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GLOBAL BEHAVIOR OF A MULTI-GROUP SIR EPIDEMIC MODEL
WITH AGE STRUCTURE AND AN APPLICATION TO THE

CHLAMYDIA EPIDEMIC IN JAPAN\ast 

TOSHIKAZU KUNIYA\dagger 

Abstract. In this paper, we are concerned with the global behavior of a multi-group SIR
epidemic model with age structure. A similar model was studied in [T. Kuniya, J. Wang, and
H. Inaba, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), pp. 3515--3550] under some restrictive
assumptions. In this paper, we weaken some of these assumptions for the purpose of application,
and show that the global behavior of our model is completely determined by the basic reproduction
number \scrR 0: if \scrR 0 < 1, then the disease-free equilibrium is globally attractive, whereas if \scrR 0 > 1,
then the endemic equilibrium is globally attractive. The proofs are done by constructing suitable
Lyapunov functions for total trajectories in compact attractors. In the application, we consider the
chlamydia epidemic in Japan in 2015, and compare the estimation results of \scrR 0 in four special cases
of our model: a homogeneous model, an age-independent two-sex model, an age-dependent one-
sex model, and an age-dependent two-sex model. In conclusion, we see that \scrR 0 for the chlamydia
epidemic in Japan in 2015 is in the range 1.0148--1.0535, and the introduction of the age structure
has more influence on the value of \scrR 0 than that of the two-group structure.

Key words. SIR epidemic model, global attractivity, basic reproduction number, Lyapunov
function, compact attractor, chlamydia
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1. Introduction. Mathematical epidemic models for the dynamics of infectious
diseases in populations have been studied for decades since the pioneering work by
Kermack and McKendrick [17]. One of the most important concepts in this field is the
basic reproduction number\scrR 0 that represents the expected number of secondary cases
produced by a typical infected individual in a fully susceptible population (see [4]).
From this definition, we can expect that an outbreak never occurs if \scrR 0 < 1, whereas
it occurs if \scrR 0 > 1. Mathematically, \scrR 0 is defined by the spectral radius of a linear
operator called the next generation operator, and the global behavior of solutions in
some basic epidemic models is completely determined by \scrR 0: if \scrR 0 \leq 1, then the
solution converges to the trivial disease-free equilibrium, whereas if \scrR 0 > 1, then it
converges to the positive endemic equilibrium (see, for instance, [14, section 5.5.2]).
However, in some models with more complex structure, this threshold property of \scrR 0

is not obvious, and some irregular cases, such as an unstable endemic equilibrium for
\scrR 0 > 1 (see, for instance, [9]) and a stable endemic equilibrium for \scrR 0 < 1 (see, for
instance, [10]), are known.

The SIR epidemic models are one of the most basic epidemic models in mathe-
matical epidemiology, in which the total population is divided into three classes called
susceptible, infective, and recovered (see [17]). For an SIR epidemic model with age
structure, some conjectures on the threshold property of \scrR 0 were proposed in [8], and
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Fig. 1. Number of reported cases of chlamydia in Japan from 2012 to 2017 [16].

the answers to them were given in [13]: if \scrR 0 < 1, then the disease-free equilibrium is
globally stable, whereas if \scrR 0 > 1, then the endemic equilibrium is locally asymptot-
ically stable under some additional assumptions. However, the global stability of the
endemic equilibrium for \scrR 0 > 1 was not proved in [13]. In fact, endemic equilibria of
age-structured SIR epidemic models are not always globally stable for \scrR 0 > 1; they
can be unstable, and periodic solutions can occur through the Hopf bifurcation under
some assumptions (see [1, 3, 6, 26]). On the other hand, under some assumptions in
which only the susceptible population has the age structure, endemic equilibria can
be globally stable for \scrR 0 > 1 (see [19, 20, 23]).

Epidemiologically, the estimation of \scrR 0 is important as it indicates the intensity
of each epidemic of diseases. For an endemic disease in which the number of infective
individuals in the real data is almost unchanging, we can regard the infective popula-
tion as being in the endemic equilibrium, and we can estimate \scrR 0 for the disease by
applying a mathematical model. For instance, in Figure 1, the number of reported
cases of chlamydia in Japan was almost unchanged from 2012 to 2017, and thus we
can regard the infective population as being in the endemic equilibrium.

In order to apply a mathematical model for the estimation of \scrR 0 by using such
data, we should clarify the stability of the endemic equilibrium of the model as the
solution behavior of the model cannot be consistent with the real data if the endemic
equilibrium is unstable for \scrR 0 > 1.

In this paper, we investigate the global behavior of a multi-group SIR epidemic
model with age structure, and apply the model to estimate the basic reproduction
number \scrR 0 for the recent chlamydia epidemic in Japan as shown in Figure 1. A
similar model was studied in [20], and the global stability of the endemic equilibrium
for \scrR 0 > 1 was proved under some additional assumptions (see (B1)--(B6) in the
subsequent sections). However, these assumptions seem to be restrictive from the
viewpoint of application. In this paper, we weaken them to new assumptions (see
(A1)--(A6) in the subsequent sections) for the purpose of application and prove that\scrR 0

completely determines the global behavior of the model: if \scrR 0 < 1, then the solution
converges to the disease-free equilibrium, whereas if \scrR 0 > 1, then it converges to
the unique endemic equilibrium. Thus, we can rule out the possibility of an unstable
endemic equilibrium for \scrR 0 > 1, and we can apply our model to the estimation of \scrR 0.
In the application, we consider four special cases of our model: a homogeneous model,
an age-independent two-sex model, an age-dependent one-sex model, and an age-
dependent two-sex model. By comparing these four cases, we obtain the estimation
range of \scrR 0 for the recent chlamydia epidemic in Japan and discuss the influence of
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the model structure on the value of \scrR 0.
The remainder of this paper is organized as follows. In section 2, we formulate

the multi-group SIR epidemic model with age structure. Under assumptions (A1)--
(A5), it is reformulated into a model with age-dependent susceptibility. In section
3, we define the basic reproduction number \scrR 0 for our model by the spectral radius
of the next generation matrix. In section 4, we prove the existence and uniqueness
of the endemic equilibrium for \scrR 0 > 1. In section 5, we prove the existence of a
compact attractor that consists of total trajectories. In section 6, we prove the global
attractivity of the disease-free equilibrium for \scrR 0 < 1 by showing that the compact
attractor is the singleton of the disease-free equilibrium. In section 7, we show the
existence of a persistence attractor for \scrR 0 > 1 in which a Lyapunov function is well
defined, and we prove the global attractivity of the endemic equilibrium for \scrR 0 > 1
by showing that the persistence attractor is the singleton of the endemic equilibrium.
In section 8, we apply our model to the estimation of \scrR 0 for the recent chlamydia
epidemic in Japan. Finally, section 9 is devoted to a discussion.

2. Model formulation. In [20], the following multi-group SIR epidemic model
with age structure was studied:

(2.1)

\left\{                                   

\biggl( 
\partial 

\partial t
+

\partial 

\partial a

\biggr) 
Sj(t, a) =  - [\lambda j(t, a) + \mu j(a)]Sj(t, a),\biggl( 

\partial 

\partial t
+

\partial 

\partial a

\biggr) 
Ij(t, a) = \lambda j(t, a)Sj(t, a) - [\mu j(a) + \gamma j(a)] Ij(t, a),\biggl( 

\partial 

\partial t
+

\partial 

\partial a

\biggr) 
Rj(t, a) = \gamma j(a)Ij(t, a) - \mu j(a)Rj(t, a),

Sj(t, 0) = bj , Ij(t, 0) = 0, Rj(t, 0) = 0,

Sj(0, a) = Sj,0(a) \geq 0, Ij(0, a) = Ij,0(a) \geq 0, Rj(0, a) = Rj,0(a) \geq 0,

t > 0, a \geq 0, j = 1, 2, . . . , n,

where Sj(t, a), Ij(t, a), and Rj(t, a) denote the susceptible, infective, and recovered
populations of age a at time t in group j, respectively. \mu j(a) and \gamma j(a) denote
the age-specific mortality and recovery rates in group j, respectively. \lambda j(t, a) :=\sum n
k=1

\int +\infty 
0

\beta jk(a, \sigma )Ik(t, \sigma )d\sigma denotes the force of infection to susceptible individuals
of age a at time t in group j, where \beta jk(a, \sigma ) denotes the disease transmission coeffi-
cient between susceptible individuals of age a in group j and infective individuals of
age \sigma in group k. In [20], it was assumed that all newborns are susceptible and the
demographic steady state has been reached:

Sj(t, a)+Ij(t, a)+Rj(t, a) = P \ast 
j (a) := bje

 - 
\int a
0
\mu j(\sigma )d\sigma , t \geq 0, a \geq 0, j = 1, 2, . . . , n.

Thus, the rate at which newborns are born in group j is given by bj > 0. Sj,0(\cdot ),
Ij,0(\cdot ), and Rj,0(\cdot ) are the initial age-distributions of each population. As in [20], we
make the following assumptions:

(A1) For each j \in \{ 1, 2, . . . , n\} , \mu j(\cdot ) \in L\infty 
+ (0,+\infty ) and there exists a positive

constant \mu > 0 such that \mu j(a) > \mu for all a \geq 0.
(A2) For each j \in \{ 1, 2, . . . , n\} , \gamma j(\cdot ) \in L\infty 

+ (0,+\infty ).
(A3) For each j, k \in \{ 1, 2, . . . , n\} , \beta jk(\cdot , \cdot ) \in L\infty 

+ ((0,+\infty )\times (0,+\infty )).
In [20], the following additional assumptions were also made:

(B1) For each j, k \in \{ 1, 2, . . . , n\} , \beta jk(\cdot , \sigma ) is independent of age \sigma and state k of
infective individuals, that is, \beta jk(\cdot , \sigma ) = \beta j(\cdot ) \in L\infty 

+ (0,+\infty ) for all \sigma \geq 0.
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(B2) For each j \in \{ 1, 2, . . . , n\} , \mu j(a) and \gamma j(a) are positive constants, that is,
\mu j(a) = \mu j > 0 and \gamma j(a) = \gamma j > 0 for all a \geq 0.

