

PDF issue: 2025-06-30

Muconic Acid Production Using Gene-Level Fusion Proteins in Escherichia coli

Fujiwara, Ryosuke Noda, Shuhei Tanaka, Tsutomu Kondo, Akihiko

(Citation) ACS Synthetic Biology,7(11):2698-2705

(Issue Date) 2018-11

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights)

This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Synthetic Biology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acssynbio.8b00380

(URL)

https://hdl.handle.net/20.500.14094/90005447

1	Muconic Acid Production Using Gene-level Fusion Proteins in Escherichia coli
2	
3	
4	Ryosuke Fujiwara [†] , Shuhei Noda ^{*‡} , Tsutomu Tanaka ^{*†} , Akihiko Kondo [§]
5	[†] Department of Chemical Science and Engineering, Graduate School of Engineering,
6	Kobe University
7	[‡] Center for Sustainable Resource Science, RIKEN
8	§ Graduate School of Science, Technology and Innovation, Kobe University
9	
10	

12 ABSTRACT

13	This study reports on the improving of Muconic acid (MA) production by using
14	metabolically engineered Escherichia coli. Three MA synthesis pathways separately
15	were introduced into E. coli. After 72 h of cultivation, two of the three strains i.e., one
16	carrying the Pathway 1 (1.00 g/L) and the other carrying the Pathway 3 (1.34 g/L)
17	produced MA. To increase MA production, the enzymes of the shikimate pathway
18	(AroC and AroD) were overexpressed in these strains. Although the overexpression of
19	AroC increased the MA production (1.59 g/L) by the Pathway 1, AroD overexpression
20	decreased it by the Pathway 3. The metabolic channeling using gene-level fusion
21	proteins additionally increased the MA production. In the pathway 1 and pH-controlled
22	cultures, the overexpression of a fusion protein (AroC and MenF) increased the MA
23	production from 20 g/L glucose to >3 and 4.45 g/L, respectively. These results suggest
24	that the metabolic channeling approach is promising strategy to increase the yield of the
25	target compound.
26	

Keywords: Muconic acid, Shikimate pathway, Fusion protein, *Escherichia coli*,
Metabolic engineering

29

- 30 For Table of Contents Use Only
- 31 Manuscript title: Muconic Acid Production Using Gene-level Fusion Proteins in

32 Escherichia coli

33 Authors: Ryosuke Fujiwara, Shuhei Noda, Tsutomu Tanaka, Akihiko Kondo

34

36 Table of Contents/Abstract Graphics

37	The global market for adipic acid, an important aliphatic dicarboxylic acid, is
38	estimated to reach £8 billion by 2022. ^{1,2} More than half of the total adipic acid
39	production is from cyclohexane and the remainder from cyclohexene, uncoupled
40	cyclohexanol/cyclohexanone (KA oil), and phenol. ¹ The production of nylon 66 fibers
41	and engineering resins accounted for approximately 57% of the total amount of adipic
42	acid consumed in 2016. ¹ Recently, microbial production of adipic acid has attracted
43	attention as a solution to the exhaustion of finite fossil resources along with the
44	increasing global demand of adipic acid. The production of bio-adipic acid, wherein
45	carbons are derived from a renewable feedstock, may solve these problems. ³ Yu et al.
46	prepared $639 \pm 34 \ \mu g/L$ of adipic acid from 10 g/L glucose via an artificial pathway
47	with acetyl-CoA and succinyl-CoA as starting units (ACSC1 pathway) in Escherichia
48	<i>coli</i> . ⁴ Cheong et al. created an <i>E. coli</i> strain producing adipic acid at higher amount by
49	introducing another artificial pathway with same starting units of ACSC1 pathway
50	(ACSC2 pathway). Adipyl-CoA, an intermediate of these two artificial pathways,
51	occurs via three steps from succinyl-CoA and acetyl-CoA in the same way in these two
52	pathways. In ACSC2 pathway, adipyl-CoA was converted to adipic acid by acyl-CoA
53	thioesterases, whereas by phosphate butyryltransferase and butyryl kinase in ACSC1
54	pathway. This strain produced 2.5 g/L adipic acid from glycerol at a molar yield of

55	4.1%. ⁵ However, these findings showed that these pathways is not suitable for large-
56	scale production of adipic acid from renewable resources, such as glucose.
57	In this study, we investigated the bio-production of muconic acid (cis, cis-
58	muconic acid (MA) using the gene-level fusion proteins method. In nature, MA is an
59	intermediate in the degradation pathway of various aromatic compounds in some
60	bacteria, including Pseudomonas putida and Klebsiella pneumoniae. ^{6,7} Normally, adipic
61	acid is easily synthesized from MA through double-bond hydrogenation. ⁸ MA is
62	produced through microbial catalysis and is successfully converted to adipic acid by
63	chemical hydrogenation in the presence of suitable catalysts. ⁹ MA is also used as a
64	precursor in the production of terephthalic acid (TPA), the main monomer in the
65	production of polyethylene terephthalate, an important component of industrial resins
66	and thermoplastic synthetic fibers (Figure 1). ^{10,11} After MA isomerization from <i>cis,cis</i> -
67	muconic acid to trans, trans-muconic acid, it follows a Diels-Alder reaction with
68	ethylene and is further dehydrogenated to produce TPA. Given its versatility as a
69	precursor, several laboratories investigated the fermentative production of MA using
70	microbes. ^{12–15} When using <i>E. coli</i> as a host, 3-dehydroshikimate (DHS) and chorismate
71	(intermediates or derivatives of the shikimate pathway) are used as starting materials for
72	MA production (Figure 2A). ^{9,12,14-16} Therefore, increasing the activity of the shikimate

73	pathway is an important strategy to enhance MA yield. The first reaction involved in the
74	shikimate pathway is the stereospecific condensation of erythrose-4-phosphate (E4P)
75	and phosphoenolpyruvate (PEP) to generate 3-deoxy-D-heptulosonate-7-phosphate
76	(DAHP), catalyzed by DAHP synthase. DHS is synthesized via a 2-step reaction from
77	DAHP. Chorismate, a key intermediate in the shikimate pathway, is synthesized
78	downstream of DHS and can be converted to various aromatic compounds, including
79	aromatic amino acids. ¹⁶
80	Several synthetic pathways for MA production have been reported
81	using <i>E. coli</i> as a host strain (Figure 2A). Lin et al. created an MA synthetic pathway via
82	salicylate, which is converted to MA via a sequential reaction pathway involving
83	catechol transformation in reactions catalyzed by salicylate 1-monoxygenase and
84	catechol 1,2-dioxygenase (Figure 2A, Pathway 1). ¹² Sengupta et al. used another
85	pathway for MA production via 4-hydroxybenzoate (PHB) and protocatechuate (PCA)
86	intermediates. ¹⁴ After hydroxylation of 4-hydroxybenzoate, a derivative of chorismate,
87	the PCA product, was converted into MA via catechol by both PCA decarboxylase and
88	catechol 1,2-dioxygenase (Figure 2A, Pathway 2). Niu et al. engineered E. coli by
89	expressing the DHS dehydratase, PCA decarboxylase, and catechol 1,2-dioxygenase,9
90	and creating a branching pathway from the intermediate DHS in the shikimate pathway

91 (Figure 2A, Pathway 3).

92	Previously, we engineered a metabolic pathway in E. coli to increase the
93	activity of the shikimate pathway by accumulating intracellular PEP and to produce
94	chorismate derivatives in high yields ¹⁵ . To prevent PEP consumption during glucose
95	uptake, we generated a recombinant strain by replacing the endogenous
96	phosphotransferase system (PTS) with the galactose permease (GalP)/glucokinase (Glk)
97	system (GGS) (PTS ⁻ GGS ⁺ strain). The PTS consumes 1 mol of PEP for 1 mol of
98	glucose while the GGS needs ATP as the cofactor for glucose phosphorylation without
99	PEP consumption. Two genes encoding pyruvate kinase (<i>pykA</i> , <i>pykF</i>) from the
100	PTS ⁻ GGS ⁺ strain were disrupted to prevent the introduction of carbon-based
101	compounds to the TCA cycle. As pyruvate kinase catalyzes the conversion of PEP to
102	pyruvate in the glycolytic pathway, the disruption of the genes encoding these enzymes
103	will deprive the engineered E. coli of pyruvate. In our platform strains, the lack of
104	pyruvate was compensated by introducing an artificial pathway that produces
105	chorismate derivatives, such as salicylate, p-hydroxybenzoate, 3-hydroxybenzoate, 2-
106	aminobenzoate, <i>p</i> -aminobenzoate, phenol, and MA along with pyruvate. ¹⁵ For example,
107	using the salicylate biosynthesis pathway, the chorismate is converted to isochorismate
108	by isochorismate synthase (MenF). Then, the isochorismate is cleaved by isochorismate

109 pyruvate lyase to release pyruvate and salicylate (Figure 1).

