

PDF issue: 2025-05-15

The concomitant lateral meniscus injury increased the pivot shift in the anterior cruciate ligament-injured knee

Hoshino, Yuichi ; Miyaji, Nobuaki ; Nishida, Kyohei ; Nishizawa, Yuichiro ; Araki, Daisuke ; Kanzaki, Noriyuki ; Kakutani, Kenichiro ;…

(Citation)

Knee Surgery, Sports Traumatology, Arthroscopy, 27(2):646-651

(Issue Date) 2019-02

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights)

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2018. This is a post-peer-review, pre-copyedit version of an article published in Knee Surgery, Sports Traumatology, Arthroscopy. The final authenticated version is available online at: https://doi.org/10.1007/s00167-018-5209-7

(URL)

https://hdl.handle.net/20.500.14094/90005784

Knee Surgery, Sports Traumatology, Arthroscopy

The concomitant lateral meniscus injury increased the pivot-shift in the anterior cruciate ligament-injured knee

Manuscript Number:	KSST-D-18-01040R2					
Full Title:	The concomitant lateral meniscus injury increased the pivot-shift in the anterior cruciate ligament-injured knee					
Article Type:	Original Paper					
Corresponding Author:	Yuichi Hoshino, Ph.D., M.D. Kobe University Graduate School of Medicin Kobe, Hyogo JAPAN	ne				
Corresponding Author Secondary Information:						
Corresponding Author's Institution:	Kobe University Graduate School of Medicin	ne				
Corresponding Author's Secondary Institution:						
First Author:	Yuichi Hoshino, Ph.D., M.D.					
First Author Secondary Information:						
Order of Authors:	Yuichi Hoshino, Ph.D., M.D.					
	Nobuaki Miyaji					
	Kyohei Nishida					
	Yuichiro Nishizawa					
	Daisuke Araki					
	Noriyuki Kanzaki					
	Kenichiro Kakutani					
	Takehiko Matsushita					
	Ryosuke Kuroda					
Order of Authors Secondary Information:						
Funding Information:	Japan Society for the Promotion of Science (JP16K10902)	Dr. Yuichi Hoshino				
Abstract:	Abstract Purpose Concomitant meniscus injuries in the anterior cruciate ligament (AC have been suggested to exacerbate rotational laxity. However, the effect is as to be so small, if any, that some quantitative pivot-shift measurement is need purpose of this prospective study was to determine the effect of meniscus te rotational laxity in ACL-deficient knees by an quantitative measurement. We hypothesized that a concomitant meniscus tear, especially a lateral one, wou greater pivot-shift. Methods Fifty-seven unilateral ACL-injured patients (26 men and 31 women age: 24±10 years) were included. The pivot-shift test was performed prior to reconstruction while a quantitative evaluation using an electromagnetic systed determine tibial acceleration and a clinical grading according to the IKDC we performed. Meniscus injuries were diagnosed arthroscopically, and concomin meniscus tear was confirmed in 32 knees. Chi-squared and Mann-Whitney L were used to assess the difference between knees with and without meniscus subgroup analysis was subsequently performed for the medial, bilateral, and meniscus-torn groups compared with the meniscus-intact group, using the cl test and analysis of variance. Statistical significance was defined at p<0.05.					

1	The concomitant lateral meniscus injury increased the pivot-shift in the anterior
2	cruciate ligament-injured knee
3	
4	
5	

6 Abstract

Purpose Concomitant meniscus injuries in the anterior cruciate ligament (ACL) injuries 7 have been suggested to exacerbate rotational laxity. However, the effect is supposed to be so 8 small, if any, that some quantitative pivot-shift measurement is needed. The purpose of this 9 prospective study was to determine the effect of meniscus tear on rotational laxity in ACL-10 deficient knees by an quantitative measurement. It was hypothesized that a concomitant 11 meniscus tear, especially a lateral one, would induce greater pivot-shift. 12 Fifty-seven unilateral ACL-injured patients (26 men and 31 women, mean age: Methods 13 24±10 years) were included. The pivot-shift test was performed prior to ACL reconstruction 14 while a quantitative evaluation using an electromagnetic system to determine tibial 15 acceleration and a clinical grading according to the IKDC were performed. Meniscus injuries 16 were diagnosed arthroscopically, and concomitant meniscus tear was confirmed in 32 knees. 17 The clinical grade was not different between the ACL-injured knees of patients Results 18 with and without meniscus tear (n.s.). Tibial acceleration did not show a statistical 19 significant difference (meniscus-injured knees: $1.6 \pm 1.1 \text{ m/sec}^2 \text{ vs.}$ meniscus-intact knees: 20 1.2 ± 0.7 m/sec², n.s.). However, the subgroup analysis demonstrated that there was increased 21 tibial acceleration in ACL-deficient knees with lateral meniscus tear $(2.1\pm1.1 \text{ m/sec}^2, n=13)$ 22 compared with meniscus-intact knees (p<0.05), whereas rotational laxity did not increase in 23 the medial meniscus-injured and bilateral-injured knees $(1.2\pm0.9 \text{ m/sec}^2, n=12, n.s. \text{ and})$ 24 $1.4\pm1.1 \text{ m/sec}^2$, n=7, n.s. respectively). 25

