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DYNAMICS OF LOCALIZED UNIMODAL PATTERNS IN
REACTION-DIFFUSION SYSTEMS FOR CELL POLARIZATION BY
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Abstract. In this paper, we study the dynamics of a localized unimodal pattern in reaction-
diffusion systems with mass conservation, which are mathematical models for the polarity formation
of cells. Our result provides a quantitatively precise characterization of the motion of the localized
unimodal pattern, which suggests that the location of polarity peaks can be determined universally
in a site where the maximal extracellular signal is present regardless of the details of the signaling
pathways.
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1. Introduction. Cell polarity is a general phenomenon observed in many stages
of development processes where it is used for regulating cell migration, cell aggrega-
tion, or cell functions by inducing a different differentiation between two daughter
cells. For example, eukaryotic cells such as neutrophils and Dictyostelium cells gen-
erate a polarity pattern to determine and change their migration direction to where
the polarity pattern is established and positioned via a direct response of the extra-
cellular biochemical gradient, referred to as chemotaxis [4, 20, 22]. These cells detect
a gradient of the attractant, and polarize and migrate rapidly toward the highest
concentration of the chemoattractant.

Similar to polarity formation via chemotaxis, in a cell division process at the
early developmental stage, several intracellular substrates within a mother cell are
spontaneously distributed asymmetrically in both the membrane and cytosol before
cell division, which are then transferred to two daughter cells. This ultimately leads to
a diversity of cells with different sizes, shapes, and functions [8, 24, 25]. This process
is called asymmetric cell division, in which the polarity formation of proteins in the
membrane is considered to play a core role. In asymmetric division, the polarities
are formed as two mutually exclusive domains, and the positioning of the polarity
domains is a critical factor in determining the specific destiny of the daughter cell. It
is widely known that this positioning can be regulated by the direct signal from the
contacted neighboring cell, and it has been suggested that the positioning of a specific
polarity domain may be induced by a direct signal affecting the translocating rate of
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protein from cytosol to the membrane [1, 24].
To understand the general mechanism of cell polarization, many mathematical

models have been proposed, as shown in a survey paper [12] (see also [23] for re-
cent information). Considering the fact that the diffusion-driven (Turing) instability
indicates the onset of pattern formation, [11, 20] proposed a conceptual model of a
reaction-diffusion system:

(1.1)

\Biggl\{ 
\.u = d1uxx  - \gamma 1f(u, v),

\.v = d2vxx + \gamma 2f(u, v),

where u and v denote the concentrations of two internal chemicals in a cell; u and v
correspond to chemicals in the membrane and cytosol, respectively. Since the diffusion
in cytosol is faster than that in the membrane, the diffusion coefficients d1 and d2 are
positive constants satisfying the condition

(1.2) d2 > d1,

and the reaction rates \gamma 1 and \gamma 2 are positive constants. We consider (1.1) on an
interval I = ( - K/2,K/2) for K > 0 under the periodic boundary condition, which
implies that \int 

I

(\gamma 2u(x, t) + \gamma 1v(x, t)) dx \equiv 
\int 
I

(\gamma 2u(x, 0) + \gamma 1v(x, 0)) dx

holds for any (smooth) solutions of (1.1), i.e., the (weighted) total mass of u and v
is conserved in a cell. Therefore, (1.1) is called a reaction-diffusion system with mass
conservation.

According to [11, 20], for appropriate functions f , a homogeneous equilibrium
can be destabilized through the same mechanism as the diffusion-driven destabiliza-
tion, and hence solutions with initial values near the destabilized equilibrium exhibit
sinusoidal transient patterns. Moreover, by virtue of the aforementioned mass conser-
vation, the solutions eventually approach a localized unimodal pattern (spike). This
series of dynamics can be biologically interpreted as the spontaneous establishment
of cell polarity inside a cell. Moreover, under appropriate assumptions, it was proved
in [13, 18, 19] that any solution converges to an equilibrium, and that every stable
equilibrium must be constant or unimodal.

However, as seen in [1, 4, 22], the positioning of cell polarization is regulated
by direct extracellular signals transferred from the neighboring cell or the concen-
tration of the chemoattractant. These phenomena have been suggested by different
mathematical models in [20, 24], but they can be described by a general system such
as

(1.3)

\Biggl\{ 
\.u = d1uxx  - \gamma 1\{ f(u, v) + \varepsilon g(x, u, v)\} ,
\.v = d2vxx + \gamma 2\{ f(u, v) + \varepsilon g(x, u, v)\} 

on the interval I = ( - K/2,K/2) under the periodic boundary condition. We suppose
that the perturbation term g is expressed as

(1.4) g(x, u, v) =  - g1(u, v)g2(x).

When g1 is constant, (1.3) can be written as\Biggl\{ 
\.u = d1uxx  - \gamma 1\{ f(u, v) - \varepsilon g(x)\} ,
\.v = d2vxx + \gamma 2\{ f(u, v) - \varepsilon g(x)\} ,
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which gives a model defined on a domain with spatial inhomogeneity induced by
extracellular signals. When a spatial inhomogeneity is incorporated into a parameter
of the reaction term f in (1.1), say \mu , in such a way that \mu = \mu 0 + \varepsilon \mu 1(x), we obtain
(1.3) by applying the Taylor expansion in \varepsilon to (1.1). Hence, (1.3) can be considered as
a general reaction-diffusion model that describes the cell polarity dynamics induced
by extracellular signals. The reaction-diffusion models in [20, 24] are examples of
(1.3).

The purpose of this paper is to investigate the dynamics of a localized unimodal
pattern in (1.3), which is regarded as an equilibrium of the unperturbed system (1.1).
We rigorously derive the equation of motion of the localized pattern, which shows that
the localized pattern moves to the maximum point of g2(x) under natural assumptions.
This result gives a quantitatively precise characterization of the motion of the localized
unimodal pattern. From the viewpoint of biology, the result proposes conditions under
which the location of a polarity peak is determined in the site where the maximal
extracellular signal is present.

The remainder of this paper is organized as follows. In section 2, we propose
some basic assumptions of our theory on the basis of biological background knowledge
and known mathematical results. In section 3, we prepare materials for mathematical
analysis. We consider reaction-diffusion systems as an evolution equation on a Hilbert
space based on the theory of infinite dimensional dynamical systems. In section 4, we
derive the equation of motion for a localized unimodal pattern (spike) in the perturbed
reaction-diffusion system (1.3). Moreover, we show that the localized unimodal pat-
tern moves to the maximum point of g2(x) which represents the spatial inhomogeneity.
Section 5 describes the application of our results to two biological models [20, 24, 25]
which are based on biologically different contents of polarity positioning such as di-
rect cell-to-cell contacting or long-range signals via chemotaxis. We show that the
position of the polarity peak can be precisely determined, which suggests a method
for detecting the exact position of a polarity pattern by means of quantitative data of
extracellular signals. Moreover, we note that these models exhibit similar dynamics in
spite of having biologically different mechanisms. Concluding remarks are presented
in section 6.

