

PDF issue: 2025-07-03

主桁間隔の狭いPCI形桁に適用する外ケーブル補強工 法定着部の耐荷性能に関する検討

湯淺,康史 森川,英典

福田, 圭祐

(Citation) 土木学会論文集E2(材料・コンクリート構造),73(4):363-379

(Issue Date) 2017-10

(Resource Type) journal article

<mark>(Version)</mark> Version of Record

(Rights) © 2017 公益社団法人 土木学会

(URL)

https://hdl.handle.net/20.500.14094/90005924

主桁間隔の狭い PCI 形桁に適用する外ケーブル 補強工法定着部の耐荷性能に関する検討

湯淺 康史¹·森川 英典²·福田 圭祐³

 ¹正会員 西日本旅客鉄道株式会社 新幹線管理本部 神戸新幹線土木技術センター (〒673-0016 明石市松の内 2-3-8)
E-mail: kouji-yuasa@westjr.co.jp

²正会員 神戸大学大学院教授 工学研究科 市民工学専攻 (〒657-8501 神戸市灘区六甲台 1-1) E-mail: morikawa@kobe-u.co.jp

> ³正会員 ジェイアール西日本コンサルタンツ株式会社 土木設計本部 (〒532-0011 大阪市淀川区西中島5-4-20) E-mail: fukuta_k@jrnc.co.jp

プレストレストコンクリート桁において,耐荷性能の回復または向上が必要となった場合に,外ケーブ ル補強工法が用いられることが多い.しかし,鉄道橋に多用されている主桁間隔の狭い PCI 形桁では,空 間の制約により従来構造の定着装置が設置できない.このため著者らは,同形式の PCI 形桁に適用できる 構造の定着装置を提案して検討を行っている.

本稿では、定着装置の耐荷性能および定着部の挙動の評価を主目的として実験的検討を行った. その結 果、定着装置は最大荷重に至るまでに、新旧コンクリート界面での微小なすべり挙動や回転挙動が生じる とともに、拘束効果と考えられる影響で大きな耐荷性能を有することがわかった. さらに、界面に垂直に 作用する圧縮力、表面処理方法、横桁の有無が耐荷性能に与える影響も評価した.

Key Words : strengthening, external cables, anchorage unit, prestressed concrete I-girder bridge, shear transfer behavior

1. はじめに

プレストレストコンクリート (PC) 桁において,主 方向 PC 鋼材の腐食や破断が生じて補強が必要となった 場合,プレストレスを追加導入する外ケーブル補強工法 が用いられることが多い.外ケーブル補強工法における 定着装置は,一般に,主桁ウェブ側面にコンクリート製 のブラケットが設けられ,定着装置はウェブを貫通した 水平方向の PC 鋼材の緊張力によって定着される¹⁾(図-1).しかし,鉄道橋に供用されている主桁間隔の狭い PCI 形桁においては,空間の制約から水平方向 PC 鋼材 を緊張することができず,従来の定着装置を施工するこ とは困難である.

そこで、図-2 に示すように主桁間にコンクリートを 打設し、鉛直方向の PC 鋼材(以下,緊結用 PC 鋼材と 称する)を緊張して定着する構造の定着装置(以下,桁 間定着装置と称する)を考案した.本定着装置は、下フ ランジハンチ面における新旧コンクリート界面(以下, 新旧界面と称する)の摩擦抵抗を主とするせん断伝達耐 荷力により,外ケーブルの緊張力に抵抗することを意図

している.また、本定着装置ではハンチ面でのせん断伝 達抵抗を高めるため、新旧界面にショットブラストによ る表面処理を行うともに、ハンチ面に緊結力を集中させ るため、主桁ウェブ側面および下フランジ側面では縁切 り材を介在させて定着装置と主桁は直接接しない仕様と している.さらに、下フランジ部には主方向 PC 鋼材が 配置されていることから、ハンチ面には接合鉄筋を配置 しない仕様としている.