26	<i>Conclusion</i> A concomitant meniscus tear, especially a lateral meniscus tear, has a
27	significant impact on rotational laxity in ACL-injured knees. When a large pivot-shift is
28	observed in the ACL-injured knee, a concomitant meniscus tear should be suspected and an
29	aggressive treatment would be considered. Meniscus injuries should be inspected carefully
30	when substantial pivot shift is encountered in ACL-injured knees.
31	
32	Level of evidence Diagnostic Study Level III
33	
34	Keywords: Anterior cruciate ligament, Meniscus injury, Pivot-shift test, Quantitative
35	measurement
36	

38 Introduction

Residual pivot shift is a persistent problem that can be observed in anterior cruciate ligament 39 (ACL)-reconstructed knees, even those undergoing an anatomic procedure [6]. Researchers 40 have increasingly focused upon the secondary restraints of rotational laxity to address this 41 problem, but it is still undetermined which anatomic structure is the most clinically relevant 42 secondary restraint. Some structures have been suggested as the secondary restraint, such as 43 the anterolateral complex [5,7,40], iliotibial band [15,33], and meniscus [21,25,28]. ACL 44 injuries are frequently accompanied by meniscus injuries [9,24,35,37], and their impact on 45 rotational laxity has been reported frequently in previous studies [21,25-28,36,38]. 46 Typically, the aggravated rotational laxity of the ACL insufficient knee was observed by the 47 meniscus resection. Shybut et al. reported a significant increase in rotational laxity after the 48 lateral meniscus root was cut following ACL resection [36]. However, because most of these 49 studies were cadaveric studies which were not able to apply true pivot-shift loading in in-50 vivo setting, the *in vivo* effect of a concomitant meniscus injury on rotational laxity is largely 51 unknown due to the lack of a quantitative system for evaluating pivot shift. In an *in vivo* 52 study using an iPad system, Musahl et al. first reported that there was increased anterior 53 tibial translation of the lateral compartment during the pivot-shift in ACL-injured knees with 54 a meniscus injury or anterolateral capsule injuries compared with isolated ACL-injured 55

56	knees [28]. Meanwhile, tibial acceleration is another measurement parameter to quantify the
57	pivot-shift test [13,18,19,22,31], and it is superior to tibial translation in terms of its
58	correlation to clinical grading systems [1,18].
59	The purpose of this study was to determine the <i>in vivo</i> effect of concomitant meniscus tear
60	on rotational laxity in ACL-deficient knees using quantitative measurements for the pivot-
61	shift test. It was hypothesized that a meniscus tear, especially a lateral one, that is associated
62	with an ACL injury would induce greater pivot-shift. The information about the effect of the
63	meniscus tear on the rotational laxity would be clinically useful for the detection and
64	treatment of concomitant meniscus injury in the ACL injured knee.
65	
66	Materials and Methods
67	
68	Ethical Considerations
69	Ethical approval was obtained from the institutional review board in Kobe University prior
70	to this study (No. 341). Informed consent was obtained from all individual participants.
71	
72	Patients

ies,
te
L
L of
of
of
of
of
Ľ

orientation with the transmitter-to-receiver separation within 180 cm. Two electromagnetic 93 sensors were fixed on the thigh and shank with the original plastic straps. The three-94 dimensional positions of seven anatomic bony landmarks, including the greater trochanter, 95 medial and lateral epicondyles, the crossing point between the medial joint line and the 96 medial collateral ligament, fibula head, and medial and lateral malleoli, were electronically 97 recorded using a third electromagnetic sensor, and the positions of the femur and tibia were 98 accurately captured based on the spatial relationship between the anatomic bony landmarks 99 and sensors on the skin. The anatomic coordinates of the knee, according to the system of 100 Grood and Suntay, were set [10]. The 6 degree-of-freedom knee kinematics during the pivot-101 shift test were then monitored, with a high sampling rate of 240 Hz. Eventually, tibial 102 acceleration (m/sec²) of the posterior shift during the pivot-shift test was calculated from the 103 data of the tibial anteroposterior translation. The tibial acceleration was one of the 104 quantitative measurements for the pivot-shift test and related to clinical grading of the pivot-105 shift test [13,31]. 106

