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Abstract

In this paper we establish a construction of Euclidean 9-designs (i.e., the
fourth order rotatable designs) on the unit ball. A classical, popular ap-
proach for this is to use the corner vectors of the hyperoctahedron such as
the vertices, the midpoints of the edges, the barycentres of the faces and so
on. As an improvement of this, we propose to use the corner vectors of the
hyperoctahedral group, plus their “internally dividing points”. We give a
classification of Euclidean 9-designs on two spheres, and several examples of
the fourth order optimal rotatable designs in low dimensions.
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1. Introduction

Let ξ be a probability measure on the unit ball Bn = {x = (x1, . . . , xn) ∈
Rn | ∥x∥ = (

∑n
i=1 x

2
i )

1/2 ≤ 1}, which we call a design on the unit ball.
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A design ξ defines the positive semi-definite inner product

⟨f, g⟩ξ =
∫
x∈Bn

f(x)g(x) dξ(x)

on the vector space Pd(Rn) of all polynomials of degree at most d in n
variables.

Let f = (f1, . . . , fN)
′, where fi form a basis of Pd(Rn) andN = dim(Pd(Rn)) =(

n+d
d

)
. We denote the transpose of f by f ′. The information matrix of a de-

sign ξ is defined as follows:

Md(ξ) =

∫
x∈Bn

f(x)f(x)′ dξ(x).

We say that a design ξ is of degree d if Md(ξ) is nonsingular, and hereafter
restrict our attention to designs ξ of degree d.

Among many optimality criteria, we are particularly concerned with the
D-optimality criterion, which is commonly used in practice. We say that
a design is D-optimal (or optimal for short) if the design maximizes the
determinant of the information matrix.

Here, we give the concept of Euclidean design introduced by Neumaier
and Seidel (1988). Let t be a nonnegative integer, and X be a finite subset
in Rn with a positive weight function w. For {r1, . . . .rq} = {∥x∥ | x ∈ X}
with r1 > · · · > rq ≥ 0, we denote by Sri the concentric sphere with radius
ri, i.e., Sri = {x ∈ Rn | ∥x∥ = ri}. Let Xi = X ∩ Sri and Wi =

∑
x∈Xi

w(x).
Let σr1 , . . . , σrq be the surface measures on Sr1 , . . . , Srq , respectively. Let
|Sri| =

∫
Sri

dσri . We use the convention that 1
|Srq |

∫
Srq

f(x) dσrq = f(0) for

rq = 0. We also use Sn−1 := S1 and σ = σ1.

Definition 1.1 (Euclidean design). A finite weighted pair (X,w) is called a
Euclidean t-design on q concentric spheres

∪q
i=1 Sri if∑

x∈X

w(x)f(x) =

q∑
i=1

Wi

|Sri|

∫
x∈Sri

f(x) dσri(x)

for every polynomial f ∈ Pt(Rn).

A D-optimal design with finite support for the d-th degree polynomial
regression on the unit ball is well-known to be rotatable. Namely, the d-
th order optimal rotatable design on the unit ball is a Euclidean t-design
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with t = 2d, or t = 2d + 1; see also Neumaier and Seidel (1992); Bannai
and Bannai (2006). Moreover, such a design is supported by q = (d + 1)/2
spheres including the surface of Bn; we regard a half as the origin if q is a
half integer. Thus, one of the important problems is to construct Euclidean
designs supported by “suitably” weighted concentric spheres.

There have been many articles about constructions of Euclidean designs.
Among them, we focus on a construction method based on the corner vectors
associated with the hyperoctahedral group Bn; see, e.g.,Kiefer (1960); Farrell
et al. (1967); Pesotchinsky (1978); Gaffke and Heiligers (1995a,b,c, 1998);
Bajnok (2007); Hirao et al. (2014). Here, Bn is the group of all permutations
and sign changes of the coordinates of a vector in Rn.

We note that, Euclidean t-designs consisting of only corner vectors have
degree t ≤ 7 (cf. Bajnok (2007); Nozaki and Sawa (2012)). Thus, in this
paper, as an extension of the corner vector construction, we propose to use
the corner vectors (α, . . . , α, 0, . . . , 0) and their internally dividing points
(β, γ, . . . , γ, 0, . . . , 0), which enable us to find various Euclidean 9-designs.
This is an extension of a construction of Euclidean designs on the unit sphere,
proposed by Sawa and Xu (2014).

In the next section, we review some basic terminology and explain, in
detail, our idea of constructing Euclidean 9-designs supported by one or two
concentric spheres. In Section 3, we present classifications of Euclidean 9-
designs on two concentric spheres and several examples of the fourth order
optimal rotatable designs on the unit ball. In Section 4, we give a proof of
our main theorem (see also Theorem 2.5 in the next section).

2. Our method

2.1. Invariant Euclidean design

Let Bn be the hyperoctahedral group. Given γ ∈ Bn and x ∈ Rn, let
γ(x) be the action of x by an element γ of Bn and xBn = {γ(x) | γ ∈ Bn}
be the Bn-orbit of x.