In this paper, we weaken (B1) and (B2) as follows:
(A4) For each j, k \in \{ 1, 2, . . . , n\} , \beta jk(\cdot , \sigma ) is independent of age \sigma of infective

individuals, that is, \beta jk(\cdot , \sigma ) = \beta jk(\cdot ) \in L\infty 
+ (0,+\infty ) for all \sigma \geq 0.

(A5) For each j \in \{ 1, 2, . . . , n\} , there exists a positive constant rj > 0 such that
\mu j(a) + \gamma j(a) = rj for all a \geq 0.

These assumptions are similar to [19, Assumptions 1 and 3]. Note that (A5) can
approximately hold if the recovery rates are age-independent and sufficiently larger
than the mortality rates. Under (A4) and (A5), the equations of Sj and Ij , j =
1, 2, . . . , n, in (2.1) can be rewritten as follows:

(2.2)

\left\{                 

\biggl( 
\partial 

\partial t
+

\partial 

\partial a

\biggr) 
Sj(t, a) =  - 

\Biggl[ 
n\sum 
k=1

\beta jk(a)

\int +\infty 

0

Ik(t, \sigma )d\sigma + \mu j(a)

\Biggr] 
Sj(t, a),

\biggl( 
\partial 

\partial t
+

\partial 

\partial a

\biggr) 
Ij(t, a) =

n\sum 
k=1

\beta jk(a)

\int +\infty 

0

Ik(t, \sigma )d\sigma Sj(t, a) - rjIj(t, a),

t > 0, a > 0, j = 1, 2, . . . , n.

Note that we can omit the equations of Rj , j = 1, 2, . . . , n, since they do not appear

in (2.2). Let Jj(\cdot ) :=
\int +\infty 
0

Ij(\cdot , a)da and Jj,0 :=
\int +\infty 
0

Ij,0(a)da, j = 1, 2, . . . , n. Then,
by integrating the second equation in (2.2), we obtain the following multi-group model
with age-dependent susceptibility:

(2.3)

\left\{                       

\biggl( 
\partial 

\partial t
+

\partial 

\partial a

\biggr) 
Sj(t, a) =  - 

\Biggl[ 
n\sum 
k=1

\beta jk(a)Jk(t) + \mu j(a)

\Biggr] 
Sj(t, a),

d

dt
Jj(t) =

n\sum 
k=1

\int +\infty 

0

\beta jk(a)Sj(t, a)da Jk(t) - rjJj(t),

Sj(t, 0) = bj , Sj(0, a) = Sj,0(a) \geq 0, Jj(0) = Jj,0 \geq 0,

t > 0, a \geq 0, j = 1, 2, . . . , n.

In sections 3--7, we focus on the reformulated system (2.3).

3. The basic reproduction number. In [20], in addition to (B1) and (B2),
the following assumptions were also made:

(B3) For each j \in \{ 1, 2, . . . , n\} , the domain of \beta j(\cdot ) is extended to \BbbR by assuming
that \beta j(a) = 0 for all a \in ( - \infty , 0).

(B4) For each j \in \{ 1, 2, . . . , n\} , it holds that limh\rightarrow 0

\int +\infty 
0

| \beta j(a+ h) - \beta j(a)| da =
0.

(B5) For each j \in \{ 1, 2, . . . , n\} , there exists a positive constant \epsilon 0 > 0 such that
\beta j(a) \geq \epsilon 0 for all a \geq 0.

In this paper, we make the following assumption, which is weaker than (B3)--(B5):

(A6) Matrix
\bigl( \int +\infty 

0
\beta jk(a)P

\ast 
j (a)da

\bigr) 
1\leq j,k\leq n is irreducible.

In fact, if (B5) holds, then matrix
\bigl( \int +\infty 

0
\beta jk(a)P

\ast 
j (a)da

\bigr) 
1\leq j,k\leq n is irreducible since

P \ast 
j (\cdot ) \in L1

+(0,+\infty ) for all j \in \{ 1, 2, . . . , n\} under (A1). Thus, (A6) holds.

Let X := L1(0,+\infty ;\BbbR n), and let X+ be the positive cone of X. Let us define the
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following state space for system (2.3):

\Omega :=

\biggl\{ 
(\varphi ,\psi )T : \varphi = (\varphi 1, \varphi 2, . . . , \varphi n)

T \in X+, \psi = (\psi 1, \psi 2, . . . , \psi n)
T \in \BbbR n+,

0 \leq \varphi j(a) \leq P \ast 
j (a), 0 \leq \psi j \leq 

\int +\infty 

0

P \ast 
j (\sigma )d\sigma for all a \geq 0 and j = 1, 2, . . . , n

\biggr\} 
.

It is obvious that system (2.3) has the unique disease-free equilibrium E0 : (S,J)T =
(P\ast ,0)T \in \Omega , where S := (S1, S2, . . . , Sn)

T, J := (J1, J2, . . . , Jn)
T, and P\ast :=

(P \ast 
1 , P

\ast 
2 , . . . , P

\ast 
n)

T. The second equation in (2.3) can be linearized around the disease-

free equilibrium E0 as follows: J
\prime 
j(t) =

\sum n
k=1

\int +\infty 
0

\beta jk(a)P
\ast 
j (a)daJk(t) - rjJj(t), t > 0,

j = 1, 2, . . . , n. According to the theory of basic reproduction number (see, for in-
stance, [4, 27] and [14, section 9.3.1]), the basic reproduction number \scrR 0 for system
(2.3) is defined by the spectral radius of the next generation matrix K := FV - 1:
\scrR 0 := r(K), where

F :=

\left(   
\int +\infty 
0

\beta 11(a)P
\ast 
1 (a)da \cdot \cdot \cdot 

\int +\infty 
0

\beta 1n(a)P
\ast 
1 (a)da

...
. . .

...\int +\infty 
0

\beta n1(a)P
\ast 
n(a)da \cdot \cdot \cdot 

\int +\infty 
0

\beta nn(a)P
\ast 
n(a)da

\right)   , V := diag (rj)1\leq j\leq n ,

K = FV - 1 =

\left(       

\int +\infty 
0

\beta 11(a)P
\ast 
1 (a)da

r1
\cdot \cdot \cdot 

\int +\infty 
0

\beta 1n(a)P
\ast 
1 (a)da

rn
...

. . .
...\int +\infty 

0
\beta n1(a)P

\ast 
n(a)da

r1
\cdot \cdot \cdot 

\int +\infty 
0

\beta nn(a)P
\ast 
n(a)da

rn

\right)       .

Since matrix K is nonnegative and irreducible under assumption (A6), it follows from
the Perron--Frobenius theorem (see, for instance, [2]) that \scrR 0 = r(K) is a simple
eigenvalue of K corresponding to a strictly positive eigenvector.

4. Existence and uniqueness of the endemic equilibrium. The endemic
equilibrium of system (2.3) can be written as E\ast := (S,J)T = (S\ast ,J\ast )T \in \Omega , where
S\ast := (S\ast 

1 , S
\ast 
2 , . . . , S

\ast 
n)

T and J\ast := (J\ast 
1 , J

\ast 
2 , . . . , J

\ast 
n)

T, and S\ast 
j and J\ast 

j , j = 1, 2, . . . , n,
satisfy the following equations:

(4.1)

\left\{             

d

da
S\ast 
j (a) =  - 

\Biggl[ 
n\sum 
k=1

\beta jk(a)J
\ast 
k + \mu j(a)

\Biggr] 
S\ast 
j (a), a > 0, S\ast 

j (0) = bj ,

0 =

n\sum 
k=1

\int +\infty 

0

\beta jk(a)S
\ast 
j (a)da J

\ast 
k  - rjJ

\ast 
j , j = 1, 2, . . . , n.

Solving the first two equations in (4.1), we have, for a \geq 0 and j = 1, 2, . . . , n,

(4.2) S\ast 
j (a) = bje

 - 
\int a
0 \{ 

\sum n
k=1 \beta jk(\sigma )J

\ast 
k+\mu j(\sigma )\} d\sigma = P \ast 

j (a)e
 - 

\sum n
k=1

\int a
0
\beta jk(\sigma )d\sigma J

\ast 
k .

Substituting (4.2) into the last equation in (4.1) and rearranging it, we have

(4.3) J\ast 
j =

n\sum 
k=1

\int +\infty 
0

\beta jk(a)P
\ast 
j (a)e

 - 
\sum n
\ell =1

\int a
0
\beta j\ell (\sigma )d\sigma J

\ast 
\ell da

rj
J\ast 
k , j = 1, 2, . . . , n.
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Let us define the following matrix-valued function on \BbbR n to \BbbR n\times n:

M(\psi )

:=

\left(     
\int +\infty 
0

\beta 11(a)P
\ast 
1 (a)e - 

\sum n
\ell =1

\int a
0 \beta 1\ell (\sigma )d\sigma \psi \ell da

r1
\cdot \cdot \cdot 

\int +\infty 
0

\beta 1n(a)P
\ast 
1 (a)e - 

\sum n
\ell =1

\int a
0 \beta 1\ell (\sigma )d\sigma \psi \ell da

r1
...

. . .
...\int +\infty 

0
\beta n1(a)P

\ast 
n(a)e

 - 
\sum n
\ell =1

\int a
0 \beta n\ell (\sigma )d\sigma \psi \ell da

rn
\cdot \cdot \cdot 

\int +\infty 
0

\beta nn(a)P
\ast 
n(a)e

 - 
\sum n
\ell =1

\int a
0 \beta n\ell (\sigma )d\sigma \psi \ell da

rn

\right)     ,

\psi := (\psi 1, \psi 2, . . . , \psi n)
T \in \BbbR n.

Then, (4.3) can be rewritten as the following vector-matrix form:

(4.4) J\ast = M(J\ast )J\ast .

On the existence of the endemic equilibrium E\ast of system (2.3), we prove the following
proposition.

Proposition 4.1. Suppose that (A1)--(A6) and \scrR 0 > 1 hold. Then system (2.3)
has at least one endemic equilibrium E\ast in \Omega .

