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ARTICLE

Direct RNA sequencing on nanopore arrays
redefines the transcriptional complexity of a viral
pathogen
Daniel P. Depledge 1, Kalanghad Puthankalam Srinivas 1, Tomohiko Sadaoka 2, Devin Bready 3,

Yasuko Mori 2, Dimitris G. Placantonakis 3,4,5,6,7, Ian Mohr1,5 & Angus C. Wilson 1,5

Characterizing complex viral transcriptomes by conventional RNA sequencing approaches is

complicated by high gene density, overlapping reading frames, and complex splicing patterns.

Direct RNA sequencing (direct RNA-seq) using nanopore arrays offers an exciting alternative

whereby individual polyadenylated RNAs are sequenced directly, without the recoding

and amplification biases inherent to other sequencing methodologies. Here we use direct

RNA-seq to profile the herpes simplex virus type 1 (HSV-1) transcriptome during productive

infection of primary cells. We show how direct RNA-seq data can be used to define

transcription initiation and RNA cleavage sites associated with all polyadenylated viral RNAs

and demonstrate that low level read-through transcription produces a novel class of chimeric

HSV-1 transcripts, including a functional mRNA encoding a fusion of the viral E3 ubiquitin

ligase ICP0 and viral membrane glycoprotein L. Thus, direct RNA-seq offers a powerful

method to characterize the changing transcriptional landscape of viruses with complex

genomes.
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Herpesviruses are adept viral pathogens that have co-
evolved with their hosts over millions of years. Like all
viruses, their success is predicated on repurposing of the

host transcriptional and translational machinery1,2, and through
the use of compact, gene-dense genomes with exceptional coding
potential3–7. The 152-kb double-stranded DNA genome of herpes
simplex virus type 1 (HSV-1) includes at least 80 distinct poly-
adenylated transcripts. These predominantly encode single-exon
open-reading frames (ORFs), some transcribed as polycistronic
mRNAs, along with a smaller number of noncoding RNAs8,9.
These are traditionally grouped into three kinetic classes termed
immediate-early, early, and late10–12. Although splicing of HSV-1
RNAs is infrequent, exceptions include RNAs encoding ICP0,
ICP22, UL15p, and ICP47, as well as the noncoding latency-
associated transcript (LAT).

Conventional RNA-sequencing methodologies, while highly
reproducible, utilize multiple recoding steps (e.g., reverse tran-
scription, second-strand synthesis, and in some cases, PCR
amplification) during library preparation that may introduce
errors or bias in the resulting sequence data13. Data quality may
be further convoluted by the use of short-read sequencing tech-
nologies, which require well-curated reference genomes to accu-
rately assess the abundance and complexity of transcription in a
given system. Loss of information on transcript isoform diversity,
including splice variants, is especially problematic14. Despite
these inherent difficulties, recent studies have shown that host
transcription and mRNA processing are extensively remodeled
during HSV-1 infection15–17, and recent studies using cDNA-
based short- and long-read sequencing technologies indicate that
the HSV-1 transcriptome, like other herpesviruses6,18, may be
substantially more complex than previously recognized19–21.

To examine this in detail, we have employed a new metho-
dology for direct single-molecule sequencing of native poly-
adenylated RNAs using nanopore arrays22. Specifically, we have
used the Oxford Nanopore Technologies MinION platform to
directly sequence polyadenylated host and viral RNAs from
infected human primary fibroblasts at early and late stages of
infection. Error correction, a prerequisite for current nanopore
sequence-read datasets, and the generation of pseudotranscripts
are guided using Illumina short-read sequence data from the
same source material.

We begin by highlighting the fidelity and reproducibility of
direct RNA-seq, while also leveraging short-read Illumina
sequencing data to enable a new approach to error correction that
significantly increases the proportion of error-free transcript
sequences from which internal ORFs can be accurately translated
to predict protein sequences. Using the polyadenylated fraction of
the HSV-1 transcriptome, we define multiple new transcription
initiation sites that produce mRNAs encoding novel or alternative
ORFs. We provide evidence for read-through of polyadenylation
signals in a number of HSV-1 transcription units to produce a
new class of spliced transcripts with the potential to encode novel
protein fusions. Finally, we show that one of these, a fusion
between the ORFs encoding the viral E3 ubiquitin ligase ICP0 and
viral membrane glycoprotein L, produces a 32-kDa polypeptide
expressed with late kinetics. Taken together, this study demon-
strates the power of direct RNA-seq to annotate complex viral
transcriptomes and to identify novel polyadenylated RNA iso-
forms that further expand the coding potential of gene-dense viral
genomes.

Results
Nanopore sequencing of host and viral transcriptomes. To
evaluate the reproducibility of direct RNA sequencing using
nanopore arrays, total RNA was prepared from two biological

replicates of normal human dermal fibroblasts (NHDF) infected
with HSV-1 GFP-Us11 strain Patton (hereafter HSV-1 Patton)23,24

