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Abstract—Inter-block-interference (IBI) caused as a result
of pursuing the spectral efficiency can deteriorate channel es-
timation performance. For this problem, previously-proposed
chained turbo estimation (CHATES) performs IBI cancelation
by using the soft replica of the transmitted signal. The IBI
cancelation technique can, however, suffer from a mean squared
error (MSE) floor problem, since the soft replica is unavailable
at the first turbo iteration. The IBI problem can be avoided
by using channel impulse response (CIR) length constraint.
Nevertheless, as shown in this paper, the IBI avoidance approach
is difficult to be performed independently since it requires
unbiased second-order statistics. This paper proposes, therefore,
a new conditional ℓ1 regularized minimum mean square error
(MMSE) channel estimation algorithm by jointly utilizing the
IBI avoidance/cancelation and subspace techniques. Simulation
results verify that the proposed algorithm solves the MSE
floor problem, and, hence, improves the bit error rate (BER)
convergence performance in realistic IBI channels including the
effect of pulse shaping filters.

Index Terms—Inter-block-interference (IBI), subspace-based
channel estimation, ℓ1 norm regularization, compressive sensing,
turbo equalization.

I. INTRODUCTION

TERMINALS in a mobile Internet-of-Things (IoT) net-
work are expected to work with limited batteries for

long duration while being required to achieve high spectral
efficiency demanded for most wireless communication systems
(e.g., [1]). Uplink multiple-input multiple-output (MIMO)
transmission (TX) assuming single-carrier frequency division
multiple access (SC-FDMA) is, hence, an attractive option
to improve energy- and spectral-efficiencies [2], [3] when
we consider massive machine type communication (MTC)
systems (e.g., [4]) and/or the physical layer security (e.g., [5])
for future IoT systems. There has been, however, criticism that
it centralizes the complexity required for the whole system into
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the receiver side, due to the inter-symbol-interference (ISI)
problem.

Nevertheless, overheads for data transmission in a TX frame
format, such as cyclic prefix (CP) and training sequence (TS)
sections, provide a reasonable trade-off between the receiver
complexity and the spectral efficiency. For example, by as-
suming CP-transmission, frequency domain turbo equalization
algorithms (e.g., [6]) can solve the ISI problem with the
same complexity order as the orthogonal frequency division
multiple access (OFDMA) receivers. Moreover, an inter-block-
interference (IBI)-free received TS of at least WNT symbols
enables the receiver to accurately estimate a channel impulse
response (CIR) of at most W symbols for NT TX streams
under the least squares (LS) criterion [7]. Hence, a TX format
is, as depicted in Fig. 1, necessary to have either (a) a TS
whose length is greater than W (NT + 1) symbols, or (b) a
TS of WNT symbols and a guard interval (GI) section to
avoid the IBI. The TX format (b) is preferable for battery life
longevity of IoT terminals. However, it decreases the spectral
efficiency. Hence, chained turbo equalization (CHATUE) [8],
[9] and chained turbo estimation (CHATES) [10] algorithms
were proposed to improve the spectral efficiency. They enable
us to utilize a TX format without CP nor GI, as illustrated in
Fig. 1(c).

The CHATES algorithm inherits the CHATUE concept and
performs the IBI cancelation to improve the channel estimation
accuracy in a turbo receiver. The subspace-based CHATES
algorithm can asymptotically achieve the Cramér-Rao bound
(CRB) after performing sufficient turbo iterations. However,
the CHATES technique can suffer from a mean squared error
(MSE) floor problem in the first iteration because the soft
replica of the transmitted data is unavailable.

The MSE floor problem can be improved by applying an
IBI avoidance strategy. For example, the a priori aided com-
pressive sampling matching pursuit (PA-CoSaMP) technique
[11] performs ℓ1 regularized channel estimation based on the
IBI avoidance. However, a receiver has to estimate the effective
CIR length w depicted in Fig. 1 as well. We can determine the
CIR length by using past channel estimates under the wide-
sense stationary uncorrelated scattering (WSSUS) assumption
(e.g., [12]). Nevertheless, as the data processing inequality im-
plies, it is difficult to track an increasing CIR length correctly
by using the past ℓ1 regularized estimates. The IBI avoidance
approach requires, hence, ordinary ℓ2 channel estimates.

This paper proposes, given such a background, a new
MIMO channel estimation algorithm by combining subspace-
based IBI cancelation and ℓ1 regularized IBI avoidance algo-
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rithms. Subsequent results below verify that the proposed algo-
rithm formulated with a conditional ℓ1 regularized minimum
mean square error (MMSE) criterion ameliorates the MSE
floor problem in the first turbo iteration. A turbo receiver using
the new channel estimation algorithm can, hence, improve the
bit error rate (BER) convergence performance over that of the
conventional receiver in realistic propagation scenarios.

Note that, in practice, the CIRs observed at a receiver in-
clude the leakage effect [13]–[15] of pulse shaping required to
perform digital signal processing. For example, the Pedestrian-
B (PB) [16] channel model is composed of 6 path components.
However, as detailed in Section II, the receiver observes
the filtered waveform and cannot detect the original 6 paths
directly. The CIRs assumed in this paper do not exhibit exactly
sparse nature in the observed-domain. We notice that, however,
the CIRs follow structured sparsity [17] in a signal subspace
of the eigen domain.

Contributions of this paper are summarized as follows:
• We assume CIRs including the impact of the pulse

shaping filters. In the realistic CIRs, the new conditional
ℓ1 MMSE estimator, referred to as the adaptive IBI-
managed MMSE (AIM-MMSE), asymptotically achieves
the CRB while the conventional ℓ1 LS estimators [11],
[18] do not in general.

• Comparative study between the ℓ2-based IBI cancelation
and ℓ1-based IBI avoidance techniques is provided. This
paper shows that the ℓ1-based IBI avoidance by itself
does not always outperform the ℓ2-based technique. How-
ever, we can improve the receiver performance by jointly
utilizing them.

• BER performance using the proposed algorithm is also
evaluated. The simulation results verify that the spectrally
efficient TX format (c) in Fig. 1 improves the BER
performance over that of the TX format (b) even when
channel estimation is actually performed.

• The PA-CoSaMP-based algorithms have a problem in
determining an effective CIR length to avoid the IBI. The
proposed algorithm solves the problem by utilizing its
analytical MSE performance and, unlike [11], it requires
no empirical adjusting factors.

As a future work of this study, an OFDMA system jointly
utilizing the proposed algorithm with [19] has a potential
to improve the spectral efficiency further than that in [18],
since we do not assume known pilot signals in the data
section. Moreover, the proposed estimation framework can
be extended into massive MIMO and/or mmWave MIMO
systems, according to the analytical MSE performance, which
is left as future study.

After Introduction, Section II shows our MIMO system.
Section III summarizes basic strategies to combat IBI prob-
lems. Section IV details the estimation techniques and pro-
poses the new IBI countermeasure. Section VI verifies the
effectiveness of the new algorithm via computer simulations.
Section VII shows concluding remarks.

Notations: The bold lower-case x and upper-case X de-
note a vector and a matrix, respectively. For matrix X, its
transpose and transposed conjugate are denoted as XT and
XH, respectively. X−1 and X† denote the matrix inverse
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Fig. 1. TX formats having (a) a long TS with length Lt ≥ W (NT +1), (b)
a short TS Lt ≥ WNT with GIs, and (c) a short TS without GI/CP sections,
where NT , Lt, and W denote, respectively, the numbers of TX streams, TS
length, and CIR length in symbol. The triangular parts illustrate the IBIs due
to multipath channels.

TABLE I
OPERATORS

Operator Definition

X|A Submatrix composed of the column vectors in X corre-
sponding to the set A, where CAL-font is used for index
sets. A set of consecutive numbers {i, · · · , j} is denoted
by A = {i : j}, where {i : j} = ∅ if i > j.

JA Factor matrix JA
def
= I|A to denote a compressed/sparse

matrix, where I is an identify matrix. e.g., X =
[x1,x2,x3,x4,x5], A = {1, 3} ⇒ XJA · JT

A
=

[x1,x3] · JT
A

= [x1,0,x3,0,0].

vec(X) MN × 1 vector composed by stacking the columns of
X ∈ CM×N .

matN (x) Inversion of the vectorization: matN{vec(X)} = X.

⊗ Kronecker product: A = B⊗C, where frak-font is used
for Kronecker product matrices.

diag(X) Vector composed of the diagonal elements of X.

DIAG(x) Diagonal matrix formed with the vector x.

tplzM{r} M × N Toeplitz matrix whose first row is length N
vector r.

∥X∥2A×B Weighted matrix Frobenius norm: tr{BXAXH} for
X ∈ CM×N with positive definite matrices A and
B. Moreover, ∥X∥2A = ∥X∥2A×IM

and ∥X∥2 =

∥X∥2IN×IM
, where IM is the M ×M identity matrix.

∥X∥1 Matrix ℓ1 norm:
∑M

i=1

∑N
j=1 |xij | where xij is the

(i, j)-th entry of X.