110	Fusion protein enzymes are attracting attention as an efficient strategy to
111	selectively increase the carbon flux to the target pathway while decreasing that to the
112	competitive pathway without completely inactivating the genes. One strategy used to
113	express fusion proteins is to bind the enzymes after translation by transpeptidase.
114	Matsumoto et al. increased acetate production in recombinant <i>E.coli</i> synthesizing a
115	fusion protein of pyruvate-formate lyase and phosphate acetyltransferase ligated by
116	Staphylococcal sortase A. ¹⁷ Engineering of the fusion protein at the gene level is a
117	simpler method of protein expression. Wang et al. increased the production of α -
118	farnesene in recombinant E. coli by expressing a fusion protein of farnesyl diphosphate
119	synthase and α -farnesene synthase. ¹⁸ In these studies, the metabolic channeling
120	effectively increased the target compound production. Fusion enzymes behave in the
121	same way as the native multi-domain enzymes (MDE). MDEs catalyze a series of
122	reactions while preventing the diffusion of intermediate metabolites, thereby improving
123	the efficiency of a metabolic reaction cascade by generating a substrate channeling from
124	an active site to another. ^{17,19} As the MDE, reaction intermediates produced by fusion
125	enzymes do not diffuse, increasing the efficiency of the subsequent reaction. Hence, the
126	developing of the artificial metabolic channeling by fusion proteins is a powerful tool

127 for increasing the carbon flux to a specific pathway.

128	This study investigates the effect of overexpressing fusion proteins in the
129	shikimate pathway using the gene-level fusion method on MA yield. Hence, the MA
130	synthesis pathway was introduced into a strain with increased shikimate pathway flux,
131	as described above. After selecting the optimal MA synthesis pathways from three
132	candidates, the production of MA by the selected pathways was increased by
133	overexpressing chorismate synthase (AroC). Finally, the effect of the gene-level fusion
134	method was investigated. The production of MA was further increased by
135	overexpressing gene-level fusion proteins of AroC and MenF.
136	

138 RESULTS AND DISCUSSION

139	Selection of the candidate pathways for the MA production
140	Several previous reports have described methods for increasing MA production
141	among them, the introduction of several MA synthesis pathways. ^{9,12,14} In this study, we
142	tested three pathways for MA production using the CFT5 strain. ¹⁵ Two of the three
143	pathways start from chorismate, a key compound in the shikimate pathway. The
144	Pathway 1 produces MA via salicylate, whereas the Pathway 2 produces MA via PHB
145	(Figure 2A). The Pathway 3 starts with DHS, another intermediate in the shikimate
146	pathway, and produces MA via PCA (Figure 2A). In all three pathways, the catechol is
147	produced from salicylate or PCA, followed by cleavage of the catechol benzene ring to
148	form MA. In Pathway 1, the order of the genes was tested, and choose suited to CFT5
149	(Supporting information Table S3).
150	We engineered three <i>E. coli</i> transformants, CFT51a, CFT52a, and CFT53a
151	(carrying Pathway 1, Pathway 2, and Pathway 3, respectively). Figure 3 shows the
152	amount of MA produced by each transformant after 72 h cultivation. CFT51a and
153	CFT53a produced 1.00 ± 0.11 and 1.34 ± 0.07 g/L of MA, respectively. Although
154	CFT52a produced 0.40 ± 0.02 g/L of MA after 24 h cultivation, the amount produced
155	decreased to the detection limit after 72 h cultivation. No difference in cell growth was

156	observed between strains, and all strains consumed glucose within 48 h of cultivation
157	(Supplementary Figure S1, Figure S2). The intermediates of the MA synthesis pathway
158	(salicylate [Pathway 1], PCA [Pathway 2], and catechol [Pathways 1, 2]) were not
159	detected in the culture supernatants of CFT51a or CFT52a after 72 h of cultivation.
160	Although high PHB production was previously observed in CFT5-derived
161	strain (1820 mg/L after 72 h of cultivation), ¹⁵ the CFT52a produced only a small
162	amount of MA. CFT52a cultures contained no detectable PCA or catechol, and only a
163	small amount of PHB was detected (0.108 ± 0.00 g/L after 72 h of cultivation). The
164	Pathways 2 and 3 both include the reactions catalyzed by AroY and CatA. Because
165	CFT53a, carrying Pathway3, produced the highest amount of MA among the three
166	strains, these reactions were considered as optimum in CFT5-derived strains. In the
167	SDS-PAGE analysis of CFT52a strain, the significant overexpression of PobA and UbiC
168	was not detected (Supplementary Figure S3). In order to produce MA at high yield in
169	pathway 2, it would be necessary to solve these expression problems. Hence, we
170	conclude that the Pathway 2 is not suitable for MA production in CFT5-derived strains.
171	
172	Optimizing the production pathway of the MA

To further increase the MA production we approached the intracellular

174	availability of the compound at the branch point between the endogenous shikimate and
175	synthetic MA pathway. The branch point compounds are chorismate in CFT51a
176	(Pathway 1) and DHS in CFT53a (Pathway 3). Since no accumulation of intermediates
177	was detected in the culture supernatants of CFT51a or CFT53a, the Pathways 1 and 3
178	were not bottlenecks in these strains. Improved availability of chorismate or DHS is
179	essential for further increasing MA production. Overexpression of AroC in CFT51a and
180	AroD in CFT53a was used to increase the carbon flux to chorismate and DHS
181	respectively. Figure 3 shows the amount of produced MA by each transformant after 72
182	h cultivation. CFT51b produced 1.59 ± 0.10 g/L of MA, which is 1.6-fold higher than
183	that produced by CFT51a. However, the amount of MA produced by CFT53b was
184	below the quantification limit. Lütke-Eversloh et al. investigated the key enzymes for
185	tyrosine production, reporting that overexpression of AroC is an effective way to
186	increase the production of compounds in the shikimate pathway. ²⁰ This report is
187	consistent with our finding that showed that the MA production was effectively
188	increased by the overexpression of AroC. However, contrary to our expectations, the
189	overexpression of AroD had a negative effect on the MA production in CFT53b
190	(Pathway 3). The overexpression of AroD might increase the carbon flux downstream of
191	the shikimate pathway rather than that to PCA, the precursor of MA.

193 Expression of fusion proteins to further increase MA yield

194	As already stated, the metabolic channeling is a powerful strategy to enhance
195	the carbon flux to specific compounds of interest, by promoting the efficient transfer of
196	an intermediate product from an enzyme to another. ^{21,22} Hence, this strategy was applied
197	in our study for the MA biosynthesis aiming to increase its production (Figure 4). In
198	Pathways 1 and 3, the two enzymes at the branch point between the shikimate and MA
199	biosynthesis pathways were overexpressed as a fusion protein, AroC and MenF (AroC-
200	MenF) in Pathway 1 and AroD and AroZ (AroD-AroZ) in Pathway 3 (Figure 2A). First
201	we examined the effect of linker type on MA production. In AroC-MenF and AroD-
202	AroZ, MA production was compared in the case of using without linker, flexible linker,
203	and rigid linker (Supplementary Figure S4), respectively, and flexible linker was most
204	suitable for AroC-MenF and AroD-AroZ (Supplementary Table S4). Figure 3 displays
205	the amount of MA produced by each transformant after 72 h cultivation. CFT51c
206	(AroC-MenF) and CFT53c (AroD-AroZ) produced 3.45 ± 0.04 and 1.20 ± 0.10 g/L of
207	MA, respectively. The production of MA in CFT51c was 2.16-fold higher than that
208	produced by CFT51b, which expresses the unfused AroC and MenF proteins. We
209	confirmed that CFT51b and CFT51c expressed MenF and fused AroC/MenF fusion

210	protein respectively by western blotting analysis (supplementary Figure S5). In the
211	AroC-MenF fusion protein, the two enzymes are placed in close proximity, thereby
212	increasing the apparent concentration of the intermediate (chorismate) around MenF
213	relative to that of the non-fusion enzyme, resulting in higher carbon flux to the MA
214	biosynthesis pathway (Figure 4). If the competing pathway is branched from the
215	synthetic pathway of the target compound, metabolic channeling by the fusion protein
216	has the potential to significantly increase production. However, for the AroD-AroZ
217	fusion protein, no improvement of the MA production was noticed. For CFT53b, in
218	which AroD and AroZ were overexpressed separately, the MA production was
219	drastically decreased than that of CFT53a (not overexpressing AroD) (Figure 3). In
220	SDS-PAGE analysis of CFT53b, free AroD was significantly overexpressed in this
221	strain (Supplementary Figure S6). One explanation could be related to the fact that the
222	overexpression of AroD shifted the carbon flux in the shikimate pathway more
223	effectively than to PCA. The expression of AroZ, AroY and CatA were not distinctively
224	confirmed in CFT53b. The imbalance of expression levels of these enzymes might have
225	a negative effect on MA production. On the other hand, in SDS-PAGE analysis of
226	CFT53c, it was not distinctively confirmed to be overexpressed the free AroD and the
227	fused AroD/AroZ (Supplementary Figure S6). Since the expression level of the