for 18 h. Sequencing libraries were generated from the poly(A)+

RNA fraction and sequenced on a MinION MkIb with R9.4 flow
cell with a run time of 18 h, yielding ~380,000 (replicate #1) and
218,000 (replicate #2) nanopore sequence reads (Fig. 1a, Sup-
plementary Table 1), which were then aligned against the human
transcriptome and HSV-1 strain 17 syn+ annotated reference
sequence using the splice-aware aligner MiniMap225. Relative
transcript abundance counts for both host and viral RNAs
showed high reproducibility between biological replicates (H.
sapiens r2= 0.985, HSV-1 r2= 0.999) (Supplementary Fig. 1a),
despite differing depths of sequencing, and minimal RNA decay
during library construction and sequencing (Fig. 1b, c). As a final
examination, we constructed an additional direct RNA-seq library
from the same source material (technical replicate) and ran this
on a separate MinION device, confirming that the sequencing
data were also reproducible across instruments (Supplementary
Fig. 1b). Satisfied that direct RNA-seq is highly reproducible, we
subsequently sequenced two additional samples to enable com-
parisons between early (6 h) and late (18 h) time points of HSV-1
Patton infection of NHDFs, and to examine the contribution of
the virion host shut-off (vhs) protein (Fig. 1a, Supplementary
Table 1). Both of these yielded similar-sized datasets (Fig. 1a)
with the major difference being a significantly reduced fraction of
HSV-1 sequence reads in the Δvhs dataset (Fig. 1a, Supplemen-
tary Table 1), likely reflecting the involvement of vhs in host
shutoff and antagonism by innate defenses at the beginning of the
infection cycle26.

Comparing nanopore direct RNA-Seq and Illumina RNA-Seq.
We next sought to directly compare the nanopore and Illumina
approaches by sequencing the polyadenylated fraction of the
HSV-1 transcriptome using the same starting material. Here,
profiling the genome-wide depths of coverage resulted in a similar
visual profile (Fig. 2a), in which peaks corresponded to previously
annotated transcription units. Using a 100-nt sliding-window
approach (Fig. 2a, b), we examined changes in mean read depth
(MRD) between genic and intergenic regions and determined that
MRDs in genic regions were ~7–12-fold higher than in intergenic
regions in both normalized Illumina (6.8-fold) and nanopore
(12.1-fold) datasets (Fig. 2c). This difference presumably reflects
mis-priming from internal adenosine-rich tracts during the poly
(A) selection step included in standard Illumina protocols,
combined with intrinsic biases in reverse transcription and
amplification steps13,27. By contrast, the requirement for ligation
of an adaptor-coupled motor protein to the poly(T) adaptor in
direct RNA-seq (Fig. 1c) means that only polyadenylated RNAs
will pass through the pore complex.

To obtain relative gene expression counts, mapped sequence
reads are generally assigned to specific transcription units.
However, the compact, gene-dense nature of the HSV-1 genome
presents challenges when applying short-read Illumina sequen-
cing strategies. Significantly, the viral genome contains multiple
complex gene arrays in which distinct overlapping transcripts
share the same poly(A) signal and RNA cleavage sites. This is
exemplified in Fig. 2d and e in which HSV-1 gene expression
counts have been generated from both nanopore and Illumina
datasets and show marked differences, regardless of whether
polycistronic units are treated as single “transcription units”
(Fig. 2d) or are separated into their respective ORFs (Fig. 2e).
While we could not extend our analysis to human transcripts due
to the limited depth of sequencing, a prior study showed very
high levels of correlation between nanopore and Illumina gene
expression counts22. This reflects the less compact organization
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and significantly improved annotation of genes in the human
genome.

The utility of error correction and pseudotranscripts. Each
nanopore-derived sequence read represents a single full length or
5′ truncated transcript, read in the 3′ – > 5′ direction, present in
the poly(A)+ RNA pool. Each read maps with high specificity
but comparatively low identity (80–90% (nanopore) vs. > 99.9%
(Illumina)) to the reference genome/transcriptome. One goal of
our study was to utilize these data to identify novel transcript
isoforms as evidence of previously unknown gene products. While
this is comparatively simple in organisms where genes are for the
most part arrayed as single units, the highly compact nature of
viral genomes often results in multiple gene units arrayed in an
overlapping manner that greatly complicates the use of short-read
Illumina sequencing for such studies. As each nanopore sequence
read represents a single polyadenylated RNA, it should be possible,
given sufficient sequencing depth, to identify the full spectrum of
transcribed, polyadenylated gene products, irrespective of overlap.
Reasoning that most polyadenylated transcripts are likely trans-
lated within the infected cell, we asked if we could identify known
or novel open-reading frames (ORFs) within our sequence reads
and thereby determine the breadth of protein variants expressed

by HSV-1 in these cells. Unfortunately, such an analysis is hin-
dered by the presence of numerous insertion/deletion (indel) and
substitution-type errors within the raw nanopore reads, a con-
sistent issue with nanopore sequencing28. To overcome this, we
designed a novel error-correction strategy utilizing proovread29, to
reduce the errors present in the raw sequence read data (Fig. 3a),
combined with a decision matrix operating across a range of
error-corrected subsampled datasets (Fig. 3b). Briefly, we assessed
the amount of error in a given read by comparing the CIGAR
string length for a given read in the uncorrected dataset against
corrected datasets generated using subsampled Illumina RNA-Seq
data from the same source material (Fig. 3a, see the section
Methods for extended description of methodology). Surprisingly,
we observed that increasing the size of subsampled Illumina
datasets did not always result in shorter CIGAR string lengths (our
proxy for mapping accuracy). We attributed this to proovread
correction performing optimally at read depths of 30–50x29,
combined with highly variable transcript abundances in both
direct RNA and Illumina RNA-Seq datasets.