The clinical grade of the pivot shift was also determined by the surgeon, according to the International Knee Documentation Committee's guidelines, as: none (-), glide (+), clunk (++), and gross (+++) [14].

The condition of the meniscus was assessed under arthroscopy for the primary ACL reconstruction. A concomitant meniscus tear was observed in 32 knees out of 57. Twelve knees had medial meniscus tear only, while only the lateral meniscus was torn in 13 knees. Bilateral meniscus injuries were observed in 7 knees.

114

115 Statistical Analysis

116	The clinical grade and tibial acceleration of the pivot-shift test were compared between
117	ACL-injured knees with a meniscus tear and those without, using a chi-square test and
118	independent t-test, respectively. A subgroup analysis was then performed by separating all of
119	the meniscus tear into the medial meniscus-torn group, bilateral meniscus-torn group, and
120	lateral meniscus-torn group. The differences of the pivot-shift clinical grade and tibial
121	acceleration among the groups were tested using a chi-square test and analysis of variance,
122	respectively, followed by a post-hoc Tukey HSD test for separate comparisons between two
123	groups.
124	All statistical analyses were performed with SPSS Version 22 (SPSS Inc., Chicago, IL,
125	USA). Statistical significance was set at $p < 0.05$.
126	An a priori power analysis showed that total number of 46 subjects were required to detect
127	a 0.5 m/sec ² difference in tibial acceleration, assuming a power of 0.90, significance level of
128	0.05, and common variance of 0.5 m/sec ² in a two-sided Student's t-test, based on data from
129	previous reports [3,13,30,31]. Subgroup analysis between four groups by analysis of
130	variance achieved a power of 0.82 if each group had 14 cases. Thus, the targeted sample size
131	<u>was 56.</u>
132	
133	
134	Results
135	There was no significant difference in the clinical grade of the pivot-shift test between the
126	ACL injured knees with and without maniscus tear (n, s) . Similar results were obtained

ACL-injured knees with and without meniscus tear (n.s.). Similar results were obtained

- when medial, lateral, and bilateral meniscus-torn knees were separately compared with
- meniscus-intact knees (n.s., all) (Table 1). When all meniscus-torn knees were compared with

meniscus-intact knees, there was no significant difference in tibial acceleration during the pivot-shift test (meniscus-torn knees: 1.6 ± 1.1 m/sec² and meniscus intact knees: 1.2 ± 0.7 m/sec², n.s.).

However, the subgroup analysis demonstrated that ACL-deficient knees with lateral meniscus tear had significantly larger tibial acceleration $(2.1\pm1.1 \text{ m/sec}^2)$ than did meniscusintact knees (p=0.014). A significant difference was not found when the medial meniscustorn knees $(1.2\pm0.9 \text{ m/sec}^2)$ and bilateral meniscus-torn knees $(1.4\pm1.1 \text{ m/sec}^2)$ were compared (n.s., both) (Fig. 1).

147

148 Discussion

149

The most important finding of this study was that increased tibial acceleration during the 150 pivot-shift was detected in the ACL-injured knees with concomitant lateral meniscus tear in 151 comparison to that without meniscus tear by using a quantitative evaluation of the pivot-shift 152 test using an electromagnetic system. Previous studies have suggested that the meniscus 153 influences rotational laxity secondary to the ACL [25,36], but the impact of meniscus tear is 154 difficult to determine in a clinical setting, mainly due to the lack of a sensitive and 155 quantitative method for evaluating rotational laxity. Recently, several measurement systems 156 have become available to quantify the pivot-shift in clinical setting, such as iPad [12], 157 electromagnetic system [13] and accelerometer [19]. They evaluate different aspect of the 158