For any f ∈ Pd(Rn), we define the action of γ ∈ Bn on f as follows:

(γf)(x) = f(γ−1(x))

for every x ∈ Rn. A polynomial f is said to be Bn-invariant if γf = f for
every γ ∈ Bn.
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Let Homd(Rn) or Harmd(Rn) be the subspace of Pd(Rn) which consists
of all homogeneous or harmonic homogeneous polynomials of degree d, re-
spectively. Namely,

Homd(Rn) = {f(x1, . . . , xn) =
∑

λ1+···+λn=d
λ1,...,λn≥0

cλ1,...,λnx
λ1
1 · · · xλn

n | cλ1,...,λn ∈ R},

Harmd(Rn) = {f ∈ Homd(Rn) | ∆f = 0},

where ∆ = ∂2/∂x2
1 + · · ·+ ∂2/∂x2

n is the Laplace operator.
By Pd(Rn)Bn and Harmd(Rn)Bn , we denote the set of Bn-invariant poly-

nomials in Pd(Rn) and Harmd(Rn), respectively.
There have been many articles concerning constructions of Bn-invariant

Euclidean designs; e.g., Pesotchinsky (1978), Gaffke and Heiligers (1995a,b,c,
1998), Hirao et al. (2014).

Definition 2.1. A finite weighted pair (X,w) is said to be Bn-invariant if
X is a union of Bn-orbits and w(y) = w(y′) for every y,y′ ∈ xBn, x ∈ X.

The following is a special case of a classical theorem by S.L. Sobolev.

Theorem 2.2 (Sobolev (1962)). Let (X,w) be a Bn-invariant weighted pair.
Then, (X,w) forms a Euclidean t-design on the unit sphere such that the
total weight is equal to 1, i.e,

∑
x∈X w(x) = 1, if and only if it holds that∑

x∈X

w(x)f(x) =
1

|Sn−1|

∫
x∈Sn−1

f(x) dσ(x)

for any f ∈ Pt(Rn)Bn.

The Sobolev theorem is extended to that for Euclidean designs, which is
useful to construct Bn-invariant Euclidean designs.

Theorem 2.3 (Nozaki and Sawa (2012)). Let (X,w) be a Bn-invariant
weighted pair with X = ∪M

k=1rkx
Bn
k , where xk ∈ Sn−1 and rk > 0. The

following are equivalent:
(i) A pair (X,w) is a Euclidean t-design.
(ii)

∑
x∈X w(x)∥x∥2jϕ(x) = 0 for any ϕ ∈ Harml(Rn)Bn with 1 ≤ l ≤ t, 0 ≤

j ≤ ⌊ t−l
2
⌋.

We also obtain the same conclusion for other finite reflection groups, e.g.,
see Nozaki and Sawa (2012).
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2.2. Our method

In our previous work (Hirao et al., 2014), we constructed many Bn-
invariant Euclidean 7-designs, i.e., the third order rotatable designs, by using
the points

X (R, J) =
∪
k∈J

rkz
Bn
k , zk :=

1√
k

k∑
i=1

ei,

where J ⊂ {1, . . . , n} and R is the set of radii, namely R = {rk > 0 | k ∈
J}. Accordingly, we obtained a number of the third order optimal rotatable
designs on the unit ball.

A merit of the corner vectors is simplicity, which, however, cannot pro-
duce Euclidean 8-designs, as shown by Bajnok (2007); see also Hirao et al.
(2014). Thus, to construct higher degree designs, we propose to examine the
internally dividing points va,s of corner vectors zk given by

va,s =
1√

a2 + s

(
ae1 +

s+1∑
i=2

ei

)
,

where a > 0, a ̸= 1, and s ∈ {1, 2, . . . , n− 1}. They actually provide a huge
number of Euclidean 9-designs on two concentric spheres and accordingly,
many examples of the fourth order optimal rotatable designs on the unit
ball. The details will be coming up soon later.

Remark 2.4. The size of zBn
k and vBn

a,s are equal to

|zBn
k | = 2k

(
n

k

)
, |vBn

a,s| = 2s+1n

(
n− 1

s

)
.

2.2.1. Two supporting spheres

The fourth order optimal rotatable design on the unit ball is supported
by the origin and two concentric spheres. Moreover, by the definition of
Euclidean design, the corresponding weighted set excluding the origin forms a
Euclidean 9-design on two concentric spheres. Thus, we consider a Euclidean
9-design (X ({a, s},R, J1, J2), w) on two concentric spheres Sr1 ∪ Sr2 , where
R = {r1, r2} be the radial set with r1 > r2 > 0, and J1, J2 ⊂ {1, 2, . . . , n}.
Let

X ({a, s},R, J1, J2) = X1 ∪X2, X1 = r1v
Bn
a,s ∪

∪
k∈J1

r1z
Bn
k , X2 =

∪
k∈J2

r2z
Bn
k
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Let wv := w(x) for any x ∈ r1v
Bn
a,s, wk := w(x) for any x ∈ r1z

Bn
k , and

vk := w(x) for any x ∈ r2z
Bn
k .