Error correction rescued up to 9% of unmapped raw reads
(Supplementary Fig. 2a), the majority of them spliced, increasing
the final yield of mapped reads. We next examined the changes
in the overall read length and the alignment length. Error
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correction marginally reduced the overall read length while
increasing the alignment length (Fig. 3c, d, Supplementary Fig. 2b).
Our approach showed that (i) error correction notably reduces the
numbers of indel and substitution-type errors in all nanopore
reads, (ii) the impact of Illumina read subsampling was minimally
affected by the size of the subsampled dataset, and (iii) error
correction rescued reads that could not previously be mapped and
increased alignment length within individual reads.

Despite the relative success of this error-correction approach,
sufficient numbers of indel-type errors remained to preclude
accurate identification of encoded ORFs in over 80% of

transcripts (Supplementary Figs. 3 and 4). We therefore used
the mapping positions resulting from alignment of the error-
corrected nanopore reads to generate “pseudo-transcripts”. Each
pseudo-transcript contains the same alignment start, stop, and
internal splicing sites as the error-corrected read, but with the
transcript sequences corrected by substituting in the correspond-
ing reference genome sequence (Fig. 3a), thus removing any
remaining indels and mutations that would otherwise generate a
nonsense frameshift. We subsequently compared the pseudotran-
scripts generated with or without error correction by determining
the proportion of sequence reads encoding ORFs longer than 90
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nt (equivalent to 30 codons). Here, 44–85% of uncorrected
pseudotranscripts encoded ORFs > 90 nt, compared with 93–97%
for error-corrected pseudo-transcripts (Fig. 3d). This showed that
using error-corrected nanopore reads as seeds to generate
pseudo-transcripts improves the identification of putative protein
sequences. To this end, we successfully identified full-length
mRNAs encoding the expected protein products for all of the
canonical HSV-1 genes except for UL36 (9420 bp) and UL52
(3177 bp), two of the longest ORFs.

Mapping the starts and ends of viral transcripts. Another goal
of this study was to re-evaluate the coding capacity of HSV-1. The
distribution of nanopore read lengths for both viral and host
transcripts remained similar at discrete sampling times (6 and 18
hpi) and interestingly, were not obviously different for the HSV-1
Δvhs mutant (Supplementary Fig. 5). It is possible that the vhs
endonuclease has limited impact on the viral transcriptome at the
times examined, or that once cleaved, mRNAs are degraded very
rapidly, consistent with the reduced read frequency for viral but
not host transcripts in cells infected with the mutant. While
mRNAs mapping to each canonical HSV-1 ORF were detected in
at least one of the datasets, transcripts corresponding to several
ORFs were detected at very low levels in both the direct RNA-seq
and Illumina datasets. These include RS1 (ICP4), UL9, UL15,
UL36, and the LAT precursor and their low abundance can be
variously explained by nontraditional kinetics, mRNA length, or
mRNA stability. For example, during productive infection, the
8.3-kb polyadenylated LAT precursor might be underrepresented
because it is one of the last viral transcripts to accumulate during
productive infections10. Similarly, ICP4 is an immediate–early
gene that is reported to be expressed at comparatively low levels
during infection21.

Peaks representing the 5′ and 3′ ends of sequenced poly-
adenylated RNAs map closely to previously established transcrip-
tion start and termination sites of several HSV-1 transcription
units (Fig. 4), and we term the peak locations as either proximal
transcription start sites (pTSS) or proximal transcription termina-
tion sites (pTTS) to reflect the fact that these are approximate
rather than exact indicators of the actual capped 5′ end or the
post-transcriptionally processed 3′ end. We noted canonical
TATAAA boxes upstream of 13 HSV-1 genes, with the maximal
pTSS peak positioned 30–48 bp downstream. We cataloged
proximal pTSS sites for all canonical HSV-1 ORFs except for
UL9, UL36, UL52, and RS1, as well as the latency-associated
transcript precursor (Supplementary Table 2). While the use of
these pTSS was consistent between the 6- and 18-h time points,
several ORFs (UL6, UL8, UL14, UL24, UL29, UL51, UL53, and
US1) were notable for having multiple pTSS (Fig. 4, Supplemen-
tary Figs. 6 and 7, Supplementary Table 3), resulting in either

elongated 5′ UTRs or 5′ truncated transcripts. Moreover, we
observed eight pTSS located within previously defined ORFs (UL6,
UL12, UL24, UL30, UL41, UL44, UL53, and UL54; Supplementary
Table 4), potentially encoding novel (different reading frame) or
alternative (same reading frame) protein products or conceivably,
polyadenylated noncoding RNAs (ncRNAs). By contrast, catalo-
ging the pTTS sites revealed that sites of cleavage and
polyadenylation were 6–103 bases (median 22) downstream of
canonical AAUAAA poly(A) signal sites (PAS, Supplementary
Figs. 6 and 7). Importantly, the accuracy of our pTTS estimates
was demonstrated by their positioning within 0–3 bases (median 1)
of experimentally determined 3′ ends of transcripts covering all of
the unique short-region ORFs except US230.

Read-through transcription increases HSV-1 coding capacity.
Read-through transcription or the traversal of a PAS without
downstream RNA cleavage, polyadenylation, and detachment of
the RNA pol II machinery31, is induced in the host by HSV-1
infection of human foreskin fibroblasts19 and has been posited as
another mechanism by which the infecting virus disrupts host
gene expression. While that study found no evidence of read-
through transcription occurring in the viral genome, visual
inspection of HSV-1 sequence read alignments generated from
direct RNA-seq data provided evidence of read-through tran-
scription at both 6 and 18 h (Supplementary Fig. 8).

