has been

challenged both theoretically and empirically. From the theoretical point of view

Glasserman et al. [51] proved for instance that, within the Eisenberg–Noe

framework, the contribution of contagion to the default probability of a bank is

always small, and Battiston et al. [52] showed that this is the case because of a

‘‘conservation of losses’’ that is implicitly embedded in the Eisenberg–Noe

algorithm, which prevents it from amplifying exogenous shocks. From the empirical

point of view, contagion analysis of real interbank systems have shown domino

effects triggered by the failure of a small number of banks are unlikely to occur in

practice [53]. On the other hand it was shown that networks of interbank exposures

can significantly amplify distress propagation in presence of other contagion

channels, such as for instance fire sales and overlapping portfolios [48].

Beyond its interaction with other contagion mechanisms, another reason why

networks of interbank exposures can be important is the following: models of

contagion due to counterparty default risk assume that losses propagate from

borrowers to lenders only after the default of a borrower. However, in practice,

losses could occur even in absence of default, because of credit quality deterioration

[54]. Consider the situation in which bank i is exposed to bank j, which suffers a

large loss. After the loss, the probability that j defaults has increased, and therefore,

the expected cash flow associated with the exposures between i and j is reduced. If

interbank assets were to be marked to market, this would mean that the value of the

interbank asset of i that is associated with its exposure to j is reduced. The idea of

accounting for the propagation of distress before defaults led to the introduction of

DebtRank [9].

DebtRank

Let us consider a system of N banks, and let us denote byWij the interbank exposure

of i towards bank j, by Aext
i the external (non interbank) assets of bank i, and by Li its

total liabilities. DebtRank is a discrete-time map that describes the evolution of the

equity of all banks after a shock hits the system. In the DebtRank dynamic banks

can be in two states: active or inactive. An active bank is a bank that will pass

distress to its creditors if subject to a loss, and a bank becomes inactive after it has

passed distress to its creditors once. This does not necessarily mean that the bank

has defaulted, nor that the bank cannot suffer additional losses, but simply that

further losses will not be transmitted to its creditors. If we denote by hiðtÞ ¼
Eið0Þ�EiðtÞ

Eið0Þ the relative loss of equity of bank i at time t, and by AðtÞ the set of active
banks at time t, the DebtRank dynamic reads

hiðt þ 1Þ ¼min 1; hiðtÞ þ
X

j2AðtÞ

Wij

Eið0Þ
hjðtÞ

8
<

:

9
=

; ð24Þ
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Aðt þ 1Þ ¼ ijhiðtÞ[ 0; hiðt � 1Þ ¼ 0f g ð25Þ

The meaning of the above dynamic is the following: the loss experience by bank i

between time 0 and time t þ 1 is its loss up to time t plus the new losses that are

transmitted by its active counterparties. The contribution to the loss of i due to

counterparty j is proportional to the level of distress of j (the factor hjðtÞ) and to the

exposures of i towards j relative to its equity (the factor Wij=EiðtÞ). The matrix with

elements Wij=EiðtÞ has been named matrix of interbank leverage [55] because it

represents the percentage loss of equity of i that corresponds to a 1% devaluation of

its exposure to j.

In the original DebtRank paper, Battiston et al. [9] present a study of US

commercial banks, and they show that their algorithm can effectively be used to

rank banks in terms of their systemic importance. By showing that relatively small

banks can be among the most systemically important, and because of the analogy

between DebtRank and centrality measures in networks, they introduced into the

debate on systemic risk the idea that some banks might be ‘‘too central to fail’’.

Extensions

According to the above formulation, because nodes become inactive after they

propagate distress once, losses can flow through a cycle in the network only once.