∥X∥0 Matrix ℓ0 norm: the number of non-zero entries of X.

EL
j=l [X(j)] Average of X(j) ∈ CM×N : 1

L

∑l
j=l−L+1 X(j) for

the past L samples from the timing l.

Moreover, E[X(j)] = E∞
j=l[X(j)].

K[X(j)] Column-wise covariance matrix: E[XH(j)X(j)].

R[X(j)] Row-wise covariance matrix: E[X(j)XH(j)].

P(X) Projection matrix XX† of X.

I(X) The indicator function of X.

AAD(D, σ2
z) Adaptive active-set detection [20] that recursively deter-

mines significant CIR taps from domain D, according
to analytical MSE performance given noise variance σ2

z .
Formal definition is shown in Section IV-A2.
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and the Moore-Penrose pseudo-inverse of X, respectively.
The Cholesky decomposition of X is denoted by XH/2X1/2.
⌈·⌉ denotes the ceiling function. Moreover, this paper uses
operators summarized in Table I.

II. SYSTEM MODEL

A. Transmitter

As depicted in Fig. 2, an Linfo-bit binary data information
sequence b(i) is channel-encoded into a coded frame c(ic) by
a rate Rc convolutional code (CC) with generator polynomials
(g1, · · · , g⌈1/Rc⌉) and is interleaved by an interleaver (Π). The
interleaved coded frame c (Π(ic)) is serial-to-parallel (S/P)-
converted into NT data segments for MIMO transmission
using NT TX antennas. A data segment is further divided
into NS slots such that the WSSUS assumption holds for a
slot duration. A data block is modulated into binary phase
shift keyed (BPSK) symbols xd,k(j) with variance σ2

x and the
modulation multiplicity Mb = 1.

The k-th TX antenna transmits data symbols xd,k(l) =
[xd,k(1), · · · , xd,k(Ld)]

T together with a length-Lt symbol TS
xt,k(l) using single carrier signaling, where l denotes the slot
timing index and the data symbol length Ld in a slot is defined
as Ld = Linfo/(RcNTNSMb). As depicted in Fig. 1(b), the
TX format may generally have a length-LCP symbol CP and
two GIs whose lengths are LG1 and LG2 symbols, respectively.
We use the general TX format as a benchmark to show channel
estimation performance in the system without IBI problems.
However, TX formats without CP and/or GI sections such
as that shown in Figs. 1(a) and (c) are also used to verify
the effectiveness of new IBI countermeasure proposed in this
paper.

B. Received signal

1) Signal model: The received signal yn(l) at the n-th
receive (Rx) antenna suffers from ISI due to fading frequency
selectivity, and from complex additive white Gaussian noise
(AWGN) as well. The CIR length is assumed at most W
symbols. The received signals with NR Rx antennas can be
described in a matrix form as,

Y(l) = H(l)X(l) + Z+ ZIBI (1)

with ZIBI = H(l− 1)X△(l− 1)+H(l+1)X∇(l+1), where
the first two terms correspond to the transmitted block of the
current slot timing l whereas the last term represents the IBI
from the past (l−1)-th and future (l+1)-th slots, respectively.
Specifically,

X(l) = [XT
1 (l), · · · ,XT

NT
(l)]T ∈ CWNT×L̃S ,

H(l) = [H1(l), · · · ,HNT
(l)] ∈ CNR×WNT ,

(2)

where we denote L̃S = LS+W −1 with the slot length LS =
Lt+LG1+LCP+Ld+LG2. We first describe the transmitted
data X(l) and noise Z matrices. The channel matrix H(l) is,
then, shown in the next subsection.

The data matrix Xk(l) of the k-th TX stream is given by

tplzW
{
[xT

t,k(l),0
T
LG1

,xT
CP,k(l),x

T
d,k(l),0

T
LG2+W−1]

}

with xCP,k = xd,k(l)|(Ld−LCP+1):Ld
, where the operation

tplzW {r} constructs a W ×NR Toeplitz matrix whose first
row vector is r ∈ C1×NR .

The noise row-vector zn in Z follows the Complex nor-
mal distribution CN(0, σ2

zILS+W−1) and has the uncorrelated
property: E[zHi zj ] = 0. The IBI matrix ZIBI is defined by
using

X△(l − 1) =
[
X(l − 1)|(LS−W+2):LS

, OWNT×LS

]
, (3)

X∇(l + 1) =
[
OWNT×LS

, X(l + 1)|1:(W−1)

]
, (4)

where (3) and (4) become the zero matrices when LG2 ≥
W − 1.

2) CIR parameters: Under the WSSUS assumption, chan-
nel parameters are fixed in a slot duration LSTs, where Ts

is the symbol interval. Hence, the (n, j)-th entry h
(k,n)
l (j)

of the CIR matrix Hk(l) can be written as h
(k,n)
l (j) =

h(k,n)[(j + lLS)Ts]. The channel parameter h(k,n)[t], t ∈ R,
is composed of rk resolvable paths, each having complex
gain g

(k,n)
r [t] and path delay τ

(k,n)
r , where the path gain and

delay parameters follow channel profiles defined in a standard
specification (e.g., [16]).

The received signal is observed via pulse shaping filters.
The receiver may, hence, describe the parameter h(k,n)[t] as
that including the effect of the pulse shaping filters [13]–[15]:

h(k,n)[t] = p[t] ⋆
{∑rk

r=1 g
(k,n)
r [t] δ[t− τ

(k,n)
r ]

}
, (5)

where ⋆ denotes the convolution operator and δ[t] is the
Dirac delta function. The coefficient p[t] represents a pulse
shaping filter logically combining those in the transmitter and
the receiver. In most systems, the coefficient p[t] represents
an impulse response of the raised cosine filter1 given by
p[t] = sinc(t/Ts)

cos(παt/Ts)
1−(2αt/Ts)2

, where α is the roll-off factor
(e.g., [21]).

The expected variance of the CIR matrix Hk(l) for the k-th
TX stream is E[∥Hk(l)∥2] = σ2

H with a constant σ2
H. The CIR

matrix satisfies a property that the spatial covariance matrix
R[Hk(l)]

def
= E[Hk(l)H

H
k (l)] is of full-rank by assuming no

unknown interferences [22].

C. Receiver

As depicted in Fig. 2, the receiver performs channel esti-
mation (EST) jointly over the Rx antennas while also ob-
taining the extrinsic LLR λe

EQU,k for the k-th TX stream
by means of the CHATUE [9] (EQU) technique. The NT

log-likelihood ratio (LLR) λe
EQU,k sequences are parallel-

to-serial (P/S)-converted to form an extrinsic LLR sequence
λe
EQU corresponding to the interleaved coded frame c(Π(ic))

at the transmitter. An a priori LLR λa
DEC for the channel

decoder (CC−1) is obtained by deinterleaving λe
EQU. The

channel decoder performs decoding for λa
DEC by using the

Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm [23], and
outputs the a posteriori LLR λp

DEC. After several iterations,
CC−1 outputs the estimates of the transmitted sequence b̂ by
making a hard decision on λp

DEC.

1The root raised cosine filter is often used as the pulse shaping filter in
both the transmitter and the receiver.
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EQU utilizes the soft replica2 of the transmitted symbols
x̂d,k which is generated from the equalizer’s a priori LLR
λa
EQU. Note that LLR λa

EQU is the interleaved version of the
extrinsic LLR λe

DEC which is obtained as λe
DEC = λp

DEC −
λa
DEC according to the turbo principle. The soft replica for

EST may, however, be generated from the a posteriori LLR
λp
DEC to improve the convergence performance in a moderate

to high signal-to-noise ratio (SNR) regime.

III. PRELIMINARIES

A. Signal model

Assuming a TX format shown in Fig. 1(b), the receiver
performs channel estimation by using both the TS Xt(l) and
soft replica X̂d(l) matrices, where we denote

Xt(l) = [XT
t,1(l), · · · ,XT

t,NT
(l)]T ∈ CWNT×L̃t , (6)

X̂d(l) = [X̂T
d,1(l), · · · , X̂T

d,NT
(l)]T ∈ CWNT×L̃d . (7)

with L̃t = Lt +W − 1 and L̃d = Ld −W + 1. Moreover,

Xt,k(l) = tplzW
{
[xT

t,k(l),0
T
W−1]

}
,

X̂d,k(l) = tplzW
{
[x̂T

d,k(l)|W :Ld
]
}
.

Correspondingly, we define the received data matrix as
Yd(l) = Y(l)|d+W :d+Ld

with the offset d = Lt+LG1+LCP

to the data section. The received data matrix Yd(l) can
always avoid IBI, since Ld ≫ W (NT + 1). However, Lt ≥
W (NT + 1) does not always hold for a short TS length Lt.
Hence, we need to fully utilize the received TS of length L̃t

symbols. However, as depicted in Fig. 1(c), the received TS
matrix Yt(l) = Y(l)|1:L̃t

can suffer from the IBI seriously
when NGi < W − 1 for i = 1, 2. Concretely, Yt(l) is written
as

Yt(l) = H(l)Xt(l) + Zt + Zt,IBI, (8)

where the matrix Zt,IBI describes the IBI from the past and
future blocks: Zt,IBI = H(l− 1)Xp(l− 1) +H(l)Xf (l). The
WNT ×L̃t matrices Xp(l−1) and Xf (l) are defined similarly
to (3) and (4), by using the data sequences transmitted in the
(l − 1)-th and l-th slot timings, respectively. The NR × L̃t

noise matrix Zt is Z|1:L̃t
.