To examine read-through transcription in detail, we segregated
sequence reads according to the number of AAUAAA motifs
present in each one and re-aligned these against the HSV-1
genome (Fig. 5a). We observed that 65–69% of viral polyadeny-
lated RNAs contained a single consensus AAUAAA PAS that was
assumed to signal for 3′-end processing. A further 7–15%
contained two AAUAAA motifs, while up to 3% contained three
or more AAUAAA motifs. Overall, 20–25% of sequence reads
contained no AAUAAA motif (Fig. 5a, b). The read coverage
profiles generated for each group of sequence reads were generally
similar except in specific loci (Fig. 5a). One such exception is
exemplified by RL2 (ICP0) mapping reads, which contain two
neighboring AAUAAA motifs (inset panel (i) in Fig. 5a). We
determined that pTTS sites for reads with no AAUAAA motifs
mapped upstream of AAUAAA motifs and resulted from 3′
truncation during either error-correction or alignment (soft-
clipping). For all other sequence reads, pTTS sites mapped 3′ to
the AAUAAA motifs (inset panel (ii) in Fig. 5a). Thus, all HSV-1
genes, whether organized individually or in complex gene
clusters, appeared to utilize canonical AAUAAA motifs to signal
transcription termination with only four exceptions. For the
US8/US8A/US9 gene cluster (inset panel (iii) in Fig. 5a), the
UL52/UL53 gene cluster, the UL4/UL5 gene cluster, and RL1,
a noncanonical AUUAAA motif is utilized instead. We noted

Fig. 3 Error correction and generation of pseudotranscripts to overcome sequencing errors inherent to the nanopore method. a Raw nanopore reads include
numerous indel and substitution errors that hinder the identification of encoded ORFs and thereby impede annotation of the transcriptome. Illumina
datasets generated from the same material allowed error correction using proovread (and see Figure S2). Subsequently, the transcript start/stop positions
and internal splice positions were used to generate pseudotranscripts free of indel and substitution errors that permit unambiguous ORF prediction.
Example changes in CIGAR string lengths for a given read are shown for each step of correction. b To optimize proovread error correction, we tested a
range of subsampled Illumina datasets and evaluated corrected reads by the length of the CIGAR string (see Methods). Because optimal Illumina
subsampling varies between reads, we subsequently applied a decision matrix utilizing the best-corrected version of a given read (filled boxes) as scored
by the shortest CIGAR string length. Where multiple subsampling sets produce identical shortest CIGAR scores (shaded boxes), no difference was
observed between the resulting sequences. The bold red line indicates the path chosen (i.e., from which error-corrected dataset a given read was drawn),
while the dotted lines indicate alternative paths that produce the exact same result due to having identical CIGAR string lengths. c Schematic
representation of the effect of error correction. The overall length of error-corrected nanopore reads is marginally less than raw sequence reads but the
aligned portion of error-corrected reads is longer. d For each sequence read, the longest encoded ORF (>90 nt) was identified. Here, error correction
notably increases the proportion of sequence reads containing translatable ORFs. In other words, the removal of indel errors improves our ability to identify
novel and known ORFs
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that the major peaks in the 3+ AAUAAA dataset generally
corresponded to the presence of HSV-1 gene clusters and were
consistent with read-through. Finally, the relative proportions
of transcripts containing differing numbers of AAUAAA motifs
did not significantly change between 6 and 18 hpi (Fig. 5b),
indicating that read-through transcription is not a specific feature
of early or late infection times.

While read-through transcription across the host genome
generally leads to aberrant non-adenylated transcripts19, here, the
compact nature of the HSV-1 genome enables RNA pol II
transcription to terminate following traversal of poly(A) signal sites
further downstream, often at the end of adjacent single or
polycistronic transcription units (Fig. 5c, Supplementary Figs. 8
and 9). We considered that read-through transcription could
provide a simple mechanism for generation of chimeric poly-
adenylated RNAs. Chimeric RNAs in mammalian cells are thought
to arise predominantly from trans-splicing32 but in compact,

gene-dense viral genomes, read-through could produce multi-ORF
transcripts in which cis-splicing33 between neighboring ORFs
creates novel fusion proteins (Fig. 5c). To search for examples, we
predicted the translation products of all spliced HSV-1 transcripts
and compared the results to a database of all canonical translated
ORFs. This revealed two distinct fusions of neighboring ORFs
(RL2–UL1 and UL52–UL54), (Figs. 6 and 7, Supplementary
Table 5) which we predict result from read-through transcription.

A chimeric mRNA encodes an ICP0 and glycoprotein L fusion.
The usage of both the UL52–UL54 (Fig. 6a) and RL2–UL1
(Fig. 7a) splice junctions can be readily detected by end-point
RT-PCR, albeit at lower levels than their non-fusion forms, using
RNA collected from NHDFs infected by multiple HSV-1 strains
at 18 h post infection (Figs. 6b and 7b). Conversely, neither the
RL2–UL1 nor UL52–UL54 splice is detected if protein synthesis is
blocked using cycloheximide (CHX) or if viral DNA replication is
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blocked using phosphonoacetic acid (PAA) or if cells are infected
with an ICP4-null mutant defective for early and late gene
expression as well as viral origin-dependent replication (Figs. 6b
and 7b). This indicates that expression of both RL2–UL1 and
UL52–54 requires viral DNA replication. The late kinetics are
also evident when the abundance of the UL52–UL54 and
RL2–UL1 splices are compared with the canonical UL52, UL54,
RL2, and UL1 genes by real-time RT-qPCR at different times
post-infection (Figs. 6b and 7b). This is notable because RL2 and
UL54 are considered immediate–early genes, while UL52 is an
early gene and UL1 a late gene.