2. Basic assumptions. In this section, we propose some assumptions on the
basis of biological background knowledge and known mathematical results. First, we
suppose the existence and stability of a localized unimodal pattern in (1.1).

Assumption 2.1. System (1.1) has a stable equilibrium S(x) = (p(x), q(x)) satis-
fying the following conditions:

(i) p and q are even periodic functions with period K.
(ii) p and q are strictly decreasing and increasing, respectively, in x for 0 \leq x \leq 

K/2.

The condition that p and q are even functions is natural because (1.1) is invariant
under the transformation x \rightarrow  - x. Moreover, we note that S(x  - c) is a stable
equilibrium of (1.1) for any c \in R under the periodic boundary condition. In other
words, (1.1) is proposed under the condition that the spatial domain is homogeneous
and the parameters are independent of the spatial variable x. Furthermore, we can
remove the condition that q is strictly increasing in x for 0 \leq x \leq K/2, as seen in the
proofs of Lemmas 3.1 and 3.2 in the next section.

Next, we propose assumptions concerning the perturbation term g in (1.3), which
describes a spatial inhomogeneity.
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Assumption 2.2. g1 and g2 satisfy the following properties:
(i) g1 \geq 0 (g1 \not \equiv 0).
(ii) g2 is an even periodic function with the period K.
(iii) g2 is strictly decreasing in x for 0 \leq x \leq K/2.

From conditions (ii) and (iii), g2 has a unique maximum at x = 0, which means
that a stimulus is given at x = 0. Moreover, the condition that g2 is an even function
may be removed. Namely, conditions (ii) and (iii) may be replaced by the conditions
(ii') g2 is a periodic function with the period K, and (iii') g2 is strictly increasing in x
for  - K/2 \leq x \leq 0 and decreasing for 0 \leq x \leq K/2. However, we adopt conditions (ii)
and (iii) because these conditions enable us to perform mathematical analysis easily,
and the reaction-diffusion models in [20, 24] satisfy them. Furthermore, we cannot
remove the strictness from condition (iii), as shown in [20, Figure 4E]. Finally, it
should be noted that g2 \geq 0 is not required; the sign of g1(u, v) and g

\prime 
2(x) plays a key

role in our mathematical analysis.
In this paper, we investigate conditions under which the localized unimodal pat-

tern moves to x = 0 translationally in the x-direction in the perturbed system (1.3),
i.e., a solution of (1.3) with an initial value in a small neighborhood of S(x  - c) for
some c \in R approaches a stable equilibrium approximated by S(x).

3. Preliminaries. In this section, we briefly mention some properties of S(x)
that are useful for mathematical analysis. Moreover, we consider the semiflow defined
by (1.1) and (1.3), and the linearized operator of the right-hand side of (1.1) at S(x).
Finally, we mention an important property of g2 for mathematical analysis.

Lemma 3.1.

(3.1) d1\gamma 2p+ d2\gamma 1q \equiv Const.

Proof. Since S(x) = (p(x), q(x)) is an equilibrium of (1.1), we have

d1pxx  - \gamma 1f(p, q) = 0, d2qxx + \gamma 2f(p, q) = 0,

which leads to (d1\gamma 2p + d2\gamma 1q)xx \equiv 0. Noting that p and q are even functions, we
have (d1\gamma 2p + d2\gamma 1q)x \equiv 0 because px(0) = qx(0) = 0. Therefore, we see that (3.1)
holds.

Lemma 3.2. There exists an odd periodic function w(x) with the period K such
that

(3.2) Sx(x) = w(x)

\Biggl( 
d2\gamma 1

 - d1\gamma 2

\Biggr) 

holds, where w(x) < 0 for 0 < x < K/2.

Proof. From Lemma 3.1, we have d1\gamma 2px + d2\gamma 1qx = 0. Therefore, when we set
w(x) := px/(d2\gamma 1), we see that the assertion of this lemma is true.

We rewrite (1.1) and (1.3) as evolution equations on a Hilbert space L2(I)\times L2(I),
respectively, as follows:

(3.3) ut = \scrL (u), u = (u, v)

and

(3.4) ut = \scrL (u) + \varepsilon G(x,u), u = (u, v),
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where

\scrL (u) =

\Biggl( 
d1uxx  - \gamma 1f(u, v)

d2vxx + \gamma 2f(u, v)

\Biggr) 
and G(x,u) =

\Biggl( 
 - \gamma 1g(x, u, v)
\gamma 2g(x, u, v)

\Biggr) 
.

Proposition 3.3. Equations (3.3) and (3.4) define a semiflow on a hyperplane
X\xi in L2(I)\times L2(I), where

X\xi = \{ u \in L2(I)\times L2(I) | \langle u,a\rangle = \xi \} 

for some \xi \in R, and

a =
1\sqrt{} 

K(\gamma 21 + \gamma 22)

\Biggl( 
\gamma 2

\gamma 1

\Biggr) 
, \langle a,a\rangle = 1.

Proof. Noting the periodic boundary condition, it follows from (1.1) and (1.3)
that

d

dt

\int 
I

(\gamma 2u+ \gamma 1v)dx =
\Bigl[ 
d1\gamma 2ux + d2\gamma 1vx

\Bigr] K/2

 - K/2
= 0

holds for solutions of (1.1) and (1.3). This implies that

d

dt
\langle u,a\rangle = 0

holds for solutions of (3.3) and (3.4). Therefore, we see that the assertion of this
proposition is true.

Hereafter, we denote S(x) \in X\xi by S(x; \xi ); that is, S = S(x; \xi ) satisfies

(3.5) \scrL (S) = 0

and

(3.6) \langle S,a\rangle = \xi .

For simplicity, we use S instead of S(x; \xi ) unless any confusion occurs. Let us denote
by \~L the linearized operator of the right-hand side of (3.3) at S \in X\xi . It follows from

Proposition 3.3 that \~L is defined on a subspace X in L2(I)\times L2(I), where

X = \{ u \in L2(I)\times L2(I) | \langle u,a\rangle = 0 \} .

That is, \~L = L| X : X \rightarrow X is a restriction of L : L2(I) \times L2(I) \rightarrow L2(I) \times L2(I),
which is defined by

(3.7) L =

\Biggl( 
d1 0

0 d2

\Biggr) 
\partial 2x +

\Biggl( 
 - \gamma 1 \~fu  - \gamma 1 \~fv
\gamma 2 \~fu \gamma 2 \~fv

\Biggr) 
,

where \~fu = fu(p, q), \~fv = fv(p, q), and S = (p, q) \in X\xi . Since p(x) and q(x) are
periodic functions with the period K, we have \langle Sx,a\rangle = 0. Moreover, differentiating
(3.6) in \xi , we have \langle S\xi ,a\rangle = 1. Therefore, we see that Sx \in X and S\xi /\in X. On the
other hand, differentiating (3.5) in x, we have

(3.8) LSx = \~LSx = 0.