Proof. From (4.4), we now show that the nonlinear operator \Psi (\psi ) := M(\psi )\psi ,
\psi \in \BbbR n+, has at least one positive fixed point \psi \ast \in \BbbR n+ \setminus \{ 0\} . For each j \in \{ 1, 2, . . . , n\} 
and \psi \in \BbbR n+, by integration by parts, we have

(4.5)

(\Psi (\psi ))j =

n\sum 
k=1

\int +\infty 
0

\beta jk(a)P
\ast 
j (a)e

 - 
\sum n
\ell =1

\int a
0 \beta j\ell (\sigma )d\sigma \psi \ell da

rj
\psi k

=

\int +\infty 
0

P \ast 
j (a)

\sum n
k=1 \beta jk(a)\psi k e - 

\sum n
\ell =1

\int a
0 \beta j\ell (\sigma )d\sigma \psi \ell da

rj

=

\Bigl[ 
 - P \ast 

j (a)e
 - 

\sum n
\ell =1

\int a
0 \beta j\ell (\sigma )d\sigma \psi \ell 

\Bigr] +\infty 

0
 - 

\int +\infty 
0

\mu j(a)P
\ast 
j (a)e

 - 
\sum n
\ell =1

\int a
0 \beta j\ell (\sigma )d\sigma \psi \ell da

rj

=
bj
rj

 - 1

rj

\int +\infty 

0

\mu j(a)P
\ast 
j (a)e

 - 
\sum n
\ell =1

\int a
0 \beta j\ell (\sigma )d\sigma \psi \ell da,

where (\cdot )j denotes the jth entry of a vector. Hence, operator \Psi (\psi ) is monotone
increasing with respect to \psi \in \BbbR n+ and uniformly bounded above by max1\leq j\leq n(bj/rj):
\| \Psi (\psi )\| := max1\leq j\leq n | (\Psi (\psi ))j | \leq max1\leq j\leq n(bj/rj).

It is obvious that \Psi (0) = 0 and M(0) is the strong Fr\'echet derivative of \Psi (\cdot )
at the origin. Since M(0) = V - 1F, we have r(M(0)) = r(V - 1F) = r(FV - 1) =
r(K) = \scrR 0 > 1. Thus, it follows from the Perron--Frobenius theorem (see [2]) that
r(M(0)) > 1 is a simple eigenvalue of M(0) corresponding to a strictly positive
eigenvector, and there exists no nonnegative eigenvector of M(0) corresponding to
eigenvalue 1. Hence, we can apply the technique of Krasnoselskii as in [18, Theorem
4.11] (see also [13, Proposition 4.6]) to conclude that operator \Psi (\cdot ) has at least one
positive fixed point \psi \ast \in \BbbR n+ \setminus \{ 0\} .

For J\ast = \psi \ast , we have from (4.5) that for each j \in \{ 1, 2, . . . , n\} ,

J\ast 
j =

n\sum 
k=1

\int +\infty 
0

\beta jk(a)P
\ast 
j (a)e

 - 
\int a
0

\sum n
\ell =1 \beta j\ell (\sigma )d\sigma J

\ast 
\ell da

rj
J\ast 
k \leq bj

rj
= bj

\int +\infty 

0

e - rjada

\leq bj

\int +\infty 

0

e - 
\int a
0
\mu j(\sigma )d\sigma da =

\int +\infty 

0

P \ast 
j (a)da.
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Furthermore, it is obvious from (4.2) that S\ast 
j (a) \leq P \ast 

j (a) for all a \geq 0 and j \in 
\{ 1, 2, . . . , n\} . This implies that E\ast := (S\ast ,J\ast )T belongs to \Omega . This completes the
proof.

Note that J\ast 
j > 0 for all j \in \{ 1, 2, . . . , n\} in the endemic equilibrium E\ast by virtue

of (A6) and (4.3). On the uniqueness of the endemic equilibrium E\ast of system (2.3),
we prove the following proposition.

Proposition 4.2. Suppose that (A1)--(A6) and \scrR 0 > 1 hold. Then system (2.3)
has at most one endemic equilibrium E\ast in \Omega .

Proof. It suffices to show that operator \Psi (\cdot ) has at most one positive fixed point.
Let \psi \ast := (\psi \ast 

1 , \psi 
\ast 
2 , . . . , \psi 

\ast 
n)

T \in \BbbR n+ and \~\psi := ( \~\psi 1, \~\psi 2, . . . , \~\psi n)
T \in \BbbR n+ be two positive

fixed points of operator \Psi (\cdot ). Let \eta \ast := sup\{ \eta \geq 0 : \psi \ast 
j \geq \eta \~\psi j for all j \in \{ 1, 2, . . . , n\} \} ,

and suppose that \eta \ast < 1. Note that \eta \ast > 0 since \psi \ast 
j > 0 and \~\psi j > 0 for all

j \in \{ 1, 2, . . . , n\} . From the monotonicity of operator \Psi (\cdot ), we have, for j = 1, 2, . . . , n,

\psi \ast 
j = (\Psi (\psi \ast ))j \geq 

\Bigl( 
\Psi (\eta \ast \~\psi )

\Bigr) 
j
=

n\sum 
k=1

\int +\infty 
0

\beta jk(a)P
\ast 
j (a)e

 - 
\sum n
\ell =1

\int a
0
\beta j\ell (\sigma )d\sigma \eta \ast \~\psi \ell da

rj
\eta \ast \~\psi k

> \eta \ast 
n\sum 
k=1

\int +\infty 
0

\beta jk(a)P
\ast 
j (a)e

 - 
\sum n
\ell =1

\int a
0
\beta j\ell (\sigma )d\sigma \~\psi \ell da

rj
\~\psi k = \eta \ast 

\Bigl( 
\Psi ( \~\psi )

\Bigr) 
j
= \eta \ast \~\psi j ,

which contradicts the definition of \eta \ast . Hence, \eta \ast \geq 1 and we have \psi \ast 
j \geq \eta \ast \~\psi j \geq \~\psi j for

all j \in \{ 1, 2, . . . , n\} . By exchanging the roles of \psi \ast and \~\psi , we can show in a similar
way that \~\psi j \geq \psi \ast 

j for all j \in \{ 1, 2, . . . , n\} . Hence, we obtain \psi \ast = \~\psi . This completes
the proof.

5. Existence of a compact attractor. Let Y := X \times \BbbR n and \| (\varphi ,\psi )T\| Y :=\sum n
j=1

\int +\infty 
0

| \varphi j(a)| da +
\sum n
j=1 | \psi j | , (\varphi ,\psi )T \in Y . Let Y+ := X+ \times \BbbR n+ be the positive

cone of Y . As in [20, section 8], we can define a C0-semigroup \{ U(t)\} t\geq 0 : Y+ \rightarrow Y+
for the solution of system (2.3) by U(t)(S0(\cdot ),J0) := (S(t, \cdot ),J(t))T, t \geq 0, where
S0 := (S1,0, S2,0, . . . , Sn,0)

T \in X+ and J0 := (J1,0, J2,0, . . . , Jn,0)
T \in \BbbR n+. We first

prove the following lemma on the boundedness of semigroup U(\cdot ).

Lemma 5.1. Suppose that (A1)--(A6) hold. Then U(\cdot ) is point dissipative and
eventually bounded on bounded subsets of Y+.

Proof. Let b := max1\leq j\leq n \{ bj\} \in (0,+\infty ). It is easy to see from (2.3) that

d

dt

\biggl( \int +\infty 

0

Sj(t, a)da+ Jj(t)

\biggr) 
= bj  - 

\int +\infty 

0

\mu j(a)Sj(t, a)da - rjJj(t)

\leq b - \mu 

\biggl( \int +\infty 

0

Sj(t, a)da+ Jj(t)

\biggr) 
, t > 0, j = 1, 2, . . . , n.

By adding these inequalities for all j \in \{ 1, 2, . . . , n\} , we have

d

dt
\| U(t)(S0(\cdot ),J0)\| Y \leq nb - \mu \| U(t)(S0(\cdot ),J0)\| Y , t > 0.
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Then, as in [22, Proposition 1], we have

(5.1)

\| U(t)(S0(\cdot ),J0)\| Y \leq max

\biggl\{ 
nb

\mu 
,
\bigm\| \bigm\| (S0(\cdot ),J0)

T
\bigm\| \bigm\| 
Y

\biggr\} 
for all t \geq 0,

lim sup
t\rightarrow +\infty 

\| U(t)(S0(\cdot ),J0)\| Y \leq nb

\mu 
.

The second inequality in (5.1) implies that U(\cdot ) is point dissipative. For any bounded
subset of Y+ such that

\bigm\| \bigm\| (S0(\cdot ),J0)
T
\bigm\| \bigm\| 
Y
< M for some M > 0, the first inequality in

(5.1) implies that U(\cdot ) is eventually bounded. This completes the proof.

We next prove the following lemma on the asymptotic smoothness of U(\cdot ).
Lemma 5.2. Suppose that (A1)--(A6) hold. Then U(\cdot ) is asymptotically smooth.

Proof. By [25, Theorem 2.46] (see also [22, Theorem 5.1]), it suffices to show
that there exist two maps V,W : \BbbR + \times Y+ \rightarrow Y+ such that U(t)(S0(\cdot ),J0) =
V (t)(S0(\cdot ),J0) +W (t)(S0(\cdot ),J0) for all t \geq 0, and such that the following two condi-
tions hold for any bounded closed set C \subset Y+ that is forward invariant under U(\cdot ):

(C1) limt\rightarrow +\infty diamV (t)(C) = 0.
(C2) There exists a tC \geq 0 such that W (t)(C) has compact closure for all t \geq tC .

Here, the diameter of set A \subset Y+ is defined by diamA := sup \{ \| x - y\| Y : x, y \in A\} .
For V (\cdot ) and W (\cdot ) defined as in [20, section 8], we can prove (C1) and (C2) in a way
similar to that in [20, the proofs of Lemmas 8.1 and 8.2]. Therefore, we omit the
details. This completes the proof.

From Lemmas 5.1 and 5.2, we can apply [25, Theorem 2.33] to obtain the following
proposition on the existence of a compact attractor.