Although canonical UL1 transcripts are not thought to be
spliced, the internal UL1 splice acceptor motif GTAG|G is perfectly
conserved across all of the HSV-1 full or partial genome sequences
available in GenBank (n= 155), but is not present in HSV-2
genome sequences (Supplementary Table S5). Similarly, the splice
donor and acceptor sequences utilized in the UL52–UL54 fusion are
likewise perfectly conserved (Supplementary Table S5). Production
of these new transcripts is not unique to NHDFs because both the
RL2–UL1 and UL52–UL54 splice junctions could also be detected
by RT-PCR in HSV-1-infected human ARPE-19 retinal pigment
epithelial cells and hESC-derived neurons (Figs. 6b and 7b).
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The in-frame fusion of ICP0 (ORF RL2) and glycoprotein L
[gL] (ORF UL1), arises through splicing from the canonical exon
2 splice donor within the coding sequence of RL2 to a previously
unknown splice acceptor with the UL1 ORF, such that the first
two exons of RL2 (ICP0 residues 1–241, including the RING
finger domain) are fused in-frame to the last 191 bp of the UL1
ORF, corresponding to the residues 162–224 of gL (Fig. 7a). The
ICP0-gL fusion protein has a predicted molecular mass of 32 kDa
and a band of this size was detected at late (18 or 24 h) but
not early (6 h) times in HSV-1 strain Patton-infected cells
by immunoblotting using an antibody that recognizes the gL C
terminus (Fig. 7c lanes 3–6). To verify this band as the fusion
protein rather than a gL glycosylation intermediate, immunopre-
cipitations were performed using either a monoclonal antibody
that recognized the ICP0 N terminus (lanes 2 and 8) or an
isotype-matched antibody as a specificity control (1 or 7).
Immunoblotting of the recovered material with either anti-ICP0
or anti-gL detected a diffuse band of similar size in the ICP0-
specific immunoprecipitation (lanes 2 and 8) that was absent in
the control (lanes 1 and 7). This demonstrates that a 32-kDa
protein is detected in HSV-1-infected cells at late times post
infection that has antigenic determinants derived from the ICP0
N-terminus and the gL C-terminus. Moreover, it confirms that a
novel HSV-1 mRNA first identified using direct RNA sequencing
encodes a polypeptide produced in virus-infected cells.

Discussion
Decoding the transcriptional landscape of viral pathogens is a
vital first step in understanding how they overcome host cell
defense mechanisms and ultimately, gain control of the host
transcriptional and translational machinery. The compact, gene-
dense nature of dsDNA viruses poses a special challenge when

using conventional RNA-Seq strategies for such an analysis
because of the reliance on short fragments of recoded RNA
(Illumina sequencing)27. Recent studies have illustrated the
potential of herpesviruses to encode a much broader range of
transcript isoforms than previously thought, thereby expanding
the potential proteome of these viruses and opening up the
possibility of new viral functionalities or more nuanced interac-
tions with the host cell6,18.

To address this, we have systematically examined the utility of
direct poly(A) RNA sequencing using nanopore arrays to profile a
highly complex large dsDNA viral transcriptome. We have
demonstrated the efficacy and reproducibility of this method and
shown that the intrinsic problems associated with the high error
rate of nanopore sequencing can be partially overcome by error-
correcting using short-read (Illumina) sequencing data and the
generation of pseudotranscripts. This approach improves read
alignment and identification of coding sequences within indivi-
dual transcripts. Nanopore sequencing of native poly(A) RNA
species is particularly effective when applied to the initial char-
acterization of pathogen transcriptomes, because it allows inves-
tigators to rapidly define transcript structures and/or splicing
profiles, distinguish mono- and polycistronic transcription units,
and provide comprehensive maps of transcription initiation sites
and transcript termini. However, while Illumina-based error
correction and the generation of pseudotranscripts significantly
improves our data, it is unlikely to be suitable for applications
beyond the analysis of transcript isoforms. Specifically, the
advantage of pseudotranscripts is that they greatly improve our
ability to identify coding sequences (ORFs) within individual
transcripts. However, generating them also obscures potentially
informative SNP and indel mutations and requires users to
carefully balance their analyses by incorporating raw and error-
corrected nanopore reads, as well as inferred pseudotranscripts to
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maximize accuracy. At this point, we do not recommend our
approach for profiling small, rapidly evolving RNA viruses that
exist as quasi-species as these are better examined using alter-
native approaches34.