To account for further rounds of propagation, Bardoscia et al. [56] derived, from the

iteration of the balance sheet identity, the following modified dynamic

hiðt þ 1Þ ¼min 1; hið1Þ þ
XN

j¼1

Wij

Eið0Þ
hjðtÞ

( )
; ð26Þ

where hið1Þ is the initial exogenous shock that affects bank i, and it is assumed that

hið0Þ ¼ 0 for all i ¼ 1; . . .N. This formulation makes it easier to understand the

stability of a system with respect to a small perturbation. In particular, if the largest

eigenvalue of the matrix of interbank leverages is larger than one, shocks will be

amplified by the network and lead to the default of some banks in the system.

The underlying assumption of DebtRank is that losses propagate from borrowers

to lenders linearly: an x% devaluation of the equity of the borrower leads to an x%
devaluation of the interbank asset of the lender. This assumption can be relaxed by

considering dynamics of the form

hiðt þ 1Þ ¼ min 1; hið1Þ þ
XN

j¼1

Wij

Eið0Þ
f hjðtÞ
� 	

( )
; ð27Þ

with f(x) a function that maps the interval [0, 1] into the positive real semiaxis. For

instance, Bardoscia et al. [57] considered the following function

f ðxÞ ¼ xe�aðx�1Þ; ð28Þ
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where a� 0. This function represents a one-parameter family of distress propaga-

tion rules that interpolates between the threshold model used in [7], which is

recovered in the limit a ! 1, and the linear rule of DebtRank, which corresponds

to a ¼ 0. By performing contagion analyses on a system of European banks, they

explored the dependence of the model on the parameter a, showing the existence of

different regimes for what concerns the amplification of distress.

Bardoscia et al. [58] also considered the case of a non-linear propagation of

distress, and considered f(x) to be increasing and convex. They analyzed the largest

eigenvalue of the interbank leverage matrix, and they showed the existence of

trajectories in the space of networks that can turn a system from stable to

unstable through processes that are normally believed to increase the stability of

financial markets, namely market integration and diversification. To show this they

considered the hypothetical case in which the network of interbank contract is a

directed acyclic graph, which is stable. They then considered a situation in which

links are randomly added between banks in the system, but in such a way that, every

time a link is added, the total amount of lending of each bank is preserved. This

implies that banks are on average increasing their diversification. They showed that,

through this process of increasing diversification, it is possible for an initially

stable network to become unstable. They argue that the instability of a network

under these type of dynamics is due to the emergence of peculiar cyclical structures

in the network of interbank exposures.

DebtRank is also at the basis of the stress testing framework proposed by

Battiston et al. [55], who propose a framework based on the following steps: (1)

application of an exogenous shock to the system and estimation of direct losses; (2)

propagation of distress through the DebtRank dynamic Eq. (24) and estimation of

second-round losses; (3) further (third-round) losses caused by banks liquidating a

common asset to target their initial leverage. Through the application of this stress

testing framework, Battiston et al. [55] find that the second-round effects (due to

DebtRank) and the third-round effects (due to leverage targeting) dominate the first-

round losses (direct losses due to the exogenous shock). This finding has potential

implications for regulators, as it implies that stress tests that do not account for

network effects can significantly underestimate systemic risk.

In relation to policy making, an interesting work has been presented by Thurner

and Polenda [59] and Polenda and Thurner [60], who, using DebtRank as a tool to

measure systemic risk, showed how taxation policies that do take into account the

impact of interbank contracts on systemic risk can effectively promote systemic

stability while not reducing the volume of interbank lending.

Overlapping portfolios and price mediated contagion

Section ‘‘Cascades of bank defaults due to bilateral interbank exposures’’ discussed

contagion due to counterparty default risk. Here we discuss a different contagion

mechanism, which is associated with the fact that stress propagates between

investors that hold common assets. The idea of this contagion mechanism is the

following: consider the simple situation in which two banks i and j invest in a
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common asset x. Suppose now that bank i is under stress, and that to reduce its risk

exposure it has to liquidate part of its position on asset x. Because of market impact,

the tendency of prices to react to trading activity, the liquidation procedure causes a

devaluation of the asset, whose price will drop. When assets are marked to market,

this devaluation causes a loss to bank j. We then see that, even in the absence of

direct contracts between i and j (such as those associated with interbank loans

considered previously), stress can propagate from i to j through the intermediation

of the price of the common asset x. Similarly to the case of counterparty default risk,

the question to be asked is, therefore, ‘‘how does the pattern of overlapping

portfolios between banks, which can be modeled as a bipartite network, affect

systemic risk?’’ A pictorial representation of a simple network of overlapping

portfolios is shown in Fig. 3.