Proposition 5.3. Suppose that (A1)--(A6) hold. Then there exists a compact
attractor \scrA \subset Y+ of bounded sets.

Proof. The assertion directly follows from Lemmas 5.1 and 5.2 and [25, Theorem
2.33]. This completes the proof.

Let \scrU : \BbbR \rightarrow Y+ be a total trajectory such that U(t)(\scrU (s)) = \scrU (t+s) holds for all
t \geq 0 and s \in \BbbR . From a well-known fact, we see that compact attractor \scrA consists
of total trajectories; that is, for any (S0(\cdot ),J0)

T \in \scrA , there exists a total trajectory
\scrU (\cdot ) such that \scrU (0) = (S0(\cdot ),J0)

T and \scrU (t) \in \scrA for all t \in \BbbR . For a total trajectory,
we can write \scrU (t) := (S(t, \cdot ),J(t))T, t \in \BbbR , where

(5.2)
Sj(t, a) = Sj(t - a, 0)e - 

\int a
0 [

\sum n
k=1 \beta jk(\sigma )Jk(t - a+\sigma )+\mu j(\sigma )]d\sigma 

= bje
 - 

\int a
0 [

\sum n
k=1 \beta jk(\sigma )Jk(t - a+\sigma )+\mu j(\sigma )]d\sigma , t \in \BbbR , a \geq 0, j = 1, 2, . . . , n.

In sections 6 and 7, we investigate the global behavior of system (2.3) by focusing on
total trajectory \scrU (\cdot ).

6. Global attractivity of the disease-free equilibrium for \bfscrR \bfzero < 1. We
now prove the global attractivity of the disease-free equilibrium E0 := (S,J)

T
=

(P\ast ,0)
T \in \Omega for \scrR 0 < 1 by constructing a Lyapunov function, which is similar to

the one in [11, section 4]. Since matrix M(0) = V - 1F is nonnegative and irreducible,
it follows from the Perron--Frobenius theorem (see [2]) that it has a strictly positive
left eigenvector w := (w1, w2, . . . , wn), wj > 0, j = 1, 2, . . . , n, corresponding to
eigenvalue r(M(0)) = r(V - 1F) = r(FV - 1) = \scrR 0. That is, wM(0) = \scrR 0w. Let
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us define the following Lyapunov function for total trajectory \scrU (\cdot ) in \scrA : L1(t) :=\sum n
j=1 (wj/rj) Jj(t), t \in \BbbR . Note that L1(t) is bounded on \BbbR since total trajectory

\scrU (t) = (S(t, \cdot ),J(t))T belongs to compact set \scrA for all t \in \BbbR . We prove the following
theorem.

Theorem 6.1. Suppose that (A1)--(A6) and \scrR 0 < 1 hold. Then \scrA = \{ E0\} ; that
is, the disease-free equilibrium E0 is globally attractive in any bounded sets of Y+.

Proof. For any total trajectory \scrU (t) = (S(t, \cdot ),J(t))T, t \in \BbbR in \scrA , the derivative
of Lyapunov function L1(\cdot ) is calculated as follows:

(6.1)

d

dt
L1(t) =

n\sum 
j=1

wj
rj

d

dt
Jj(t) =

n\sum 
j=1

wj
rj

\Biggl[ 
n\sum 
k=1

\int +\infty 

0

\beta jk(a)Sj(t, a)daJk(t) - rjJj(t)

\Biggr] 

=

n\sum 
j=1

wj

\Biggl[ 
n\sum 
k=1

\int +\infty 
0

\beta jk(a)bje
 - 

\int a
0 [

\sum n
\ell =1 \beta j\ell (\sigma )J\ell (t - a+\sigma )+\mu j(\sigma )]d\sigma da

rj
Jk(t) - Jj(t)

\Biggr] 

\leq 
n\sum 
j=1

wj

\Biggl[ 
n\sum 
k=1

\int +\infty 
0

\beta jk(a)P
\ast 
j (a)da

rj
Jk(t) - Jj(t)

\Biggr] 
= \bfw [\bfM (\bfzero )\bfJ (t) - \bfJ (t)] = (\scrR 0  - 1)\bfw \bfJ (t) \leq 0.

Thus, L1(t) is nonincreasing on \BbbR . Since L1(\cdot ) is bounded, the alpha limit set of \scrU (\cdot )
is included in the largest invariant subset \scrM of set \{ (S,J)T \in \scrA \subset Y+ : L\prime 

1 = 0\} . We
claim that \scrM = \{ E0\} . In fact, it follows from (6.1) that J = 0 in \scrM . We then have
from (5.2) that S = P\ast and thus, \scrM = \{ (P\ast ,0)T\} = \{ E0\} . Since L1(\cdot ) attains its
minimum 0 at E0 and it is nonincreasing, \scrU (t) = E0 holds for all t \in \BbbR , which implies
\scrA = \{ E0\} . This completes the proof.

7. Global attractivity of the endemic equilibrium for \bfscrR \bfzero > 1. In [20],
to define a suitable Lyapunov function for \scrR 0 > 1, the following assumption was also
made in addition to (B1)--(B5):

(B6) For each j \in \{ 1, 2, . . . , n\} , Sj,0(\cdot ) \in L1
+(0,+\infty ), it holds that Jj,0 > 0 and\int +\infty 

0
| lnSj,0(a)| e - 

\int a
0
\mu j(\sigma )d\sigma da < +\infty .

In this paper, we do not have to assume the last inequality in (B6) since we consider
total trajectory \scrU (\cdot ) \in \scrA . We define the persistence attractor \scrA 0 \subset \scrA by a set such
that for any total trajectory \scrU (\cdot ) \in \scrA 0, there exists an \epsilon > 0 such that Jj(t) > \epsilon 
holds for all t \in \BbbR and j \in \{ 1, 2, . . . , n\} . Let \varrho : Y+ \rightarrow \BbbR + be a function defined by
\varrho ((\varphi ,\psi )T) := max1\leq j\leq n\{ \psi j\} , (\varphi ,\psi )T \in Y+. Let \Gamma be a set defined by

\Gamma :=
\Bigl\{ 
(\varphi ,\psi )T \in Y+ : \psi j > 0 for some j \in \{ 1, 2, . . . , n\} 

\Bigr\} 
.

We first prove the uniform weak \varrho -persistence of system (2.3) for \scrR 0 > 1.

Lemma 7.1. Suppose that (A1)--(A6) and \scrR 0 > 1 hold. Then system (2.3) is
uniformly weakly \varrho -persistent for nontrivial initial conditions. That is, there exists an
\epsilon 1 > 0 such that lim supt\rightarrow +\infty \varrho (U(t)(S0(\cdot ),J0)) > \epsilon 1, provided (S0(\cdot ),J0)

T \in \Gamma .

Proof. Since (S0(\cdot ),J0)
T \in \Gamma , there exists a j\ast \in \{ 1, 2, . . . , n\} such that Jj\ast ,0 >

0. Then, we see from the second equation in (2.3) that Jj\ast (t) > 0 for all t > 0.

Since Sj(t, a) = bje
 - 

\int a
0 [

\sum n
k=1 \beta jk(\sigma )Jk(t - a+\sigma )+\mu j(\sigma )]d\sigma > 0 for all t > a \geq 0 and j \in 

\{ 1, 2, . . . , n\} , it follows from the second equation in (2.3) and assumption (A6) that
there exists a t\ast > 0 such that Jj(t) > 0 for all t > t\ast and j \in \{ 1, 2, . . . , n\} .D
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For \epsilon \geq 0 and T \geq 0, let us define the following n\times n-matrix:

\bfF (\epsilon , T )

:=

\left(    
\int T
0
\beta 11(a)P

\ast 
1 (a)e

 - \epsilon 
\int a
0

\sum n
\ell =1 \beta 1\ell (\sigma )d\sigma da \cdot \cdot \cdot 

\int T
0
\beta 1n(a)P

\ast 
1 (a)e

 - \epsilon 
\int a
0

\sum n
\ell =1 \beta 1\ell (\sigma )d\sigma da

...
. . .

...\int T
0
\beta n1(a)P

\ast 
n(a)e

 - \epsilon 
\int a
0

\sum n
\ell =1 \beta n\ell (\sigma )d\sigma da \cdot \cdot \cdot 

\int T
0
\beta nn(a)P

\ast 
n(a)e

 - \epsilon 
\int a
0

\sum n
\ell =1 \beta n\ell (\sigma )d\sigma da

\right)    .

Since limT\rightarrow +\infty F(0, T ) = F and \scrR 0 = r(FV - 1) > 1, there exist sufficiently small
\epsilon 1 > 0 and large T1 > 0 such that r(F(\epsilon 1, T1)V

 - 1) > 1. For such an \epsilon 1, suppose on
the contrary that lim supt\rightarrow +\infty \varrho (U(t)(S0(\cdot ),J0)) \leq \epsilon 1. Then there exists a sufficiently
large T0 > t\ast > 0 such that Jj(t) \leq \epsilon 1 for all t \geq T0 and j \in \{ 1, 2, . . . , n\} . Without
loss of generality, by taking U(T0)(S0(\cdot ),J0) as a new initial condition, we can assume
that 0 < Jj(t) \leq \epsilon 1 holds for all t \geq 0 and j \in \{ 1, 2, . . . , n\} . We then have from (2.3)
that, for all t \geq T1,

d

dt
Jj(t) \geq 

n\sum 
k=1

\int t

0

\beta jk(a)bje
 - 

\int a
0 [\epsilon 1

\sum n
\ell =1 \beta j\ell (\sigma )+\mu j(\sigma )]d\sigma da Jk(t) - rjJj(t)

\geq 
n\sum 
k=1

\int T1

0

\beta jk(a)P
\ast 
j (a)e

 - \epsilon 1
\int a
0

\sum n
\ell =1 \beta j\ell (\sigma )d\sigma da Jk(t) - rjJj(t), j = 1, 2, . . . , n.