Even though the HSV-1 genome has been studied for decades
and was a leading paradigm in studies of promoter organization,
the more detailed transcriptomic data generated in this study
expose a more complex spatial and temporal patterns of tran-
scription start site usage than was previously known. Further-
more, it has also uncovered an otherwise cryptic class of viral
fusion transcripts that encode novel proteins. Transcription
initiation sites (TSS) are critical for the control of productive cycle
gene expression as their location relative to the translation
initiation site determines the length and composition of the 5′
UTR of mRNAs, which can have profound effects on translation
efficiency. Although the majority of RNA polymerase II (RNAP)
transcribed genes recruit TFIID to the core promoter, only a
minority (~10%) contain an identifiable TATA box35. Our data
indicate a similar pattern in the HSV-1 genome and in many
cases, the actual position of the TSS may be determined through

interactions of the general transcription machinery with the viral
transcription factor ICP436 and other core promoter elements37.
While direct RNA-seq does not currently allow mapping of TSS
at nucleotide resolution, we nevertheless observed that in many
transcripts, the 5′ end of HSV-1 sequence reads mapped to
between 30 and 48 bp downstream of a consensus TATA box.
This level of resolution is sufficient to identify HSV-1 genes that
use multiple TSS, including eight with internalized TSS that
may encode truncated protein isoforms (Supplementary Table 4),
four of which have been identified previously through a limited
alternative long-read sequencing method38. While beyond the
scope of this study, integrating our transcriptomic data with
alternative TSS mapping approaches, such as CAGE-Seq or RNA
pol II ChIP-Seq will advance our understanding of promoter
usage in HSV-1 and the relationship of start site selection to
subsequent steps in RNA maturation.

Inter-ORF transcription (pervasive transcription) has been
observed in several γ-herpesviruses and shown to be functionally
important5. With the exception of polycistronic mRNAs, few
examples have been described to date for α-herpesviruses.
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Detection of HSV-1 fusion transcripts that encode chimeric pro-
teins was therefore exciting and unexpected. Given that the two
predominant fusions we identified occur between discrete neigh-
boring transcription units, the likely mechanism involves sup-
pression of transcription termination and 3′-end processing
leading to elongated transcripts that contain functional splice
donor and acceptor sequences. This was evidenced by the presence
of a subset sequence reads containing multiple PAS motifs. Intri-
guingly, while HSV-1 almost universally requires AAUAAA motifs
to signal transcription termination, the relative ability of a given
motif to signal termination appears dependent on genomic context.
In other words, read-through transcription (or disruption of
transcription termination) was most evident for poly(A) signal
motifs located within complex gene arrays, potentially suggesting a
role for sequence constraints in flanking sequence regions. Our
findings contrast with an earlier Illumina-based sequencing study
of nascent transcripts in HSV-1-infected fibroblasts that reported
an absence of read-through transcription of viral genes during the
first 8 h of infection19. This likely reflects the differences in the
sequencing approaches and analyses methods used in the two
studies. Rutkowski et al. sequenced rRNA-depleted total RNA
collected by Illumina sequencing, an approach that allowed a
comprehensive examination of read-through in both host and viral
genomes during the first 8 h of infection. A re-analysis of that
dataset indicates that read-through transcription of viral genes does
occur at low levels by 8 hpi (Supplementary Figs. 8 and 9) but may
have been missed, or dismissed as background, due to its low level
in the original study. By contrast to the approach utilized by
Rutkowski et al.19, direct RNA sequencing only sequences mature
polyadenylated RNAs at later infection times (6–18 hpi), allowing
us to examine this phenomenon from an alternative viewpoint and
show that the read-through transcription of the viral genome
becomes more prevalent at late infection time points. Unlike host
transcripts for which neighboring PAS are located far apart (tens
to hundreds of kilobases), viral read-through transcripts are
still able to efficiently terminate because the more compact genome
provides numerous alternative downstream poly(A) signal sites
within a few kilobases. Moreover, the compact nature of the viral
genome limits the window in which read-through transcription
can be observed by short-read sequencing approaches. While read-
through transcription remains the most plausible explanation
for the generation of fusion transcripts, we cannot yet entirely
exclude the possibility that they instead arise from trans-splicing
events that join separate mRNAs. Although rare outside of pro-
tozoan parasites, there are examples of intergenic splices between
viral mRNAs from JC virus and SV40, as well as rarer hybrids
between viral and host transcripts32,39,40.

To better understand whether read-through transcription in
HSV-1 may produce functional proteins, we focused our sub-
sequent analyses on the predicted ICP0-gL fusion protein
encoded by the RL2–UL1 chimeric transcript. While further
characterization is required, sensitivity to a viral DNA replication
inhibitor and accumulation of the RNA at later times in the
infection imply a regulated pattern of expression. Similarly, the
conservation of the otherwise unused UL1 splice acceptor
sequence among all sequenced wild-type HSV-1 genomes, com-
bined with detection of the RL2–UL1 splice in NHDFs infected by
four different HSV-1 strains, argues for a functional role for this
previously unknown protein. A broader question is whether these
viral chimeric mRNAs arise simply as a consequence of virus-
induced transcription read-through targeting the host as part of
its host shut-off strategy or are themselves a reason for the virus
to interfere with termination mechanisms.

Technological advances continually redefine our abilities to
ask complex questions of biological systems, such as the
interplay between host and viral transcriptomes during cellular

infections. This study illustrates the value of applying direct RNA
sequencing to complex viruses and provides a roadmap for
researchers interested in examining host–virus interactions that
may eventually be extended to other pathogens (i.e., bacteria,
parasites) with transcriptionally complex genomes. The biological
insights presented here raise the intriguing question of whether
other dsDNA viruses deliberately manipulate the host transcription
and RNA-processing machinery to increase the diversity of their
own proteome. Identifying specific mechanisms and determining
the role of these RNA diversification strategies in viral infections
will greatly enhance our understanding of host–virus interactions.