The effect of losses due to common asset holdings and fire sales has first be

studied by Cifuentes et al. [61] in the context of the Eisenberg–Noe model. In their

paper, Cifuentes et al. [61] consider a system of banks that are interacting through a

network of interbank lending relationships and in which all banks are investing in

one common external asset. Banks are subject to a capital constraint, and thus need

to liquidate part of their investment in the common asset if they face a loss. The

authors present numerical simulations on a system of 10 banks to show the response

of the system to the initial default of a bank, and they study the effect of changing

the average connectivity of the interbank network. They find that there is a non-

monotonic relationship between the number of connections in the network and the

number of observed defaults. A similar setting is also explored by Gai and

Kapadia [7], where the interbank lending network is, however, modeled as a

directed Erd}os–Rényi network and counterparty default contagion is modeled

1

2

3

4

5

A

C

B

Banks Assets

Fig. 3 Pictorial representation of a network of overlapping portfolios. A bank is connected to the assets
in its balance sheet. Stress can propagate between banks with common assets. For instance: if bank 1 is
under distress and liquidates its portfolio, asset A would be devalued. This would cause a loss to bank 2,
which might in turn need to liquidate its investment portfolio. This liquidation would cause assets A to be
further devalued and asset B to be devalued as well, thus causing losses to banks 3, 4 and 5 and the
consequent devaluation of asset C
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through the threshold dynamics discussed in section ‘‘Cascades of bank defaults due

to bilateral interbank exposures’’, as well as in Nier et al. [62]. May and

Arinaminpathy [63] build on the model of Nier et al. [62], of which they present a

mean-field solution, by considering that banks interact through different asset

classes and accounting for contagion between those asset classes.

The papers mentioned above considered the effect of fire sales of one or few asset

classes, but their focus was the study of the stability of a system as a function of the

properties of the network of interbank loans. More recently, the focus shifted

towards the study of the network of overlapping portfolios itself and on how its

shape affects systemic stability. The network of overlapping portfolios is usually

modeled as a bipartite network, where two types of nodes exist (banks and assets)

and a link can only connect a bank to an asset, meaning that the bank is investing in

that asset. If we consider a system of N banks and M assets, we can describe the

structure of the system in terms of the matrix Q, where the element Qia is the

number of shares of asset a held by bank i, and we also denote by pa the price of

asset a. Apart from the network, there are two main ingredients that are needed to

define a model. The first is the response of the bank to its losses, the second is the

response of the asset to its liquidation. If we consider a dynamic that occurs over

discrete time steps t ¼ 1; 2; . . ., the response of bank i can be defined in terms of the

map

QiaðtÞ ¼ fia Qiaðt � 1Þ;Aiðt � 1Þ;Eiðt � 1Þ½ �; ð29Þ

where we have denoted by AiðtÞ the value of the assets of bank i at time t and by

EiðtÞ its equity, while the response of asset a can be expressed in terms of the map

paðtÞ ¼ ga fQiaðtÞg½ �; ð30Þ

where we denote by fQiaðtÞg the set fQ1aðtÞ;Q2aðtÞ; . . .;QNaðtÞg.
In the literature on network models of overlapping portfolios, two choices are

common for what concern the response of banks: either banks are passive until they

default, at which point they liquidate their entire portfolio, or they target a certain

level of leverage, defined as the ratio between the mark-to-market value of their

assets and their equity: in the following, we briefly discuss some of these models.

Although with some differences, the models we discuss are all very similar in their

ingredients, but the analysis is quite different in their focus.