These inequalities can be rewritten as J\prime (t) \geq [F(\epsilon 1, T1) - V]J(t), t \geq T1. Note
that r(F(\epsilon 1, T1)V

 - 1) > 1 implies that the spectral bound of matrix F(\epsilon 1, T1)  - V
is positive (see, for instance, [14, Proposition 9.5]). Hence, we have Jj(t) \rightarrow +\infty 
(t \rightarrow +\infty ) for all j \in \{ 1, 2, . . . , n\} , which contradicts Jj(t) \leq \epsilon 1 for all t \geq 0. Hence,
we obtain lim supt\rightarrow +\infty \varrho (U(t)(S0(\cdot ),J0)) > \epsilon 1. This completes the proof.

Using Lemma 7.1 and an approach as in [7, proof of Theorem 1], we next prove
the uniform strong \varrho -persistence of system (2.3) for \scrR 0 > 1.

Lemma 7.2. Suppose that (A1)--(A6) and \scrR 0 > 1 hold. Then system (2.3) is
uniformly strongly \varrho -persistent for nontrivial initial conditions; that is, there exists
an \epsilon 2 > 0 such that lim inft\rightarrow +\infty \varrho (U(t)(S0(\cdot ),J0)) > \epsilon 2, provided (S0(\cdot ),J0)

T \in \Gamma .

Proof. Suppose on the contrary that the assertion does not hold. Then, there
exist sequences \{ uk\} +\infty 

k=1 and \{ ek\} +\infty 
k=1 such that

(7.1) lim inf
t\rightarrow +\infty 

\varrho (U(t)uk) < ek < \epsilon 1, uk \in \Gamma , ek > 0, k = 1, 2, . . . , lim
k\rightarrow +\infty 

ek = 0,

where \epsilon 1 > 0 is a positive constant defined as in Lemma 7.1. By Lemma 7.1 and (7.1),
we see that there exist sequences \{ \theta k\} +\infty 

k=1 and \{ \tau k\} +\infty 
k=1 such that, for all k = 1, 2, . . . ,

(7.2) \varrho (U(\theta k)uk) = \epsilon 1, \varrho (U(\tau k)uk) < ek < \epsilon 1 and \varrho (U(t)uk) < \epsilon 1 for all t \in (\theta k, \tau k].

Let \~uk := U(\theta k)uk \in Y+ for all k \in \BbbN . Since it follows from the first inequality
in (5.1) that supt\geq 0 \| U(t)uk\| Y \leq max

\bigl\{ 
nb/\mu , \| uk\| Y

\bigr\} 
< +\infty , we have from (C1)--

(C2) in the proof of Lemma 5.2 and [28, Proposition 3.13] that \{ U(t)uk : t \geq 0\} has
compact closure in Y . Hence, we can assume that \{ \~uk\} +\infty 

k=1 is a convergent sequence in
Y (otherwise, we can choose a convergent subsequence). Let u\ast := limk\rightarrow +\infty \~uk \in Y .
Since \varrho (u\ast ) = \epsilon 1 > 0, it follows that u\ast \in \Gamma . By Lemma 7.1, we see that there exist
positive constants \tau > 0 and m > 0 such that \varrho (U(\tau )u\ast ) > \epsilon 1 and \varrho (U(t)u\ast ) > m for
all t \in [0, \tau ]. By the continuity and the semigroup property of U(\cdot ), we see that there
exists a sufficiently large k\ast \in \BbbN such that

(7.3) \varrho (U(\theta k\ast + \tau )uk\ast ) > \epsilon 1 and \varrho (U(\theta k\ast + t)uk\ast ) > m > ek\ast for all t \in [0, \tau ].
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For such a k\ast \in \BbbN , we have from (7.2) that for t\prime k\ast = \tau k\ast  - \theta k\ast ,

(7.4) \varrho (U(\theta k\ast + t\prime k\ast )uk\ast ) < ek\ast < \epsilon 1 and \varrho (U(\theta k\ast + t)uk\ast ) < \epsilon 1 for all t \in (0, t\prime k\ast ].

If \tau > t\prime k\ast , then the second inequality in (7.3) contradicts the first inequality in (7.4).
If \tau \leq t\prime k\ast , then the first inequality in (7.3) contradicts the second inequality in (7.4).
This completes the proof.

Using Lemma 7.2, we prove the following proposition.

Proposition 7.3. Suppose that (A1)--(A6) and \scrR 0 > 1 hold. Then there ex-
ists an \epsilon 3 > 0 such that lim inft\rightarrow +\infty Jj(t) \geq \epsilon 3 for all j \in \{ 1, 2, . . . , n\} , provided

(S0(\cdot ),J0)
T \in \Gamma .

Proof. Let \~\varrho : Y+ \rightarrow \BbbR + be a function defined by \~\varrho ((\varphi ,\psi )T) := min1\leq j\leq n\{ \psi j\} ,
(\varphi ,\psi )T \in Y+. Let \scrU (\cdot ) \in \scrA be a total trajectory with precompact range such that
\scrU (t) > 0 for all t \in \BbbR . By (5.1), we have that

\sum n
k=1 Jk(t) \leq nb/\mu for all t \in \BbbR . We

then have from (5.2) that, for all t \in \BbbR and j \in \{ 1, 2, . . . , n\} ,

Sj(t, a) = bje
 - 

\int a
0 [

\sum n
k=1 \beta jk(\sigma )Jk(t - a+\sigma )+\mu j(\sigma )]d\sigma \geq P \ast 

j (a)e
 - (\beta nb/\mu )a,

where \beta := max1\leq j,k\leq n
\bigl\{ 
ess.supa\geq 0 \beta jk(a)

\bigr\} 
\in (0,+\infty ). Then, from the second equa-

tion in (2.3), we have, for all t \in \BbbR and j \in \{ 1, 2, . . . , n\} ,

d

dt
Jj(t) \geq 

n\sum 
k=1

\int +\infty 

0

\beta jk(a)P
\ast 
j (a)e

 - (\beta nb/\mu )ada Jk(t) - rjJj(t).

By (A6), matrix (
\int +\infty 
0

\beta jk(a)P
\ast 
j (a)e

 - (\beta nb/\mu )ada)1\leq j,k\leq n  - diag(rj)1\leq j\leq n is quasi-
positive and irreducible. Then, we see from [25, Proposition A.28] that Jj(0) > 0
for all j \in \{ 1, 2, . . . , n\} , and thus, \~\varrho (\scrU (0)) > 0. Then, by Lemmas 5.1, 5.2, and
7.2, we can apply [25, Corollary 4.22] to see that there exists an \epsilon 3 > 0 such that

lim inft\rightarrow +\infty \~\varrho (U(t)(S0(\cdot ),J0)) \geq \epsilon 3, provided (S0(\cdot ),J0)
T \in \Gamma . This implies that

lim inft\rightarrow +\infty Jj(t) > \epsilon 3 for all j \in \{ 1, 2, . . . , n\} . This completes the proof.

Proposition 7.3 implies that if \scrR 0 > 1, then there exists a persistence attractor
\scrA 0 \subset \scrA that attracts any bounded sets of \Gamma \subset Y+. Note that for any total trajectory
\scrU (\cdot ) in \scrA 0, it holds that Jj(t) > \epsilon 3 > 0 for all t \in \BbbR and j \in \{ 1, 2, . . . , n\} .

To define a suitable Lyapunov function, we use a well-known Volterra-type func-
tion g(x) := x  - 1  - lnx, x > 0 (see, for instance, [21]). Note that g(x) \geq 0 for all
x > 0, and g(x) = 0 if and only if x = 1. We now prove the following lemma.

Lemma 7.4. Suppose that (A1)--(A6) and \scrR 0 > 1 hold. Then, for any total tra-
jectory \scrU (t) = (S(t, \cdot ),J(t))T, t \in \BbbR in \scrA 0, the following inequalities hold:

(7.5)
0 \leq 

\int +\infty 

0

S\ast 
j (a)g

\Biggl( 
Sj(t, a)

S\ast 
j (a)

\Biggr) 
da < +\infty , 0 \leq g

\Biggl( 
Jj(t)

J\ast 
j

\Biggr) 
< +\infty ,

t \in \BbbR , j = 1, 2, . . . , n.

Proof. The nonnegativity is obvious since g(x) \geq 0 for all x > 0. We have from
(4.2) and (5.2) that, for all t \in \BbbR and j \in \{ 1, 2, . . . , n\} ,

(7.6)

\int +\infty 

0

S\ast 
j (a)g

\biggl( 
Sj(t, a)

S\ast 
j (a)

\biggr) 
da =

\int +\infty 

0

\biggl[ 
Sj(t, a) - S\ast 

j (a) - S\ast 
j (a) ln

Sj(t, a)

S\ast 
j (a)

\biggr] 
da

\leq \| Sj(t, \cdot )\| L1 +
\bigm\| \bigm\| S\ast 

j (\cdot )
\bigm\| \bigm\| 
L1 +

\int +\infty 

0

S\ast 
j (a)

\int a

0

n\sum 
k=1

\beta jk(\sigma ) [Jk(t - a+ \sigma ) - J\ast 
k ] d\sigma da.
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Note that the second inequality in (5.1) implies that \| \scrU (t)\| Y \leq nb/\mu for all t \in \BbbR ,
provided \scrU (\cdot ) \in \scrA . That is, max

\bigl\{ 
\| Sj(t, \cdot )\| L1 ,

\sum n
k=1 Jk(t)

\bigr\} 
\leq \| \scrU (t)\| Y \leq nb/\mu for all

t \in \BbbR and j = \{ 1, 2, . . . , n\} . Furthermore, we see from (4.2) that \| S\ast 
j (\cdot )\| L1 \leq nb/\mu 

for all j \in \{ 1, 2, . . . , n\} . Hence, it follows from (7.6) that\int +\infty 

0

S\ast 
j (a)g

\Biggl( 
Sj(t, a)

S\ast 
j (a)

\Biggr) 
da \leq 2

nb

\mu 
+ \beta 

nb

\mu 

\int +\infty 

0

aS\ast 
j (a)da

\leq nb

\mu 

\biggl( 
2 + \beta b

\int +\infty 

0

ae - \mu ada

\biggr) 
=
nb

\mu 

\biggl( 
2 +

\beta b

\mu 2

\biggr) 
< +\infty , t \in \BbbR , j = 1, 2, . . . , n,

where \beta = max1\leq j,k\leq n
\bigl\{ 
ess.supa\geq 0 \beta jk(a)

\bigr\} 
\in (0,+\infty ). Hence, the first estimation in

(7.5) holds.
By (5.1) and Proposition 7.3, we have

(7.7) 0 <
\epsilon 3
J\ast 
j

\leq Jj(t)

J\ast 
j

\leq nb

J\ast 
j \mu 

< +\infty , t \in \BbbR , j = 1, 2, . . . , n.