Methods
Cell culture, viral strains, and infection procedures. Cells used in this study
included normal human dermal fibroblasts (NHDF), human retinal pigment
cells (ARPE-19 [ATCC® CRL-2302™]), and hESC-derived neurons41. NHDFs
were cultured in DMEM supplemented with 5% FBS, ARPE-19s in DMEM/
F12 supplemented with 10% FBS, and neuronal cultures as previously described41.
For HSV-1 infections, we utilized multiple viruses corresponding to four different
HSV-1 strains, including GFP-Us11 Patton24,41, Kos42, 17syn+, F43, KOS N12
(ΔICP4)44, and strain F R2621 (Δvhs)45, always at a multiplicity of infection (MOI)
of three for either 6 or 18 h prior to collecting total RNA or protein. Note that FBS
concentrations were halved during the infection and post-infection periods. HSV-1
GFP-Us11 strain Patton is an effectively wild-type virus that expresses a fluorescent
fusion protein with true late kinetics, and has been used extensively in studies of
acute infection, latency, and viral pathogenesis.

RNA collection, extraction, and quality control. HSV-1-infected cells were lysed
in TRIzol reagent (Invitrogen) and extracted according to the manufacturer’s
instructions. RNA integrity (RIN) was assessed using an RNA 6000 nanochip
(Agilent Technologies) on a Bioanalyzer 2100 (Agilent Technologies). Poly(A)+
RNA was isolated from 25 µg (HSV-1) or 55 µg (VZV) of total RNA using a
Dynabeads™ mRNA Purification Kit (Invitrogen), according to the manufacturer’s
instructions—with the only adjustment being to use 133 µl of resuspended Dyna-
beads rather than 200 µl as this was deemed optimal for the quantity of total RNA.

Nanopore sequencing and post processing. Direct RNA-sequencing libraries
were generated from the isolated poly(A) RNA, spiked with 0.25 µl of a synthetic
Enolase 2 (ENO2)-derived calibration strand (a 1.3 kb synthetic poly(A)+ RNA,
Oxford Nanopore Technologies Ltd.) and sequenced on one of two MinION MkIb
with R9.4 flow cells (Oxford Nanopore Technologies Ltd.) and an 18-h runtime. All
protocol steps are described in Garalde et al.22. Following sequencing, basecalling
was performed using Albacore 1.2.1 [-f FLO-MIN106 -k SQK-RNA001 -r -n 0 -o
fastq, fast5]. Only reads present in the “pass” folder were used in subsequent
analyses.

Illumina sequencing and post processing. TruSeq stranded RNA libraries were
prepared from poly(A)-selected total RNA for the HSV-1-infected NHDFs (18 hpi)
and ARPE-19 cells (18 hpi) by staff at the New York University Genome
Technology Center. Following multiplexing with additional unrelated samples,
paired-end sequencing (2 × 76) was performed using a HiSeq 4000 (Illumina).
FLASh46 (–min-overlap= 10 –max-overlap= 150) was used to merge overlapping
reads prior to error correction.

Error correction of direct RNA nanopore reads. For error correction of nanopore
sequence reads, we utilized proovread29, an error-correction package initially
designed for data correction for the PacBio long-read sequencing platform. We
generated error-corrected nanopore datasets by applying proovread to nanopore
sequence reads using subsampled FLASh46 compacted Illumina RNA-Seq datasets
(250,000–5,000,000 paired-end reads) generated from the same material. As a
metric, we examined per-read changes in CIGAR string lengths, reasoning that
correction of indels and substitution-type errors would reduce string lengths and
improve splice-site usage identification (Supplementary Figs. 3 and 4). Here, the
length (number of characters) of the CIGAR string is long where insertions or
deletions (indels) are present. Error correction reduces the number of indels pre-
sent, which in turn merges match/mismatch units, reducing the overall string
length (Fig. 3a). The optimal error-corrected read was considered to have the
shortest CIGAR string length among all subsampled datasets (Fig. 3b). We profiled
changes in CIGAR string lengths for all HSV-1 mapping and human mapping
reads in our datasets and observed similar results, especially where more than
1 million subsampled Illumina reads were used for correction (Supplementary
Figs. 2 and 3). However, we also observed that for a given read, the change in
CIGAR string length did not consistently improve as more subsampled Illumina
reads were included. We thus implemented a decision matrix that compared
CIGAR string lengths for a given read using each subsampled Illumina dataset.
The corrected read with the shortest CIGAR string length was considered the
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best-corrected version of the read and retained for subsequent analyses. Where
multiple subsampled datasets provided the same CIGAR string lengths, we
observed that all the corrected sequence reads were identical in all cases. A formal
evaluation of how error correction impacted on splice junction mapping was
not possible due to unexpected sequencing artifacts (detailed in Supplementary
Note 1).

Generation of pseudotranscripts. While error correction significantly reduced
the number of indel-type errors in our nanopore reads, it rarely removed all of
them. Thus, attempts to identify and translate ORFs within these reads
produced frameshift errors that obscured the likely ORF sequence. However, by
leveraging the start, stop, and internal splicing site co-ordinates from the
mapping output, we were able to generate what we term “pseudo-transcripts” by
substituting in the corresponding reference genome sequence in place of the
existing nanopore read sequence (Fig. 3a). This served to repair sequences to an
extent that internal ORF predictions could be made. Note that while error cor-
rection is not strictly required for the generation of pseudotranscripts, the
improved mapping accuracy, particularly of splice junctions, justifies the additional
computational time required.