159	pivot-shift movement, such as tibial translation and acceleration. Tanaka et al. compared
160	these systems and demonstrated better sensitivity and specificity to detect the pivot-shift in
161	the electromagnetic system over iPad and accelerometer [39]. Using an iPad measurement
162	system, Musahl et al. reported a large anterior tibial translation of the lateral compartment
163	during the pivot-shift in ACL-injured knees with an associated meniscus tear [28].
164	Interestingly, in our study, we did not recognize an additional increase in the pivot-shift
165	because of either medial or lateral meniscus tear when we used a manual grading system.
166	However, the manually performed pivot-shift test is undoubtedly inconsistent among
167	surgeons [17,29,32]. Peeler et al reported only a moderate level of inter-rater reliability in
168	the manually performed pivot-shift test [34]. The sensitivity of the manual pivot-shift test is
169	assumed to be too low to detect the additional injury in the ACL injured knees. Therefore,
170	any method to quantitatively measure rotational laxity appears to be essential for detecting
171	the influence of meniscus tear on the rotational laxity of the knee.
172	The influence of bilateral meniscus tear on the pivot-shift was indefinite in this study
173	mainly due to small number of bilateral meniscus-torn knees, i.e. possible type II error.
174	However, from a biomechanical point of view, since the axis of the pivot-shift movement is
175	on the medial side of the knee, around the medial collateral ligament [25], a concomitant
176	medial meniscus tear might destabilize the medial compartment of the knee joint and inhibit

177	the pivot-shift movement. A further investigation with an increased number of subjects,
178	including bilateral meniscus-torn knees, is needed to address this issue.
179	The biomechanical effect of the medial and lateral menisci on rotational laxity is different.
180	Lateral meniscus has long been considered as a buttress against anterior subluxation of the
181	lateral tibial plateau [8]. In a recent cadaveric study, the lateral tibial translation was proven
182	to correlate with pivot-shift grading [4]. Musahl et al. compared medial and lateral
183	menisectomy in an ACL-resected knee model and showed that lateral menisectomy, in
184	addition to ACL resection, worsened anterior tibial translation during the pivot-shift test,
185	whereas no such effect was observed after medial menisectomy [26]. Some studies have
186	demonstrated that a medial meniscus tear has a positive impact on rotational laxity [20,41],
187	but not all types of medial meniscus tear affect anterior stability against combined rotational
188	stress [2]. Contrary to expectations, there was no significant increase of the pivot-shift in the
189	bilateral meniscus torn knees compared to the meniscus intact knees in the current study.
190	This study has some limitations. First, the sample size could be insufficient, though
191	statistically significant finding was obtained between lateral meniscus torn group and
192	meniscus intact group in host-hoc analysis. The total number of patients, 57, surpassed the
193	originally targeted number from the sample size calculation to assess the overall impact of
194	the concomitant meniscus tear on the pivot-shift and to compare the subgroup analysis, but

195	the final number of patients in each group for the following analysis, i.e. the comparisons
196	between bilateral or medial meniscus torn group vs meniscus intact group, seems to be
197	limited. Because of the small sample size, type II error might be suspected for the negative
198	results in medial and bilateral meniscus torn groups. Furthermore, the tear type and location
199	of the meniscus tear were not considered in this study. In order to form multiple groups of
200	meniscus-torn knees depending on tear type and location, more than 10 times the number of
201	current subjects would be required. Also, the threshold of the quantitative measurement to
202	detect the meniscus tear could not be determined with this small number of sample size in
203	this study. Increased number of cases and some validation studies could possibly provide a
204	definite threshold to identify the meniscus tear in the ACL injure knees. A larger multicenter
205	study might be ideal to analyze meniscus injuries further. Second, most study subjects were
206	chronic ACL injury cases in this study, and the chronicity of ACL injuries was not controlled
207	in each group. It was reported that chronic ACL tear increases the risk of a greater pivot-shift
208	[23]. Some stable type of meniscus tear might have been healed spontaneously. Finally,
209	meniscus injury was confirmed under arthroscopy and was not determined preoperatively
210	with manual testing or MRI. Meniscus injuries could definitely be diagnosed with an
211	arthroscopic assessment, and the most definitive method to diagnose the meniscus tear was