Theorem 2.5. For a > 0, a ̸= 1, s ∈ {1, 2, . . . , n − 1}, R = {r1, r2} and
J1, J2 ⊂ {1, . . . , n}, let (X ({a, s},R, J1, J2), w) be a Bn-invariant weighted
pair defined as in the above paragraph. Then, (X ({a, s},R, J1, J2), w) is a
Euclidean 9-design on two concentric spheres if and only if the following
equations hold:

0 =
∑
k∈J2

vk
2k

k2

(
n− 1

k − 1

)(
1− 3

k − 1

n− 1

)
,

0 = wv
2s+1

(a2 + s)2

(
n− 1

s

)(
a4 + s− 3(a2 + s− 1)

s

n− 1

)
+
∑
k∈J1

wk
2k

k2

(
n− 1

k − 1

)(
1− 3

k − 1

n− 1

)
,

0 =
∑
k∈J2

vk
2k

k3

(
n− 1

k − 1

)(
1− 15

k − 1

n− 1
+ 30

(k − 1)(k − 2)

(n− 1)(n− 2)

)
,

0 = wv
2s+1

(a2 + s)3

(
n− 1

s

)(
a6 + s− 15(a4 + a2 + s− 1)

s

n− 1

+ 30(a2 + s− 2)
s(s− 1)

(n− 1)(n− 2)

)

+
∑
k∈J1

wk
2k

k3

(
n− 1

k − 1

)(
1− 15

k − 1

n− 1
+ 30

(k − 1)(k − 2)

(n− 1)(n− 2)

)
,

0 = wv
r812

s+1n

(a2 + s)4

(
n− 1

s

)(
a8 + s+ 7(−4a6 + 3a4 − 4a2 + s− 1)

s

n− 1

)
+
∑
k∈J1

wk
r812

kn

k4

(
n− 1

k − 1

)(
1 + 7

k − 1

n− 1

)
+
∑
k∈J2

vk
r822

kn

k4

(
n− 1

k − 1

)(
1 + 7

k − 1

n− 1

)
for n ≥ 3,
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0 =
wvr

8
12

sn

(a2 + s)4

(
n− 1

s− 1

)(
a4 + s− 1− (a6 + a2 + s− 2)

6(s− 1)

n− 2

+ (a2 + s− 3)
9(s− 1)(s− 2)

(n− 2)(n− 3)

)

+
∑
k∈J1

wk
r812

k−1n

k4

(
n− 1

k − 2

)(
1− 28

k − 2

n− 2
+ 9

(k − 2)(k − 3)

(n− 2)(n− 3)

)
+
∑
k∈J2

vk
r822

k−1n

k4

(
n− 1

k − 2

)(
1− 28

k − 2

n− 2
+ 9

(k − 2)(k − 3)

(n− 2)(n− 3)

)
for n ≥ 4.

Proof. See Section 4.

In Sections 3.1 and 3.2, we give several examples of Bn-invariant Euclidean
9-designs and some classification results.

Remark 2.6. In order to find a Bn-invariant Euclidean 9-design, it is nec-
essary to solve five equations in the case n = 3, whereas six equations in
the case n ≥ 4. This gap depends on the dimension of Harml(Rn)Bn; see
also Lemma 4.1 and some related arguments in Section 4.

2.2.2. One supporting sphere

We here deal with Bn-invariant Eulcidean 9-designs on the unit sphere.
For J ⊂ {1, . . . , n}, let

X ({a, s}, J) = vBn
a,s ∪

∪
k∈J

zBn
k .

Let wv := w(x) for any x ∈ vBn
a,s, wk := w(x) for any x ∈ zBn

k . Moreover, for
simplicity of computations, we restrict our attention to Eulcidean 9-designs
such that the total weight is equal to 1, i.e.,∑

x∈vBn
a,s∪zBn

k

w(x) = wv2
s+1

(
n− 1

s

)
+
∑
k∈J

wk2
k

(
n

k

)
= 1.

With the above set up, by the similar argument to Theorem 2.5, we can
immediately obtain the following corollary from Theorem 2.2.
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Corollary 2.7. For a > 0, a ̸= 1, s ∈ {1, 2, . . . , n−1} and J ⊂ {1, 2, . . . , n},
let (X ({a, s}, J), w) be a Bn-invariant pair such that the total weight is equal
to 1. Then, (X ({a, s}, J), w) is a Euclidean 9-design on the unit sphere if
and only if the following equations hold:

0 = wv
2s+1

(a2 + s)2

(
n− 1

s

)(
a4 + s− 3(a2 + s− 1)

s

n− 1

)
+
∑
k∈J

wk
2k

k2

(
n− 1

k − 1

)(
1− 3

k − 1

n− 1

)
,

0 = wv
2s+1

(a2 + s)3

(
n− 1

s

)(
a6 + s− 15(a4 + a2 + s− 1)

s

n− 1

+ 30(a2 + s− 2)
s(s− 1)

(n− 1)(n− 2)

)

+
∑
k∈J

wk
2k

k3

(
n− 1

k − 1

)(
1− 15

k − 1

n− 1
+ 30

(k − 1)(k − 2)

(n− 1)(n− 2)

)
,

0 = wv
2s+1n

(a2 + s)4

(
n− 1

s

)(
a8 + s+ 7(−4a6 + 3a4 − 4a2 + s− 1)

s

n− 1

)
+
∑
k∈J

wk
2kn

k4

(
n− 1

k − 1

)(
1 + 7

k − 1

n− 1

)
for n ≥ 3,

0 =
wv2

sn

(a2 + s)4

(
n− 1

s− 1

)(
a4 + s− 1− (a6 + a2 + s− 2)

6(s− 1)

n− 2

+ (a2 + s− 3)
9(s− 1)(s− 2)

(n− 2)(n− 3)

)

+
∑
k∈J

wk
2k−1n

k4

(
n− 1

k − 2

)(
1− 28

k − 2

n− 2
+ 9

(k − 2)(k − 3)

(n− 2)(n− 3)

)
for n ≥ 4,

1 = wv2
s+1

(
n− 1

s

)
+
∑
k∈J

wk2
k

(
n

k

)
.