Therefore, \~L : X \rightarrow X has an eigenvalue 0 and its associated eigenfunction Sx.
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Assumption 3.4.
(i) 0 is a simple eigenvalue of \~L.
(ii) Re(\sigma (\~L) \setminus \{ 0\} ) <  - \delta for some \delta > 0.

This assumption is indispensable in rigorously guaranteeing the validity of the
equation of motion of a localized unimodal pattern (spike). Here, as seen in [5] and
the theory of infinite dimensional dynamical systems [10], we allow this assumption
under the situation that a localized unimodal pattern moves translationally in the
x-direction, as shown in numerical simulations in section 5.

Proposition 3.5. Let \~L\ast : X \rightarrow X be the adjoint operator of \~L : X \rightarrow X. Then,
\~L\ast has a simple eigenvalue 0 and its associated eigenfunction is given by

\Phi \ast =

\left(   - w(x) + \gamma 2\varphi 
\ast 
2(x)

\gamma 1
\varphi \ast 
2(x)

\right)  \in X,

where
\varphi \ast 
2(x) = h1(x) +Ax

is an odd function, and

(3.9) h1(x) =

\int x

0

\int y

0

h2(s)dsdy, A =

\int K/2

0

\biggl( 
2y

K
 - 1

\biggr) 
h2(y)dy,

and

(3.10) h2(x) =  - 1

d2
\~fvw(x), \~fv = fv(p, q), S = (p, q) \in X\xi .

Proof. First, we note that \Phi \ast satisfying L\ast \Phi \ast = 0 automatically satisfies \~L\ast \Phi \ast =
0 due to the relation \~L\ast u := L\ast u  - \langle L\ast u, a\rangle a. By (3.7), the adjoint operator of
L : L2(I)\times L2(I) \rightarrow L2(I)\times L2(I) is given by

L\ast =

\Biggl( 
d1 0

0 d2

\Biggr) 
\partial 2x +

\Biggl( 
 - \gamma 1 \~fu \gamma 2 \~fu

 - \gamma 1 \~fv \gamma 2 \~fv

\Biggr) 
,

where \~fu = fu(p, q), \~fv = fv(p, q), and S = (p, q) \in X\xi . Let \Phi \ast = (\varphi \ast 
1, \varphi 

\ast 
2)

T . Then,
we have

d1
d2\varphi \ast 

1

dx2
+ \~fu( - \gamma 1\varphi \ast 

1 + \gamma 2\varphi 
\ast 
2) = 0 and d2

d2\varphi \ast 
2

dx2
+ \~fv( - \gamma 1\varphi \ast 

1 + \gamma 2\varphi 
\ast 
2) = 0.

Putting

(3.11) \psi \ast :=  - \gamma 1\varphi \ast 
1 + \gamma 2\varphi 

\ast 
2,

we see that \psi \ast and \varphi \ast 
2 satisfy

(3.12) d1
d2\psi \ast 

dx2
 - d1\gamma 2

d2\varphi \ast 
2

dx2
 - \gamma 1 \~fu\psi 

\ast = 0 and d2
d2\varphi \ast 

2

dx2
+ \~fv\psi 

\ast = 0.

Since

(3.13)
d2\varphi \ast 

2

dx2
=  - 

\~fv
d2
\psi \ast 
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from the second equation of (3.12), substituting (3.13) into the first equation of (3.12),
we obtain

d1
d2\psi \ast 

dx2
 - 
\biggl\{ 
\gamma 1 \~fu  - d1\gamma 2

d2
\~fv

\biggr\} 
\psi \ast = 0.

On the other hand, it follows from (3.2), (3.7), and (3.8) that

LSx =

\Biggl( 
d1d2\gamma 1wxx  - \{ d2\gamma 21 \~fu  - d1\gamma 1\gamma 2 \~fv\} w

 - d1d2\gamma 2wxx + \{ d2\gamma 1\gamma 2 \~fu  - d1\gamma 
2
2
\~fv\} w

\Biggr) 
=

\Biggl( 
0

0

\Biggr) 
,

which leads to

d1
d2w

dx2
 - 
\biggl\{ 
\gamma 1 \~fu  - d1\gamma 2

d2
\~fv

\biggr\} 
w = 0.

Hence, we find

(3.14) \psi \ast = w,

and it follows from (3.13) that
d2\varphi \ast 

2

dx2
= h2,

where h2 = h2(x) is given by (3.10). Therefore, we have

\varphi \ast 
2(x) =

\int x

0

\int y

0

h2(s)dsdy +Ax+B.

We choose B = 0 in such a way that \varphi \ast 
2 is an odd function. Moreover, noting

\varphi \ast 
2( - K/2) = \varphi \ast 

2(K/2) because \varphi 
\ast 
2 is a periodic function with the period K, we have

A =
1

K

\Biggl\{ \int  - K/2

0

\int y

0

h2(s)dsdy  - 
\int K/2

0

\int y

0

h2(s)dsdy

\Biggr\} 

=  - 1

K

\int K/2

 - K/2

\int y

0

h2(s)dsdy.

Since h2 is an odd function by Assumption 2.1(i) and Lemma 3.2, we have

A =  - 2

K

\int K/2

0

\int y

0

h2(s)dsdy

=  - 2

K

\Biggl\{ \biggl[ 
y

\int y

0

h2(s)ds

\biggr] K/2

0

 - 
\int K/2

0

yh2(y)dy

\Biggr\} 

=

\int K/2

0

\biggl( 
2y

K
 - 1

\biggr) 
h2(y)dy.

Therefore, we obtain \varphi \ast 
2(x) = h1(x) + Ax, where h1(x) and A are given by (3.9).

Moreover, by (3.11) and (3.14), we have \varphi \ast 
1(x) = ( - w(x)+\gamma 2\varphi \ast 

2(x))/\gamma 1. Furthermore,
\varphi \ast 
1 and \varphi \ast 

2 are odd functions because w is an odd function by Lemma 3.2. Hence, we
have

\langle \Phi \ast ,a\rangle = 1\sqrt{} 
K(\gamma 21 + \gamma 22)

\int K/2

 - K/2

(\gamma 2\varphi 
\ast 
1(x) + \gamma 1\varphi 

\ast 
2(x))dx = 0,

which implies that \Phi \ast \in X.
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Proposition 3.6. \varphi \ast 
2(x) > 0 for 0 < x < K/2 if (i) h2(x) < 0 for 0 < x < K/2

or (ii) there exists \alpha \in (0,K/2) such that h2(x) < 0 for 0 < x < \alpha and h2(x) > 0 for
\alpha < x < K/2, and \int K/2

0

xh2(x)dx < 0.