Threshold dynamics

Huang et al. [46] consider the situation in which a bank is passive until its default,

and it liquidates its entire portfolio when it defaults, so that

fia Qiaðt � 1Þ;Aiðt � 1Þ;Eiðt � 1Þ½ � ¼
Qiað0Þ; if Eiðt � 1Þ� 0

0; if Eiðt � 1Þ\0



: ð31Þ

In Huang et al. [46] asset prices are assumed to respond to liquidation as
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ga fQiaðtÞg½ � ¼ pað0Þ 1� a

P
i Qiað0Þ � QiaðtÞ½ �P

i Qiað0Þ

� �
; ð32Þ

where a� 0 is a parameter related to the market impact associated with asset a. The

above expression means that the value of the asset at time t depends linearly on the

fraction of its shares (relative to the total number of shares held in the system) that

has been liquidated up to that time.

Huang et al. [46] perform an empirical analysis concerning the situation of US

commercial banks in 2007. They consider data for 7846 commercial banks and 13

asset classes, and they perform stress tests by reducing the value of one asset class

from pað0Þ to ð1� nÞpað0Þ, with 0� n� 1. They then compute the number banks

that survive the cascading process triggered by the initial shock. They find that

abrupt transitions occur in the number of surviving banks as a function of the

parameters a and n and that devaluation of commercial real estate loans are

responsible for the failure of commercial banks during the subprime crisis. Quite

interestingly, Huang et al. [46] also perform an empirical validation of their model

by comparing the banks that their model predicts should fail with those banks that

actually failed between 2008 and 2011. Their analysis of false positive and true

positive rates shows that there is predictive power in the model.

A similar model of overlapping portfolios is the one of Caccioli et al. [47], who

also consider a bipartite network of banks and assets and the map (31) for the update

of banks positions on the assets. The rule for the devaluation of assets is, however,

linear in the log returns,9 as the one of [7, 61]. This can be written as

ga fQiaðtÞg½ � ¼ pað0Þ 1� e
a

P
i
Qiað0Þ�QiaðtÞ½ �P

i
Qiað0Þ

0
B@

1
CA: ð33Þ

Caccioli et al. [47] study the stability of the system in the limit when the number of

banks and assets is large. In particular, they identify the conditions under which a

small initial perturbation such as the initial bankruptcy of a bank or the devaluation

of an asset can lead to a global cascade of bankruptcies. They show that the model

can be described in terms of a branching process. In particular, using the approxi-

mation that the network is a tree, they define a transfer matrix P, whose element Pij

represents the probability that the only failure of bank j triggers the failure of bank i:

Pij ¼ prob
XM

a¼1

Qiapað0Þ 1� e�aQja=
P

k
Qka [Ei

� �" #
: ð34Þ

The stability of the system as a function of the model parameters can at this point be

assessed by studying the largest eigenvalue of P. In the paper, Caccioli et al. [47]

provide results for networks in the bipartite Erd}os–Rényi ensemble, and, similarly to

the case of counterparty default risk [7], they find the existence of a non-monotonic

relation between average diversification and probability of observing a global

9 Caccioli et al. [47] also test their results with respect to other choices of the market impact function,

such as the linear function (32) and a square root market impact law.
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cascades. They also show the existence of a critical value of leverage below which,

independently on network connectivity, the system is always stable with respect to

the initial shock. This is shown in Fig. 4, which presents an illustration of the

unstable region as a function of the average diversification of banks (i.e., the

average degree of banks in the network of overlapping portfolios) and the leverage

of banks, which is defined as the market value of the bank’s investment portfolio

divided by its equity. The figure refers to the same setting considered in [47], with a

bipartite Erd}os–Rényi networks, and under the assumption that all banks have the

same leverage. The effect of heterogeneous degree distributions on this model is

studied in Banwo et al. [64] by means of numerical simulations.