By Corollary 2.7, we can find many types of Euclidean 9-designs on Sn−1.
For example, we obtian

1. 616-points 9-design of S5 with J = {1, 2, 3}: a = 2.46899, s = 5, wv =
0.598477, w1 = 0.0338246, w2 = 0.0820219, w3 = 0.285676.

8



2. 1274-points 9-design of S6 with J = {1, 2, 3}: a = 2.48745, s = 6, wv =
0.477909, w1 = 0.014995, w2 = 0.103815, w3 = 0.403281.

3. 3296-points 9-design of S7 with J = {1, 2, 4}: a = 2.68568, s = 7, wv =
0.523449, w1 = 0.0122401, w2 = 0.0749255, w4 = 0.389386.

In the rest of this subsection, we present a systematic technique for con-
structing Euclidean designs. The idea is to rescale Euclidean design on the
unit sphere with the total weight 1 and then to bring them together. These
may have no interest in combinatorics but is of statistical interest since it pro-
duces more examples of Euclidean 9-designs on the origin and two concentric
spheres.

Proposition 2.8. Let (Yi, wi), i = 1, 2, be Euclidean 9-designs on the unit
sphere. Let W1,W2,W3 and r be positive real numbers with

∑3
i=1 Wi = 1

and r < 1, respectively. Then (Y1 ∪ rY2 ∪ {0}, w) is a Euclidean 9-design
on S1 ∪ Sr ∪ {0}, where w(x) = W1w1(x) if x ∈ Y1, w(x) = W2w2(r

−1x) if
r−1x ∈ Y2 and w(0) = W3.

Proof. Let f ∈ Homt(Rn) with 1 ≤ t ≤ 9. Then by noting f(0) = 0, given
W1,W2,W3 > 0, we have

W1

|S1|

∫
x∈S1

f(x) dρ(x) +
W2

|Sr|

∫
x∈Sr

f(x) dρr(x) +W3f(0)

=
W1

|S1|

∫
x∈S1

f(x) dρ(x) +
rtW2

|S1|

∫
x∈S1

f(x) dρ(x)

= W1

∑
x∈Y1

w1(x)f(x) + rtW2

∑
x∈Y2

w2(x)f(x)

=
∑
x∈Y1

(W1w1(x))f(x) +
∑
x∈Y2

(W2w2(x))f(rx) +W3f(0).

Next we check the rest case that f is a constant, i.e., f ∈ Hom0(Rn). Then,
we have to consider the case f ≡ 1, and

W1

|S1|

∫
x∈S1

f(x) dρ(x) +
W2

|Sr|

∫
x∈Sr

f(x) dρr(x) +W3f(0)

= 1 =
∑
x∈Y1

(W1w1(x))f(x) +
∑
x∈Y2

(W2w2(x))f(rx) +W3f(0).

Thus we obtain the desired result.
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3. The fourth order rotatable design

3.1. Bn-invariant Euclidean 9-designs on two concentric spheres

Hereafter we only consider Euclidean 9-designs X ({a, s},R, J1, J2) cor-
responding to the fourth order optimal rotatable designs on the unit ball,
where

R = {r1, r2} with r1 > r2 > 0,

J1, J2 ⊂ {1, . . . , n} with J1 ∩ J2 = ∅ and |J1|, |J2| ≤ 3.
(1)

We remark that, concerning (1), there are not so many candidates for J1

and J2. In fact, by using Theorem 2.5 for all possible J1 and J2, we know
that there exist no Euclidean 9-designs in dimensions n ≤ 4.

Moreover, although we can obtain some examples of Euclidean 9-designs
on two concentric spheres in dimension 5, we know that, by tedious case-
by-case arguments, all of them do not induce the fourth order optimal ro-
tatable designs on the unit ball. Namely, all possible candidates do not
induce Euclidean 9-designs on the origin and two concentric spheres with
the optimal weights W1 = 0.81137,W2 = 0.175789,W3 = 0.0128406 and ra-
dius r2 = 0.70883; see also Table 1 in the next subsection for these values
W1,W2,W3 and r2.

Thus the smallest nontrivial case to consider is dimension 6. We here
consider the cases when n = 6, plus n = 7. For convenience we also assume
that r1 = 1.
(a) The 6-dimensional case. We totally obtain the following 4 types of
Euclidean 9-designs: Let A = a2 and R2 = r22 > 0.