Proof. We note that

d2\varphi \ast 
2

dx2
= h2 (0 < x < K/2)

by Proposition 3.5, and that \varphi \ast 
2(0) = \varphi \ast 

2(K/2) = 0 because \varphi \ast 
2 is an odd periodic

function with the period K. Therefore, \varphi \ast 
2 is upwards convex on (0,K/2) if h2(x) < 0,

which implies that \varphi \ast 
2(x) > 0 for 0 < x < K/2 under condition (i). Moreover, it follows

from Proposition 3.5 that

d\varphi \ast 
2

dx
(K/2) =

\int K/2

0

h2(x)dx+A =
2

K

\int K/2

0

xh2(x)dx,

which implies that \varphi \ast 
2(x) > 0 for 0 < x < K/2 under condition (ii).

Finally, we mention an important property of g2(x) in the perturbation term g,
which is used in the next section.

Lemma 3.7. g2(x - \ell ) > g2(x+ \ell ) for 0 < x < K/2 and 0 < \ell < K/2.

Proof. Noting that  - K/2 < x  - \ell < K/2 and 0 < x + \ell < K for 0 < x < K/2
and 0 < \ell < K/2, we consider the following four cases: (i) 0 < x  - \ell < K/2,
0 < x + \ell < K/2, (ii) 0 < x  - \ell < K/2, K/2 \leq x + \ell < K, (iii)  - K/2 < x  - \ell \leq 0,
0 < x+ \ell < K/2, and (iv)  - K/2 < x - \ell \leq 0, K/2 \leq x+ \ell < K. Here, we treat only
case (iv) because the other cases are easier and can be treated in a similar manner.

Since g2 is an even periodic function with the period K, we have g2(x  - \ell ) =
g2(\ell  - x) and g2(x+ \ell ) = g2(x+ \ell  - K) = g2(K  - x - \ell ). Noting that g2 is decreasing
on [0,K/2], we see that

g2(x - \ell ) - g2(x+ \ell ) = g2(\ell  - x) - g2(K  - x - \ell ) > 0

holds for case (iv) because 0 \leq \ell  - x < K/2, 0 < K  - x - \ell \leq K/2, and (K  - x - \ell ) - 
(\ell  - x) = K  - 2\ell > 0.

4. Dynamics of localized unimodal pattern. In this section, we investigate
the dynamics of (1.3) around a manifold M = \{ S(x - \ell ) | \ell \in R \} \subset X\xi . According to
the theory of infinite dimensional dynamical systems [10] and numerical simulations
performed in [20], we expect that solutions of (1.3) with an initial value in a suffi-
ciently small neighborhood of M move along M and converge to a stable equilibrium
approximated by S(x).

Let u = u(x, t) be a solution of (3.4), which is an evolution equation on X\xi 

defined by (1.3). Noting that M is parameterized by \ell , let

(4.1) u(x, t) = S(x - \ell (t)) + V (x - \ell (t), t) = S(z) + V (z, t),

where z = x - \ell (t) and V \in X. Since solutions of (1.3) aroundM can be expressed by
(4.1), we consider that the equation of \ell (t) determines the dynamics of (1.3) around
M under Assumption 3.4.
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Differentiating (4.1) with respect to t, we have

ut =  - \.\ell Sz + Vt  - \.\ell Vz, \.\ell = d\ell /dt.

On the other hand, substituting (4.1) into the right-hand side of (3.4), we have

\scrL (u) + \varepsilon G(x,u) = \scrL (S + V ) + \varepsilon G(z + \ell , S + V )

= \scrL (S) + \~LV +O(| | V | | 2) + \varepsilon G(z + \ell , S) +O(\varepsilon | | V | | )

= \~LV + \varepsilon G(z + \ell , S) +O(\varepsilon 2 + | | V | | 2).

Therefore, we have

Vt  - \.\ell Vz = \~LV + \.\ell Sz + \varepsilon G(z + \ell , S) +O(\varepsilon 2 + | | V | | 2).

By neglecting higher-order error terms, we obtain

(4.2) Vt = \~LV + \.\ell Sz + \varepsilon G(z + \ell , S)

if max(| | V | | , | | Vz| | ) = O(\varepsilon ) and | \.\ell | = O(\varepsilon ). According to [10], the condition that
solutions of (4.2) are uniformly bounded in X under Assumption 3.4 is

\langle \.\ell Sz + \varepsilon G(z + \ell , S),\Phi \ast \rangle = 0.

Hence, we obtain

(4.3)
d\ell 

dt
= \varepsilon H(\ell ) +O(\varepsilon 2),

where

H(\ell ) =  - J(\ell )

\langle Sz,\Phi \ast \rangle 
and J(\ell ) = \langle G(z + \ell , S),\Phi \ast \rangle .

This equation determines the dynamics of (1.3) around M . Noting that | \.\ell | = O(\varepsilon )
by (4.3), we have max(| | V | | , | | Vz| | ) = O(\varepsilon ) by (4.2) and V \in H1(I) \times H1(I) under
Assumption 3.4. This implies that the validity of (4.2) and (4.3) can be rigorously
guaranteed by applying the same lines of argument in [5] based on the theory of
infinite dimensional dynamical systems.

Remark 4.1. In many practical applications, the constant independent of \varepsilon in-
cluded in the error term denoted by O(\varepsilon 2) in (4.3) can be estimated by O(Ke - K).
This is due to the fact that p(x) and q(x) converge exponentially as | x| goes to in-
finity. Consequently, for sufficiently small values of \varepsilon , the error term of (4.3) can be
negligible if K is sufficiently large.

Proposition 4.2. If \varphi \ast 
2(x) > 0 for 0 < x < K/2, then

\langle Sz,\Phi 
\ast \rangle =  - 2d2

\int K/2

0

w2(z)dz + 2(d2  - d1)\gamma 2

\int K/2

0

w(z)\varphi \ast 
2(z)dz < 0.

Proof. It follows from Lemma 3.2 and Proposition 3.5 that

\langle Sz,\Phi 
\ast \rangle =

\Biggl\langle 
w

\Biggl( 
d2\gamma 1

 - d1\gamma 2

\Biggr) 
,

\Biggl( 
\gamma  - 1
1 ( - w + \gamma 2\varphi 

\ast 
2)

\varphi \ast 
2

\Biggr) \Biggr\rangle 

=

\int K/2

 - K/2

(d2w(z)( - w(z) + \gamma 2\varphi 
\ast 
2(z)) - d1\gamma 2w(z)\varphi 

\ast 
2(z))dz

=  - d2
\int K/2

 - K/2

w2(z)dz + (d2  - d1)\gamma 2

\int K/2

 - K/2

w(z)\varphi \ast 
2(z)dz.
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Noting that w and \varphi \ast 
2 are odd functions, we have

\langle Sz,\Phi 
\ast \rangle =  - 2d2

\int K/2

0

w2(z)dz + 2(d2  - d1)\gamma 2

\int K/2

0

w(z)\varphi \ast 
2(z)dz < 0

because w(z) < 0 and \varphi \ast 
2(z) > 0 for 0 < z < K/2 and (1.2).