212	preferable for this study. Meniscus tear is not necessarily detected preoperatively by MRI,
213	especially for lateral meniscus root tear [16].
214	The clinical relevance of this study finding is that meniscus injuries should be inspected
215	carefully when substantial pivot shift is encountered in ACL-injured knees. Meniscal repair
216	might be prepared in addition to the ACL reconstruction when the ACL injured knee has
217	large pivot-shift and is suspected to have concomitant lateral meniscus tear preoperatively.
218	The concomitant lateral meniscus tear, if any, would be repaired as much as possible to
219	inhibit the pivot-shift.
220	
221	Conclusions
222	
223	Quantitatively measurement of the pivot-shift test revealed that a concomitant lateral
224	meniscus tear in ACL-injured knees had a significant impact on the rotational laxity of the
225	knee. An objective and quantitative evaluation with the pivot-shift test could be helpful to
226	detect concomitant meniscus tear in ACL-injured knees.
227	
228	References

230	1. Ahlder	1 M, Arau	ijo P.	Hoshino	Y, Sa	amuelsson l	K, N	Middleton	KK,	Nagamune	K, (et al.

- (2012) Clinical grading of the pivot shift test correlates best with tibial acceleration. Knee
 Surg Sports Traumatol Arthrosc 20(4):708-712.
- Ahn JH, Bae TS, Kang KS, Kang SY, Lee SH. (2011) Longitudinal tear of the medial
 meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly
 influences anterior stability. Am J Sports Med 39(10):2187-2193.
- 3. Araki D, Kuroda R, Matsushita T, Kuroda R, Matsushita T, Matsumoto T, et al. (2013)
- Biomechanical analysis of the knee with partial anterior cruciate ligament disruption:
- quantitative evaluation using an electromagnetic measurement system. Arthroscopy
 239 29(6):1053-1062.
- 4. Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD. (2010) Lateral compartment
 translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg
 Sports Traumatol Arthrosc 18(9):1269-1276.
- 5. Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J. (2013) Anatomy of the
 anterolateral ligament of the knee. J Anat 223(4):321-328.
- 6. Desai N, Bjornsson H, Musahl V, Bjornsson H, Musahl V, Bhandari M, et al. (2014)
- Anatomic single- versus double-bundle ACL reconstruction: a meta-analysis. Knee Surg
 Sports Traumatol Arthrosc 22(5):1009-1023.
- ²⁴⁸ 7. Dodds AL, Halewood C, Gupte CM, Williams A, Amis AA. (2014) The anterolateral
- ligament: Anatomy, length changes and association with the Segond fracture. Bone Joint
 J 96-B(3):325-331.
- 8. Fetto JF, Marshall JL. (1979) Injury to the anterior cruciate ligament producing the pivot shift sign. J Bone Joint Surg Am 61(5):710-714.

253	9. Granan LP, Forssblad M, Lind M, Engebretsen L. (2009) The Scandinavian ACL
254	registries 2004-2007: baseline epidemiology. Acta Orthop 80(5):563-567.
255	10. Grood ES, Suntay WJ. (1983) A joint coordinate system for the clinical description
256	of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136-144.
257	11. Hoshino Y, Araujo P, Ahlden M, Moore CG, Kuroda R, Zaffagnini S, et al. (2012)
258	Standardized pivot shift test improves measurement accuracy. Knee Surg Sports
259	Traumatol Arthrosc 20(4):732-736.
260	12. Hoshino Y, Araujo P, Ahldén M, Samuelsson K, Muller B, et al. (2013)
261	Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg
262	Sports Traumatol Arthrosc 21(4):975-980
263	13. Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, et al.
264	(2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-
265	deficient knee using an electromagnetic device. Am J Sports Med 35(7):1098-1104.
266	14. Irrgang JJ, Ho H, Harner CD, Fu FH. (1998) Use of the International Knee
267	Documentation Committee guidelines to assess outcome following anterior cruciate
268	ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 6(2):107-114.
269	15. Kittl C, El-Daou H, Athwal KK, Gupte CM, Weiler A, Williams A, et al. (2016)
270	The role of the anterolateral structures and the ACL in controlling laxity of the intact and
271	ACL-deficient knee: response. Am J Sports Med 44(2):345-354.
272	16. Krych AJ, Wu IT, Desai VS, Murthy NS, Collins MS, Saris DBF, et al. (2018) High
273	Rate of Missed Lateral Meniscus Posterior Root Tears on Preoperative Magnetic
274	Resonance Imaging. Orthop J Sports Med 9;6(4):2325967118765722

17. Kuroda R, Hoshino Y, Kubo S, Araki D, Oka S, Nagamune K, et al. (2012)

276 Similarities and differences of diagnostic manual tests for anterior cruciate ligament

insufficiency: a global survey and kinematics assessment. Am J Sports Med 40(1):91-99.