B. IBI avoidance and compressive estimation

As illustrated in Fig. 1(c), we can avoid the IBI problem
easily by choosing the range of the received TS as

Yt,[w](l)
def
= Yt(l)|w:Lt

, (9)

given effective CIR length w. For ∀w, an NR × WNT CIR
estimate Ĥ(l) is obtained by

Ĥ(l) = Yt,[w](l) (Xt(l)|w:Lt
)†. (10)

However, the LS estimate (10) is inaccurate for a long w such
that rank{Xt(l)|w:Lt

} < WNT = col{H(l)}, which means
that the LS estimation problem is ill-conditioned. The operator
col{M} denotes the column size of matrix M.

2In the case of BPSK, as shown in [24], the j-th entry in x̂d,k is generated
as x̂d,k(j) = σx tanh(λa

EQU,k(j)/2), where λa
EQU,k(j) denotes the j-th

S/P-converted equalizer’s a priori LLR for the k-th TX stream.

The accuracy problem can be improved by using the com-
pressive estimation approach, if the CIR H(l) is a sparse
matrix supported with a column index set A. We refer to A

as active-set, hereafter. By using a matrix JA = IWNT
|A, we

denote the sparse CIR HA(l) by HA(l) = GA(l)J
T
A, where

GA(l)
def
= H(l)JA is a column-shrunk NR × |A| CIR matrix.

The estimate matrix can be obtained, as ĤA = ĜAJ
T
A, where

ĜA(l) = Yt,[w](l)Φ
†
t,A,[w] with

Φt,A,[w](l)
def
= JT

AXt(l)|w:Lt
. (11)

The MSE performance of ĜA(l) is proportional to the CRB
if Φt,A,[w](l) is a fat matrix:

rank{Φt,A,[w](l)} = |A| = col{GA}. (12)

Nevertheless, (12) does not always hold for a significantly long
w and a dense A. Note that, moreover, the CIR length w and
the active-set A are the parameters to be estimated.

C. IBI cancelation

The IBI cancelation strategy can be taken for any CIR
length w as long as replica signals of the IBI components
are available. The CHATES algorithm [10] cancels the IBI by

Ỹ
[i]
t (l) = Yt(l)− Ẑ

[i−1]
t,IBI . (13)

The cancelation term Ẑ
[i−1]
t,IBI is written, as

Ẑ
[i−1]
t,IBI = Ĥ[ITB](l − 1)X̂[ITB]

p (l − 1) + Ĥ[i−1](l)X̂
[i−1]
f (l)

for the current slot timing l at the i-th turbo iteration, when
a coded frame is transmitted in NS = 1 slot duration. The
estimate of the first IBI component Ĥ[ITB](l−1)X̂

[ITB]
p (l−1)

can be obtained in the last ITB-th turbo iteration at the previ-
ous slot timing. The second IBI component Ĥ[i−1](l)X̂

[i−1]
f (l)

can be estimated as a result of the previous [i − 1]-th turbo
iteration at the current slot timing. Nevertheless, X̂[i−1]

f (l) is
unavailable in the first iteration.

D. Subspace projection

As widely recognized (e.g., [25]), the covariance matrix
of MIMO channel parameters Hk(l) ∈ CNR×W for the k-
th TX stream can be written by using the singular value
decomposition (SVD), as

K[Hk(l)]
def
= E

[
HH

k (l)Hk(l)
]
= UkΛkU

H
k , (14)

with W×W unitary matrix Uk, where the rank of the singular
matrix Λk ∈ CW×W is the number rk of multipaths.

The subspace channel model assumption [22] can, there-
fore, be utilized to develop a channel estimation technique.
Specifically, a receiver observes the channel matrix,

Hk(l) = Bk(l)V
H
k , (15)

such that the SVD for the covariance matrix of (15) is
consistent with (14). The NR × rk matrix Bk(l) is slot-
dependent. However, the W × rk matrix Vk

def
= Uk|1:rk is

independent of the slot timing, since it can be seen as a
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Fig. 2. The system model. The channel delay profile depicted in the left bottom is based on the PB model in a TX bandwidth of 7 MHz with a carrier
frequency 2 GHz. The raised cosine filter with roll-off α = 0.3 is used for pulse shaping.

time-invariant FIR filter representing the response of pulse
shaping filters and multipath channels. As detailed later, we
can suppress estimation errors by multiplying a channel esti-
mate Ĥk(l) with a projection matrix P(Vk)

def
= VkV

†
k, since

rank{P(Vk)} = rk ≪ W and Hk(l)P(Vk) = Hk(l).
Let us rewrite the channel model (15) as to describe for

NT TX streams, since the next section discusses channel
estimation techniques jointly performed for all the TX streams.
Specifically, (15) is rewritten as

H(l) = B(l)VH (16)

with the NR× r̄NT gain matrix B(l) = [B1(l), · · · ,BNT
(l)].

The WNT × r̄NT response matrix V is given by
⊕NT

k=1 Vk.
The operator

⊕
indicates the matrix direct sum.

IV. CHANNEL ESTIMATION

A. ℓ1 LS with IBI avoidance (ℓ1 LS-IA) channel estimation

1) Problem formulation: We apply the IBI avoidance ap-
proach shown in Section III-B to the turbo receiver. Given
effective CIR length w and the domain D of CIR taps, the
column-shrunk NR × |A| LS channel estimate ĜLS

A can be
obtained by

ĜLS
A (l) = arg min

GA, A⊆D

Ltd
ℓ1

(
l,GAJ

T
A | w,D

)
+ λ∥GA∥1 (17)

with a Lagrange multiplier λ [26]. We perform the IBI
avoidance by letting the domain

D ⊆ Dw
def
=

∪NT−1
k′=0 {(1 + k′W ) : (w + k′W )}.

The joint log-likelihood function Ltd
ℓ1(l,GAJ

T
A | w,D) is

defined by Lt(l,GAJ
T
A | w) + Ld(l,GAJ

T
A) under A ⊂ D,

where

Lt(l,GAJ
T
A |w) = 1

σ2
z
∥Yt,[w](l)−GAΦt,A,[w](l)∥2K−1

Zt

,

Ld(l,GAJ
T
A) = 1

σ2
z
∥Yd(l)−GAΦ̂d,A(l)∥2IL̃d

×Γ.

The weighted matrix Frobenius norm is denoted by
∥M∥2A×B = tr{BMAMH} for conformable matrices M,
A, and B. Moreover, ∥M∥2A = ∥M∥2A×I.

The transmitted TS matrix Φt,A,[w](l) is given by (11). Ac-
cordingly, the data matrix is defined by Φ̂d,A(l) = JT

AX̂d(l).

Since the IBI problem is avoided, the covariance matrices3 is
given by KZt

= IL̃t
and

Γ =
[
INR

+ (∆σ̂2
d/σ

2
z)RH

]−1
, (18)

where we denote RH = R[H(l)] and

∆σ̂2
d = σ2

x −
∑NT

k=1 ∥x̂d,k(l)∥2/(LdNT ). (19)

2) Solution to (17): For conciseness, this subsection omits
the parameter l relevantly. Problem (17) can be solved by the
expectation-maximization (EM) algorithm [27] which alter-
nately performs the following two subproblems:

ĜA[n] = arg min
G

A[n]

Ltd
ℓ1

(
GA[n]JT

A[n] | w,A[n]
)

(20)

A[n+1] = arg min
A⊆A[n]

Ltd
ℓ1

(
GAJ

T
A | w,A[n], d̂

[n]
H

)
. (21)

The active-set A[n+1] updated for the next iteration is recur-
sively reduced from A[n], where the initial active-set A[0] is
set at the given domain D. The delay profile vector d̂

[n]
H is

estimated as JA[n]diag{ĜH
A[n] ·ĜA[n]}, where the solution to

(20) can be obtained via

vec{ĜLS
A } = R†

ΦΦA
· vec{RYΦA

} (22)

with RΦΦA
= JARΦΦJ

T
A and RYΦA

= RYΦJA. We denote
JA = JA ⊗ INR

and

RΦΦ = RT
ΦΦt,[w]

⊗ INR
+ R̂T

XXd
⊗ Γ̂, (23)

RYΦ = RYΦt,[w]
+ Γ̂RYXd

, (24)

where

RΦΦt,[w]
= (Xt|w:Lt

)(Xt|w:Lt
)H, R̂XXd

= X̂dX̂
H
d ,

RYΦt,[w]
= (Yt|w:Lt

)(Xt|w:Lt
)H, RYXd

= YdX̂
H
d .