Proposition 4.3. J(\ell ) is an odd periodic function with the period K, and

J(\ell ) =

\int K/2

0

\rho (z)\{ g2(z + \ell ) - g2(z  - \ell )\} dz,

where \rho (z) =  - g1(p(z), q(z))w(z). Moreover, J(0) = J( - K/2) = J(K/2) = 0 and
J(\ell ) < 0 for 0 < \ell < K/2.

Proof. It follows from (1.4) and Proposition 3.5 that

J(\ell ) = \langle G(z + \ell , S),\Phi \ast \rangle =

\Biggl\langle \Biggl( 
 - \gamma 1g
\gamma 2g

\Biggr) 
,

\Biggl( 
\gamma  - 1
1 ( - w + \gamma 2\varphi 

\ast 
2)

\varphi \ast 
2

\Biggr) \Biggr\rangle 

=

\int K/2

 - K/2

g(z + \ell , p(z), q(z))w(z)dz

=  - 
\int K/2

 - K/2

g1(p(z), q(z))g2(z + \ell )w(z)dz =

\int K/2

 - K/2

\rho (z)g2(z + \ell )dz.

It follows from Assumptions 2.1 and 2.2 and Lemma 3.2 that \rho is an odd periodic
function with the period K, and that \rho (z) > 0 for 0 < z < K/2. Therefore, we have

J(\ell ) =

\int K/2

 - K/2

\rho (z)g2(z + \ell )dz

=

\int 0

 - K/2

\rho (z)g2(z + \ell )dz +

\int K/2

0

\rho (z)g2(z + \ell )dz

=

\int K/2

0

\rho (z)\{ g2(z + \ell ) - g2(z  - \ell )\} dz < 0

for 0 < \ell < K/2 by Lemma 3.7. Moreover, noting that \rho is an odd periodic function
with the period K, we see that J(\ell ) is an odd periodic function with the period K,
because g2 is an even periodic function with the periodK according to Assumption 2.2.
This implies that J(0) = J( - K/2) = J(K/2) = 0.

From Lemma 3.2 and Propositions 3.5, 3.6, 4.2, and 4.3, we obtain the following
result which characterizes the dynamics of localized unimodal pattern.

Theorem 4.4. d\ell /dt = \varepsilon H(\ell ) has only two equilibria \ell = 0 and \ell = K/2(=
 - K/2). Moreover, \ell = 0 is stable and \ell = K/2 is unstable if \varphi \ast 

2(x) > 0 for 0 < x <
K/2. In particular, \ell = 0 is stable and \ell = K/2 is unstable under any of the following
conditions: (i) fv(p(x), q(x)) < 0 for 0 < x < K/2, (ii) there exists \alpha \in (0,K/2) such
that fv(p(x), q(x)) < 0 for 0 < x < \alpha and fv(p(x), q(x)) > 0 for \alpha < x < K/2, and\int K/2

0

xfv(p(x), q(x))p
\prime (x)dx > 0 or

\int K/2

0

xfv(p(x), q(x))q
\prime (x)dx < 0.
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Although condition (i) is practical, it is rather strict. In contrast, condition (ii)
is an improved version of condition (i) so as to extend the scope of application of
Theorem 4.4.

Remark 4.5. If we replace g1 \geq 0 by g1 \leq 0 in condition (i) of Assumption 2.2,
the assertion of Theorem 4.4 is changed so that \ell = 0 is unstable and \ell = K/2 is
stable. This suggests that g1 \geq 0 and g1 \leq 0 correspond, respectively, to the positive
and negative feedback effects of extracellular signals in cell polarization [24].

5. Examples. In this section, we show some examples of reaction-diffusion mod-
els used in [11, 20, 24, 25] for understanding cell polarization.

Example 5.1.

(5.1)

\Biggl\{ 
\.u = d1uxx  - \gamma \{ F (u) - v  - \varepsilon \chi (x)\} ,
\.v = d2vxx + \gamma \{ F (u) - v  - \varepsilon \chi (x)\} ,

where

(5.2) F (u) =

\biggl( 
a0 +

a4
a1 + a2u+ a3u2

\biggr) 
u

and

(5.3) \chi (x) = b0 cos

\biggl( 
2\pi x

K

\biggr) 
+ b1

with nonnegative constants bk (k = 1, 2) and aj (j = 0, 1, 2, 3, 4) satisfying a21 + a22 +
a23 \not = 0.

This is a simplification (dimensionless form) of a model that has been developed
in [24] for studying extracellular signal effects on the dynamics of PAR (partitioning-
defective proteins) polarity patterns arising in asymmetric cell division. The pertur-
bation term \chi (x) denotes the effect of an extracellular signal from a neighboring cell;
b0 represents the maximal strength of a signal centered at x = 0. Note that (5.1) can
be obtained from (1.3) by setting f(u, v) = F (u)  - v and g(x, u, v) =  - g1(u, v)g2(x)
with g1(u, v) \equiv 1 and g2(x) = \chi (x), where F (u) is given by (5.2). Moreover, it is easy
to see that Assumption 2.2 is satisfied in this case.

We numerically solve (5.1) on I = ( - K/2,K/2) under the periodic boundary
condition to investigate the dynamics of a localized unimodal pattern. Our simulations
are based on a standard pseudospectral method [6, 9], and the numerical scheme is
presented in [16, Appendix]. According to [24, Table A1], we choose the following
dimensionless values of parameters:

(5.4) a0 = 0.3, a1 = 0.25, a2 = 0.1, a3 = 1.0, a4 = 6.225, \gamma = 0.2.

First, we numerically solve (5.1) for \varepsilon = 0, i.e.,

(5.5)

\Biggl\{ 
\.u = d1uxx  - \gamma \{ F (u) - v\} ,
\.v = d2vxx + \gamma \{ F (u) - v\} 

with an initial value (u0(x), v0(x)) = (u0 + \varepsilon 1(x), v0 + \varepsilon 2(x)), where (u0, v0) is a
spatially homogeneous equilibrium of (5.5), and (\varepsilon 1(x), \varepsilon 2(x)) is a sufficiently small
disturbance. This model has been introduced as a spontaneous polarization model
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Fig. 1. Spatial patterns with multiple peaks of (5.5) when K = 20.0. The values of u(x, t) on
 - 10.0 \leq x \leq 10.0 and (a) 0 \leq t \leq 1000, (b) 1000 \leq t \leq 2000, (c) 2000 \leq t \leq 8000 are represented
by 3D graphs. The spatial profiles of v(x, t) are omitted here because the spatial variation of v(x, t)
for each t is relatively small compared to that of u(x, t), and the local minimal points of v(x, t),
corresponding to the peaks of u(x, t), are rather difficult to see. The values of the parameters are
given by (5.4) and those of diffusion coefficients are given by d1 = 0.0048 and d2 = 0.288. Moreover,
the initial value is given by (2.0+\varepsilon 1(x), 3.4+\varepsilon 2(x)), where \varepsilon 1(x) and \varepsilon 2(x) are independent uniform
pseudorandom numbers in [ - 0.005, 0.005) for each x \in [ - 10.0, 10.0].

in [24, 25], and its mathematical aspects have been studied in [13, 18, 19]. According
to dimensionless values given in [24, Table A1], we choose (u0, v0) \approx (2.0, 3.4) and the
values of diffusion coefficients as d1 = 0.0048 and d2 = 0.288.