- 18. Labbe DR, de Guise JA, Mezghani N, de Guise JA, Mezghani N, Godbout V, et al.
- (2010) Feature selection using a principal component analysis of the kinematics of the
 pivot shift phenomenon. J Biomech 43(16):3080-3084.
- Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A,
 Zaffagnini S. (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee
 Surg Sports Traumatol Arthrosc 20(4):713-717.
- Lorbach O, Kieb M, Herbort M, Weyers I, Raschke M, Engelhardt M. (2015) The
 influence of the medial meniscus in different conditions on anterior tibial translation in
 the anterior cruciate deficient knee. Int Orthop 39(4):681-687.
- 287 21. Lording T, Corbo G, Bryant D, Burkhart TA, Getgood A. (2017) Rotational laxity
 288 control by the anterolateral ligament and the lateral meniscus is dependent on knee
 289 flexion angle: a cadaveric biomechanical study. Clin Orthop Relat Res 475(10):24012408.
- 291 22. Maeyama A, Hoshino Y, Debandi A, Kato Y, Saeki K, Asai S, et al. (2011)

Evaluation of rotational instability in the anterior cruciate ligament deficient knee using

triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports

- ²⁹⁴ Traumatol Arthrosc 19(8):1233-1238.
- 23. Magnussen RA, Reinke EK, Huston LJ, MOON Group, Hewett TE, Spindler KP.
 (2016) Factors associated with high-grade Lachman, pivot-shift, and anterior drawer at
- the time of ACL reconstruction. Arthroscopy 32(6): 1080-1085.

298 24. Maletis GB, Granan LP, Inacio MC, Funahashi TT, Engebretsen L. (2011)

- Comparison of community-based ACL reconstruction registries in the U.S. and Norway. J
 Bone Joint Surg Am 93 Suppl 3:31-36.
- Matsumoto H. (1990) Mechanism of the pivot shift. J Bone Joint Surg Br
 72(5):816-821.
- ³⁰³ 26. Musahl V, Getgood A, Neyret P, Claes S, Burnham JM, Batailler C, et al. (2017)

304 Contributions of the anterolateral complex and the anterolateral ligament to rotatory knee

stability in the setting of ACL injury: a roundtable discussion. Knee Surg Sports

306 Traumatol Arthrosc 25(4):997-1008.

Musahl V, Citak M, O'Loughlin PF, Choi D, Bedi A, Pearle AD. (2010) The effect
 of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament deficient knee. Am J Sports Med 38(8):1591-1597.

28. Musahl V, Rahnemai-Azar AA, Costello J, Arner JW, Fu FH, Hoshino Y, et al.

311 (2016) The influence of meniscal and anterolateral capsular injury on knee laxity in

patients with anterior cruciate ligament injuries. Am J Sports Med 44(12):3126-3131.

29. Musahl V, Hoshino Y, Ahlden M, Araujo P, Irrgang JJ, Zaffagnini S, et al. (2012)

The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc 20(4):724-731.

- 315 30. Nagai K, Araki D, Matsushita T, Nishizawa Y, Hoshino Y, Matsumoto T, et al.
- 316 (2016) Biomechanical function of anterior cruciate ligament remnants: quantitative
- measurement with a 3-dimensional electromagnetic measurement system. Arthroscopy

³¹⁸ 32(7):1359-1366.

- 319 31. Nagai K, Hoshino Y, Nishizawa Y, Araki D, Matsushita T, Matsumoto T, et al.
- 320 (2015) Quantitative comparison of the pivot shift test results before and after anterior