The matrix Γ̂ can be obtained by using RH ≈
Ĥ[i−1](Ĥ[i−1])H in (18), where Ĥ[i−1] is the channel estimate
obtained by the previous [i− 1]-th4 turbo iteration.

3Technically, the covariance matrix KZt is defined, as KZt =
K[∆Yt]/(NRσ2

z), where ∆Yt denotes the residual matrix in the likelihood
function Lt(·).

4For the first turbo iteration, i = 1, RH is discarded in (18) since the
channel estimation is performed with the TS only.
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Sub-problem (21) can be solved by the adaptive active-set
detection (AAD) algorithm [20], However, the LS solution
(22) using the pseudo-inverse matrix is not always computed
accurately for a long effective CIR length w. Hence, we revise
the AAD algorithm by imposing a cardinality regularization
for IBI channels. Specifically,

A[n+1] = AAD
(
A[n], d̂

[n]
H , |∆d̂

[n]
H |, fΦ(σ2

z ,A
[n])

)
def
=

j

∣∣∣∣∣∣ d̂
[n]
H,j >

|∆d̂
[n]
H |

∥d̂[n]
H ∥0

+
fΦ(σ2

z,A
[n])

|A[n]|

j ∈ A[n] ∩ T(d̂
[n]
H , Ew)

 (25)

where the parameter d̂
[n]
H,j is the j-th entry of the vector d̂

[n]
H

and the superscript [n] represents the n-th AAD iteration. The
operation T(x, E) forms an index subset of the top E entries
in vector x. The AAD algorithm iteratively performs (22)
and (25) at most NAAD times until the Bayesian information
criterion (BIC) [28] of (22) converges.5 We define the noise
threshold function by an approximated MSE of ĜA[n] , as

fΦ(σ
2
z ,A

[n]) = σ2
ztr{R

†
ΦΦ

A[n]
}, (26)

under an assumption that CIRs unsupported with A[n] are
minor. The absolute error is given by |∆d̂

[n]
H | ≈ fΦ(σ

2
z ,A

[n])

since the delay profile d̂
[n]
H is obtained from the LS estimate

(22).
The operation T(d̂

[n]
H , Ew) is used to guarantee that

the matrix pseudo-inversions in (22) and (26) can be re-
placed with the ordinary matrix inversion after the initial-
ization at n = 0, where the parameter Ew is given by
Ew = min{|A[0]|, αL̄ℓ1

td(w)} with the reference signal length6

L̄ℓ1
td(w)

def
= tr{RΦΦDw

}/(wNTNR). We define the factor
α so that the covariance matrix RΦΦA

is composed of fat
matrices. Since it is sufficient if the TS submatrix Φt,Dw,[w]

is fat, we design the factor such that α < α0, where

α0
def
= [max{w | wNT < Lt − w + 1,∀w ≤ W}] /W. (27)

B. ℓ1 MMSE with IBI avoidance (ℓ1 MMSE-IA) channel
estimation

1) Problem formulation: A conditional ℓ1 MMSE-IA chan-
nel estimation is formulated as the MMSE problem of (20).
Under the subspace channel assumption (16), the estimate can
be written in the form of ĤIA

A (l) = B̂(l)V̂H
A · JT

A, where

(B̂(l), V̂A) =

arg min
B(l),VA,A⊆D

ELM

j=l

[
Ltd

(
j,B(j)VH

AJ
T
A | w,D

)]
. (28)

2) Solution to (28): The solution of the gain matrix B̂(l)
is obtained from a conditional LS problem given the subspace
vectors VA, as

B̂(l) = arg min
B(l)

Ltd

(
l,B(l)VH

AJ
T
A | w,A,VA

)
= matNR

{ˆ̃gLS
A (l)}(ṼH

A)
†, (29)

5The BIC of ĜLS
A[0] is discarded if the initial active-set A[0] = D does not

meet the cardinality regularization.
6L̄ℓ1

td(w) ≈ (Lt − w + 1) + γσ̂2
d(Ld − W + 1) with γ = σ2

z/(σ
2
z +

∆σ̂2
dNT σ2

H).

with ṼA =
⊕NT

k=1 QA,kkVAk
, where the |Ak|NR × |Ak|NR

matrix QA,kk is the k-th block diagonal matrix of QA

calculated by the Cholesky decomposition of E[RΦΦA
(l)],

and active-subset Ak corresponds to the k-th TX stream in
A. The operation matN (x) forms an N ×M matrix from the
argument vector x ∈ CNM×1, i.e., x = vec{matN{x}}. The
length NR|A| vector ˆ̃gLS

A (l) is obtained by the noise whitening
transformation,7 w(·):
ˆ̃gLS
A (l) = w(QA, ĝ

LS
A (l))

def
= QAĝ

LS
A (l)−

{
QA −

⊕NT

k=1 QA,kk

}
gA(l) (30)

for the ℓ1 LS channel estimate vector ĝLS
A (l) obtained by the

ℓ1 LS-IA.
The projection onto the subspace VA can be obtained

by performing the principal component analysis (PCA) for
the covariance matrix KLM

j=l [matNR
{ˆ̃gLS

A (j)}], where A has
to be consistent over the past LM slots to compute the
PCA accurately. However, the active-set A can be changed
in the middle of communication, which makes it difficult to
straightforwardly apply the EM algorithm composed of (20)
and (21) in order to obtain the subspace VA. Note that,
however,

tr
{
VH

AJ
T
A ·V − Ir̄NT

}
/(r̄NT ) ≈ 0 (31)

holds as long as the active-set A supports the CIRs approx-
imately. We can, therefore, approximate (29) by re-using a
subspace projector of V obtained by the ℓ2 MMSE with IBI
cancelation (ℓ2 MMSE-IC) algorithm in the previous frame
timing, where the algorithm is shown later in Section IV-C.
Specifically,

B̂(l) ≈ ˆ̃HLS(l)(Ṽ
H)† (32)

by using the basis vectors Ṽ instead of ṼA, where ˆ̃HLS(l) =

matNR
{ˆ̃hLS(l)} with

ˆ̃
hLS(l) = w(Q̄, (JA ⊗ INR

)ĝLS
A (l)). (33)

The WNTNR×WNTNR matrix8 Q̄ is the Cholesky decom-
position of

R̄XX ≈ (R[Xt(j)] + R[Xd(j)])⊗ INR
. (34)

By (16) and (32), we have

ˆ̃HIA
A (l) = ˆ̃HLS(l) Π̂Ṽ, (35)

where the projection matrix is defined as Π̂Ṽ =
⊕NT

k=1 P(
ˆ̃Vk)

with the noise-whitened subspace estimate vectors ˆ̃Vk. The ℓ1
MMSE-IA estimate can, therefore, be obtained after the noise
coloring transformation, as

ĤIA
A (l) = matNR

{(⊕NT

k=1 S̄kk

)
· vec

{
ˆ̃HIA
A (l)

}}
, (36)

7For the sake of conciseness, (30) is described so that it performs the
noise whitening for all the NT TX streams jointly. However, (30) requires
the channel vector gA(l) to be estimated. Nevertheless, (30) is solvable by
using the back substitution per TX stream [22], where we approximate the
k-th stream of gA(l) with that of the vectorized solution (36).

8We can pre-compute Q̄ since R[Xd(j)] may be calculated off-line by
assuming the interleaved coded frame c(Π(ic)) at the transmitter is an
independent and identically distributed (i.i.d.) random sequence.
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where S̄kk ∈ CWNR×WNR is the k-th block diagonal matrix
of Q̄−1.

3) CIR length estimation and active-set detection: The
effective CIR length w in the ℓ1 MMSE-IA algorithm is
estimated by

ŵ = arg min
1≤w≤W

MSE(ĤIA
Āw

| w), (37)

where MSE(ĤIA
Āw

| w)
def
= E[∥ĤIA

Āw
(l) − H(l)∥2]. The

expected active-set Āw used in (37) can be obtained by
performing the AAD algorithm:

Āw = AAD
(
Dw, d̄

IA
ℓ1 ,CRBL̄td

(σ2
z),CRBL̄ℓ1

td(w)(σ
2
z)
)
, (38)

where L̄td
def
= tr{R̄XX}/(WNTNR) = Lt + Ld − W + 1.

When Āw supports the CIR correctly, the MSE performance
of the ℓ1 MMSE-IA follows

CRBL̂ℓ1
td(w)(σ

2
z) = σ2

z r̄wNTNR/L̄
ℓ1
td(w), (39)

where we denote r̄w = min(r̄, w). The delay profile vector
d̄IA
ℓ1 is computed from the past ℓ1 channel estimates:

d̄IA
ℓ1 = diag{KLM

j=l [Ĥ
IA
ℓ1 (j − 1)]}. (40)

The active-set used in the LS estimate (33) can be obtained
by using the EM algorithm composed of (20) and (21) given
domain D = Āŵ (38), where we modify (21), as

A[n+1] = AAD

(
A[n], d̂

[n]
ℓ1 , |∆d̂

[n]
ℓ1 |,

r̄wNT

|A[n]|
fΦ(σ

2
z ,A

[n])

)
.