Figure 1 shows that spatial patterns with multiple peaks appear when the interval
length is given by K = 20.0, which is equivalent to that of [24, Table A1] under
the spatial rescaling x \rightarrow 20x. As reported in [11, 20], a spatially homogeneous
equilibrium can be destabilized through the same mechanism as the diffusion-driven
(Turing) instability, and spatial patterns with multiple peaks appear. Moreover, the
number of peaks decreases, and the solutions eventually approach a simple localized
unimodal pattern.

Although it was proved in [13, 18, 19] that spatial patterns with multiple peaks are
unstable, numerical solutions are often trapped in a neighborhood of these patterns
because of round-off errors in numerical computations. In our simulations, almost ev-
ery numerical solution cannot leave a spatial pattern with two peaks when K = 20.0.
Therefore, this value of K is not desirable to confirm the validity of our mathematical
results in section 3. On the other hand, the number of peaks of such spatial pat-
terns maintained for a sufficiently long time depends on system size K. In fact, an
early stage of dynamics generating these spatial patterns is due to the diffusion-driven
(Turing) instability, and the number of peaks decreases as K decreases. In our simu-
lations, a localized unimodal pattern (spatial pattern with a single peak) eventually
appears for 1.2 \lesssim K \lesssim 13.6. Here, noting Remark 4.1, we choose K = 10.0 to obtain
(p(x), q(x)) satisfying Assumption 2.1 as shown in Figure 2.

Next, we numerically solve (5.1) for \varepsilon = 0.01. The initial value is given by a
localized unimodal pattern obtained by a translation of the one shown in Figure 2.
Here, the position of the peak of the initial localized pattern is given by \ell = \ell 0 =  - 2.5.
The values of parameters in (5.3) are given by b0 = b1 = 1.0. Figure 3 shows that
the numerical solution starting from S(x - \ell 0) = (p(x - \ell 0), q(x - \ell 0)) translationally
moves to x = 0 in the x-direction. Notice that the velocity of this translational
movement is not constant. The numerical result presented in Figure 3 is supported
by Theorem 4.4. In fact, condition (i) in Theorem 4.4 holds by

\partial 

\partial v
f(u, v) =

\partial 

\partial v
(F (u) - v) \equiv  - 1 < 0,

and hence \ell = 0 is a stable equilibrium of (4.3).

D
ow

nl
oa

de
d 

01
/1

6/
19

 to
 1

33
.3

0.
52

.2
03

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3250 M. KUWAMURA, S. SEIRIN-LEE, AND S.-I. EI

 

0

 2

 4

 6

 8

 10

-5 -4 -3 -2 -1  0  1  2  3  4  5

Fig. 2. The spatial profiles of p(x) and q(x) for K = 10.0. The solid and dashed lines represent
p(x) and q(x), respectively.
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t = 0 t = 100000

Fig. 3. The motion of a localized unimodal pattern of (5.1) for \varepsilon = 0.01. The spatial profiles
of u(x, t) are given by the graphs of u(x, t) on  - 5 \leq x \leq 5 for t = 10000n (n \in Z, 0 \leq n \leq 10).
The spatial profiles of v(x, t) are omitted here because the spatial variation of v(x, t) for each t is
relatively small compared to that of u(x, t), and the motion of the minimal point of v(x, t) is rather
difficult to see. Notice that the velocity of this translational movement is not constant. The values
of the parameters are given by (5.4) and b0 = b1 = 1.0, and those of diffusion coefficients are given
by d1 = 0.0048 and d2 = 0.288.

In what follows, we give a concrete expression of (4.3). By Lemma 3.2 and
Propositions 3.5, 4.2, and 4.3, we have

J(\ell ) =  - 1

d2\gamma 

\int K/2

0

p\prime (z)\{ \chi (z + \ell ) - \chi (z  - \ell )\} dz,

\langle Sz,\Phi 
\ast \rangle =  - 2

d2\gamma 2

\int K/2

0

p\prime (z)2dz +
2(d2  - d1)

d2

\int K/2

0

p\prime (z)\varphi \ast 
2(z)dz,

and

\varphi \ast 
2(x) =

1

d22\gamma 

\Biggl( \int x

0

p(z)dz  - 2x

K

\int K/2

0

p(z)dz

\Biggr) 
.

Noting d1pxx  - \gamma \{ F (p) - q\} = 0 and p\prime (0) = p\prime (K/2) = 0 since p is an even periodic
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function with period K, by using integration by parts, we have

J(\ell ) =  - 1

d2\gamma 

\Biggl( 
p(K/2)\{ \chi (K/2 + \ell ) - \chi (K/2 - \ell )\} 

 - 
\int K/2

0

p(z)\{ \chi \prime (z + \ell ) - \chi \prime (z  - \ell )\} dz

\Biggr) 

=  - 4\pi b0
d2\gamma K

sin

\biggl( 
2\pi \ell 

K

\biggr) \int K/2

0

p(z) cos

\biggl( 
2\pi z

K

\biggr) 
dz

and

\langle Sz,\Phi 
\ast \rangle = 2

d1d2\gamma 

\int K/2

0

\{ F (p(z)) - q(z)\} p(z)dz

+
2(d2  - d1)

d32\gamma 

\left\{   2

K

\Biggl( \int K/2

0

p(z)dz

\Biggr) 2

 - 
\int K/2

0

p2(z)dz

\right\}   .

Therefore, we see that (4.3) is given by

(5.6)
d\ell 

dt
=  - \varepsilon C sin

\biggl( 
2\pi \ell 

K

\biggr) 
+O(\varepsilon 2),

where C is a positive constant independent of b1. Notice that Ke - K \approx 4.5 \times 10 - 4

(see Remark 4.1) and C \approx 1.0 \times 10 - 2 by using the numerical data of p(x) and q(x)
in Figure 2. We numerically solve (5.6) with initial value \ell (0) =  - 2.5 by using a
standard scheme based on the Runge--Kutta method. Figure 4 shows that the motion
of a localized unimodal pattern presented in Figure 3 is determined by (5.6) with
\ell (0) =  - 2.5.

-4

-2

0

2

4

 0  20000  40000  60000  80000  100000

Fig. 4. A comparison of theory and numerical simulations. The solid and dashed lines represent
a solution of (5.6) with initial value \ell (0) =  - 2.5 and its limit as t \rightarrow \infty given by \ell = 0, respectively.
The dots represent the maximal point of u(x, t) for t = 5000n (n \in Z, 0 \leq n \leq 20).