228	AroD/AroZ was greatly reduced as compared with AroD, the imbalance would have
229	been eliminated and the production of MA was restored. However, the production titer
230	of CFT53c was lower than CFT53a. It seems that metabolic channeling between AroD
231	and AroZ would have not work well because of the inactivation of the AroD domain in
232	the fusion protein. The native AroD protein is expressed as a homodimer in $E.coli$. ²³ In
233	CFT53c, the AroD may not dimerize properly, because it is fused to AroZ. In this case,
234	only the endogenous AroD would function as a 3-dehydroquinate dehydratase, as in
235	CFT53a. This hypothesis may explain why MA production was nearly the same in
236	CFT53a and CFT53c. Thus, it is difficult to preserve the function of proteins with more
237	complex structures, such as dimeric AroD, as fusion proteins. Another strategy for
238	metabolic channeling involves the protein-level fusion after translation using
239	transpeptidases. ¹⁷
240	The protein fusion method has been used to increase the production of target
241	compounds, as well. Matsumoto et al. created recombinant E. coli expressing a fusion
242	protein of pyruvate-formate lyase (PFL) and phosphate acetyltransferase (PTA) ligated
243	by <i>Staphylococcal</i> sortase A. ¹⁷ This strain produced a significantly higher amount of
244	acetate as compared to a control strain expressing PFL and PTA separately. The Sortase-
245	A-mediated protein fusion method was effective for <i>in vivo</i> metabolic channeling.

Hence, this approach seems to be effective to produce AroZ-AroD fusion proteins.

247

248 pH-controlled tube-scale culture using CaCO₃

249	We attempted increasing the MA production titer by cotrolling pH. The
250	decrease in pH during culturing often has a bad influence on bioproduction. Although E.
251	coli grows at pH 5-8, the environment inside the bacteria also changes due to the change
252	in external pH ²⁴ . On the acidic side, when the pH falls below 6, the intracellular pH
253	decreases ²⁵ . After culturing CFT51c for 72 hours, the pH in the medium decreased to
254	5.51 ± 0.0 . Thompson et al. introduced multiple MA synthesis pathways into <i>E. coli</i> that
255	produced 3153 ± 149 mg/L of MA. ²⁶ This is the highest titer so far using microbes in
256	batch culture, without pH-controlled conditions. The E. coli transformant constructed in
257	the present study also produced 3.45 g/L of MA. According to these results, it is
258	possible that the MA produced in CFT51c reached the limit in non-pH-control. Thus,
259	we hypothesized that further MA production can be increased by pH control. To control
260	the pH during cultivation, CaCO ₃ (10 g/L) was added to the culture medium after 24 h
261	of cultivation. Figure 5C illustrates the amount of MA produced by CFT51c cultured in
262	a medium containing CaCO ₃ . CFT51c produced 4.45 ± 0.12 g/L of MA after 72 h of
263	cultivation, meaning a 1.29-fold increase over that without CaCO ₃ , and the maximum

production rate reached 2.77 g/L/day (24 h). After culturing CFT51c for 72 hours with CaCO₃, the pH in the medium was maintained at 7.05 ± 1.4 .

266

267 Jar fermentor cultivation

268 In order to perform cultivation more precisely while controlling the pH, 269 CFT51c was cultured with a Jar fermentor. Figure 6 indicates the cell growth, MA 270 production, and glucose consumption in jar fermentor cultivation. CFT51c produced 4.55 g/L of MA after 72 h of cultivation and maximum production rate was 2.20g/L/day 271 272 at 48h cultivation. These results correspond with the culture profiles of pH-control test 273 tube cultivation with CaCO₃. The results of test tube culture (with CaCO₃) and jar 274 fermentor culture indicate that pH adjustment is important for MA production at this stage. In order to further increase the production, it will be necessary to examine the 275 appropriate dissolved oxygen concentration and to handle the increase of osmotic 276 277 pressure due to MA and by-products accumulation.

278

280 CONCLUSIONS

281	In summary, three MA synthesis pathways were compared aiming to select the
282	most suitable for MA production in CFT5-derived strains. The three initial strains were
283	greatly different from each other in terms of MA production. Several possible pathways
284	are available to produce a compound of interest by using microorganisms. However, as
285	our results showed, the selection of the optimal pathway among the available ones is
286	essential in the perspective of the industrial applications that need the optimization of
287	the yield of a target compound.
288	To obtain a high yield of MA, we applied the fusion protein method. Hence,
289	the expressed fusion protein directed the carbon flux to the MA synthesis in the
290	shikimate pathway, resulting in a production of MA of 4.45 g/L with a maximum
291	production rate of 2.77 g/L/day. The MA yield from glucose was 207 mg/g, which is an
292	increase of 4.44-fold as compared to that of CFT51a, used as a control strain. The
293	production titer and rate of MA production using glucose as the carbon source in
294	CFT51c were higher than those in all previous studies using batch cultures in flasks or
295	test tubes. This result suggests that metabolic channeling using the gene-level fusion
296	proteins is a powerful tool to direct the carbon flux to the specific pathways selectively
297	leading to the desired product. However, the gene-level fusion method is difficult to

- apply to proteins with more complex structures, such as multimeric proteins. To further
- 299 increase the production titer and yield would require to combine multiple approaches,
- 300 such as gene disruption, metabolite funneling, and fusion proteins.

	Constants	Source or
	Genotype	reference
Strains		
	endA1 hsdR17(rK12-mK12 ⁺) supE44 thi-I gyrA96 relA1	
Nova Blue	<i>lac recA1/F' [proAB⁺ lacIq ZΔM15::Tn10(Tet r)];</i> used for	Novagen
	gene cloning.	
ATCC31882	L-Phenylalanine-overproducing strain	ATCC
CET5	ATCC31882 ptsHI:: $P_{A11acO-1}$ -glk-galP $\Delta pykF \Delta pykA$	Node et al 15
CF15	$\Delta pheA \Delta tyr$	Noda et al.
CFT51a	CFT5 harboring pZA23-ncmI	This study
CFT51b	CFT5 harboring pZA23-ncamI	This study
CFT51c	CFT5 harboring pZA23-nca/mI	This study
CFT52a	CFT5 harboring pZA23-UpYc	This study
CFT53a	CFT5 harboring pZA23-ZYc	This study
CFT53b	CFT5 harboring pZA23-DZYc	This study
CFT53c	CFT5 harboring pZA23-D/ZYc	This study

302 Table. 1 Bacterial strains and plasmids used in this study

Plasmids

pZE12MCS	pZE12MCS <i>P</i> _{LlacO1} , colE ori, Amp ^r	
pZA23MCS	SP _{AllacO-1} , p15A ori, Km ^r	Expressys
pZA23- ncmI	pZA23MCS containing <i>nahG</i> , <i>catA</i> , <i>menF</i> , and <i>pchB</i>	This study
ZA23- ncamI	pZA23-ncmI containing <i>aroC</i>	This study
pZA23- nca/mI	pZA23MCS containing <i>nahG</i> , <i>catA</i> , <i>pchB</i> , and <i>aroC/menF</i> , which is a gene expressing fusion protein composed of AroC and MenF.	This study
pZA23- UpYc	pZA23MCS containing <i>ubiC</i> from <i>E. coli, pobA</i> from <i>P. putida</i> KT2440(codon optimized for <i>E.coli</i>), <i>aroY</i> from <i>K. pneumoniae</i> (codon optimized for <i>E.coli</i>), and <i>catA</i>	This study
pZA23-ZYc	pZA23MCS containing <i>aroZ</i> from <i>Bacillus thuringiensis</i> (codon optimized for <i>E.coli</i>), <i>aroY</i> , and <i>catA</i>	This study
pZA23- DZYc	pZA23-ZYc containing <i>aroD</i> from <i>E.coli</i>	This study
pZA23-	pZA23MCS containing <i>aroY</i> , catA, and AroD-AroZ,	This study
D/ZYc	which is a gene expressing fusion protein composed of	

AroD and AroZ.

Figure 1. The synthetic metabolic pathway for the production of chorismate derivatives, 305 306 including MA, in E. coli CFT5-derived strains. The red X indicates deletion of the ptsH, ptsI, pykA, pykF, pheA, and tyrA genes. The blue arrows indicate the GalP/Glk system 307 308 (GGS) revised by introducing galP and glk genes. The green arrows indicate the MA 309 synthesis pathways introduced. The orange arrow indicates the conversion of MA to various products by chemical catalysis. GalP - galactose permease, Glk - glucokinase, 310 G6P - glucose 6-phosphate, ATP - adenosine triphosphate, ADP - adenosine 311 312 diphosphate, G6P - glucose-6-phosphate, E4P - erythrose-4-phosphate, PEP -313 phosphoenolpyruvate, Acetyl-CoA - acetyl-coenzyme A, AA - adipic acid, TPA-

314 terephthalic acid.