(41)
The delay profile estimate9 d̂

[n]
ℓ1 is given by

βJA[n]diag{ĜH
A[n]ĜA[n]}+ (1− β)d̄IA

ℓ1

with β = 1/min{l, (LM + 1)}. The absolute error |∆d̂
[n]
ℓ1 | is

defined accordingly.
Remark: However, the ℓ1 regularized estimates derived

from (40) can be inaccurate. This is because d̄IA
ℓ1 has to contain

the entries unsupported by Āw ⊆ Dw, in oder to evaluate the
MSE performance bounded by the following proposition. The
proof is shown in Section V.

Proposition 1 (MSE bound of the ℓ1 MMSE-IA). Let us
denote H⊥

A

def
= H−HA.

MSE(ĤIA
A | w) = r̄wNT

|A|
fΦ(σ

2
z ,A) + tr{K[Ĥ⊥

A]Π̂Ṽ} (42)

≥ CRBL̄ℓ1
td(w)(σ

2
z) + tr{K[Ĥ⊥

Āw
]Π̂Ṽ}, (43)

where tr{K[H⊥
A]} describes the biased error due to CIRs

unsupported with A.

9For samples s(j), s̄(l) def
= EL+1

j=l [s(j)] = {s(l)+LEL+1
j=l−1[s(j)]}/(L+

1) = βs(l) + (1− β)s̄(l − 1) with β = 1/(L+ 1).

C. ℓ2 MMSE-IC

1) Problem formulation: The ℓ2 MMSE-IC channel esti-
mation is formulated as

ĤIC
ℓ2(l) = arg min

H(l)

ELM

j=l

[
Ltd

ℓ2 (j,H(j))
]

(44)

with the joint log-likelihood function Ltd
ℓ2 (l,H(j)) =

L̃
[i]
t (j,H) + Ld(j,H), where

L̃
[i]
t (j,H) = 1

σ2
z
∥Ỹ[i]

t (j)−HXt(j)∥2K−1
Zt,ℓ2

.

The negative log-likelihood function L̃
[i]
t (j,H) indicates that

we perform the IBI cancelation using (13), in order to fully
utilize the short but ideally uncorrelated TS signals. The
covariance matrix KZt,ℓ2 has, accordingly, to be re-defined,
as

KZt,ℓ2 = IL̃t
+ 1

σ2
zNR

DIAG [ σ
2
xI(XH

p +XH
f )

·
{
σ2
x ·∆d̄H +∆σ̂2

d · d̄H

}]
, (45)

by taking account of residual errors involved in the IBI cance-
lation (13), where the operator DIAG(x) forms a diagonal matrix
from its argument vector x and I(·) denotes the indicator
function. The expected delay profile d̄H and its error ∆d̄H

are, respectively, given by

d̄H = diag{K̄H} (46)

and ∆d̄H ≈ {CRBL̄td,ℓ2
(σ2

z)/(WNT )}1WNT
, where

K̄H = KLM

j=l [Ĥ
IC
ℓ2 (j − 1)]. (47)

2) Solution: The solution can be described similarly as
that of the ℓ1 MMSE-IA by applying the following three
modifications a), b), and c).

a) Noise whitening: We replace the noise whitening
transformation (33) with

ˆ̃
hLS(l) = w(Q̄, ĥLS

ℓ2 (l)), (48)

where ĥLS
ℓ2 (l) = R†

XX(l) · vec{RYX(l)} by using

RXX(l) = RT
XXt

(l)⊗ INR
+ R̂T

XXd
(l)⊗ Γ̂. (49)

with RXXt(l) = Xt(l)K
−1
Zt,ℓ2

XH
t (l). RYX(l) is defined

similarly to (24). Note that, as the number of turbo iterations
increases, KZt,ℓ2 → IL̃t

and Γ̂ → INR
are expected since

∆σ̂2
d → 0. We hence ensure that E[RXX(l)] → R̄XX (34).

b) Subspace projection: The ℓ2 MMSE-IC derives
the subspace vectors ˆ̃Vk by performing the PCA for
KLM

j=l

[
ˆ̃HLS
ℓ2,k(j)

]
, for k = NT , ..., 1, where the NR × W

matrix ˆ̃HLS
ℓ2,k(j) is the k-th submatrix of matNR

{ˆ̃hLS(j)},
corresponding to the k-th TX stream.

c) Noise coloring: The ℓ2 MMSE-IC finally obtains the
solution to (44) by performing the subspace projection (35)
and the noise coloring transformation (36).
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D. AIM-MMSE channel estimation

1) Problem description: The ℓ2 MMSE-IC is expected to
achieve the CRB asymptotically after performing sufficient
turbo iterations. However, the ℓ2 MMSE-IC can suffer from
the MSE floor problem in the first several turbo iterations. The
ℓ1 MMSE-IA can improve the MSE floor problem by the IBI
avoidance strategy. Nevertheless, the IBI avoidance requires
the unbiased delay profile vector to determine the optimal CIR
length constraint.

2) The AIM-MMSE algorithm: We propose a new ad-hoc
MMSE channel estimation algorithm, referred to as AIM-
MMSE, to compensate for the drawbacks of the IBI avoidance
and cancelation strategies at the same time. The proposed algo-
rithm exploits the ℓ1 MMSE-IA in the first turbo iteration, and
then, switches to the ℓ2 MMSE-IC after performing relevant
turbo iterations, where we select the algorithm that takes the
minimum between their approximated MSE performances:

MSE(ĤIA
ℓ1 ) ≈ min1≤w≤WMSE(ĤIA

Āw
| w), (50)

MSE(ĤIC
ℓ2 ) ≈ σ2

z

r̄

W
tr

{
R†

XX

}
. (51)

Algorithm 1 summarizes the AIM-MMSE channel estima-
tion, where the set of input parameters (i, l) denotes the
counters of turbo iterations and slots, respectively. It should
be noted that Step 2 performs the CIR length estimation (37)
by using the expected delay profile (46) computed from the
unconstraint ℓ2 MMSE-IC estimates. Steps 5 to 11 describe
whether the IBI avoidance or the IBI cancelation approach is
selected adaptively according to the analytical MSE perfor-
mances (50) and (51). However, the ℓ1 LS-IA technique is
used in the first ⌈W/NR⌉ slots since performance of the PCA
is not converged yet.

In all slot timings, we perform the ℓ2 MMSE-IC at the
final ITB-th iteration in order to update the input matrices
Π̂Ṽ and K̄H for the next slot timing. Note that in the very
first slot timing l = 1, we may initialize the input matrices
as Π̂Ṽ = IWNT

and K̄H = DIAG{d0} ⊗ INT
with d0 =

σ2
HW [W,W − 1, · · · , 1]T/{2(W + 1)}.

E. Computational complexity order

Table II(a) summarizes the computational complexity orders
O(·) required for the channel estimation algorithms discussed
in this section, where the received signal length is at most
L̃td = Lt + Ld. It should be emphasized that, due to
3 ≪ WNTNR, the complexity order required for the pro-
posed AIM-MMSE is equivalent to that of the ℓ2 MMSE-
IC, although the number of operations is increased slightly to
select the best IBI management strategy according to the IBI
length/variance and the LLRs’ accuracy.

1) The ℓ1 LS-IA channel estimation: Table II(b) shows the
details of the complexity order needed for the ℓ1 LS-IA
algorithm. The right-most column describes the number of
executions in this algorithm, where we assume 1 ≤ NAAD ≪
W . The complexity order needed for (22) is, however, at
most O(2W 3N3

TN
3
R) in NAAD iterations. This is because

the pseudo-inverse matrix R†
ΦΦDw

in (22) is computed only
for the initialization and, after that, it is replaced with the

Algorithm 1 The AIM-MMSE channel estimation.

Input: Π̂Ṽ, K̄H, X̂d, and (i, l).
1: Update ∆σ̂2

d (19) and RXX (49) by using K̄H and X̂d.
2: Estimate CIR length ŵ by (37).
3: Compute MSE(ĤIA

ℓ1 ) and MSE(ĤIC
ℓ2 ) respectively by (50)

and (51).
4: Select ALGO = the ℓ2 MMSE-IC (44) as defualt.
5: if MSE(ĤIA

ℓ1 ) < MSE(ĤIC
ℓ2 ) and i < ITB then

6: if l ≤ ⌈W/NR⌉ then
7: Select ALGO = the ℓ1 LS-IA (17).
8: else
9: Select ALGO = the ℓ1 MMSE-IA (28).

10: end if
11: end if
12: Perform the selected ALGO and obtain ĤAIM.
13: Update Π̂Ṽ and K̄H (47) if the ℓ2 MMSE-IC was

performed.
Output: ĤAIM, Π̂Ṽ, and K̄H.

ordinary matrix inverse R−1
ΦΦ

A[n]
due to the maximum cardi-

nality regularization. Moreover, by using the matrix inversion
update algorithm,10 the complexity order for R−1

ΦΦ
A[n]

is
O(W 3N3

TN
3
R) in NAAD iterations. Therefore, the ℓ1 LS-IA

requires O(W 2N2
T L̃td + 2W 3N3

TN
3
R).