Thus, Example 5.1 demonstrates that the dynamics of a localized unimodal pat-
tern of (1.3) is determined by the ODE (4.3), which implies that a localized unimodal
pattern of (1.3) moves to the maximum point of g2(x).

Remark 5.2. We apply our mathematical results presented in previous sections,
which are based on Assumptions 2.1 and 3.4. In general, it would not be easy to
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rigorously check these assumptions. For this example, we can verify that these as-
sumptions hold for sufficiently small d1/d2 when a0 = a2 = 0 and \gamma = 1. In fact,
it was shown in [18, Corollary 1.2] that any stable equilibrium of (5.5) is spatially
homogeneous or it has a single peak. Therefore, noting the fact that solutions of the
Neumann problem on (0,K/2) can be regarded as those of the periodic boundary
problem on ( - K/2,K/2) by the reflection with respect to the vertical axis, by us-
ing [3, Theorem 1.1, Corollary 1.2, and Remark 1.6], we see that Assumption 2.1 holds
for sufficiently small d1/d2. Moreover, it follows from [18, Corollary 1.1] that \sigma (\~L) is
a discrete set on R. Since S(x) is stable, noting the periodic boundary condition, we
see that Assumption 3.4(ii) holds, and that \~L has an eigenvalue 0 which is generically
simple [14]. Hence, Assumption 3.4(i) generically holds.

Example 5.3.

(5.7)

\Biggl\{ 
\.u = d1uxx  - \gamma (F (u+ v) - v),

\.v = d2vxx + \gamma (F (u+ v) - v),

where F (s) = s/(1 + as)2 and

a = a0

\biggl\{ 
1 + \varepsilon cos

\biggl( 
2\pi (x - c)

K

\biggr) \biggr\} 
with a0 > 0, \gamma > 0, and  - K/2 \leq c < K/2.

This conceptual model is used in [20] for understanding extracellular signal effects
on the dynamics of Rho GTPases polarity patterns. Applying the Taylor expansion
in \varepsilon to (5.7), we have

(5.8)

\Biggl\{ 
\.u = d1uxx  - \gamma \{ f(u, v) + \varepsilon g(x, u, v)\} ,
\.v = d2vxx + \gamma \{ f(u, v) + \varepsilon g(x, u, v)\} ,

where

f(u, v) = F0(u+ v) - v, F0(s) = s/(1 + a0s)
2

and g(x, u, v) =  - g1(u+ v)g2(x),

g1(s) =
2s2

(1 + a0s)3
, g2(x) = a0 cos

\biggl( 
2\pi (x - c)

K

\biggr) 
.

Notice that (5.8) gives a good approximation for (5.7).
First, we consider (5.7) on I = ( - K/2,K/2) under the periodic boundary condi-

tion. According to [20], we numerically solve (5.7) with an initial value (u0(x), v0(x)) \equiv 
(1.0, 1.0) for \varepsilon = 0.01 under the parameter values

(5.9) a0 = 0.7, \gamma = 2.5, d1 = 0.01, d2 = 1.0

and the interval lengthK = 10.0. When c =  - 2.0, the numerical solution converges to
(p0(x), q0(x)), which is a localized unimodal pattern with the maximum at x =  - 2.0.
Setting c = 0, we numerically solve (5.7) with an initial value (p0(x), q0(x)) under the
same parameter values and interval length as (5.9) and K = 10.0. Figure 5 shows
that the maximal point of the numerical solution moves from x =  - 2.0 to x = 0. The
procedure and result of this numerical simulation are the same as in [20, Figure 3H].

D
ow

nl
oa

de
d 

01
/1

6/
19

 to
 1

33
.3

0.
52

.2
03

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMICS OF LOCALIZED UNIMODAL PATTERNS 3253

 0

 2

 4

 6

 8

 10

-5 -4 -3 -2 -1  0  1  2  3  4  5

t = 0 t = 40000

Fig. 5. The motion of a localized unimodal pattern of (5.7) for \varepsilon = 0.01. The spatial profiles
of u(x, t) are given by the graphs of u(x, t) on  - 5 \leq x \leq 5 for t = 4000n (n \in Z, 0 \leq n \leq 10).
The spatial profiles of v(x, t) are omitted here because the spatial variation of v(x, t) for each t is
relatively small compared to that of u(x, t), and the motion of the minimal point of v(x, t) is rather
difficult to see. Notice that the velocity of this translational movement is not constant. The values
of the parameters and diffusion coefficients are given by (5.9).

Remark 5.4. The trigger of the formation of (p0(x), q0(x)) is not due to the
diffusion-driven destabilization (Turing instability). In fact, (u0, v0) = (1.0, 1.0) is
not an equilibrium of an ODE system obtained by dropping diffusion terms from
(5.7).

Next, we consider (5.8) on I = ( - K/2,K/2) under the periodic boundary con-
dition when c = 0. Here, we suppose that (5.8) for \varepsilon = 0 has a localized unimodal
pattern (spike) S(x) = (p(x), q(x)) satisfying Assumption 2.1 and

(5.10) lim
K\rightarrow \infty 

(p(K/2) + q(K/2)) = \alpha for some \alpha > 0.

Then, p(x)+ q(x) > 0 holds for 0 < x < K/2. In fact, it follows from Lemma 3.2 that

d

dx
(p(x) + q(x)) = p\prime (x) + q\prime (x)

= (d2w(x)) + ( - d1w(x)) = (d2  - d1)w(x) < 0

holds for 0 < x < K/2. Therefore, p(x) + q(x) is decreasing in x for 0 < x < K/2.
Hence, it follows from (5.10) that p(x) + q(x) > 0 holds for 0 < x < K/2. Since

\partial 

\partial v
f(u, v) =

\partial 

\partial v
(F0(u+ v) - v) = F \prime 

0(u+ v) - 1,

we can easily check that fv(p(x), q(x)) < 0 holds for 0 < x < K/2, which implies that
condition (i) of Theorem 4.4 holds under the condition (5.10).

In the same way as in Example 5.1, when c = 0, we can numerically investigate
the dynamics of a localized unimodal pattern in (5.8) under the parameter values
(5.9) and interval length K = 10.0.

Figure 6 shows the localized unimodal pattern S(x) of (5.8) for \varepsilon = 0 when c = 0.
This numerical result supports the fact that p(x) and q(x) satisfy condition (5.10).
Therefore, we consider that condition (i) of Theorem 4.4 holds. Figure 7 shows that
the maximal point of the numerical solution moves from x =  - 2.0 to x = 0. This
numerical result is supported by Theorem 4.4.
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Fig. 6. The spatial profiles of p(x) and q(x) of (5.8) for \varepsilon = 0. The solid and dashed lines
represent p(x) and q(x), respectively.
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t = 0 t = 40000

Fig. 7. The motion of a localized unimodal pattern of (5.8) for \varepsilon = 0.01. The spatial profiles
of u(x, t) are given by the graphs of u(x, t) on  - 5 \leq x \leq 5 for t = 4000n (n \in Z, 0 \leq n \leq 10).
The spatial profiles of v(x, t) are omitted here because the spatial variation of v(x, t) for each t is
relatively small compared to that of u(x, t), and the motion of the minimal point of v(x, t) is rather
difficult to see. The values of the parameters and diffusion coefficients are given by (5.9).