Note that J\ast 
j > 0 for all j \in \{ 1, 2, . . . , n\} by virtue of (A6) and (4.3). From (7.7), the

second estimation in (7.5) holds. This completes the proof.

By virtue of Lemma 7.4, we can define the following Lyapunov function for total
trajectory \scrU (\cdot ) in \scrA 0 as in [20, section 8]:

L2(t) :=

n\sum 
j=1

\kappa j

\Biggl\{ \int +\infty 

0

S\ast 
j (a)g

\Biggl( 
Sj(t, a)

S\ast 
j (a)

\Biggr) 
da+ J\ast 

j g

\Biggl( 
Jj(t)

J\ast 
j

\Biggr) \Biggr\} 
, t \in \BbbR ,

where \kappa j , j = 1, 2, . . . , n, are positive constants that satisfy

n\sum 
k=1

\~\beta jk\kappa j =

n\sum 
k=1

\~\beta kj\kappa k, \~\beta jk :=

\int +\infty 

0

\beta jk(a)S
\ast 
j (a)da J

\ast 
k , j, k = 1, 2, . . . , n.

In fact, the existence of such \kappa j , j = 1, 2, . . . , n, follows from [11, Lemma 2.1]. Then,
the derivative of Lyapunov function L2(\cdot ) is calculated as follows (we omit the details
since they are almost the same as in [20, Proof of Proposition 8.2]):

(7.8)

d

dt
L2(t) =  - 

n\sum 
j=1

\kappa k

\Biggl[ \int +\infty 

0

\mu j(a)S
\ast 
j (a)g

\Biggl( 
Sj(t, a)

S\ast 
j (a)

\Biggr) 
da

+

n\sum 
k=1

\int +\infty 

0

\beta jk(a)S
\ast 
j (a)J

\ast 
kg

\Biggl( 
J\ast 
j Jk(t)Sj(t, a)

Jj(t)J\ast 
kS

\ast 
j (a)

\Biggr) 
da

\Biggr] 
\leq 0, t \in \BbbR .

Then, by using the method from the proof of Theorem 6.1, we can establish the
following theorem on the global attractivity of the endemic equilibrium for \scrR 0 > 1.

Theorem 7.5. Suppose that (A1)--(A6) and \scrR 0 > 1 hold. Then \scrA 0 = \{ E\ast \} ; that
is, the endemic equilibrium E\ast is globally attractive in any bounded sets of \Gamma \subset Y+.

Proof. By (7.8), we see that L2(t) is nonincreasing on \BbbR . Since L2(\cdot ) is bounded,
the alpha limit set of total trajectory \scrU (\cdot ) \in \scrA 0 is included in the largest invariant
subset \~\scrM of set \{ (S,J)T \in \scrA 0 \subset Y+ : L\prime 

2 = 0\} . We claim that \~\scrM = \{ E\ast \} . In fact,
by (7.8), L\prime 

2 = 0 implies that

(7.9) Sj(t, \cdot ) = S\ast 
j (\cdot ), Jj(t) = cJ\ast 

j , t \in \BbbR ,
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where c > 0 is a positive constant. Substituting them into the first equation in (2.3),
we have

d

da
S\ast 
j (a) =  - 

\Biggl[ 
c

n\sum 
k=1

\beta jk(a)J
\ast 
k + \mu j(a)

\Biggr] 
S\ast 
j (a), a > 0, j = 1, 2, . . . , n,

and hence, S\ast 
j (a) = bje

 - 
\int a
0 \{ c

\sum n
k=1 \beta jk(\sigma )J

\ast 
k+\mu j(\sigma )\} d\sigma , a \geq 0, j = 1, 2, . . . , n. By the

uniqueness of the endemic equilibrium E\ast (see Proposition 4.2), we have c = 1. Hence,
(7.9) implies that \~\scrM = \{ E\ast \} . Since L2(\cdot ) attains its minimum L2 = 0 at E\ast and it
is nonincreasing, \scrU (t) = E\ast holds for all t \in \BbbR . This implies that \scrA 0 = \{ E\ast \} . This
completes the proof.

From (2.2), we see that if (S,J)T attains the endemic equilibrium E\ast , then the
infective populations Ij , j = 1, 2, . . . , n, should satisfy the following equations:\biggl( 

\partial 

\partial t
+

\partial 

\partial a

\biggr) 
Ij(t, a) =

n\sum 
k=1

\beta jk(a)J
\ast 
kS

\ast 
j (a) - rjIj(t, a), Ij(t, 0) = 0,

t > 0, a > 0, j = 1, 2, . . . , n.

Hence, we see that Ij(t, \cdot ), j = 1, 2, . . . , n, converge to positive distributions I\ast j (\cdot ), j =
1, 2, . . . , n, as t \rightarrow +\infty , where I\ast j (a) =

\int a
0
e - rj(a - \sigma )

\sum n
k=1 \beta jk(\sigma )J

\ast 
kS

\ast 
j (\sigma )d\sigma , a \geq 0,

j = 1, 2, . . . , n. Similarly, we see that if (S,J)T attains the disease-free equilibrium
E0, then Ij(t, \cdot ), j = 1, 2, . . . , n, converge to zero as t \rightarrow +\infty . Consequently, from
Theorems 6.1 and 7.5, we obtain the following main theorem in this paper.

Theorem 7.6. Suppose that (A1)--(A6) hold. If \scrR 0 > 1, then infective popula-
tions Ij(t, \cdot ), j = 1, 2, . . . , n, of system (2.2) converge to positive distributions I\ast j (\cdot ),
j = 1, 2, . . . , n, as t \rightarrow +\infty , provided Ij,0(a) > 0 for some j \in \{ 1, 2, . . . , n\} on some
nonempty interval. If \scrR 0 < 1, then infective populations Ij(t, \cdot ), j = 1, 2, . . . , n, of
system (2.2) converge to zero as t\rightarrow +\infty , provided Ij,0(a) \geq 0 for all a \geq 0.

8. Application. By Theorem 7.6, we see that the global behavior of model (2.2)
is completely determined by the basic reproduction number \scrR 0 under assumptions
(A1)--(A6). Hence, we can apply our model to estimate \scrR 0 for the recent chlamydia
epidemic in Japan (see Figure 1). As stated in section 1, we can regard the infec-
tive population of the recent chlamydia epidemic in Japan as being in the endemic
equilibrium. Hence, in what follows, we choose the data in 2015 (see Table 1) as the
reference data since the complete demographic data in Japan in 2015 is available in
[15].

In what follows, we consider four special cases of our model: a homogeneous
model, an age-independent two-sex model, an age-dependent one-sex model, and an
age-dependent two-sex model.

8.1. A homogeneous model. We first consider the case of constant parameters
for n = 1, that is, b1 = b > 0, \mu 1(a) = \mu > 0, \gamma 1(a) = \gamma > 0, and \beta 11(a) = \beta > 0
for all a \geq 0. In this case, it is obvious that assumptions (A1)--(A6) hold, and model
(2.2) is equivalent to the following classical SI(R) epidemic model with demography:

(8.1)

\left\{           
dS(t)

dt
= b - \beta S(t)I(t) - \mu S(t),

dI(t)

dt
= \beta S(t)I(t) - (\mu + \gamma ) I(t),

S(0) = S0 \geq 0, I(0) = I0 \geq 0, t > 0.
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Table 1
Age-distributions of reported cases of chlamydia in Japan in 2015 [16].

Age-group Total Male Female
0--4 3 2 1
5--9 1 0 1

10--14 28 3 25
15--19 2438 562 1876
20--24 6377 2135 4242
25--29 5306 2397 2909
30--34 3766 2054 1712
35--39 2562 1558 1004
40--44 1721 1184 537
45--49 1075 799 276
50--54 573 447 126
55--59 305 266 39
60-- 295 263 32
Total 24450 11670 12780

Following the classical result (see, for instance, [14, section 5.5.2]), the basic repro-
duction number is given by \scrR 0 = \beta (b/\mu ) / (\mu + \gamma ), and if \scrR 0 > 1 and I0 > 0, then
limt\rightarrow +\infty I(t) = I\ast > 0, where

(8.2) I\ast =
b

\mu + \gamma 

\biggl( 
1 - 1

\scrR 0

\biggr) 
.

Note that we can also obtain this result by applying Theorem 7.6 to this case.
As stated above, we use data from 2015. From Table 1, we can set I\ast = 24450.

Let the time unit be 1 year. Using data in [15], we can derive the average life span
of all individuals as L = 74.3849, and hence, \mu = 1/L = 0.0134. From data in
[24], we fix the total population as N = 127095000. Hence, we can determine b as
b = N\mu = 1703073. Following [12], we assume that the average infectious period is
1/\gamma = 1 (year), and hence, \gamma = 1. Using these parameters and (8.2), we obtain the

following estimation of \scrR 0: \scrR 0 = (1 - (\mu + \gamma )I\ast /b)
 - 1 \approx 1.0148. This value is not so

different from the value \scrR 0 = 1.02 obtained in a previous study [12], which was based
on the prevalence measured for the population in Britain from 1999 to 2001 [5].