Figure 2. (A) Diagram of MA synthesis pathways in CFT5-derived strains. DQA -316 dehydroquinate, DHS dehydroshikimate, 5-O-(1-Carboxyvinyl)-3-317 EPSP -phosphoshikimate, PHB - p-hydroxbenzoate, ICA - isochorismate, PCA - protocatechuate, 318 Red arrows - Pathway 1, blue arrows - Pathway 2, and green arrows - Pathway 3. (B) 319 320 Diagram of MA synthesis gene cassette in each plasmid.

Figure 3. MA production titer in CFT5-derived strains. Red, blue, and green bars
indicate MA production via Pathway 1, Pathway 2, and Pathway3, respectively. n.c. is
empty vector control (CFT5 containing pZA23MCS). The data are presented as the
average of three independent experiments, and error bars indicate the standard error.

Figure 4. Effect of AroC-MenF fusion protein expression on MA production. (A) Diagram of the shikimate pathway in CFT51b. (B) Diagram of shikimate pathway in CFT51c. Black and red Pac-man shapes indicate the AroC and MenF, respectively. Orange and purple Pac-man shapes indicate the enzymes consuming chorismate as substrate. Yellow band indicates the flexible (GGGGS)3 linker. Light gray circles - 5-O-(1-Carboxyvinyl)-3-phosphoshikimate (EPSP), dark gray diamonds - chorismate, red squares - isochorismate, and yellow stars - MA. Orange pentagons and purple triangles indicate the byproducts derived from chorismate.

Figure 5. Culture profiles of CFT51c. Red closed circles - non-pH-controlled
cultivation, red open circles - pH-controlled cultivation (CaCO₃ added). (A) Bacterial
cell growth (CFT51c). (B) Glucose consumption by CFT51c. (C) MA production by
CFT51c. Blue arrows indicate when CaCO₃ was added in to the culture medium. The
data are presented as the average of three independent experiments, and error bars
indicate the standard error.

360 METHODS

361 Strains and plasmid construction

- 362 The strains and plasmids used in this study are listed in Table 1. *E. coli* NovaBlue
- 363 competent cells (Novagen, Cambridge, MA, USA) were used for gene cloning.
- ³⁶⁴ Polymerase chain reaction was performed using Quick Taq HS (TOYOBO, Osaka,
- 365 Japan). Custom DNA oligonucleotide primers were synthesized by Invitrogen Custom
- 366 DNA Oligos (Thermo Fisher Scientific, Tokyo, Japan) (Supplementary Table S2).
- 367 Codon optimized exogenous genes fragments (pobA from P. putida KT2440, aroY from
- 368 *K. pneumoniae*, and *aroZ* from *Bacillus thuringiensis*) were synthesized by the
- 369 Invitrogen GeneArt Gene Synthesis service (Thermo Fisher Scientific, Tokyo, Japan).
- 370 Sequences of primers and exogenous genes fragments and detailed plasmid construction
- 371 methods are described in Supporting Information.
- 372

373 **Fusion protein construction**

- The two proteins were expressed as one fusion protein using the following method. A
- 375 flexible (GGGGS)₃ linker was inserted between the C-terminal of the upstream protein
- 376 (AroC or AroD) and the N-terminal of the downstream protein (MenF or AroZ) i.e.,

- terminal). A plasmid expressing the fusion protein was constructed, as follows. The
- 379 linker sequence was inserted between the 3'end of the upstream gene (*aroC* or *aroD*)
- and the 5' end of the downstream gene (*menF* or *aroZ*), and the stop codon of the
- upstream gene was deleted, i.e., (3'end of upstream gene)-
- downstream gene). The detailed method used to construct plasmids expressing the
- 384 fusion proteins is described in Supporting Information.

386 Transformation of CFT5-derived strains

- 387 The transformation of CFT5-derived strains was carried out by electroporation with a
- 1350 kV, 600 Ω, 10 μF electric pulse in a 0.1 cm cuvette using a Gene Pulser (Bio-Rad
- 389 Laboratories, Hercules, CA, USA).
- 390 CFT5 harboring pZA23-ncmI, pZA23-ncamI, pZA23-nca/mI, pZA23-UpYc, pZA23-
- 391 ZYc, pZA23-DZYc, and pZA23-D/ZYc were designated CFT51a, CFT51b, CFT51c,
- 392 CFT52a, CFT53a, CFT53b, and CFT53c, respectively. CFT51c harboring pSAK-tktA
- 393 was designated CFT51ct.

394

396 **Media**

397	M9YP medium was used for MA production in 5-mL test tube-scale cultures. M9YP
398	medium comprised M9 minimal medium supplemented with 0.5% yeast extract and 10
399	mM sodium pyruvate. M9 minimal medium contains (per liter) 20 g glucose, 0.5 g
400	NaCl, 17.1 g Na ₂ HPO ₄ ·12H ₂ O, 3 g KH ₂ PO ₄ , 1g NH ₄ Cl, 246 mg MgSO ₄ ·7H ₂ O, 14.7
401	mg CaCl ₂ •2H ₂ O, 2.78 mg FeSO ₄ •7H ₂ O, 10 mg thiamine hydrochloride, 40 mg L-
402	tyrosine, 40 mg L-tryptophan, and 100 mg L-phenylalanine (Tyr and Trp were included
403	because ATCC31882 is auxotrophic for these amino acids, and the CFT5 derivative
404	strains are auxotrophic for Phe). When needed, kanamycin was added to the initial
405	medium to final concentrations of 20 mg/L. In pH-controlled tube-scale cultures,
406	autoclaved 100 g/L CaCO ₃ (dispersed in distilled water) was added to the cultures to a
407	final concentration of 10 g/L. LB medium was used for MA production in batch-scale
408	cultures in a 2.0 L jar fermentor. LB medium contains (per liter) 20 g glucose, 10 g
409	tryptone, 5 g yeast extract, 5 g NaCl, 20mg kanamycin.
410	

411 Culture conditions

412 For MA fermentation from glucose, metabolically engineered strains were pre-cultured
413 in 4 mL M9YP medium for 1 day at 37 °C with shaking at 220 rpm in a 15-mL test tube.

414	Each pre-culture medium was seeded to 5 mL M9YP medium (supplemented with 0.1
415	mM isopropyl β -D-1-thiogalactopyranoside) in a 15 mL test tube at an initial optical
416	density (OD ₆₀₀) of 0.1. The tube-scale cultures were incubated at 37 $^{\circ}$ C with shaking at
417	220 rpm. In the pH-controlled tube-scale cultures, CaCO ₃ was added to the cultures at
418	24 h after seeding. Batch-scale cultures were performed in a 2.0 L jar fermentor with a
419	400-mL working volume. LB medium was used for MA production at this scale.
420	The 400mL of culture medium in the jar fermentor was inoculated with preculture
421	while adjusting the initial OD to 0.05. In order to maintain the pH at 7.0 during
422	cultivation, 1M HCl and 7% NH_4OH was automatically added to the medium. The
423	dissolved oxygen (DO) was maintained at over 0.69 ppm by automatically controlling
424	the agitation speed from 200 to 600 rpm and supplementing and supplementing with air
425	at 400m L/min. In this experiment, 0.1mM IPTG was added to the medium at 3 h after
426	the initiation of cultivation.
427	
428	Analytical methods
429	Cell growth was determined by measuring the OD at 600 nm on a UVmini-
430	1240 spectrophotometer (Shimadzu Corporation, Kyoto, Japan). Glucose was analyzed

431 using a Prominence HPLC System (Shimadzu) equipped with a Shodex SUGAR KS-

432	801 column (6 μm , 300 mm \times 8.0 mm, L \times I.D., Shodex). Water was used as the mobile
433	phase with a flow rate of 0.8 mL/min, and the column was maintained at 50 $^\circ$ C. The
434	HPLC profile was monitored using a refractive index detector.
435	MA was analyzed using an HPLC equipped with a SCR-102H column (7 μ m,
436	8.0 mm \times 300 mm, I.D. \times L, respectively, Shimadzu). <i>p</i> -Toluenesulfonic acid (5 mM)
437	was used as the mobile phase with a flow rate of 2.0 mL/min, and the column was
438	maintained at 40 °C. The HPLC profile was monitored using a conductivity detector.
439	PHB, PCA, and catechol ware analyzed using an HPLC equipped with a PBr
440	column (5 $\mu m,$ 4.6 mm \times 250 mm, I.D. \times L, respectively, Nacalai Tesque). A dual-
441	solvent system was used. Solvent A was 0.2 % phosphate buffer and solvent B was
442	methanol. The flow rate of the mobile phase was 1.0 mL/min, and the column was
443	maintained at 40 °C. The gradient was initiated as an 80:20 mixture of A and B (0–15
444	min), shifted to a 50:50 mixture of A and B (15–20 min), and subsequently shifted to an
445	80:20 mixture of A and B (20–25 min). The HPLC profile was monitored using a UV-
446	VIS detector at 240 nm.
447	
448	SUPPORTING INFORMATION