2) The ℓ1 MMSE-IA channel estimation: Following the
ℓ1 LS-IA, the ℓ1 MMSE-IA algorithm performs the noise
whitening (33) and coloring (36) transformations, and the sub-
space projection (35), with the complexity orders, respectively,
O(NT ·W 2N2

R), O(NT ·W 2N2
R), and O(NT ·W 2NR). Note

that the ℓ1 MMSE-IA does not update the noise whitening
factor matrix Q̄ and the projection matrix Π ˆ̃V

, since they
are, respectively, pre-computed off-line and obtained in the ℓ2
MMSE-IC algorithm at the previous frame timing. Therefore,
the complexity order for the ℓ1 MMSE-IA is O(W 2N2

T L̃td +
2W 3N3

TN
3
R) since it is dominated by that of the ℓ1 LS-IA.

3) The ℓ2 MMSE-IC channel estimation: The ℓ2 MMSE-
IC performs, first of all, the IBI cancelation (13) using sparse
matrices X̂p and X̂f , the covariance matrix update (49) and
the ordinary ℓ2 LS channel estimation (22) whose complexity
orders are, respectively, O(W 2NTNR), O(W 2N2

T L̃td), and
O(W 3N3

TN
3
R). As detailed in [20], [22], it performs, then, the

noise whitening/coloring transformations, the PCA11 for the
W ×W covariance matrices of the LS channel estimates, and
the subspace projection for NT TX streams. Their complexity
orders are, respectively, O(NT · W 2N2

R), O(NT · W 3), and
O(NT ·W 2NR). The complexity order for the ℓ2 MMSE-IC
is, hence, O(W 2N2

T L̃td + 1W 3N3
TN

3
R) since it is dominated

by that of (49) and (22).
4) The AIM-MMSE channel estimation: The AIM-MMSE

selects the best IBI management strategy under the minimum

10Given inverse matrix of an M × M Hermitian matrix, the complexity
order needed to compute the inversion of its arbitrary rank-N -downsized
submatrix is O(M2N +N3) [20], [29].

11The complexity order required for the PCA for an M × M covariance
matrix is dominated by the SVD requiring O(M3) [30], where the complexity
to update KLM

j=l [
ˆ̃HLS
ℓ2,k(j)] is negligible by using the recursion shown in

footnote 9.
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TABLE II

(a) COMPLEXITY ORDERS.

Algorithm Complexity order

ℓ1 LS-IA O(W 2N2
T L̃td + 2W 3N3

TN3
R)

ℓ1 MMSE-IA O(W 2N2
T L̃td + 2W 3N3

TN3
R)

ℓ2 MMSE-IC O(W 2N2
T L̃td + 1W 3N3

TN3
R)

AIM-MMSE O(W 2N2
T L̃td + 3W 3N3

TN3
R)

(b) DETAILS FOR THAT OF THE ℓ1 LS-IA.

Symbol Eqn. Complexity Exec. counts

ŵ (37) O(W 2NT ) 1

A[n+1] (25) O(WNT ) NAAD + 1

RΦΦ (23) O(W 2N2
T L̃td) 1

ĜLS
A

(22) O(W 3N3
TN3

R) NAAD + 1

MSE criterion, where the complexity order for Steps 1 to
11 in Algorithm 1 is dominated by that of the computations
for RXX and R†

XX. We note that the covariance RΦΦ is
a submatrix of RXX, however, R†

ΦΦ cannot be efficiently
updated from R†

XX. The complexity of the AIM-MMSE is
hence at most O(W 2N2

T L̃td + 3W 3N3
TN

3
R) when the ℓ1

MMSE-IA is performed at Step 12, because it is dominated by
the process for obtaining RXX, R†

XX, R†
ΦΦDw

, and R−1
ΦΦA

.

V. PERFORMANCE ANALYSIS

We, first of all, consider MSE performance of the LS
channel estimation techniques. The MSE performance of the
MMSE estimation algorithms is, then, investigated. We do not
detail the MSE performance of the AIM-MMSE since it is
given by the minimum of (50) and (51).

1) The ℓ1 LS-IA : We show the MSE performance of the ℓ1
LS-IA as a corollary obtained from Lemma 1. The slot timing
index l is omitted for the sake of conciseness.

Lemma 1. For an active-set A, the error vector of the
conditional ℓ1 LS channel estimation given active-set A,
∆ĥLS

A

def
= vec{ĤLS

A −H}, can be written, as

∆ĥLS
A = ∆LS

0 (A) + ∆LS
Z (A) + ∆LS

⊥ (A),

where the three error component vectors are given by

∆LS
0 (A) = JA

(
R†

ΦΦA
RΦΦA

− I|A|NR

)
gA

∆LS
Z (A) = JAR

†
ΦΦA

vec{RZXPA}

∆LS
⊥ (A) =

[
JAR

†
ΦΦA

JTARXX − IWNTNR

]
h⊥
A

with RZX = ZtX
H
t + Γ̂(Zd − H∆X̂d)X

H
d and h⊥

A =
vec{H⊥

A}.

Proof. Because ĥLS
A = JAvec{ĜA} with (22).

Corollary 1 (MSE bound of the ℓ1 LS-IA).

MSE(ĤLS
A | w) ≥ fΦ(σ

2
z ,A) + tr{K[H⊥

A]}.

Proof. In the ℓ1 LS-IA, ∆LS
0 (A) = 0 holds since RΦΦA

is in-
vertible due to the cardinality regularization. By assuming ide-
ally uncorrelated TSs, we have E[∥∆LS

Z (A)∥2] = fΦ(σ
2
z ,A)

and E[∥∆LS
⊥ (A)∥2] ≥ tr{K[H⊥

A]}.

2) The ℓ1 MMSE-IA: Proof of Proposition 1 in Section
IV-B is shown after describing a property of the subspace
projection.

Property 1. Let Z ∈ CN×M be a random matrix satisfying
K[Z] ∝ IM . For a column sparse noise matrix ZA = Z·JAJ

T
A

with A ⊆ {1 : M} and an arbitrary subspace projection
Π ∈ CM×M , we have

E
[
∥ZAΠ∥2

]
=

min{rank(Π), |A|}
|A|

E
[
∥ZA∥2

]
.

Proof. If |A| > rank(Π), E[∥ZA∥2] > E[∥ZAΠ∥2] =
{rank(Π)/|A|}E

[
∥ZA∥2

]
holds. Otherwise, no subspace

projection expands the domain.

Proof of Proposition 1 . By assuming the received signal
length is long enough, we have R̄XX/L̄td ≈ IWNTNR

, where
L̄td = tr{R̄XX}/(WNTNR). Since Q̄/

√
L̄td ≈ IWNTNR

,
we approximate subspace vectors as V ≈ Ṽ. Thus, we have

∆ĤIA
A

def
= ĤIA

A −H ≈ ĤLS
A Π̂Ṽ −H

= matNR
{∆ĥLS

A }ΠṼ + ĤLS
A ∆Π̂Ṽ, (52)

since H ≈ HΠṼ, where ∆Π̂Ṽ = Π̂Ṽ−ΠṼ is the estimation
error of the subspace projector. As long as the WSSUS
assumption holds for ∀LM , we have E[∥∆Π̂Ṽ∥2] LM→∞

= 0.
Thereby,

MSE(ĤIA
A ) = E

[
∥matNR

{∆LS
Z (A)}ΠṼ∥2

]
+ E

[
∥matNR

{∆LS
⊥ (A)}ΠṼ∥2

]
. (53)

The equation (42) in Proposition 1 is obtained by combining
(53), Property 1, and Corollary 1. The inequality (43) is due
to A ⊆ Āw.

VI. NUMERICAL EXAMPLES

A. Simulation Setups

1) Channel models: The path gains g
(k,n)
r [t] in (5) are

generated with the spatial channel model (SCM) [16], [31],
where the roll-off factor α of the raised cosine filter p[t] is
set at 0.3. This paper assumes 4× 4 MIMO channels, where
the antenna element spacing at the base station and the mobile
station are, respectively, set at 4 and 0.5 wavelength. Spatial
parameters such as the direction of arrival (DoA) are randomly
chosen. Moreover, six path fading channel realizations based
on the Vehicular-A (VA) model [16] with a 30 km/h mobility
(VA30) and the PB model [16] with a 3 km/h mobility (PB3)
are assumed. The path positions τ

(k,n)
r /Ts of the VA and PB
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TABLE III
TX FORMATS FOR A 4× 4 MIMO SYSTEM.

Format Linfo Lt LG1 LCP Ld LG2 Rc η

1 2048 127 0 0 512 0 1/2 1.6
2 2048 127 31 32 512 31 1/2 1.4
3 2048 127 0 32 480 0 8/15 1.6

models are respectively set at {1, 3.2, 6, 8.6, 13.1, 18.6} and
{1, 2.4, 6.6, 9.4, 17.1, 26.9} symbol timings assuming that the
TX bandwidth is 7 MHz with a carrier frequency of 2 GHz.
However, the CIRs observed at the receiver can be distributed
over more than 27 symbol duration due to the effect of the
pulse shape filtering. The maximum CIR length W is, hence,
set at 31.