Mapping and analyses of nanopore sequence data. Following basecalling
with Albacore, nanopore reads are separated into three folders (pass, fail, and
calibration strand). We used only the reads in the pass folder for subsequent
analyses, and for each dataset, we ran the analyses with both raw (uncorrected)
and proovread-corrected datasets. Nanopore read data were aligned to the HSV-1
strain 17 A reference genome (NC_001806) and transcriptome, as well as the
Homo sapiens HG19 genome and transcriptome using MiniMap225 (-ax splice -k14
-uf –secondary= no), a splice-aware aligner. Due to many HSV-1 genes being
arrayed as polycistrons, we utilized two distinct versions of the transcriptome,
one containing all encoded ORFs (used for internal splicing analysis and
isoform clustering), the other containing all encoded transcriptional units
(utilized for examining transcript boundaries and fusion transcript discovery).
Note that following mapping, all SAM files were parsed to sorted BAM files
using SAMtools v1.3.147. Basic analyses of sequence reads (overall lengths, align-
ment lengths, internal coding sequences, etc.) are detailed in Supplementary
Note 2.

Transcript boundaries analysis. BAM files containing read data mapped to the
HSV-1 genome were parsed to BED12 files using BEDtools48, separated by strand,
and the extreme 5′-mapping and 3′-mapping sites identified for all mapping reads
(see Supplementary Note 2 for coding examples). The resultant dataset is a four-
column file specifying each unique 5′ start site and 3′ end site identified and the
number of distinct transcripts utilizing that start site.

Fusion transcript analysis. BAM files containing read data mapped to the HSV-1
transcriptome (transcriptional units) were parsed to identify putative chimeras
(SAM flag “SA:Z”). Each chimeric sequence read was translated to identify all ORFs
>30 amino acids using ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/). The
resulting peptide sequences were queried (blastp49) against a blast database com-
prising all canonical HSV-1 proteins. The resulting data were manually parsed to
identify peptide sequences mapping to two or more ORFs present in distinct
transcriptional units. Subsequent visualization using IGV50 was used to identify
splice acceptor and donor sequences and to verify mapping integrity (see Sup-
plementary Note 2 for coding examples).

Data visualization. Figures showing read data overlaying genome schematics were
generated in RStudio (http://www.rstudio.com) using GViz and GenomicFeatures
packages51,52. Additional details are specified in Supplementary Note 2.

Experimental validation of splice-site usages. For analysis of the
UL52–UL54 splice junction, primers were designed to discriminate between
canonical UL52, canonical UL54, and usage of the UL52–UL54 splice junction
(Fig. 6, Supplementary Table 6). For analysis of the RL2–UL1 splice junction,
primers were designed to discriminate between usage of the canonical RL2
exon2–exon3 splice junction, the novel RL2 exon—UL1 internal splice junction,
and canonical UL1 (Fig. 7, Supplementary Table 6). Primers designed against the
H. sapiens 18srRNA were utilized as a control. cDNA was generated from 500 ng
of the total RNA using qScript cDNA SuperMix XLT (Quanta Bio) and 50 ng of
cDNA used per PCR/real-time quantitative PCR (qPCR) reaction. For PCR
amplification, the Herculase II Fusion DNA Polymerase (Agilent Technologies)
was used according to the manufacturer’s instructions in a 25-µl reaction volume
and with 35 amplification cycles. Ct values for viral products, where detectable,
always exceeded Ct 38 in negative controls (RT and uninfected NHDFs). PCR
products were visualized alongside a GeneRuler 100-bp ladder (Thermo Scientific)
on a 1.8% agarose gel stained with ethidium bromide. For RT-qPCR, all reactions
were carried out in triplicate using a reaction volume of 25 µl and the SsoAd-
vanced™ Universal SYBR® Green Supermix (BIO-RAD). All samples were run on a
CFX96-Touch (Bio-Rad).

Immunoprecipitation and immunoblotting. Cells were lysed in 1× cell lysis buffer
(Cell Signaling), fractionated by 15% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE), and transferred to nitrocellulose membranes
(Whatman). Membranes were blocked in 5% milk diluted in Tris Buffered
Saline with Tween® 20 (TBS-T) for 1 h at room temperature and incubated
overnight at 4 °C with α-ICP0 (1:200, 53070, Santa Cruz Biotechnology), or α-gL53

(1:1000, H1A259-100, Virusys Corp.) primary antibodies and detected using a
horseradish peroxidase-conjugated α-mouse secondary antibody (diluted 1:5000,
Sigma-Aldrich) with incubation at room temperature for 1 h and visualization
by chemiluminescent detection using SuperSignal™ West Femto Maximum
Sensitivity Substrate (ThermoFisher). For immunoprecipitation, lysates were
incubated for 1 h at 4 °C with α-ICP0 or α-FLAG-loaded protein G agarose
beads (Cell Signaling), recovered by low-speed centrifugation, and washed in TBS
before heat denaturation in sample buffer. Images were captured using an iBright
FL1000 (Invitrogen).

Data availability
Raw fast5, basecalled fastq (both nanopores), and Illumina fastq datasets generated as
part of this study can be downloaded from the European Nucleotide Archive (ENA)
under the following study accession: PRJEB27861. The authors declare that all other data
supporting the findings of this study are available within the article and its Supple-
mentary Information files, or are available from the authors upon request.
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