Leverage targeting

Caccioli et al. [47] also consider the effect of relaxing the assumption that banks are

passive investors, and look at what happens if banks decide to target their initial

leverage over the dynamics. If a bank suffers a loss, its leverage will go up,

therefore, a rebalancing is needed to reduce risk. They consider the situation in

which banks react to losses at time t by liquidating a fraction

DAiðtÞ ¼ cAiðtÞ 1� kiEiðtÞ
AiðtÞ

� �
ð35Þ

of their investment. In the above formula, ki is the target leverage of bank i, while

the parameter c 2 ½0; 1� determines how quickly the bank tries to reach its target.

DAiðtÞ is the total value of the assets liquidated by the bank at time t. To know how

many shares of a given asset a are sold, one needs to divide by the number ki of

different assets in the bank’s portfolio (it is assumed here that banks liquidate the

same fraction of each asset), and by the current price of asset a. This leads to the

following response function

5 10 15

5
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15

20

25Fig. 4 Region of instability for
the cascade model of
overlapping portfolios for a
bipartite Erd}os–Rényi network.
Within the red region the system
displays global cascades
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fia Qiaðt � 1Þ;Aiðt � 1Þ;Eiðt � 1Þ½ �

¼ Qiaðt � 1Þ � c
Aiðt � 1Þ
kipaðt � 1Þ 1� kiEiðt � 1Þ

Aiðt � 1Þ

� �
; if Eiðt � 1Þ� 0

0; if Eiðt � 1Þ\0

8
<

: :

ð36Þ

They find that the attempt of banks to reduce their individual risk through pre-

emptive liquidation ends up significantly widening the region of parameter space

where global cascades can be observed.

A stress test framework based on shock propagation due to leverage targeting is

the one proposed by Greenwood et al. [65]. In this case banks estimated their losses

at time t and then reduce the size of their investment to restore their initial leverage

at time t þ 1, which corresponds to the map given in equation (36) with c ¼ 1.

Deleveraging causes prices to be devalued, and consequently mark-to-market losses

for banks, that will further need to deleverage, and so on. The market impact

function considered by [65] is a linear function like the one in equation (31). They

try to disentangle the effect of different factors on the losses produced by fire sale

contagion, showing that the contribution of a bank to aggregate deleveraging is the

higher if a bank is more connected, bigger, more leveraged and more exposed to the

initial shock. They also introduce the concept of indirect vulnerability of a bank

with respect to a given asset, as measured by the loss of the bank’s equity due to the

deleveraging associated with the asset. This has to be contrasted with the notion of

direct vulnerability, which is the direct exposure of the bank towards the asset. They

test the model on the largest 90 banks in the European Union for the period

2009–2011. Through a regression analysis on those banks that are publicly traded,

they find that direct and indirect vulnerabilities have the same explanatory power on

banks’ returns.

The model of Greenwood et al. [65] is at the basis of the framework developed in

Duarte and Eisenbach [66] to measure aggregate vulnerability and systemic

importance of banks. Greenwood et al. [65] also show that their measure of

aggregate vulnerability due to spillover effects grows well before the crisis of 2008,

and they are able to disentangle the contribution to aggregate vulnerability due to

the increase of leverage, system size and concentration of investments in illiquid

assets.

Cont and Schaanning [67] consider a dynamic which is in between that of a

passive investor and a leverage targeting one. In their model, they account for the

fact that there is usually a buffer between the leverage of a bank and the maximum

leverage allowed by regulation. This is done so that they are not forced to liquidate

their position because of a relatively small loss. They consider then the bank as a

passive investor until its loss makes the bank break its leverage constraint. When

this happens, the bank develerages to reach its target, which is, however, below the

maximum allowed by the regulatory regime (so that a small buffer is restored). They

also distinguish between marketable securities, that can be liquidated and are

subject to market impact, and illiquid assets that are not marketable, and therefore,

cannot be liquidated. Deleveraging only involves marketable securities.
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Cont and Schaanning [67] consider data collected by the European Banking

Authority on 51 European banks, and they compare the outcome of stress tests

performing with their model vs. target leveraging. In terms of price changes, they

consider both a linear and square root market impact. They find that there are

significant differences in the losses estimated with the two models. Quite

interestingly, they also introduce a matrix of overlaps between the portfolios of

different banks, where each asset is weighted by its liquidity, and they show that,

although many financial institutions have zero overlap between their portfolios, they

are all connected by second order overlaps. This means that stress tests that do not

account for second round losses can significantly underestimate systemic risk.