1. J1 = {2, 4, 5}, J2 = {1, 3, 6}, s = 3.

w2 =
2(−1+A)2(−345+42A+34A2)

41(3+A)4
wv, w4 =

32(−171+12A−153A2−30A3+14A4)
41(3+A)4

wv,

w5 = −25(−1+A)2(−21−6A+A2)
41(3+A)4

wv,

v1 = −108(−1+A)2(−1−12A+2A2)

205(3+A)4R4
2

wv, v3 = −162(−1+A)2(−1−12A+2A2)

41(3+A)4R4
2

wv,

v6 = −162(−1+A)2(−1−12A+2A2)

205(3+A)4R4
2

wv.

where α(≈ 4.60229) ≤ A < 6+
√
38

2
and α is the positive root of −171 +

12x− 153x2 − 30x3 + 14x4 = 0.
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2. J1 = {2, 4, 5}, J2 = {1, 3, 6}, s = 4.

w2 =
4(−1+A)2A(50+51A)W1

123(4+A)4
wv, w4 =

64(−1+A)2(−164−6A+7A2)
41(4+A)4

wv,

w6 = −125A(712−68A−32A2+3A3)
123(4+A)4

wv,

v1 = −72(−1+A)2A(−26+3A)

205(4+A)4R4
2

wv, v3 = −108(−1+A)2A(−26+3A)

41(4+A)4R4
2

wv,

v6 = −108(−1+A)2A(−26+3A)

205(4+A)4R4
2

wv,

where 3+
√
1157
7

≤ A < 26
3
.

3. J1 = {2, 4, 6}, J2 = {1, 3, 5}, s = 3.

w2 =
3(−1+A)2(−183+26A+15A2)

29(3+A)4
wv, w4 =

8(−369−168A−378A2−48A3+35A4)
29(3+A)4

wv,

w6 = −54(−1+A)2(−18−6A+A2)
29(3+A)4

wv,

v1 = −195(−1+A)2(−3−30A+5A2)

928(3+A)4R4
2

wv, v3 = −675(−1+A)2(−3−30A+5A2)

464(3+A)4R4
2

wv,

v5 = −375(−1+A)2(−3−30A+5A2)

928(3+A)4R4
2

wv

where α(≈ 4.28626) ≤ A < 15+4
√
15

5
and α is the positive root of −369−

168x− 378x2 − 48x3 + 35x4 = 0.

4. J1 = {2, 4, 6}, J2 = {1, 3, 5}, s = 4:

w2 =
A(824−228A−16A2+45A3)

29(4+A)4
wv, w4 =

8(−928+512A−680A2−64A3+35A4)
29(4+A)4

wv,

w6 = −18A(604−50A−32A2+3A3)
29(4+A)4

wv,

v1 = −65A(−112+272A−160A2+15A3)

928(4+A)4R4
2

wv, v3 = −225A(−112+272A−160A2+15A3)

464(4+A)4R4
2

wv,

v5 = −125A(−112+272A−160A2+15A3)

928(4+A)4R4
2

wv,

where α1(≈ 5.20767) ≤ A < α2(≈ 8.67575), α1 is the positive root of
−928 + 512x − 680x2 − 64x3 + 35x4 = 0 and α2 is the largest root of
−112 + 272x− 160x2 + 15x3 = 0.

(b) The 7-dimensional case. We obtain totally 49 types of Euclidean
designs in the following pairs of J1 and J2:

(b-1) The case s = 3. {J1, J2} = {{2, 4, 5}, {1, 3, 6}}, {{2, 4, 5}, {1, 3, 7}},
{{2, 4, 6}, {1, 3, 5}}, {{2, 4, 6}, {1, 3, 7}}, {{2, 4, 7}, {1, 3, 5}}, {{2, 4, 7}, {1, 3, 6}},
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{{3, 4, 6}, {1, 2, 5}}, {{3, 4, 6}, {1, 2, 7}}, {{3, 4, 7}, {1, 2, 5}}, {{3, 4, 7}, {1, 2, 6}},
{{3, 5, 6}, {1, 2, 4}}, {{3, 5, 6}, {1, 2, 7}}, {{3, 5, 7}, {1, 2, 4}}, {{3, 5, 7}, {1, 2, 6}}.
(b-2) The case s = 4. {J1, J2} = {{2, 4, 5}, {1, 3, 6}}, {{2, 4, 5}, {1, 3, 7}},
{{2, 4, 6}, {1, 3, 5}}, {{2, 4, 6}, {1, 3, 7}}, {{2, 4, 7}, {1, 3, 5}}, {{3, 4, 7}, {1, 2, 5}},
{{3, 4, 7}, {1, 2, 6}}, {{3, 5, 7}, {1, 2, 4}}, {{3, 5, 7}, {1, 2, 6}}, {{3, 6, 7}, {1, 2, 4}},
{{3, 6, 7}, {1, 2, 5}}.
(b-3) The case s = 5. {J1, J2} = {{2, 4, 5}, {1, 3, 6}}, {{2, 4, 5}, {1, 3, 7}},
{{2, 4, 6}, {1, 3, 5}}, {{2, 4, 6}, {1, 3, 7}}, {{2, 4, 7}, {1, 3, 5}}, {{2, 4, 7}, {1, 3, 6}},
{{3, 4, 7}, {1, 2, 5}}, {{3, 4, 7}, {1, 2, 6}}, {{3, 5, 7}, {1, 2, 4}}, {{3, 5, 7}, {1, 2, 6}},
{{3, 6, 7}, {1, 2, 4}}, {{3, 6, 7}, {1, 2, 5}}.
(b-4) The case s = 6. {J1, J2} = {{2, 4, 5}, {1, 3, 6}}, {{2, 4, 5}, {1, 3, 7}},
{{2, 4, 6}, {1, 3, 5}}, {{2, 4, 6}, {1, 3, 7}}, {{2, 4, 7}, {1, 3, 5}}, {{2, 4, 7}, {1, 3, 6}},
{{3, 4, 7}, {1, 2, 5}}, {{3, 4, 7}, {1, 2, 6}}, {{3, 5, 7}, {1, 2, 4}}, {{3, 5, 7}, {1, 2, 6}},
{{3, 6, 7}, {1, 2, 4}}, {{3, 6, 7}, {1, 2, 5}}.