449 Supporting information is containing cultivation profiles, detailed methods of

450	plasmids and strains construction, and sequences of the synthetic genes and custom
451	DNA oligonucleotide primers.
452	
453	AUTHOR INFORMATION
454	Corresponding Authors
455	*E-mail: <u>shuhei.noda@riken.jp;</u> tanaka@kitty.kobe-u.ac.jp
456	Author Contribution
457	R.F., N.S. and T.T. proposed the idea, designed the experiments, and wrote the
458	paper. R.F. performed the experiments. A.K. supervised the research. All authors read
459	and approved the final manuscript.
460	Conflict of Interest Disclosure
461	The authors declare no competing financial interest.
462	
463	ACKNOWLEDGMENTS
464	This work was supported by JST-Mirai Program Grant Number JPMJMI17EI,
465	Japan. R.F. was supported by a Research Fellowship of the Japan Society for the
466	Promotion of Science (JSPS) for Young Scientists. This work was supported by the
467	RIKEN Center for Sustainable Resource Science, Special Postdoctoral Researcher
468	Program.

470 REFERENCES

471	1.	IHS Markit. (2017) Adipic Acid - Chemical Economics Handbook (CEH).
472		https://www.ihs.com/products/adipic-acid-chemical-economics-handbook.html.
473		Accessed November 16, 2017.
474	2.	Global Industry Analysts Inc. (2016) Stable Demand from End-Use Sectors to
475		Sustain Growth in the Global Adipic Acid Market.
476		http://www.strategyr.com/MarketResearch/Adipic_Acid_Market_Trends.asp.
477		Accessed November 16, 2017.
478	3.	Kruyer, N. S., and Peralta-Yahya, P. (2017) Metabolic engineering strategies to
479		bio-adipic acid production. Curr. Opin. Biotechnol. 45, 136-143. DOI:
480		10.1016/j.copbio.2017.03.006
481	4.	Yu, J. Le, Xia, X. X., Zhong, J. J., and Qian, Z. G. (2014) Direct biosynthesis of
482		adipic acid from a synthetic pathway in recombinant Escherichia coli.
483		Biotechnol. Bioeng. 111, 2580-2586. DOI: 10.1002/bit.25293
484	5.	Cheong, S., Clomburg, J. M., and Gonzalez, R. (2016) Energy- and carbon-
485		efficient synthesis of functionalized small molecules in bacteria using non-
486		decarboxylative Claisen condensation reactions. Nat. Biotechnol. 34, 556-561.
487		DOI: 10.1038/nbt.3505

488	6.	Chobchuenchom, W., Mongkolsuk, S., and Bhumiratana, A. (1996)
489		Biodegradation of 3-chlorobenzoate by Pseudomonas putida 10.2. World J.
490		Microbiol. Biotechnol. 12, 607-614. DOI: 10.1007/BF00327723
491	7.	Jung, H. M., Jung, M. Y., and Oh, M. K. (2015) Metabolic engineering of
492		Klebsiella pneumoniae for the production of cis, cis-muconic acid. Appl.
493		Microbiol. Biotechnol. 99, 5217-5225. DOI: 10.1007/s00253-015-6442-3
494	8.	Xie, NZ., Liang, H., Huang, RB., and Xu, P. (2014) Biotechnological
495		production of muconic acid: current status and future prospects. <i>Biotechnol. Adv.</i>
496		32, 615-622. DOI: 10.1016/j.biotechadv.2014.04.001
497	9.	Niu, W., Draths, K. M., and Frost, J. W. (2002) Benzene-free synthesis of adipic
498		acid. Biotechnol. Prog. 18, 201-211. DOI: 10.1021/bp010179x
499	10.	Barton, N., Horbal, L., Starck, S., Kohlstedt, M., Luzhetskyy, A., and Wittmann,
500		C. (2018) Enabling the valorization of guaiacol-based lignin: Integrated chemical
501		and biochemical production of <i>cis, cis</i> -muconic acid using metabolically
502		engineered Amycolatopsis sp ATCC 39116. DOI: 10.1016/j.ymben.2017.12.001
503	11.	Shen, L., Worrell, E., and Patel, M. (2010) Present and future development in
504		plastics from biomass. Biofuels, Bioprod. Biorefining. 4, 25-40. DOI:
505		10.1002/bbb.189

506	12.	Lin, Y., Sun, X., Yuan, Q., and Yan, Y. (2014) Extending shikimate pathway for
507		the production of muconic acid and its precursor salicylic acid in Escherichia
508		coli. Metab. Eng. 23, 62-69. DOI: 10.1016/j.ymben.2014.02.009
509	13.	Zhang, H., Li, Z., Pereira, B., and Stephanopoulos, G. (2015) Engineering E.
510		<i>coli–E. coli</i> cocultures for production of muconic acid from glycerol. <i>Microb</i> .
511		Cell Fact. 14, 134. DOI: 10.1186/s12934-015-0319-0
512	14.	Sengupta, S., Jonnalagadda, S., Goonewardena, L., and Juturu, V. (2015)
513		Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-
514		hydroxybenzoic acid in Escherichia coli. Appl. Environ. Microbiol. 81, 8037-
515		8043. DOI: 10.1128/AEM.01386-15
516	15.	Noda, S., Shirai, T., Oyama, S., and Kondo, A. (2016) Metabolic design of a
517		platform Escherichia coli strain producing various chorismate derivatives.
518		Metab. Eng. 33, 119-129. DOI: 10.1016/j.ymben.2015.11.007
519	16.	Noda, S., and Kondo, A. (2017) Recent Advances in Microbial Production of
520		Aromatic Chemicals and Derivatives. DOI: 10.1016/j.tibtech.2017.05.006
521	17.	Matsumoto, T., Furuta, K., Tanaka, T., and Kondo, A. Sortase A Mediated
522		Metabolic Enzyme Ligation in Escherichia coli. DOI:
523		10.1021/acssynbio.6b00194

524	18.	Wang, C., Yoon, SH., Jang, HJ., et al. (2011) Metabolic engineering of
525		Escherichia coli for a-farnesene production. Metab. Eng. 13, 648-655. DOI:
526		10.1016/j.ymben.2011.08.001
527	19.	Singh, S. A., and Christendat, D. Structure of Arabidopsis Dehydroquinate
528		Dehydratase-Shikimate Dehydrogenase and Implications for Metabolic
529		Channeling in the Shikimate Pathway. DOI: 10.1021/bi060366+
530	20.	Lütke-Eversloh, T., and Stephanopoulos, G. (2007) L-Tyrosine production by
531		deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75, 103-110.
532		DOI: 10.1007/s00253-006-0792-9
533	21.	Miles, E. W., Rhee, S., and Davies, D. R. (1999) The molecular basis of substrate
534		channeling. J. Biol. Chem. 274, 12193-12196. DOI: 10.1074/JBC.274.18.12193
535	22.	Zhang, YH. P. (2011) Substrate channeling and enzyme complexes for
536		biotechnological applications. Biotechnol. Adv. 29, 715-725. DOI:
537		10.1016/j.biotechadv.2011.05.020
538	23.	Duncan, K., Chaudhuri, S., Campbell, M. S., and Coggins, J. R. (1986) The
539		overexpression and complete amino acid sequence of Escherichia coli 3-
540		dehydroquinase. Biochem. J. 238, 475-483. DOI: 10.1042/bj2380475
541	24.	Small, P., Blankenhorn, D., Welty, D., Zinser, E., and Slonczewski, J. L. (1994)

542		Acid and base resistance in <i>Escherichia coli</i> and <i>Shigella flexneri</i> : role of <i>rpoS</i>
543		and growth pH. J. Bacteriol. 176, 1729-1737. DOI: 10.1128/JB.176.6.1729-
544		1737.1994
545	25.	Mugikura, S., Nishikawa, M., Igarashi, K., and Kobayashi, H. (1990)
546		Maintenance of a Neutral Cytoplasmic pH Is Not Obligatory for Growth of
547		Escherichia coli and Streptococcus faecalis at an Alkaline pH. J. Biochem. 108,
548		86-91. DOI: 10.1093/oxfordjournals.jbchem.a123168
549	26.	Thompson, B., Pugh, S., Machas, M., and Nielsen, D. R. (2018) Muconic Acid
550		Production via Alternative Pathways and a Synthetic "Metabolic Funnel." ACS
551		Synth. Biol. 7, 565-575. DOI: 10.1021/acssynbio.7b00331
552		