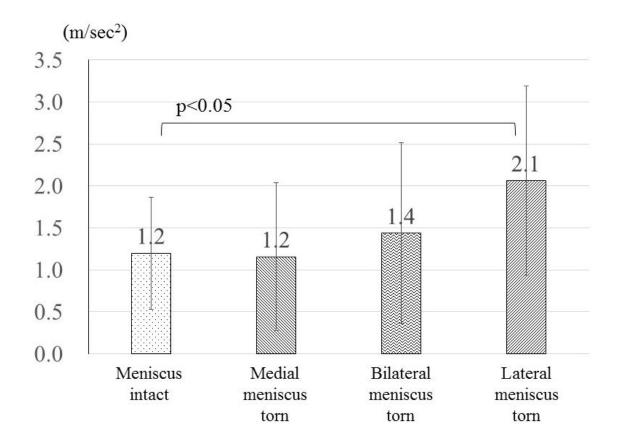
321	cruciate ligament reconstruction by using the three-dimensional electromagnetic
322	measurement system. Knee Surg Sports Traumatol Arthrosc 23(10):2876-2881.
323	32. Noyes FR, Grood ES, Cummings JF, Wroble RR. (1991) An analysis of the pivot
324	shift phenomenon. The knee motions and subluxations induced by different examiners.
325	Am J Sports Med 19(2):148-155.
326	33. Noyes FR, Huser LE, Levy MS. (2017) Rotational knee instability in ACL-deficient
327	knees: role of the anterolateral ligament and iliotibial band as defined by tibiofemoral
328	compartment translations and rotations. J Bone Joint Surg Am 99(4):305-314.
329	34. Peeler J, Leiter J, MacDonald P.(2010) Accuracy and reliability of anterior
330	cruciate ligament clinical examination in a multidisciplinary sports medicine setting. Clin
331	J Sport Med 20(2):80-85
332	35. Rotterud JH, Sivertsen EA, Forssblad M, Engebretsen L, Aroen A. (2013) Effect of
333	meniscal and focal cartilage lesions on patient-reported outcome after anterior cruciate
334	ligament reconstruction: a nationwide cohort study from Norway and Sweden of 8476
335	patients with 2-year follow-up. Am J Sports Med 41(3):535-543.
336	36. Shybut TB, Vega CE, Haddad J, Alexander JW, Gold JE, Noble PC, et al. (2015)
337	Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-
338	deficient knee. Am J Sports Med 43(4):905-911.
339	37. Slauterbeck JR, Kousa P, Clifton BC, Naud S, Tourville TW, Johnson RJ, et al.
340	(2009) Geographic mapping of meniscus and cartilage lesions associated with anterior
341	cruciate ligament injuries. J Bone Joint Surg Am 91(9):2094-2103.

342	38. Tanaka M, Vyas D, Moloney G, Bedi A, Pearle AD, Musahl V. (2012) What does it
343	take to have a high-grade pivot shift? Knee Surg Sports Traumatol Arthrosc. 20(4):737-
344	742.
345	39. Tanaka T, Hoshino Y, Miyaji N, Ibaragi K, Nishida K, Nishizawa Y, et al. (2018)
346	The diagnostic reliability of the quantitative pivot-shift evaluation using an
347	electromagnetic measurement system for anterior cruciate ligament deficiency was
348	superior to those of the accelerometer and iPad image analysis. Knee Surg Sports
349	Traumatol Arthrosc 26(9):2835-2840
350	40. Vincent JP, Magnussen RA, Gezmez F, Magnussen RA, Gezmez F, Uguen A, et al.
351	(2012) The anterolateral ligament of the human knee: an anatomic and histologic study.
352	Knee Surg Sports Traumatol Arthrosc 20(1):147-152.
353	41. Zaffagnini S, Signorelli C, Bonanzinga T, Grassi A, Galan H, Akkawi I, et al.
354	(2016) Does meniscus removal affect ACL-deficient knee laxity? An in vivo study. Knee
355	Surg Sports Traumatol Arthrosc 24(11):3599-3604.
356	

- 357 Tables
- Table 1. Clinical Grade of the Pivot-Shift Test in ACL-Injured Knees with and without
- 359 Meniscus Tear

		All	Medial	Lateral	Bilateral
	Meniscus-	meniscus	meniscus	meniscus	meniscus
	intact	-torn	-torn	-torn	-torn
	knees	knees*	knees	knees	knees
	(n=25)	(n=32)	(n=12)	(n=13)	(n=7)
Glide (+)	15	12	6	5	1

Pivot shift	Clunk (++)	10	18	5	7	6
clinical grade	Gross (+++)	0	2	1	1	0


³⁶⁰ *: "All meniscus-torn knees" includes all ACL-injured knees with medial, lateral, or bilateral

361 meniscus tear.

362

363 Figures

364

- ³⁶⁶ Fig. 1. Tibial acceleration during the pivot-shift test in ACL-injured knees with
- ³⁶⁷ different ;meniscus conditions. A statistically significant difference was observed only
- ³⁶⁸ between the meniscus-intact and lateral meniscus-torn groups.