2) TX formats: Table III shows details of the TX format
parameters, where TX formats 1, 2, and 3 correspond to Figs.
1(c), (b), and (a), respectively. First of all, the TX formats 1
and 2 are used to verify estimation accuracy of the proposed
algorithms, where length Linfo = 2048 information bits
after convolutional encoding with the generator polynomial
(g1, g2) = (7, 5)8 are transmitted over NS = 2 slots using
the 4 × 4 MIMO system. The BER performance of the
MIMO system using the proposed channel estimation is, then,
investigated by assuming all the three TX formats.

B. Channel Estimation Performance

1) NMSE performance of the ℓ2 MMSE-IC: Fig. 3(a) shows
the normalized MSE (NMSE) of the channel estimates ob-
tained using the ℓ2 MMSE-IC in the VA30 scenario, where
TX format 1 without the GI is used. The normalized CRB
(NCRB) is defined by NCRBL̄(σ

2
z) = CRBL̄(σ

2
z)/E[∥H∥2].

As observed from Fig. 3(a), the NMSE performance using the
conventional ℓ2 MMSE technique without the IBI cancelation
diverges from the NCRB even after performing six iterations
(ITB = 6), since the TX format 1 incurs the IBI problem.

The conventional CHATES [10] technique, referred to as
ℓ2 CHATES, improves the IBI problem, however, it exhibits
NMSE deterioration slightly at SNR = 30 dB even after six
iterations. The ℓ2 MMSE-IC achieves the performance bound
NCRB asymptotically in six iterations. This is because the
ℓ2 MMSE-IC computes the covariance matrix KZt,ℓ2 (45)
correctly for the MIMO signal model, while the ℓ2 CHATES
technique assumes KZt,ℓ2 ≈ IL̃t

.
2) NMSE performance of the AIM-MMSE in a moderate

CIR length scenario: In the first iteration (ITB = 1), the
ℓ2 MMSE-IC also suffers from MSE deterioration, since the
replica signals of the transmitted sequence are not available.
It is, hence, necessary to resort to the IBI avoidance strat-
egy. As shown in Fig. 3(a), the NMSE performance of the
AIM-MMSE achieves the analytical performance (42) and
completely solves the MSE floor problem in the first turbo
iteration, where (NAAD, LM , α) = (1, 50, 0.7) is assumed.

Note that, we cannot attain the optimal performance (42)
of the IBI avoidance by straightforwardly combining the ℓ1
LS-IA and the subspace method (ℓ1 LS-IA+SS). As shown in
Fig. 3(a), the ℓ1 LS-IA+SS technique exhibits NMSE deterio-
ration, where the PCA is performed for the covariance matrix

K̂HA
= KLM

j=l [
ˆ̃HLS
A (j)] by assuming E[RΦΦA

] ∝ I|A|NR
. We

can observe from Fig. 3(b) that the ℓ1 LS-IA+SS technique
suffers from the subspace projection error E[∥ĤLS

A ∆Π̂Ṽ∥2] =
E[∥HA∆Π̂Ṽ∥2] in (52) significantly, although it obtains accu-
rate CIR length ŵ and rank r̄ estimates in a high SNR regime.
This is because the AAD (25) over-compresses the interested
information under the BIC according to the LS criterion (17).
Hence, the AAD (41) used in the AIM-MMSE algorithm
adjusts the threshold not to distort the signal subspace under
the MMSE criterion (28). At SNR = 0 dB, the ℓ1 LS-IA+SS
suffers from another problem: NMSE = σ2

H. This is because,
the ℓ1 MMSE-IA by itself does not restore the covariance
matrix K̂HA

, if the estimated active-set has once converged
into A ≈ ∅. However, the AIM-MMSE improves the problem
by utilizing the past ℓ2 solutions.

3) NMSE performance of the AIM-MMSE in a long CIR
length scenario: The IBI avoidance strategy does not always
improve the MSE deterioration when the significant paths
are distributed over a large number of CIR taps. As shown
in Fig. 4(a), the ℓ1 LS-IA given D = Dŵ suffers from the
MSE floor in the first turbo iteration, although it achieves
the analytical performance after performing the sixth iteration.
This is because, when ŵ ≈ W , the TS matrix Φt,Dŵ,[ŵ]

becomes a thin matrix, which deteriorates the accuracy of the
initial delay profile d̂

[0]
H given A[0] = Dŵ in the first turbo

iteration.
The problem can be improved by initializing A[0] with

Āŵ(⊆ Dŵ) obtained in the CIR length estimation (37). As
observed from Fig. 4(a), the ℓ1 LS-IA given D = Āŵ solves
the MSE floor problem in the first iteration, since we can select
the active-set (38) such that |Āŵ| ≪ |Dŵ| ≤ WNT holds in
the PB model. Therefore, the AIM-MMSE algorithm does not
have the biased error due to the pseudo-inverse matrix. (i.e.,
E[∥∆LS

0 (Āŵ)∥2] = 0 holds in Lemma 1.)
The biased error can, in general, be improved by using the

cardinality regularization factor α. The upper bound α0 of
the factor (27) is calculated as α0 = 0.8 for the assumed
system parameters (W,NT , Lt). Fig. 4(b) demonstrates the
analytical NMSE performance in the length-w uniform dis-
tribution channels with the density ratio ρ = w/W , where
the biased error due to the pseudo-inverse matrix is computed
according to Lemma 1. As illustrated in Fig. 4(b), the ℓ1
MMSE-IA technique diverges from the NCRB in the regime
ρ ≥ α0 = 0.8. Hence, in this section, the CIR length
estimation is performed with α = 0.7 < α0 such that the
TS submatrix Φt,Āŵ,[ŵ] becomes a fat matrix.

C. The Algorithm Selection in the AIM-MMSE

This subsection describes how the AIM-MMSE algorithm
adaptively selects the ℓ1 MMSE-IA and the ℓ2 MMSE-IC
according to the LLR’s accuracy. We, then, see that the ℓ1
MMSE-IA should not be performed alone by showing the
NMSE tracking performance.

1) MSE convergence v.s. the mutual information (MI): We
define the LLR’s accuracy by the MI IaEQU = I(λa

EQU; c) be-
tween the LLR λa

EQU and the coded bits c at the transmitter by
1
2

∑
m=±1

∫ +∞
−∞ pr(λ

a
EQU|m) log2

pr(λ
a
EQU|m)

pr(λa
EQU) dλa

EQU, where
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Fig. 3. NMSE performance (a) and the error analysis (b) in the first iteration, where the biased error δ⊥ due to inactive-set and the projection error δΠ̂ are
respectively defined as δ⊥ = E[∥H⊥

A
∥2] and δΠ̂ = E[∥HA∆Π̂Ṽ∥2].
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Fig. 4. NMSE performance (a) in the PB scenario and (b) in the uniform distributed channels.

pr(λ
a
EQU|m) is the conditional probability density function of

λa
EQU given m = 1− 2c [33].
Fig. 5(a) depicts NMSE performance over LLR’s accuracy

at SNR = 15 dB in the PB3 scenario, where we assume that
the subspace projection matrix and the delay profile estimates
have been obtained with ideal precision after performing
sufficient turbo iterations. The analytical performance (43) is
also shown. We can observe from Fig. 5(a) that, in a low to
moderate MI regime, the ℓ2 MMSE-IC improves the NMSE
performance over the conventional ℓ2 CHATES technique
since the ℓ2 MMSE-IC computes the covariance matrix KZt,ℓ2

(45) correctly. In that MI regime, moreover, the ℓ1 MMSE-
IA algorithm outperforms the ℓ2 MMSE-IC in the NMSE
performance. However, all the techniques achieve the NCRB
asymptotically as the MI tends to 1.0. The AIM-MMSE
algorithm, hence, chooses the ℓ1 MMSE-IA in the MI range
0 ≤ IaEQU ≤ 0.8, and it switches to the ℓ2 MMSE-IC in the
MI range 0.8 < IaEQU ≤ 1.0 in order to update the subspace
projection matrix.

2) NMSE tracking performance: As mentioned above, the
ℓ1 MMSE-IA can improve the MSE performance over the ℓ2

MMSE-IC when the LLR fed back from the decoder is not
accurate enough. We note that, however, the improvement is
guaranteed only when the ℓ1 MMSE-IA is performed jointly
with the ℓ2 MMSE-IC. This subsection verifies the observation
described above by investigating the NMSE tracking perfor-
mance when the ℓ1 MMSE-IA is performed alone, where the
delay profile vector (46) is computed by (40).

Fig. 5(b) shows the NMSE tracking performance over slot
timings. We assume an intermittent transmission scenario [20],
referred to as PB-VA, where, as illustrated in Fig. 5(b), CIRs
in every other 200 slot-duration follow the PB and VA models,
respectively. The received SNR is set at 20 dB. As shown in
Fig. 5(b), the true effective CIR lengths w at this SNR are 27
and 20 symbols in the the PB and VA models, respectively.
Ideal subspace projection computed from the exact subspace
vectors VA is used to investigate the impact of the CIR length
estimation accuracy on the NMSE tracking performance.