Since

J(\ell ) =

\int K/2

0

\rho (z)\{ g2(z + \ell ) - g2(z  - \ell )\} dz

=  - 2a0 sin

\biggl( 
2\pi \ell 

K

\biggr) \int K/2

0

\rho (z) sin

\biggl( 
2\pi z

K

\biggr) 
dz,

we find that (4.3) is given by

(5.11)
d\ell 

dt
=  - \varepsilon C sin

\biggl( 
2\pi \ell 

K

\biggr) 
+O(\varepsilon 2),

where C is a positive constant. In contrast to Example 5.1, it is rather difficult
to precisely obtain the value of C by using the numerical data of p(x) and q(x) in
Figure 6. Therefore, we estimate this value by the position of the maximal point of the
numerical solution of (5.8), as shown in Figure 7. Consequently, we find C \approx 0.028.

Figure 8 shows that the motion of a localized unimodal pattern of (5.7) presented
in Figure 5 is determined by (5.11) with \ell (0) =  - 2.0. This result provides a quanti-
tatively precise characterization of the qualitatively reasonable results in [20], which
cannot be obtained by a formal argument based on biological insights.

Here, we mention biological implications of Examples 5.1 and 5.3. As seen in (5.6)
and (5.11), the ODE (4.3) which determines the polarity position can be expressed
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-4
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 0  10000  20000  30000  40000

Fig. 8. A comparison of theory and numerical simulations. The solid and dashed lines represent
a solution of (5.11) with initial value \ell (0) =  - 2.0 and its limit as t \rightarrow \infty given by \ell = 0, respectively.
The dots represent the maximal point of u(x, t) of (5.7) for t = 2000n (n \in Z, 0 \leq n \leq 20).

in terms of the sine function if g2(x) is expressed in terms of the cosine function,
where g2(x) represents the spatial inhomogeneity of extracellular signals. It should
be noted that the form of (4.3) expressed in terms of the sine function does not
depend on f(u, v) which characterizes the intracellular dynamics for spontaneous cell
polarization. Moreover, the moving speed of the polarity position attains its maximum
at the point where the absolute value of the gradient of g2(x) attains its maximum
because of (cosx)\prime =  - sinx. However, at present, we do not know whether or not
these properties are valid for a general case such that g2(x) is not expressed in terms
of the cosine function.

Asymmetric cell division in the early stage of an embryo (Example 5.1) is a
process tightly regulated by the dynamics of the polarity pattern inside a cell [8].
Moreover, this intracellular dynamics is affected by extracellular signals. Therefore,
understanding the underlying mechanism of the dynamics of the polarity pattern
under the presence of extracellular signals is an indispensable factor in knowing how
a cell can control its division position and timing [21]. Considering that the dynamics
of the polarity pattern is actually determined by that of the position of the polarity
peak, (5.6) and (5.11) in these examples suggest that we could precisely predict the
dynamics of the polarity pattern if we could know the details of quantitative data of
extracellular signals [23].

Remark 5.5. The models (5.1) and (5.7) are examples satisfying condition (i) of
Theorem 4.4. In contrast, the model used in [20],\Biggl\{ 

\.u = d1uxx  - \{ f(u, v) + \varepsilon g(x, u, v)\} ,
\.v = d2vxx + \{ f(u, v) + \varepsilon g(x, u, v)\} ,

is an example satisfying condition (ii) of Theorem 4.4, where f(u, v) =  - a1(u +
v)\{ (\alpha u + v)(u + v)  - a2\} and g(x, u, v) =  - a1(u + v)aE(x) with positive constants
a1, a2, \alpha and a bounded continuous function aE(x). As seen in [20], this model en-
ables us to perform concrete calculations using elementary functions. However, rather
lengthy calculations are required to check condition (ii) of Theorem 4.4. In addition,
as seen in [17], we can investigate the dynamics of such reaction-diffusion systems with
cubic nonlinear reaction terms through asymptotic and bifurcation analysis. There-
fore, we will treat this model in a separate paper [15].

6. Concluding remarks. In this paper, we have studied the dynamics of a lo-
calized unimodal pattern in reaction-diffusion systems with mass conservation, which
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are mathematical models for the polarity formation of cells. These systems have a
spatially nonhomogeneous term in each of their components, which can be regarded as
a small perturbation. Our results show that the localized unimodal pattern moves to
the maximum point of the spatially nonhomogeneous term under certain conditions,
which suggests that the location of the polarity peak can be determined universally
in the site where the maximal extracellular signal is present regardless of the details
of the signaling pathways.

The cell migration induced by the extracellular gradient signal, namely, chemo-
taxis, is a general mechanism that arises in the processes of angiogenesis, cancer
metastasis, wound healing, inflammation, and embryogenesis [2, 4, 20, 22]. For deter-
mining the correct direction of migration, a cell forms a polarity pattern corresponding
to the gradient of extracellular signals. Therefore, for understanding the mechanism
of cell migration, it is indispensable to determine the location of the polarity peak.
Our mathematical result shows that the location of the polarity peak can be deter-
mined in the site where the value of the extracellular signal is maximum, suggesting
that the cell could detect the exact direction of migration.

Although biological details are different, a similar polarity formation is also shown
in asymmetric cell division. In Caenorhabditis elegans, a single fertilized egg cell (P0),
its daughter cell (P1), and the germline precursors (P2 and P3 cells) are asymmet-
rically divided, forming two exclusive domains of different partitioning defective pro-
teins, namely PAR-2 and PAR-6, on the membrane. In particular, PAR-2 is a key
protein that characterizes the dynamics of the polarity pattern during asymmetric
division, so the positioning of the PAR-2 polarity domain is critical in determining
the fate of a daughter cell. These features have been studied through biological ex-
periments and mathematical models [7, 11, 20, 24, 25], but a general mechanism for
determining the position of the polarity pattern of PAR-2 has not been clarified yet.

The model in Example 5.1 has been formulated to explain how the positive feed-
back of the extracellular signal transmitter plays a critical role in determining the
polarity peak in the extracellular signal site. For this model, we rigorously proved
that the position of the polarity peak is determined at the location where the ex-
tracellular signal has a maximal signal. Furthermore, Theorem 4.4 suggests that the
dynamics of cytosol protein by the influence of the extracellular signal plays a more
critical role than that of the membrane protein in determining the position of the
polarity peak in the extracellular signal site. Taken together, our analysis provides
a viewpoint for understanding a general mechanism by which the positioning of cell
polarity can be determined robustly.
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