8.2. An age-independent two-sex model. We next consider the case of con-
stant parameters for n = 2, in which groups 1 and 2 imply male and female pop-
ulations, respectively. That is, bj > 0, \mu j(a) = \mu j > 0, \gamma j(a) = \gamma j > 0, and
\beta jk(a) = \beta jk \geq 0 for all a \geq 0 and j, k \in \{ 1, 2\} . For simplicity, we assume that
\beta 11 = \beta 22 = 0, \beta 12 > 0, and \beta 21 > 0. That is, there is only the heterosexual disease
transmission. In this case, we see that assumptions (A1)--(A6) hold, and model (2.2)
is equivalent to the following two-sex SI(R) epidemic model:

(8.3)

\left\{           
dS1(t)

dt
= b1  - [\beta 12I2(t) + \mu 1]S1(t),

dI1(t)

dt
= \beta 12S1(t)I2(t) - (\mu 1 + \gamma 1) I1(t),

dS2(t)

dt
= b2  - [\beta 21I1(t) + \mu 2]S2(t),

dI2(t)

dt
= \beta 21S2(t)I1(t) - (\mu 2 + \gamma 2) I2(t),

Sj(0) = Sj,0 \geq 0, Ij(0) = Ij,0 \geq 0, t > 0, j = 1, 2.

From the definition in section 3, we obtain the basic reproduction number as

(8.4) \scrR 0 =

\sqrt{} 
\beta 12

\mu 2 + \gamma 2

b1
\mu 1

\beta 21
\mu 1 + \gamma 1

b2
\mu 2
.
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Following the result in [11], we see that if \scrR 0 > 1 and Ij,0 > 0, j = 1, 2, then
limt\rightarrow +\infty Ij(t) = I\ast j > 0, j = 1, 2, where

(8.5) I\ast 1 =
\lambda \ast 
1

\mu 1 + \gamma 1

b1
\lambda \ast 
1 + \mu 1

, I\ast 2 =
\lambda \ast 
2

\mu 2 + \gamma 2

b2
\lambda \ast 
2 + \mu 2

,

and \lambda \ast 1 = \beta 12I
\ast 
2 and \lambda \ast 2 = \beta 21I

\ast 
1 denote the forces of infection to male and female

susceptible individuals at the endemic equilibrium, respectively. Note that this result
can also be obtained by applying Theorem 7.6 to this case.

From Table 1, we set I\ast 1 = 11670 and I\ast 2 = 12780. Using data in [15], we
can derive the average life spans of male and female individuals as L1 = 71.3404
and L2 = 78.0806, respectively. We then have \mu 1 = 1/L1 = 0.0140 and \mu 2 =
1/L2 = 0.0128. From data in [24], we fix the male and female populations as
N1 = 61842000 and N2 = 65253000, respectively. We then have b1 = N1\mu 1 = 865788
and b2 = N2\mu 2 = 835240. As in section 8.1, we assume that \gamma 1 = \gamma 2 = 1. By us-
ing these parameters and (8.5), we obtain \lambda \ast 1 = I\ast 1 (\mu 1 + \gamma 1)\mu 1/ [b1  - I\ast 1 (\mu 1 + \gamma 1)] \approx 
1.94\times 10 - 4 and \lambda \ast 2 = I\ast 2 (\mu 2 + \gamma 2)\mu 2/ [b2  - I\ast 2 (\mu 2 + \gamma 2)] \approx 2.0148\times 10 - 4, and hence,
\beta 12 = \lambda \ast 1/I

\ast 
2 \approx 1.5180 \times 10 - 8 and \beta 21 = \lambda \ast 2/I

\ast 
1 \approx 1.7265 \times 10 - 8. Substituting these

parameters into (8.4), we obtain the estimation of \scrR 0 as \scrR 0 \approx 1.0148. This is similar
to the one obtained in section 8.1.

8.3. An age-dependent one-sex model. We next consider the case of the
age-dependent transmission coefficient for n = 1, that is, b1 = b > 0, \mu 1(a) = \mu > 0,
\gamma 1(a) = \gamma > 0, and \beta 11(a) = \beta (a) \geq 0 for all a \geq 0, \beta (\cdot ) \in L\infty 

+ (0,+\infty ), and\int +\infty 
0

\beta (a)be - \mu ada > 0. In this case, we see that assumptions (A1)--(A6) hold, and
model (2.2) is equivalent to the following age-dependent one-sex SI(R) epidemic
model:

(8.6)

\left\{                   

\biggl( 
\partial 

\partial t
+

\partial 

\partial a

\biggr) 
S(t, a) =  - 

\biggl[ 
\beta (a)

\int +\infty 

0

I(t, \sigma )d\sigma + \mu 

\biggr] 
S(t, a),\biggl( 

\partial 

\partial t
+

\partial 

\partial a

\biggr) 
I(t, a) = \beta (a)

\int +\infty 

0

I(t, \sigma )d\sigma S(t, a) - (\mu + \gamma ) I(t, a),

S(t, 0) = b, I(t, 0) = 0,

S(0, a) = S0(a) \geq 0, I(0, a) = I0(a) \geq 0, t > 0, a \geq 0.

From the definition in section 3, we obtain the basic reproduction number as

(8.7) \scrR 0 =

\int +\infty 
0

\beta (a)be - \mu ada

\mu + \gamma 
.

By Theorem 7.6, we see that if \scrR 0 > 1 and I0(\cdot ) > 0 on some nonempty interval, then
infective population I(t, \cdot ) of system (8.6) converges to positive distribution I\ast (\cdot ) as
t\rightarrow +\infty , where

(8.8)

I\ast (a) =

\int a

0

\lambda \ast (\sigma )S\ast (\sigma )e - (\mu +\gamma )(a - \sigma )d\sigma , S\ast (a) = be - \mu ae - 
\int a
0 \lambda \ast (\sigma )d\sigma ,

\lambda \ast (a) = \beta (a)

\int +\infty 

0

I\ast (\sigma )d\sigma , a \geq 0.

As in section 8.1, we fix b = 1703073, \mu = 0.0134, and \gamma = 1. To estimate \scrR 0

given by (8.7), we have to determine transmission coefficient \beta (\cdot ). To this end, we fix
I\ast (\cdot ) as a spline function that interpolates the data of age-distribution of the total
infective population in Table 1 (see Figure 2).
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Fig. 2. Spline functions that interpolate age-distributions in Table 1.
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Fig. 3. Transmission coefficient \beta (\cdot ) cal-
culated by (8.9).
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Fig. 4. Infective population \~I(\cdot ) recon-
structed by (8.10) (dots indicate the data of the
total infective population in Table 1).

Let u\ast (a) := S\ast (a)/ (be - \mu a) and v\ast (a) := I\ast (a)/ (be - \mu a), a \geq 0. We then have,
at the endemic equilibrium,

du\ast (a)

da
=  - \lambda \ast (a)u\ast (a), u\ast (0) = 1,

dv\ast (a)

da
= \lambda \ast (a)u\ast (a) - \gamma v\ast (a), v\ast (0) = 0, a \geq 0.

Hence, we have u\ast (a) = e - 
\int a
0
\lambda \ast (\sigma )d\sigma and v\ast (a) =

\int a
0
\lambda \ast (\sigma )u\ast (\sigma )d\sigma  - \gamma 

\int a
0
v\ast (\sigma )d\sigma for

all a \geq 0, and thus, v\ast (a)+\gamma 
\int a
0
v\ast (\sigma )d\sigma =

\int a
0
\lambda \ast (\sigma )e - 

\int \sigma 
0
\lambda \ast (\rho )d\rho d\sigma = 1 - e - 

\int a
0
\lambda \ast (\sigma )d\sigma 

for all a \geq 0. Solving this equation with respect to \lambda \ast (\cdot ), we obtain \lambda \ast (a) =\bigl\{ 
[v\ast (a)]

\prime 
+ \gamma v\ast (a)

\bigr\} 
/
\bigl\{ 
1 - 

\bigl[ 
v\ast (a) + \gamma 

\int a
0
v\ast (\sigma )d\sigma 

\bigr] \bigr\} 
for all a \geq 0, and thus,

(8.9) \beta (a) =
1\int +\infty 

0
I\ast (\sigma )d\sigma 

[v\ast (a)]\prime + \gamma v\ast (a)

1 - 
\bigl[ 
v\ast (a) + \gamma 

\int a
0
v\ast (\sigma )d\sigma 

\bigr] , a \geq 0.

Note that we can numerically calculate the right-hand side of (8.9) by using the
parameters chosen above (see Figure 3). To confirm the validity of this \beta (\cdot ), we
reconstruct the infective population \~I(\cdot ) from (8.8) as follows:

(8.10) \~I(a) = be - \mu a
\int +\infty 

0

I\ast (a)da

\int a

0

\beta (\sigma )e - 
\int +\infty 
0 I\ast (a)da

\int \sigma 
0 \beta (\rho )d\rho e - \gamma (a - \sigma )d\sigma , a \geq 0.

In Figure 4, we see that the reconstructed infective population \~I(\cdot ) is almost
the same as the infective population I\ast (\cdot ) obtained as a spline function in Figure 2.
Hence, we see that this choice of \beta (\cdot ) is reasonable. Using the parameters chosen in
this way, we obtain the estimation of \scrR 0 from (8.7) as \scrR 0 \approx 1.0531. This value is
slightly different from those obtained in sections 8.1 and 8.2.
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8.4. An age-dependent two-sex model. We finally consider the case of age-
dependent transmission coefficients for n = 2. As in section 8.2, we assume that
there is only the heterosexual disease transmission, that is, bj > 0, \mu j(a) = \mu j > 0,
\gamma j(a) = \gamma j > 0, and \beta jj(a) = 0 for all a \geq 0 and j = 1, 2, and \beta 12(\cdot ), \beta 21(\cdot ) \in 
L\infty 
+ (0,+\infty ),

\int +\infty 
0

\beta 12(a)b1e
 - \mu 1ada > 0, and

\int +\infty 
0

\beta 21(a)b2e
 - \mu 2ada > 0. In this case,

we see that assumptions (A1)--(A6) hold, and model (2.2) is equivalent to the following
age-dependent two-sex SI(R) epidemic model:

(8.11)

\left\{                                       

\biggl( 
\partial 

\partial t
+

\partial 

\partial a

\biggr) 
S1(t, a) =  - 

\biggl[ 
\beta 12(a)

\int +\infty 

0

I2(t, \sigma )d\sigma + \mu 1

\biggr] 
S1(t, a),\biggl( 

\partial 

\partial t
+

\partial 

\partial a

\biggr) 
I1(t, a) = \beta 12(a)

\int +\infty 

0

I2(t, \sigma )d\sigma S1(t, a) - (\mu 1 + \gamma 1) I1(t, a),\biggl( 
\partial 

\partial t
+

\partial 

\partial a

\biggr) 
S2(t, a) =  - 

\biggl[ 
\beta 21(a)

\int +\infty 

0

I1(t, \sigma )d\sigma + \mu 2

\biggr] 
S2(t, a),\biggl( 

\partial 

\partial t
+

\partial 

\partial a

\biggr) 
I2(t, a) = \beta 21(a)

\int +\infty 

0

I1(t, \sigma )d\sigma S2(t, a) - (\mu 2 + \gamma 2) I2(t, a),

S1(t, 0) = b1, I1(t, 0) = 0, S2(t, 0) = b2, I2(t, 0) = 0,

Sj(0, a) = Sj,0(a), Ij(0, a) = Ij,0(a), t > 0, a \geq 0, j = 1, 2.