If we select the first two of the common pairs of J1 and J2 in (b-1)–(b-4),
by choosing suitable weights and A = a2, we get several Euclidean 9-designs
on two concentric spheres as follows:

1. J1 = {2, 4, 5}, J2 = {1, 3, 6}:

w2 =
4{576A4−409A3s+2A2s(−3191+846s)+As(−7081+8316s−1644s2)+3s(3060−4117s+1386s2−137s3)}

1089(A+s)4
wv,

w4 =
32{40A4−20A3s−8A2s(−3+8s)+4As(101−143s+37s2)+s(−270+559s−286s2+37s3)}

121(A+s)4
wv,

w5 =
125{18A4+112A3s+A2s(−449+189s)−2As(865−1287s+366s2)−3s(−504+866s−429s2+61s3)}

2178(A+s)4
wv,

v1 = −9{72A4−157A3s+10A2s(14+3s)+As(−265+132s−24s2)−6s(−40+38s−11s2+s3)}
605(A+s)4R4

2
wv,

v3 = −63{72A4−157A3s+10A2s(14+3s)+As(−265+132s−24s2)−6s(−40+38s−11s2+s3)}
484(A+s)4R4

2
wv,

v6 = −36{72A4−157A3s+10A2s(14+3s)+As(−265+132s−24s2)−6s(−40+38s−11s2+s3)}
605(A+s)4R4

2
wv,

where

• s = 3: α(≈ 4.41989) ≤ A < 109+
√
13033

48
α is the positive root of

−126 + 15x− 126x2 − 15x3 + 10x4.

• s = 4: 11√
5
≤ A < 121

18
.

• s = 5: α1(≈ 5.88432) ≤ A < α2(≈ 8.79757), α1, α2 are the
positive roots of −5445 − 17900x + 1240x2 + 280x3 + 9x4 = 0,
−1025 + 1450x− 785x2 + 72x3 = 0, respectively.
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• s = 6: α1(≈ 7.79663) ≤ A < α2(≈ 10.8711), α1, α2 are the
positives root of −7272− 12638x+ 685x2 + 112x3 + 3x4 = 0, and
−48− 337x+ 320x2 − 157x3 + 12x4 − 0, respectively.

2. J1 = {2, 4, 5}, J2 = {1, 3, 7}:

w2 =
4{1584A4−1571A3s+2A2s(−6799+1944s)+As(−16859+19044s−3756s2)+3s(7140−9473s+3174s2−313s3)}

2421(A+s)4
wv,

w4 =
32{80A4−25A3s+2A2(18−73s)s+As(931−1288s+332s2)+s(−630+1271s−644s2+83s3)}

269(A+s)4
wv,

w5 =
125{90A4+140A3s+A2s(−901+441s)−2As(2015−2907s+822s2)+3s(1176−1978s+969s2−137s3)}

4842(A+s)4
wv,

v1 = −49{72A4−157A3s+10A2s(14+3s)+As(−265+132s−24s2)−6s(−40+38s−11s2+s3)}
3228(A+s)4R4

2
wv,

v3 = −315{72A4−157A3s+10A2s(14+3s)+As(−265+132s−24s2)−6s(−40+38s−11s2+s3)}
2152(A+s)4R4

2
wv,

v7 = −343{72A4−157A3s+10A2s(14+3s)+As(−265+132s−24s2)−6s(−40+38s−11s2+s3)}
6456(A+s)4R4

2
wv,

where

• s = 3: α(≈ 4.41134) ≤ A < 109+
√
13033

48
, α is the positive root of

−1116 + 165x− 1206x2 − 75x3 + 80x4 = 0.

• s = 4: −15+
√
43265

40
≤ A < 121

18

• s = 5: α1(≈ 6.02267) ≤ A < α2(≈ 8.79757), α1, α2 are the
positive roots of −2421 − 8030x + 652x2 + 70x3 + 9x4 = 0 and
−1025 + 1450x− 785x2 + 72x3 = 0, respectively.

• s = 6: α1(≈ 7.9655) ≤ A < α2(≈ 10.8711), α1, α2 are the positive
roots of −3240−5666x+349x2+28x3+3x4 = 0 and −48−337x+
320x2 − 157x3 + 12x4 = 0, respectively.

Remark 3.1. If we allow the situation J1∩J2 ̸= ∅, we can, of course, obtain
Euclidean 9-designs on two concentric spheres in dimensions 3 and 4. By
choosing suitable weights and A = a2, we get, for example,

1. (n, s) = (3, 2), J1 = {2, 3}, J2 = {1, 2, 3}:

w2 =
8(−5+A)(−1+A)2

5(2+A)3
wv, w3 =

9A(−29−2A+A2)
10(2+A)3

wv,

v1 =
(13−A)(−1+A)2A

(2+A)4R4
2

wv, v2 =
8(13−A)(−1+A)2A

5(2+A)4R4
2

wv, v3 =
9(13−A)(−1+A)2A

10(2+A)4R4
2

wv,

where 1 +
√
30 ≤ A < 13.
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2. (n, s) = (4, 3), J1 = {1, 2, 3}, J2 = {1, 2, 4}:

w1 =
A(135−15A+9A2−A3)

(3+A)4
wv, w2 =

384A
(3+A)4

wv, w3 =
27(−3+A)(−1+A)2

(3+A)4
wv,

v1 =
16A(−23−2A+A2)

3(3+A)4R4
2

wv, v2 =
16A(−23−2A+A2)

(3+A)4R4
2

wv, v4 =
32A(−23−2A+A2)

3(3+A)4R4
2

wv,

where 1 + 2
√
6 < A ≤ 9.