1	Supporting Information
2	
3	Muconic Acid Production Using Gene-level Fusion Proteins in Escherichia coli
4	
5	Ryosuke Fujiwara [†] , Shuhei Noda ^{*‡} , Tsutomu Tanaka ^{*†} , Akihiko Kondo [§]
6	
7	[†] Department of Chemical Science and Engineering, Graduate School of Engineering,
8	Kobe University
9	[‡] Center for Sustainable Resource Science, RIKEN
10	§ Graduate School of Science, Technology and Innovation, Kobe University
11	
12	
13	
14	
15	

16 Supplementary methods

17 Plasmid construction

18	pZA23-ncmI, pZA23-ncamI, pZA23-nca/mI, pZA23-UpYc, pZA23-ZYc,
19	pZA23-DZYc, pZA23-D/ZYc were constructed as follows. Synthetic genes
20	corresponding to Pseudomonas aeruginosa pchB, Pseudomonas putida KT2440 nahG,
21	and <i>P. putida</i> DOT-T1E <i>catA</i> were obtained as previously described. ¹ Synthetic genes
22	corresponding to P. putida KT2440 pobA, Klebsiella pneumonia aroY, and Bacillus
23	thuringiensis aroZ optimized for the Escherichia coli codon usage were obtained from a
24	commercial source (Invitrogen). The <i>pchB</i> gene was amplified by PCR using the
25	synthetic gene fragment as a template with the primer pair pchB_f and pchB_r. The
26	amplified fragment was cloned into the <i>Hind</i> III site of pZA23MCS. The resulting
27	plasmid was designated as pZA23-I. The <i>menF</i> gene fragments were amplified by PCR
28	using <i>E. coli</i> MG1655 genomic DNA as a template with the primer pair menF_f and
29	menF_r, respectively. The amplified fragment was cloned into the <i>Kpn</i> I site of pZA23-I,
30	and the resulting plasmid was designated as pZA23-mI. The menF-pchB gene fragment
31	was amplified by PCR using the pZE12-mI as a template with the primer pair menF_f2
32	and pchB_r2. The amplified fragment was cloned into the KpnI site of pZA23-nGcA,
33	and the resulting plasmid was designated as pZA23-mInc. The <i>nahG-catA</i> gene fragment

3	84	was amplified by PCR using the pZE12-nGcA as a template with the primer pair
3	85	nahG_f and catA_r. The amplified fragment was cloned into the <i>Kpn</i> I site of pZA23-mI,
3	86	and the resulting plasmid was designated as pZA23-ncmI. The aroC gene fragment
3	87	(Contain a flexible (GGGGS) ₃ linker fragment on the 3'end side) was amplified by PCR
3	88	using <i>E. coli</i> MG1655 genomic DNA as a template with the primer pair aroC_f and
3	89	aroC_r. The amplified fragment was cloned into the <i>Kpn</i> I site of pZA23 mI, and the
4	ł0	resulting plasmid was designated as pZA23-a/mI. The <i>nahG-catA</i> gene fragment for
4	1	pZA-nca/mI was amplified by PCR using the pZE12-nGcA as a template with the
4	2	primer pair nahG_f and catA_r2. The amplified fragment was cloned into the <i>Kpn</i> I site
4	13	of pZA23-a/mI, and the resulting plasmid was designated as pZA23-nca/mI. The
4	4	linearized fragment (for pZA23-ncamI) was amplified by inverse PCR using the
4	15	pZA23-nca/mI as a template with the primer pair inv_f and inv_r. The linker sequence
4	6	was replaced by the stop codon and RBS in this inverse PCR. The amplified fragment
4	17	was circularized using In-Fusion HD Cloning Kit (Takara), and the resulting plasmid
4	8	was designated as pZA23-ncamI. The <i>aroY</i> gene fragment was amplified by PCR using
4	19	the <i>aroY</i> synthetic gene as a template with the primer pair aroY_f and aroY_r. The
5	50	amplified fragment was cloned between the KpnI site and EcoRV of pZA23MCS, and
5	51	the resulting plasmid was designated as pZA23-Y. The <i>catA</i> gene fragment was

52	amplified by PCR using the pZE12-nGcA as a template with the primer pair catA_f2
53	and catA_r2. The amplified fragment was cloned into the <i>EcoRV</i> of pZA23-Y, and the
54	resulting plasmid was designated as pZA23-Yc. The <i>pobA</i> gene fragment was amplified
55	by PCR using the <i>pobA</i> synthetic gene as a template with the primer pair pobA_f and
56	pobA_r. The amplified fragment was cloned into the <i>Kpn</i> I of pZA23-Yc, and the
57	resulting plasmid was designated as pZA23-pYc. The linearized fragment (for pZA23-
58	UpYc) was amplified by inverse PCR using the pZA23-pYc as a template with the
59	primer pair inv_f2 and inv_r2. The <i>ubiC</i> gene fragment was amplified by PCR using E .
60	<i>coli</i> MG1655 genomic DNA as a template with the primer pair ubiC_f and ubiC_r. The
61	amplified fragment was cloned into the linearized fragment (for pZA23-UpYc), and the
62	resulting plasmid was designated as pZA23-UpYc. The aroZ gene fragment was
63	amplified by PCR using the <i>aroZ</i> synthetic gene as a template with the primer pair
64	aroZ_f and aroZ_r. The amplified fragment was cloned into the <i>Kpn</i> I of pZA23-Yc, and
65	the resulting plasmid was designated as pZA23-ZYc. The linearized fragment (for
66	pZA23-DZYc, -D/ZYc) was amplified by inverse PCR using the pZA23-ZYc as a
67	template with the primer pair inv_f3 and inv_r3. The <i>aroD</i> gene fragment was amplified
68	by PCR using <i>E. coli</i> MG1655 genomic DNA as a template with the primer pair aroD_f
69	and aroD_r. The amplified fragment was cloned into the linearized fragment (for

70	pZA23-DZYc, -D/ZYc), and the resulting plasmid was designated as pZA23-DZYc.
71	The <i>aroD</i> gene fragment (Contain the flexible (GGGGS) ₃ linker fragment on the 3'end
72	side) was amplified by PCR using <i>E. coli</i> MG1655 genomic DNA as a template with the
73	primer pair aroD_f and aroD_r2. The amplified fragment was cloned into the linearized
74	fragment (for pZA23-DZYc, -D/ZYc), and the resulting plasmid was designated as
75	pZA23-DZYc and pZA23-D/ZYc. The linearized fragment (for pZA23-nca \cdot mI, -
76	nca//mI) was amplified by inverse PCR using the pZA23-nca/mI as a template with the
77	primer pair inv_f4 and inv_r4 (for pZA23-nca · mI) or inv_f5 and inv_r5 (pZA23-
78	nca//mI). The amplified linearized fragment (for pZA23-nca·mI, - nca//mI) was self-
79	cloned, and the resulting plasmid was designated as pZA23- nca · mI and pZA23-
80	nca//mI. The linearized fragment (for pZA23-D·ZYc, -D//ZYc) was amplified by
81	inverse PCR using the pZA23-D/ZYc as a template with the primer pair inv_f6 and
82	inv_r6 (for pZA23-D·ZYc) or inv_f7 and inv_r7 (pZA23-D//ZYc). The amplified
83	linearized fragment (for pZA23-D·ZYc, -D//ZYc) was self-cloned, and the resulting
84	plasmid was designated as pZA23-D·ZYc and pZA23-D//ZYc
85	

86 Supplementary figures

⁸⁷ Figure S1

88 Bacterial cell growth in CFT51a, CFT52a, and CFT53a. The data are presented as the

89 average of three independent experiments, and error bars indicate the standard error.

90

92 Figure S2

93 Glucose consumption by CFT51a, CFT52a, and CFT53a. The data are presented as the

94 average of three independent experiments, and error bars indicate the standard error.

- 96
- 97 Figure S3
- 98 SDS-PAGE analysis of CFT52a. Both outer lanes: protein marker, Lane1: control
- 99 (CFT5 horboring pZA23MCS), Lane2: CFT52a
- 100

- 103 Figure S4
- 104 Diagram of MA synthesis gene cassette in each plasmid for examining linkers.

- 110 detect MenF and fused AroC/MenF.

- 116 Figure S6
- 117 SDS-PAGE analysis of CFT53b and CFT53c. Both outer lanes: protein marker,
- 118 Lane1: control (CFT5 horboring pZA23MCS), Lane2: CFT53b, Lane2: CFT53c.