Although there may be randomness in the shocks that hit the system, or in the

construction of the network of overlapping portfolios, the dynamics described above

are all deterministic. A stochastic dynamic is for instance the one considered in

Corsi et al. [68]. They consider a system of N banks investing in m randomly chosen

assets out of a universe of M possible assets, where m is, however, computed as the

optimal value of diversification that corresponds to banks maximizing their profit

conditional on a VaR constraint, which is equivalent to leverage targeting [69]. The

value of the assets is then the sum of a linear market impact term that depends on

banks trading plus a stochastic component, which is in turn the sum of a common

factor and an idiosyncratic component. As for the other models we discuss here, the

relative composition of the portfolio does not change over time, but at each time

banks change the volume of their investment on the portfolio to maintain their target

leverage. Corsi et al. [68] show that, upon increasing diversification, the system

goes from a stable regime where time series of asset returns are stationary to an

unstable regime where they are characterized by bubbles and bursts.

Empirical structure of interbank networks

There are many works that aim to characterize the structure of real-world financial

networks. Measuring and analyzing the structure of financial networks has a twofold

objective: on one hand, knowledge of the structure of financial networks gives insights

on how local risks would spread over the entire network through financial linkages.

This class of studies aims to measure the systemic risks of particular network

topologies that could emerge and remain unchanged for a certain period of time (i.e.,

static structure). On the other hand, since the topology changes over time, knowledge

about the dynamical transition patterns could allow us to predict how systemic risk

would evolve over time. In this section, we provide a brief review of these two lines of

research that study the static and dynamic structures of interbank networks.

Static structure

Interbank networks in different countries

Over the past decade, the topology of interbank networks has been examined in

many countries. These studies include Boss et al. [30] for Austria, Upper and
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Worms [70] for Germany, Degryse et al. [71] for Belgium, van Lelyveld and

Liedorp [72] for Netherland, Iori et al. [31] and Bargigli et al. [43] for Italy,

Wells [73] and Langfield et al. [74] for the UK, Furfine [75] for the US, Cont

et al. [32] for Brazil, Martı́nez-Jaramillo et al. [76] for Mexico, and Imakubo and

Soejima [77] for Japan.

While in some countries bilateral transactions data are available,10 in many

countries the aggregate balance-sheet data (e.g., total amount of loans) are the only

source of information for bilateral trades. In such cases, one needs to estimate the

interbank network structure using a suitable estimation method. A widely used one

is the maximum entropy (ME) method. The ME method estimates the network

structure by maximizing the entropy of interbank linkages, which implies that the

total interbank lending is distributed to all the possible borrowers as evenly as

possible. A disadvantage of the ME method is that it is likely that the estimated

network is much denser than the actual one. Mistrulli [78] argues that the ME

method may over- or underestimate the risk of default contagion. To overcome the

problem, recently more sophisticated methods are also proposed [79]. Anand

et al. [80] compare the accuracy of several existing estimation methods by applying

them to various empirical networks.

A more direct way to extract information of bilateral transactions is to use

interbank payment data. Since payment flows contain information on interbank

settlements and transfers, one could filter out the information of bilateral interbank

loans. This approach is taken by, among others, Furfine [75], Demiralp et al. [81],

and Imakubo and Soejima [77].

Core–periphery structure

It has been argued that the structure of interbank networks at certain point in time is

best described as a core–periphery structure [82]. A core–periphery structure is

formed by two groups: core and periphery. The core and peripheral nodes are

distinguished as follows; the core forms a subgraph of the entire network in which

nodes are connected densely to each other. Peripheral nodes are connected to the

core nodes but not to other peripheral nodes. This is expressed by a block adjacency

matrix as

A ¼
CC CP

PC PP

� �



1 CP

PC 0

� �
; ð37Þ

where CC denotes the submatrix representing the connectivity among core nodes,

and PC represents the connectivity between the core and peripheral nodes. PC is

identical to CP since we consider undirected graphs. In general, detecting core–

periphery structure in a directed graph is a challenging problem, and most of the

existing methods for core–periphery detection are developed for undirected graphs.