From the definition in section 3, we obtain the basic reproduction number as

(8.12) \scrR 0 =

\sqrt{} \int +\infty 
0

\beta 12(a)b1e - \mu 1ada

\mu 2 + \gamma 2

\int +\infty 
0

\beta 21(a)b2e - \mu 2ada

\mu 1 + \gamma 1
.

By Theorem 7.6, we see that if \scrR 0 > 1 and Ij,0(\cdot ) > 0, j = 1, 2, on some nonempty
interval, then infective populations Ij(t, \cdot ), j = 1, 2, converge to positive distributions
I\ast j (\cdot ), j = 1, 2, as t\rightarrow +\infty , where

(8.13)

I\ast j (a) =

\int a

0

\lambda \ast 
j (\sigma )S

\ast 
j (\sigma )e

 - (\mu j+\gamma j)(a - \sigma )d\sigma , S\ast 
j (a) = bje

 - \mu jae - 
\int a
0 \lambda \ast 

j (\sigma )d\sigma , j = 1, 2,

\lambda \ast 
1(a) = \beta 12(a)

\int +\infty 

0

I\ast 2 (\sigma )d\sigma , \lambda 
\ast 
2(a) = \beta 21(a)

\int +\infty 

0

I\ast 1 (\sigma )d\sigma , a \geq 0.

As in section 8.2, we fix b1 = 865788, b2 = 835240, \mu 1 = 0.0140, \mu 2 = 0.0128,
and \gamma 1 = \gamma 2 = 1. To estimate \scrR 0, we have to determine \beta 12(\cdot ) and \beta 21(\cdot ). As in
section 8.3, we fix I\ast 1 (\cdot ) and I\ast 2 (\cdot ) as spline functions that interpolate the data of
age-distributions of male and female infective populations in Table 1, respectively
(see Figure 2). Let u\ast j (a) := S\ast 

j (a)/ (bje
 - \mu ja) and v\ast j (a) := I\ast j (a)/ (bje

 - \mu ja), a \geq 0,
j = 1, 2. We then have, for a \geq 0 and j \in \{ 1, 2, \} ,

du\ast 
j (a)

da
=  - \lambda \ast 

j (a)u
\ast 
j (a), u\ast 

j (0) = 1,
dv\ast j (a)

da
= \lambda \ast 

j (a)u
\ast 
j (a) - \gamma jv

\ast 
j (a), v\ast j (0) = 0.

In a fashion similar to that in section 8.3, we obtain, for all a \geq 0 and j = 1, 2,
\lambda \ast j (a) =

\bigl\{ 
[v\ast j (a)]

\prime + \gamma jv
\ast 
j (a)

\bigr\} 
/
\bigl\{ 
1 - 

\bigl[ 
v\ast j (a) + \gamma j

\int a
0
v\ast j (\sigma )d\sigma 

\bigr] \bigr\} 
, and thus,

(8.14)

\beta 12(a) =
1\int +\infty 

0
I\ast 2 (\sigma )d\sigma 

[v\ast 1(a)]
\prime + \gamma 1v

\ast 
1(a)

1 - 
\bigl[ 
v\ast 1(a) + \gamma 1

\int a
0
v\ast 1(\sigma )d\sigma 

\bigr] ,
\beta 21(a) =

1\int +\infty 
0

I\ast 1 (\sigma )d\sigma 

[v\ast 2(a)]
\prime + \gamma 2v

\ast 
2(a)

1 - 
\bigl[ 
v\ast 2(a) + \gamma 2

\int a
0
v\ast 2(\sigma )d\sigma 

\bigr] , a \geq 0.

Note that we can numerically calculate the right-hand sides of both equations in (8.14)
by using the parameters chosen above (see Figure 5). To confirm the validity of these
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Fig. 5. Transmission coefficients \beta 12(\cdot )
and \beta 21(\cdot ) calculated by (8.14).
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Fig. 6. Infective populations \~I1(\cdot ) and
\~I2(\cdot ) reconstructed by (8.15) (dots indicate the
data of male and female infective populations
in Table 1).

choices of \beta 12(\cdot ) and \beta 21(\cdot ), we reconstruct the infective populations \~I1(\cdot ) and \~I2(\cdot )
from (8.13) as follows, for a \geq 0:

(8.15)

\~I1(a) = b1e
 - \mu 1a

\int +\infty 

0

I\ast 2 (a)da

\int a

0

\beta 12(\sigma )e
 - 

\int +\infty 
0 I\ast 2 (a)da

\int \sigma 
0 \beta 12(\rho )d\rho e - \gamma 1(a - \sigma )d\sigma ,

\~I2(a) = b2e
 - \mu 2a

\int +\infty 

0

I\ast 1 (a)da

\int a

0

\beta 21(\sigma )e
 - 

\int +\infty 
0 I\ast 1 (a)da

\int \sigma 
0 \beta 21(\rho )d\rho e - \gamma 2(a - \sigma )d\sigma .

In Figure 6, we see that the reconstructed infective populations \~I1(\cdot ) and \~I2(\cdot )
are almost the same as the infective populations I\ast 1 (\cdot ) and I\ast 2 (\cdot ) obtained as spline
functions in Figure 2, respectively. Hence, we see that these choices of \beta 12(\cdot ) and
\beta 21(\cdot ) are reasonable. Using the parameters determined in this way, we obtain the
estimation of \scrR 0 from (8.12) as \scrR 0 \approx 1.0535. This value is close to the one obtained
in section 8.3 and slightly different from those obtained in sections 8.1 and 8.2.

9. Discussion. In this paper, we have studied the multi-group SIR epidemic
model (2.1) with age structure. Under assumptions (A1)--(A6), we have reformulated
the model into the multi-group model (2.3) with age-dependent susceptibility. We
have defined the basic reproduction number \scrR 0 of system (2.3) as the spectral radius
of the next generation matrix K, and have shown that if \scrR 0 > 1, then system (2.3)
has the unique endemic equilibrium E\ast (Propositions 4.1 and 4.2). We have further
shown the existence of compact attractor \scrA (Proposition 5.3) that consists of total
trajectories \scrU (\cdot ). Then, defining Lyapunov function L1(\cdot ) for total trajectory \scrU (\cdot ) in
\scrA , we have proved that if \scrR 0 < 1, then the disease-free equilibrium E0 is globally
attractive (Theorem 6.1). For \scrR 0 > 1, we have shown Proposition 7.3, which implies
the existence of the persistence attractor \scrA 0 \subset \scrA . Then, by defining the Lyapunov
function L2(\cdot ) for total trajectory \scrU (\cdot ) in \scrA 0, we have proved that if \scrR 0 > 1, then the
endemic equilibrium E\ast is globally attractive (Theorem 7.5). Through this analysis,
we have succeeded in weakening additional assumptions (B1)--(B6) in the previous
study [20].

In section 8, we have applied our main theorem (Theorem 7.6) to the estimation
of the basic reproduction number \scrR 0 for the chlamydia epidemic in Japan in 2015.
We have obtained the estimation values of \scrR 0 for four special cases of our model:
\scrR 0 \approx 1.0148 for the homogeneous model (8.1), \scrR 0 \approx 1.0148 for the age-independent
two-sex model (8.3), \scrR 0 \approx 1.0531 for the age-dependent one-sex model (8.6), and
\scrR 0 \approx 1.0535 for the age-dependent two-sex model (8.11) (see Table 2).
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Table 2
The basic reproduction number \scrR 0 estimated for four special cases of model (2.2) in section 8.

One-sex Two-sex
Age-independent 1.0148 1.0148
Age-dependent 1.0531 1.0535

All of these estimation values are not so different from the value \scrR 0 = 1.02
obtained in [12]. However, we see from Table 2 that the introduction of the age
structure has more influence on the value of \scrR 0 than that of the two-group structure.
In particular, in our case, \scrR 0 values for the models with age structure are greater
than those for the models without age structure. This indicates that although ODE
models without age structure are usually easier to use than PDE models with age
structure, it could lead to the underestimation of \scrR 0.

Finally, we mention some future tasks. In our model (2.2) under (A4) and (A5),
we assume that the disease transmission coefficient is independent of the age of infec-
tive individuals, and that the sum of the mortality and recovery rates is constant. Of
course, a model without these assumptions is more realistic. However, the stability
of the endemic equilibrium for \scrR 0 > 1 does not always hold in such a model (see, for
instance, [1, 6, 26]). To reveal whether the endemic equilibrium of an age-structured
SIR epidemic model can be globally stable for \scrR 0 > 1 under some epidemiologi-
cally reasonable assumptions is an important future task from both the mathematical
and epidemiological viewpoints. In section 8, we considered models with at most
two groups. Our main theorem (Theorem 7.6) can be applied to more general models
with finitely many groups. To consider such a model, we need a more detailed dataset
subdivided according to the heterogeneity (for instance, sexual activity) of each indi-
vidual. To apply our main theorem to such more general models is also an important
future task. In the estimation of \scrR 0 values, we have implicitly assumed that all in-
fective individuals are reported and have neglected the possibility that some of them
are not reported. For this reason, our \scrR 0 values would be underestimated. Improving
the accuracy of the estimation by determining the fraction that are unreported is also
an important future task.
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