115

121 Supplementary tables

122

123 Table S1. Plasmids used in this study.

Plasmids	Genotyne	Source or	
Tasinius	Genotype	reference	
pZE12MCS	P LlacO1, colE ori, Amp ^r	Expressys	
pZA23MCS	P _{AllacO-1} , p15A ori, Km ^r	Expressys	
	pZE12MCS containing <i>menF</i> from <i>E. coli</i> and <i>pchB</i>		
pZE12-mI	from P. aeruginosa	Noda et al. ¹	
	pZA23MCS containing <i>nahG</i> from <i>P. putida</i> KT2440		
pZA23-nGcA	and <i>catA</i> from <i>P. putida</i> DOT-T1E	Noda et al. ¹	
pZA23-I	pZA23MCS containing <i>pchB</i> from <i>P. aeruginosa</i>	This study	
pZA23-mI	pZA23-I containing menF from E. coli	This study	
pZA23-mInc	pZA23MCS containing menF, pchB, nahG and catA,	This study	
pZA23-ncmI	pZA23MCS containing <i>nahG</i> , <i>catA</i> , <i>menF</i> , and <i>pchB</i>	This study	
ZA23-ncamI	pZA23-ncmI containing aroC	This study	
	pZA23MCS containing <i>nahG</i> , <i>catA</i> , <i>pchB</i> , and		
pZA23-nca/mI	<i>aroC/menF</i> , which is a gene expressing fusion protein	This study	

	composed of AroC and MenF connected by flexible			
	linker			
	pZA23MCS containing <i>nahG</i> , <i>catA</i> , <i>pchB</i> , and			
n7423_nca•mI	<i>aroC/menF</i> , which is a gene expressing fusion protein			
pER23-nea nn	composed of AroC and MenF connected directly	This study		
	(without linker)			
	pZA23MCS containing <i>nahG</i> , <i>catA</i> , <i>pchB</i> , and			
pZA23-nca//mI	I <i>aroC/menF</i> , which is a gene expressing fusion protein This			
	composed of AroC and MenF connected by rigid linker			
pZA23-Y	pZA23MCS containing aroY from K. pneumoniae	? This study		
P	(codon optimized for <i>E.coli</i>)			
pZA23-Yc	pZA23-Y containing catA	This study		
pZA23-pYc	pZA23-Yc containing <i>ubiC</i> from <i>E. coli</i>	This study		
pZA23-UpYc	pZA23-pYc containing <i>pobA</i> from <i>P. putida</i>	This study		
F	KT2440(codon optimized for <i>E.coli</i>)			
pZA23-ZYc	pZA23-Yc containing <i>aroZ</i> from <i>Bacillus thuringiensis</i>	This study		
1	(codon optimized for <i>E.coli</i>)			
pZA23-DZYc	pZA23-ZYc containing aroD from E.coli	This study		

pZA23-Yc containing AroD-AroZ, which is a gene

pZA23-D/ZYc expressing fusion protein composed of AroD and AroZ This study connected by flexible linker

pZA23-Yc containing AroD-AroZ, which is a gene

pZA23-D·ZYc expressing fusion protein composed of AroD and AroZ This study

connected directly (without linker)

pZA23-Yc containing AroD-AroZ, which is a gene

pZA23-D//ZYc expressing fusion protein composed of AroD and AroZ This study

connected by rigid linker

125 Table S2 Oligonucleotide primers used in this study.

Oligonucleoti de primers	Sequence
pchB_f	5'- GTCGACGGTATCGATAAAGAGGAGAAAAAGCTTATGAAAACCCCCTGAAGATTG -3'
pchB_r	5'- CAGGAATTCGATATCTAAATGATGATGATGATGATGGGCTGCACCACGGGTCTGAC -3'
menF_f	5'- ATTAAAGAGGAGAAAGGTACCATGCAATCACTTACTACGGC -3'
menF_r	5'- CTCGAGGGGGGGGCCCTTACTTGTCATCGTCATCCTTGTAGTCTTCCATTTGTAATAAAGTAC -3'
menF_f2	5'- TTAAAGAGGAGAAAggtaccATGCAATCACTTACTACGGC -3'
pchB_r2	5'- GTACTGTTCTGCATgtaccAAGCTTTTTCTCCTCTTTttaggctgcaccacgggtctgac -3'
nahG_f	5'- TTAAAGAGGAGAAAggtaccATGCAGAACAGTACCAGCGC-3'
catA_r	5'- gtaagtgattgcatggtaccAAGCTTTTTCTCCTCTTTctattaACCTTCTTGCAGTG -3'
aroC_f	5'- TTAAAGAGGAGAAAGGTACCatggctggaaacacaattggacaac -3'

5'- gtaagtgattgcat

aroC r GGAACCACCGCCTGAACCACCGCCACCACTACCACCACCACCaccagcgtggaatatcagtcttcaca -3' catA r2 5'- gtgtttccagccat ggtaccAAGCTTTTTCTCCTCTTT ctattaACCTTCTTGCAGTG -3' inv f 5'- cattaaagaggagaaaggatgcaatcacttactacggcgctgg -3' 5'- ttctcctctttaatgctattaccagcgtggaatatcagtcttcac -3' inv r aroY f 5'- TTAAAGAGGAG AAAggtaccATGACCGCACCGATTCAGGATCTGC -3' aroY r 5'- CTGCAGGAATTCgatatcCTATTA TTTTGCGCTACCCTGATTTTTTCC -3' 5'- AGCGCAAAATAATAG gatatc AAAGAGGAGAAAAAGCTT ATGACCGTGAAAATTAGCCATACCG -3' catA f2 5'- CTGCAGGAATTCgatCTATTAACCTTCTTGCAGTGCACGC -3' catA r2 5'- TTAAAGAGGAGAAAggtacc ATGAAAACCCAGGTTGCAATTATTG -3' pobA f

pobA_r 5'- ATCGGTGCGGTCATggtaccAAGCTTTTTCTCCTCTTTctattaGGCAACTTCTTCAAACGGCAGACCA -3'

inv_f2 5'- AAAGAGGAGAAAAAGCTTATGAAAACCCAGGTTGCAATTATTGGTGC -3'

- inv_r2 5'- ggtaccTTTCTCCTCTTTAATGAATTCTGTGTGAAATTG -3'
- ubiC_f 5'- GAGGAGAAAggtacc ATGTCACACCCCGCGTTAACGC -3'
- ubiC_r 5'- CTTTTTCTCCTCTTTctattaGTACAACGGTGACGCCGGTAAAAACA -3'
- aroZ_f 5'- TTAAAGAGGAGAAAggtaccATGAAATATAGCCTGTGCACCATTAG -3'
- aroZ_r 5'- ATCGGTGCGGTCATggtaccAAGCTTTTTCTCCTCTTTctattaGCTGGTAACAACTTCCAGTTTACGG -3'
- inv_f3 5'- ATGAAATATAGCCTGTGCACCATTA -3'
- inv_r3 5'- GGTACCTTTCTCCTCTTTAATGAATTC -3'
- aroD_f 5'- GAGGAGAAAggtacc atgaaaaccgtaactgtaaaagatc -3'
- aroD_r 5'- CAGGCTATATTTCATAAGCTTTTTCTCCTCTTTctattatgcctggtgtaaaatagttaatacc -3'

5'-

aroD_r2 CAGGCTATATTTCATTGAACCACCGCCTGAACCACCGCCACCACCACCACCACCACCtgcctggtgtaaaat

- inv_f4 5'- CTGGggtaccATGCAATCACTTACTACGGCGCTGGAAAAT -3'
- inv r4 5'- TGCATggtaccCCAGCGTGGAATATCAGTCTTCACATCG -3'
- inv f5 5'- GCCGCTGCCAAAGAAGCGGCAGCGAAAATGCAATCACTTACTACGGCGCTGGAAAAT -3'
- inv r5 5'- TTCTTTGGCAGCGGCTTCTTTTGCTGCAGCTTCCCAGCGTGGAATATCAGTCTTCACATCG -3'
- inv_f6 5'- GCAggatccATGAAATATAGCCTGTGCACCATTAGCTTTCGT -3'
- inv r6 5'- TTTCATggatccTGCCTGGTGTAAAATAGTTAATACCGTGCG -3'
- inv f7 5'- GCCGCTGCCAAAGAAGCGGCAGCGAAAATGAAATATAGCCTGTGCACCATTAGCTTTCGT -3'

inv_r7 5'- TTCTTTGGCAGCGGCTTCTTTTGCTGCAGCTTCTGCCTGGTGTAAAATAGTTAATACCGTGCG -3'

	Parelental strain	Plasmid	Production titer (72h) [g/L]
	CFT5	pZA23-mInc	0.14 ± 0.05
	CFT5	pZA23-ncmI	1.00 ± 0.11
128			
129			
130			
131			

127 Table S3 Results of the order of the gene examination in Pathway 1.

Parelental strain	Plasmid	Production titer (72h) [g/L]
CFT5	pZA23-nca·mI	n.d.
CFT5	pZA23-nca/mI	3.45 ± 0.04
CFT5	pZA23-nca//mI	2.98 ± 0.21
CFT5	pZA23-D·ZYc	n.d.
CFT5	pZA23-D/ZYc	1.20 ± 0.10
CFT5	pZA23-D//ZYc	n.d.