In the pure core–periphery structure, we should have CC ¼ 1 (i.e., a complete

10 One example is the data for the Italian interbank market, in which banks trade through an online

platform called e-MID. The e-MID data are commercially available from e-MID S.p.A based in Milan

(http://www.e-mid.it/).
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graph) and PP ¼ 0 (i.e., there is no link between peripheral nodes). Classifying all

the nodes into core and periphery is a nontrivial task, and a popular way to do this is

to find core nodes so as to minimize the difference between the empirical adjacency

matrix and the ideal core–periphery block matrix (37) [82–84].

Empirical networks: core–periphery vs. bipartite structure

We summarize the works estimating the core–periphery structure in interbank

networks in Table 1. These empirical studies differ in terms of the data and their

time scales. For example, Fricke and Lux [84] and Barucca and Lillo [85, 86] used

the data for interbank transactions, but the former studied quarterly aggregate

networks and the latter analyzed daily networks. Imakubo and Soejima [77] studied

the transactions data filtered out of interbank payment data, and other studies are

based on the regulatory data reported by financial institutions to the financial

authorities.

While many empirical works on core–periphery structure are essentially based on

the standard detection method described above, a more flexible and widely used

approach to detecting block structure, called the stochastic block model

(SBM) [87], has also been used. The SBM is a probabilistic model of random

graphs with a flexible block structure; nodes are assigned to different blocks and

each pair of nodes is linked with a probability depending on the nodes’ blocks. This

model can generate arbitrary block structures, such as core–periphery, modular, and

bipartite structures. In fact, Barucca and Lillo [85, 86] employ this approach and

find that the two-block structure that best represents the e-MID overnight money

market is bipartite (i.e., borrowers and lenders) at the daily resolution.

Even in the case of aggregate networks, the plausibility of the stylized core–

periphery structure as a characteristic of interbank networks can be controversial. As

is evident from Eq. (37), the previous works implicitly assumed that an empirical

network consists of a single core block and a single peripheral block. This suggests

that even if there were no such a standard core–periphery structure in the empirical

network, the estimation method classifies each node as either a core node or a

peripheral node. In fact, recent studies argue that the seemingly core–periphery

structure might just come from a heterogeneous degree distribution or consist of two

cores [88–90]. As an example, visualization of Italian interbank networks aggre-

gated over 10 business days is presented in Fig. 5. It appears that there are densely

Table 1 Empirical studies on the core–periphery structure in interbank networks

References Data type Country Resolution Year

Fricke and Lux [84] Transactions data Italy Quarterly 2015

Craig and von Peter [83] Regulatory data Germany Quarterly 2014

in ’t Veld and van Lelyveld [92] Regulatory data The Netherlands Quarterly 2014

Langfield et al. [74] Regulatory data UK Annual 2014

Imakubo and Soejima [77] Settlement data Japan Monthly 2010

Barucca and Lillo [85, 86] Transactions data Italy Daily 2016
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connected core nodes at the center of the network while there are also (seemingly)

peripheral nodes that are not linked to each other yet connected to the core.

However, in 2007, Italian banks and other foreign banks seem to form two core-like

groups, which would make it difficult to extract a stylized pure core–periphery

structure. It might be reasonable to infer that there are two core–periphery structures

in the network [89].

Interbank network dynamics at the daily scale

Why daily scale?

Although the majority of empirical works are based on static and aggregate

networks, the granularity of the data can be crucial for recognizing the

heterogeneous behavior of financial institutions and for capturing the functioning

of a market at its inherent time-scales. In interbank markets, most of the bilateral

transactions are overnight, meaning that the relationship between two banks as a

lender and a borrower lasts only for one day or shorter, depending on the time when

the loan contract is made. In the Italian interbank market, for example, more than

86% of transactions are overnight lending in the period between 2000 and

2015 [21].