In the next subsection we translate them into the fourth order optimal
rotatable designs on the unit ball.

3.2. The fourth order optimal rotatable designs

The fourth order optimal rotatable designs ξ∗ on the unit ball form∫
x∈Bn

f(x) dξ∗(x) =
W1

|S1|

∫
x∈S1

f(x) dσ1(x)+
W2

|Sr2 |

∫
x∈Sr2

f(x) dσr2(x)+W3f(0),

where W1, W2, W3 and r2 are given in Table 1. Thus, to construct the fourth
order optimal rotatable designs, it is sufficient to construct the corresponding
Euclidean 9-designs on the origin and two concentric spheres.

n W1 W2 W3 r2

3 0.700638 0.270568 0.0287936 0.692405
4 0.772754 0.212932 0.0143133 0.701394
5 0.81137 0.175789 0.0128406 0.70883
6 0.848569 0.143399 0.00803164 0.713334
7 0.876652 0.118416 0.0049312 0.716583
8 0.901339 0.0966408 0.0020202 0.718159
9 0.916307 0.0822942 0.0013986 0.720264
10 0.928125 0.0708757 0.000999002 0.721975

Table 1: Optimal values of optimal designs ξ∗ of degree 4

We give some more information on the above table. Let hd = dimHarmd(Rn),
and ϕd,i, i = 1, . . . , hd, be a basis of Harmd(Rn) satisfying 1

|S1|

∫
x∈S1

ϕd,i1(x)ϕd,i2(x) dρ1(x) =
δi1,i2 , where δi,j is Kronecker’s delta. We note that the following set is a basis
of Pd(Rn):{

∥x∥2jϕℓ,i(x) | 0 ≤ ℓ ≤ d, 0 ≤ j ≤
⌊d− ℓ

2

⌋
, 1 ≤ i ≤ hd

}
.
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We then define the information matrix Md(ξ) and calculate “optimal values”
listed in Table 1; see Bannai and Bannai (2006); Sawa and Hirao (2017) for
the details of numerical calculations.

For the rest of this section, we give several examples of the forth order
optimal rotatable designs which correspond to Euclidean designs given in the
previous subsection.

We obtain the following tables.
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4. Proof of Theorem 2.5

In order to prove Theorem 2.5, we mainly use Theorem 2.3, i.e., an ex-
tended Sobolev theorem.

We first calculate the dimensions of Harml(Rn)Bn with 1 ≤ l ≤ 9. We note
that, the dimension of Harml(Rn)Bn is determined by the so-called harmonic
Molien series as follows; see, e.g., Goethals and Seidel (1981):

∞∑
l=0

(dimHarml(Rn)Bn)xl =
1

(1− x4)(1− x6) · · · (1− x2n)

=

{
1 + x4 + x6 + x8 +O(x10) for n = 3,
1 + x4 + x6 + 2x8 +O(x10) for n ≥ 4,

as x → ∞. Comparing the both sides, we know that

dimHarm4(Rn)Bn = 1 for n ≥ 3,

dimHarm6(Rn)Bn = 1 for n ≥ 3.

dimHarm8(Rn)Bn =

{
1 for n = 3,

2 for n ≥ 4,

dimHarml(Rn)Bn = 0 for l = 1, 2, 3, 5, 7, 9.

Secondary, to give a basis of Harml(Rn)Bn , we introduce some more no-
tations. The notation sym(f) stands for a symmetric polynomial defined
by

sym(f) =
1

|(Sn)f |
∑
γ∈Sn

f(γ(x)),

where Sn is the symmetric group and (Sn)f := {γ ∈ Sn | f(γ(x)) =
f(x) for all x ∈ Rn}. Let

f4,1(x) = sym(x4
1)− 6

n−1
sym(x2

1x
2
2),

f6,1(x) = sym(x6
1)− 15

n−1
sym(x2

1x
4
2) +

180
(n−1)(n−2)

sym(x2
1x

2
2x

2
3),

f8,1(x) = sym(x8
1)− 28

n−1
sym(x2

1x
6
2) +

70
n−1

sym(x4
1x

4
2) for n ≥ 3,

f8,2(x) = sym(x4
1x

4
2)− 6

n−2
sym(x2

1x
2
2x

4
3)

+ 108
(n−2)(n−3)

sym(x2
1x

2
2x

2
3x

2
4) for n ≥ 4.