132 Table S4 Results of linkers examination.

- 135 Supplementary materials
- 136
- 137 Sequence of *pobA* from *Pseudomonas putida* KT2440.

ATGAAAACCCAGGTTGCAATTATTGGTGCAGGTCCGAGCGGTCTGCTGCTGG 138 139 GTCAGCTGCTGCATAAAGCAGGTATTGATAACATTATTGTGGAACGTCAGACC 140 GCAGAATATGTTCTGGGTCGTATTCGTGCCGGTGTTCTGGAACAGGGCACCG 141 TTGATCTGCTGCGTGAAGCCGGTGTTGCAGAACGTATGGATCGTGAAGGTCT 142 GGTTCATGAAGGTGTTGAACTGCTGGTTGGTGGTCGTCGTCAGCGTCTGGAT 143 CTGAAAGCACTGACCGGTGGTAAAACCGTTATGGTTTATGGTCAGACCGAAG 144 TTACCCGTGATCTGATGCAGGCACGTGAAGCAAGTGGTGCACCGATTATCTAT 145 AGCGCAGCAAATGTTCAGCCGCATGAACTGAAAGGTGAAAAACCGTATCTG 146 ACCTTTGAAAAAGATGGTCGTGTTCAGCGTATCGATTGTGATTATATTGCAGG 147 TTGTGATGGCTTTCATGGTATTAGCCGTCAGAGCATTCCGGAAGGTGTGCTGA 148 AACAGTATGAACGTGTTTATCCGTTTGGTTGGCTGGGTCTGCTGAGCGATACC 149 CCTCCGGTTAATCACGAACTGATTTATGCACATCATGAACGTGGTTTTGCACT 150 GTGTAGCCAGCGTAGTCAGACCCGTAGCCGTTATTATCTGCAGGTTCCGCTGC 151 AGGATCGTGTTGAAGAATGGTCAGATGAACGTTTTTGGGATGAGCTGAAAGC CCGTCTGCCTGCAGAAGTTGCAGCCGATCTGGTTACCGGTCCGGCACTGGAA 152

- 153 AAAAGCATTGCACCGCTGCGTAGCCTGGTTGTTGAACCGATGCAGTATGGTC
- 154 ACCTGTTTCTGGTGGGTGATGCAGCACATATTGTTCCGCCTACCGGTGCAAAA
- 155 GGTCTGAATCTGGCAGCAAGTGATGTGAATTATCTGTATCGTATTCTGGTGAA
- 156 AGTGTATCATGAAGGCCGTGTGGATCTGCTGGCACAGTATAGTCCGCTGGCA
- 157 CTGCGTCGTGTTTGGAAAGGCGAACGTTTTAGCTGGTTTATGACCCAACTGC
- 158 TGCATGATTTTGGTAGCCATAAAGATGCATGGGACCAGAAAATGCAAGAAGC
- 159 AGATCGCGAATATTTTCTGACCAGTCCGGCAGGTCTGGTGAATATTGCAGAA
- 160 AATTATGTTGGTCTGCCGTTTGAAGAAGTTGCC<u>taa</u>
- 161

162 Sequence of *aroY* from *Klebsiella pneumonia*.

ATGACCGCACCGATTCAGGATCTGCGTGATGCAATTGCCCTGCTGCAACAGC 163 164 ATGATAATCAGTATCTGGAAACCGATCATCCGGTTGATCCGAATGCAGAACTG 165 GCAGGCGTTTATCGTCATATTGGTGCCGGTGGCACCGTTAAACGTCCGACAC 166 GTATTGGTCCGGCAATGATGTTTAATAACATTAAAGGTTATCCGCACAGCCGT 167 ATTCTGGTTGGTATGCATGCAAGCCGTCAGCGTGCAGCACTGCTGCGGGTT 168 GTGAAGCAAGTCAGCTGGCACTGGAAGTTGGTAAAGCAGTTAAAAAACCGG 169 TTGCACCGGTGGTTGTTCCGGCAAGCAGCGCACCGTGTCAAGAGCAGATTTT 170 171 ATACACCGATTGATGCAGGTCCGTTTTTTTGTCTGGGTTTAGCACTGGCAAGC 172 GATCCGGTGGATGCAAGCCTGACCGATGTTACCATTCATCGTCTGTGTGTTCA 173 GGGTCGTGATGAACTGAGCATGTTCCTGGCAGCAGGTCGCCATATTGAAGTT 174 TTTCGTCAGAAAGCAGAAGCAGCAGGTAAACCGCTGCCGATTACCATTAATA 175 TGGGTTTAGATCCGGCAATCTATATCGGTGCATGTTTTGAAGCACCGACAACA 176 CCGTTTGGTTATAATGAACTGGGTGTTGCGGGGTGCACTGCGTCAGCGTCCGG 177 TTGAACTGGTTCAGGGTGTTAGCGTTCCGGAAAAAGCAATTGCACGTGCCGA 178 AATTGTTATTGAAGGTGAACTGTTACCGGGTGTTCGTGTTCGTGAAGATCAGC 179 ATACCAATAGCGGTCATGCAATGCCGGAATTTCCGGGTTATTGTGGTGGTGCA

180	AATCCGAGCCTGCCGGTTATTAAAGTTAAAGCCGTTACCATGCGCAATAATGC
181	AATTCTGCAGACCCTGGTTGGTCCGGGTGAAGAACATACCACACTGGCAGGT
182	CTGCCGACCGAAGCAAGCATTTGGAATGCAGTTGAAGCAGCAATTCCGGGTT
183	TCCTGCAGAATGTTTATGCACATACCGCAGGCGGTGGTAAATTTCTGGGTATC
184	CTGCAGGTAAAAAACGTCAGCCTGCAGATGAAGGTCGTCAGGGTCAAGCA
185	GCCCTGCTGGCCCTGGCAACCTATAGCGAACTGAAAAATATCATTCTGGTGG
186	ATGAGGATGTGGACATTTTTGATAGTGATGATGATATTCTGTGGGCAATGACCACA
187	CGTATGCAGGGTGATGTTAGCATTACCACCATTCCGGGTATTCGCGGTCATCA
188	GCTGGATCCGAGCCAGACACCGGAATATTCACCGAGCATTCGTGGTAATGGT
189	ATTAGCTGCAAAACCATCTTTGATTGTACCGTTCCGTGGGCACTGAAAAGCC
190	ATTTTGAACGTGCACCGTTTGCAGATGTTGATCCGCGTCCGTTTGCACCTGAA
191	TATTTTGCACGTCTGGAAAAAAATCAGGGTAGCGCAAAA <u>taa</u>
192	

193 Sequence of *aroZ* from *Bacillus thuringiensis*.

194 ATGAAATATAGCCTGTGCACCATTAGCTTTCGTCACCAGCTGATTAGCTTTACC 195 GATATTGTTCAGTTTGCCTATGAAAACGGCTTTGAAGGTATTGAACTGTGGGG 196 CACCCATGCACAGAATCTGTATATGCAAGAACGTGAAACCACCGAACGTGAA 197 CTGAATTTCCTGAAAGATAAGAACCTGGAAATCACCATGATCAGCGATTATCT 198 GGATATTAGCCTGAGCGCAGATTTTGAAAAAACCATCGAAAAAAGCGAACA 199 GCTGGTTGTTCTGGCCAATTGGTTTAACACCAACAAAATTCGTACCTTCGCAG 200 GTCAGAAAGGCAGCAAAGATTTTAGCGAACAAGAACGCAAAGAATACGTGA 201 202 CTGGAAACCCATCCGAATACACTGACCGATACACTGCCGAGCACCATTGAAC 203 TGCTGGAAGAAGTTAATCATCCGAACCTGAAAATTAACCTGGATTTTCTGCAT 204 ATCTGGGAAAGCGGTGCAAATCCGATTGATAGCTTTCATCGTCTGAAACCGT 205 GGACACTGCATTATCACTTTAAAAACATTAGCAGCGCAGACTATCTGCATGTG 206 TTTGAACCGAATAATGTTTATGCAGCAGCAGGTAGCCGTATTGGTATGGTTCC 207 GCTGTTTGAAGGCATTGTGAACTATGATGAAATCATCCAAGAAGTTCGCGGT 208 ACAGACCTGTTTGCAAGCCTGGAATGGTTTGGTCATAACAGCAAAGAGATTC 209 TGAAAGAAGAAGATGAAAGTTCTGATCAACCGTAAACTGGAAGTTGTTACCA 210 GCtaa

211 Underline: - Initiation and termination codons

212 References

213	1.	Noda, S., Shirai, T., Oyama, S., and Kondo, A. (2016) Metabolic design of a
214		platform Escherichia coli strain producing various chorismate derivatives. Metab
215		Eng. 33, 119-129. DOI: 10.1016/j.ymben.2015.11.007
216		