If the issue of interest is to understand the interconnectedness of financial risks,

then an aggregate network of overnight lending relationships contains irrelevant

information because different edges formed in different days in fact do not exist at

the same time. Many researchers studied aggregate networks not necessarily

because it conveys information about the interconnected risk structure, but rather

Fig. 5 Visualization of Italian interbank networks, e-MID. The networks are aggregated over 10 business
days. Red and black circle denote Italian and other foreign banks, respectively. Visualization is done by
python-igraph with the Kamada–Kawai algorithm [91]
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because it would reveal meaningful information about the structure of long-term

relationships among banks. Another possible reason for why aggregate networks

attract attention is that daily networks can be much sparser and noisier than

aggregate networks, and they appear to change their structure from day to day in a

purely random manner [93, 94].

Daily network dynamics

Barucca and Lillo [85, 86] show that at the daily resolution, the structure of

interbank networks in the e-MID interbank market is not characterized by a core–

periphery structure, but rather characterized by a bipartite structure or more general

community structures. Lowering the time resolution (such as weeks or months)

tends to increase the likelihood that a core–periphery structure is detected, yet a

non-negligible fraction of such networks are still best characterized by a bipartite

structure. Kobayashi and Takaguchi [21] reinforce their result by showing that the

bipartivity of daily interbank networks have been increasing over the past decade.11

If we regard interbank markets as dynamic systems in which the structure of

bilateral exposures changes every day, an interesting question to ask is whether the

daily dynamics are just random or there are robust and time-invariant properties.

Kobayashi and Takaguchi [21] find that the daily market activity represented by

combination (N, M), where N and M are the numbers of active banks and edges,

respectively, is strictly ruled by a superlinear relationship N / M1:5, or hNi /
ffiffiffiffiffi
M

p
,

independently of the structure and the size of daily networks (Fig. 6a). They also

find several daily dynamical patterns in the e-MID market, such as the power-law

distribution of transaction duration (Fig. 6b) and a tent-shaped distribution of

weight growth. Interestingly, these properties are ubiquitous in social networks
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Fig. 6 Scaling laws in the Italian overnight interbank networks. a Superlinear relationship between the
numbers of nodes (N) and edges (M) between September 4, 2000 and December 31, 2015 (3922 business
days). Each dot corresponds to a day. b Complementary cumulative distribution function (CCDF) of
transaction duration (in terms of the number of business days) of bank pairs between 2010–2015

11 Bipartivity is a measure of bipartite structure proposed by Estrada and Rodrı́guez-Velázquez [95],

which takes 0.5 if the network is complete and one if purely bipartite.
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formed via human interactions such as phone calls and face-to-face

interactions [96–98].

Discussion

In this article, we reviewed recent works studying financial systemic risk based on

network approaches. While we tried to cover as many research topics as possible,

these are obviously not exhaustive. In particular, two important research areas that

have not been discussed in the current article are the prediction and the control of

systemic risk.

As in other fields of sciences, there are generally three steps for the study of

systemic risk to mature as a scientific research field: The first step is to understand

and model the mechanisms behind the real-world phenomena. The second is to

forecast the future state of the system. The third and last step is to control the system

to avoid the occurrence of undesired phenomena. Most of the studies discussed in

the current article are still at the first stage. Researchers from various fields have just

started working together since the late 2000’s to develop models, such as the models

of interbank default cascades through bilateral exposures and overlapping portfo-

lios, that can be used to describe the real-world phenomena analytically.

In recent years, however, a growing number of researchers are tackling the

controllability of systemic risk by simulating possible policy tools that could be

taken by the financial regulators. We still need further studies at every step to

deepen our understanding of the complexity of financial networks and reduce

systemic risk. We hope that this review article will encourage researchers from

various areas of sciences to join in this challenging research field.
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