(2)

Then, by direct calculations, it is not difficult to check that ∆f = 0, f ∈
{f4,1, f6,1, f8,1, f8,2}. Thus we know that, the above polynomials f4,1, f6,1 and
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f8,1, f8,2 give a basis of Harm4(Rn)Bn , Harm6(Rn)Bn and Harm8(Rn)Bn , re-
spectively. Moreover, simple but tedious calculations give us the following
lemma:

Lemma 4.1. (i) By substituting zk into f4,1, f6,1, f8,1, f8,2, we obtain

f4,1(zk) =
1

k

(
1− 3

k − 1

n− 1

)
,

f6,1(zk) =
1

k2

(
1− 15

k − 1

n− 1
+ 30

(k − 1)(k − 2)

(n− 1)(n− 2)

)
,

f8,1(zk) =
1

k3

(
1 + 7

k − 1

n− 1

)
for n ≥ 3,

f8,2(zk) =
k − 1

2k3

(
1− 6

k − 2

n− 2
+ 9

(k − 2)(k − 3)

(n− 2)(n− 3)

)
for n ≥ 4.

(ii) By substituting va,s into f4,1, f6,1, f8,1, f8,2, we obtain

f4,1(va,s) =
1

(a2 + s)2
(
a4 + s− 6

n− 1

(
sa2 +

s(s− 1)

2

))
,

f6,1(va,s) =
1

(a2 + s)3
(
a6 + s− 15

n− 1
(a2s+ sa4 + s(s− 1))

+
180

(n− 1)(n− 2)

(
a2

s(s− 1)

2
+

s(s− 1)(s− 2)

3!

))
,

f8,1(va,s) =
1

(a2 + s)4
(
a8 + s− 28

n− 1
(a2s+ sa6 + s(s− 1))

+
70

n− 1

(
a4s+

s(s− 1)

2

))
for n ≥ 3,

f8,2(va,s) =
1

(a2 + s)4
(
a4s+

(s− 1)s

2
− 6

n− 2

(
a2(s− 1)s+

a4(s− 1)s

2

+
(s− 2)(s− 1)s

2

)
+

9s(−3 + 4a2 + s)(s− 2)(s− 1)

2(n− 3)(n− 2)

)
for n ≥ 4.

Proof of Theorem 2.5. By combining (2) with Theorem 2.3, X ({a, s},R, J1, J2)
is a Bn-invariant Euclidean 9-design on two concentric spheres if and only if∑
x∈X ({a,s},R,J1,J2)

w(x)∥x∥2jfl,k(x)

=
∑
x∈X1

w(x)r2j1 fl,k(x) +
∑
x∈X2

w(x)r2j2 fl,k(x)

= r2j+l
1

∑
x∈X1

w(x)fl,k(r
−1
1 x) + r2j+l

2

∑
x∈X2

w(x)fl,k(r
−1
2 x) = 0,

(3)
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for any (l, k) ∈ {(4, 1), (6, 1), (8, 1)} (when n = 3) or (l, k) ∈ {(4, 1), (6, 1), (8, 1), (8, 2)}
(when n ≥ 4) and nonnegative integer j with 0 ≤ j ≤ ⌊9−l

2
⌋.

Now we consider the common cases (l, k) ∈ {(4, 1), (6, 1)}. We first let
(l, k) = (4, 1) (i.e., j = 0, 1, 2). If the equations (3) hold, i.e.,

r41
∑

x∈X1
w(x)f4,1(r

−1
1 x) + r42

∑
x∈X2

w(x)f4,1(r
−1
2 x) = 0,

r61
∑

x∈X1
w(x)f4,1(r

−1
1 x) + r62

∑
x∈X2

w(x)f4,1(r
−1
2 x) = 0,

r81
∑

x∈X1
w(x)f4,1(r

−1
1 x) + r82

∑
x∈X2

w(x)f4,1(r
−1
2 x) = 0,

then by noting r1 > r2 > 0, we have∑
x∈X1

w(x)f4,1(r
−1
1 x) =

∑
x∈X2

w(x)f4,1(r
−1
2 x) = 0,

and vice verse. Secondary, let (l, k) = (6, 1) (i.e., j = 0, 1). If the equations
(3) hold, i.e.,{

r61
∑

x∈X1
w(x)f6,1(r

−1
1 x) + r62

∑
x∈X2

w(x)f6,1(r
−1
2 x) = 0,

r81
∑

x∈X1
w(x)f6,1(r

−1
1 x) + r82

∑
x∈X2

w(x)f6,1(r
−1
2 x) = 0,

then we have ∑
x∈X1

w(x)f6,1(r
−1
1 x) =

∑
x∈X2

w(x)f6,1(r
−1
2 x) = 0,

and vice verse.
Thus by combining this with Lemma 4.1, we obtain the desired result.
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of degree e. Sankhyâ Series A 54, 299–309.

Nozaki, H., Sawa, M., 2012. Note on cubature formulae and designs obtained
from group orbits. Canadian Journal of Mathematics 64, 1359–1377.

Pesotchinsky, L., 1978. Φp-optimal second order designs for symmetric re-
gions. Journal of Statistical Planning and Inference 2, 173–188.

Sawa, M., Hirao, M., 2017. Characterizing D-optimal rotatable designs with
finite reflection groups. Sankhya A 79, 101–132.

Sawa, M., Xu, Y., 2014. On positive cubature rules on the simplex and
isometric embeddings. Math. Comp. 83, 1251–1277.

20



Sobolev, S. L., 1962. Cubature formulas on the sphere which are invariant
under transformations of finite rotation groups. Doklady Akademii Nauk
SSSR 146, 310–313.

21