We can observe from Fig. 5(b) that the ℓ2 MMSE-IC esti-
mates the effective CIR length correctly except the first LM

slots in every 200 slot-duration. The ℓ1 MMSE-IA can also
estimate the effective CIR length correctly until the first 400
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Fig. 5. Verification of the AIM-MMSE algorithm: The PB3 scenario is used in (a), whereas an intermittent TX scenario PB-VA is assumed in (b). The
tracking performance in TX interruptions are omitted. Ideal subspace projection is assumed.

slots. However, after the 400th slot, the CIR lengths obtained
by the ℓ1 MMSE-IA alone are under-estimated, which causes
serious MSE performance deterioration. This is because the
CIR length estimation (37) using (40) can track the changes
of reduction (w = 27 → 20) but fails for the expansion
(w = 20 → 27), as detailed below.

The CIR length estimation problem (37) is formulated
using the analytical MSE performance. As shown in Propo-
sition 1, the analytical MSE is the sum of the unbiased
CRB and the biased error involving tr{K[Ĥ⊥

Āw
]}. Note that

CRBL̄td,ℓ1(w)(σ
2
z) is proportional to the CIR length parameter

w, while tr{K[Ĥ⊥
Āw

]} decreases against w. The biased error
tr{K[Ĥ⊥

Āw
]} defined in Proposition 1 can practically be

approximated by using the delay profile d̄H (46) computed
from the past ℓ2 channel estimates. However, we cannot
accurately estimate tr{K[Ĥ⊥

Āw
]} from (40) since the biased

error has been lost, which makes (37) under-estimated. The
AIM-MMSE algorithm is, therefore, necessary to perform
the ℓ1 MMSE-IA jointly with the ℓ2 MMSE-IC in order to
determine the optimal CIR length constraint.

D. Comparison between the PA-CoSaMP and AAD Algo-
rithms

Fig. 6(a) shows the NMSE performance of the PA-CoSaMP
algorithm in exactly sparse channel realizations, where the
CIRs follow the VA30 scenario. However, as shown in the
right top conner of Fig. 6(a), the path positions are modified to
{1, 3, 6, 9, 13, 19}, and the effect of the pulse shaping filtering
is ignored in this toy example. As observed from Fig. 6(a), the
PA-CoSaMP-based ℓ1 LS channel estimation techniques [11],
[18] achieves the CRB in the exactly sparse channels if the
initial active-set and the CIR length estimate are ideally given.
This is because 1) the channel estimate obtained using the PA-
CoSaMP can also be described by the temporally restricted LS
estimate (22); and 2) in the exactly sparse channels, the LS
estimate (22) achieves the CRB since the eigen space coincides
with the temporal space.

However, we notice that the initial parameters of the PA-
CoSaMP is computed by using adjusting factors determined

empirically. As described in [11], initially, the PA-CoSaMP
obtains a rough channel estimate Ĥcc by performing a circular
convolution. The PA-CoSaMP detects, then, the initial active-
set A′

[0] = {j | dcc(j) > pth(β)}, where dcc(j) denotes the
j-th entry of diag{ĤH

ccĤcc}. The threshold pth(β) may be
defined as pth(β) = β2MSE(HLS

ℓ2 )/(WNT ) according to the
concept of the AAD approach, where β denotes an adjusting
factor. However, no systematic method for determining the
optimal parameter β is provided in [11], [18], [34]. Moreover,
the PA-CoSaMP obtains the effective CIR length by using
A′

[0]. According to our experiments, nevertheless, the range
of A′

[0] needs to be shrunken in order to avoid the last Ls

symbols. This is because, as shown in Fig. 6(b), the rough
channel estimate Ĥcc can suffer from the Gibbs phenomenon
since the received TS itself does not have the circulant property
in the assumed signal model.

It should be emphasized that, as observed from Fig. 6(a),
the AAD algorithm can achieve the expected performance
without empirical adjusting factors such as β and Ls, since
it is developed by exploiting the analytical MSEs.

E. BER Performance

The average SNR used in the following BER simulations is
defined in association with the average energy per bit to noise
density ratio (Eb/N0) as

SNR = σ2
x (σ2

H/NR) η · Eb/N0, (54)

where the spectral efficiency of the TX format structure is
given by η = Linfo/Lfrm with a frame length Lfrm = LSNS

in symbol. Moreover, the variances of a transmitted symbol
and CIRs per TX stream are set at (σ2

x, σ
2
H) = (1, 1).

The proposed techniques are verified from two viewpoints:
1) BER performance without a frame length constraint; 2)
BER performance with a fixed frame length. The first ver-
ification aims to investigate whether the receiver using TX
format 1 without the CP and GI sections improves the BER
performance over that with TX format 2, when channel
estimation is actually performed. The second item is motivated
by a practical premise that the frame length is a constant
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Fig. 6. Comparison between the PA-CoSaMP and AAD algorithms in the sparse-VA scenario with the effect of the pulse shaping filters ignored. The parameter
Ls is set at 2 to avoid the Gibbs phenomenon observed in the last several symbols.

in most communication systems. Note that the CHATUE is
utilized for TX format 1 due to no CP-transmission, while the
conventional turbo equalization with CP-transmission (TEQ-
CP) is assumed for evaluating performance with TX formats
2 and 3.

1) BER performance without a frame length constraint:
Since the definition of Eb/N0 (54) takes the frame length
into account, we can compare TX format 1 with TX format
2 even when their frame lengths are different. Moreover, the
expected BER gain with TX format 1 over the baseline format
2 is at most 10 log10(η2/η1) = 0.6 dB, where ηN denotes the
spectral efficiency of TX format N .

Fig. 7(a) compares the BER performance between the
CHATUE and TEQ-CP receivers. The VA30 scenario is as-
sumed. As observed from Fig. 7(a), in the first iteration, the
CHATUE receiver using the ℓ2 MMSE-IC channel estimation
exhibits BER deterioration compared to the TEQ-CP. This
is because, as shown in Fig. 3(a), the ℓ2 MMSE-IC suffers
from the MSE floor in the first iteration. As depicted in
Fig. 7(a), however, the AIM-MMSE algorithm solves the prob-
lem completely. Moreover, the receiver using the AIM-MMSE
algorithm achieves a BER gain of 0.5 dB over the TEQ-CP
receiver after performing six turbo iterations.

Fig. 7(b) shows the BER convergence performance over
turbo iterations at Eb/N0 = 11.5 dB. Notice that the CHATUE
receiver requires more iterations than the TEQ-CP, since it
reconstructs the circulant property of channel parameters by
utilizing the LLR fed back from the decoder. As observed
from Fig. 7(b), the CHATUE receiver using the AIM-MMSE
algorithm can obtain BER = 10−5 in four iterations while
the ℓ2 MMSE-IC needs to perform more than five iterations.
Therefore, by exploiting the AIM-MMSE channel estimation,
we can obtain the expected BER gain due to the spectrally
efficient frame format while improving the BER convergence
performance in IBI channels.

2) BER performance with a fixed frame length: Fig. 8
shows BER performances with the CHATUE and TEQ-CP
receivers in the PB3 scenario. TX formats 1 and 3 are used
for the CHATUE and TEQ-CP techniques, respectively. Note
that, in Table III, TX formats 1 and 3 have the same spectral
efficiency η, since TX format 3 also transmits Linfo = 2048

information bits by encoding with an Rc = 8/15 puncutred
code derived from the half-rate mother convolutional code
(7, 5)8.

As shown in Fig. 8, the BCJR decoder using TX format 1
achieves a BER gain of 0.5 dB over that using the TX format
3 in a static AWGN channel. However, the gain significantly
depends on the channel estimation accuracy. When the channel
estimation is actually performed in the PB3 scenario, the
CHATUE receiver assuming TX format 1 improves the BER
gain more than 1 dB over the TEQ-CP with TX format 3.
Moreover, we observe that the CHATUE receiver exploiting
the AIM-MMSE channel estimation achieves almost the same
BER performance as that of the TEQ-CP assuming known
CIRs. Hence, by jointly utilizing the AIM-MMSE channel
estimation and the CHATUE algorithms, the IBI problems
incurred by TX format 1 without the CP nor GI sections can be
solved perfectly. Thereby, the proposed algorithm enables us
to pursue spectrally efficient transmission in practical MIMO
systems.

VII. CONCLUSIONS

This paper has proposed a new IBI countermeasure, referred
to as AIM-MMSE, which adaptively utilizes the IBI avoidance
and cancelation strategies according to the analytical MSE
performance. Specifically, the new turbo channel estimation
algorithm avoids the IBI by performing the conditional ℓ1
MMSE channel estimation technique when the soft replica
is not accurate enough, while solving the subspace-based
ℓ2 MMSE problem to update the unbiased statistics. The
simulation results shown in this paper verified that the AIM-
MMSE algorithm solves the MSE floor problem and, hence,
improves the BER performance.
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