著者らはこれまでに、桁間定着装置の耐荷性能を確認 するため、実験的検討を実施している^{3,3}.その結果、 本定着装置の耐荷力は従来構造の定着装置の設計基準に 基づく計算値を大きく上回り、定着装置としての有効性 が確認されている.しかし、定着装置は想定以上に耐荷 力を有していたため、ハンチ面での滑動に至るまで載荷 することができず、本定着装置の耐荷性能や定着部の挙 動を十分に明らかにすることができていない.また、同 実験において、定着部周辺の主桁にひび割れが生じるこ とが認められている.PC桁の補強にあたって、既設部 材にひび割れが生じることは許容されるべきではないこ とから、既設主桁にひび割れが生じる原因等の、既設主 桁に与える影響の評価が必要があると考えられる.

以上を踏まえて、本研究では、桁間定着装置の耐荷性 能および定着部の挙動、既設主桁に与える影響の評価を 目的として実験的検討を行った。桁間定着装置はハンチ 面の新旧界面のせん断伝達耐力により定着する構造であ るため、定着装置の耐荷性能の評価にあたっては、基礎 的検討として新旧界面のせん断伝達性能の評価が重要と 考えられる.また、従来構造の定着装置の設計基準^bで は、設計荷重作用時に定着装置が弾性範囲の領域で挙動 するよう設計することが定められており、新旧界面のせ ん断伝達性能の評価にあたっては、せん断強度に加えて すべり挙動の評価も必要と考えられる.既往の研究では、 接合鉄筋を配置しないで凹凸性状を有する新旧界面のせ ん断強度に着目した研究がいくつか行われているが 40, すべり挙動にまで着目した研究は見当たらない. このた め本研究では、はじめに基礎実験として、新旧界面に均 一な圧縮応力とせん断応力を作用させるせん断実験を行 い、すべり挙動も含めたせん断伝達性能の検討を行った. その後、定着部を模擬した供試体の載荷実験を実施し、 定着装置の耐荷性能および定着部の挙動、既設主桁に与 える影響を検討した. なお、定着装置を実橋に適用した 場合には、コンクリートのクリープや乾燥収縮等の影響 で,緊結用 PC 鋼材の張力が経時変化し,耐荷性能も変 化すると想定されるが、経時変化の影響は別途検討する こととし、定着部の実験では経時変化が収束した段階の 耐荷性能を対象とした.また、実験では実橋に適用した 場合に変動する可能性がある,ハンチ面に垂直に作用す る応力(以下,界面垂直応力と称する),新旧界面の付 着状態、横桁の影響度を変化させて、これらが耐荷性能 等に与える影響も検討した.

2. 新旧界面のせん断伝達に関する基礎実験概要

(1) 実験供試体

供試体の形状を図-3 に示す.供試体は幅 100mm×高 さ 100mm,長さ 400mmの角柱供試体で,無筋コンクリ

炭素繊維シート 新旧界面(ブラスト処理)			項目		仕様		
			セメント	早強ポルトランドセメント	密度 3.13g/cm³,比表面積 4670cm²/g		
	先打ち部	後打ち部			細骨材	滋賀県犬上郡多賀町産砕砂	密度(表乾)2.66g/cm ³ ,粗粒率2.80
(主桁コンクリート)(定着装置コンクリート)			10		G1 岐阜県大垣市産 砕石 2010	密度(表乾)2.65g/cm ³ ,実績率58.9%	
l		·		<u></u>	租何的	G2 岐阜県大垣市産 砕石 1505	密度(表乾)2.64g/cm ³ ,実績率59.9%
	$\leftarrow 200 \rightarrow$	< 200 →				高性能減水剤	ポリカルボン酸エーテル系化合物
<u> 400</u>			混和材	A T	変性アルキルカルボン酸化合物系		
				AE角	陰イオン界面活性剤		
	凶-3 供訊(4)形状区						

表-1 コンクリート材料

表-2 コンクリート配合 (a) 先打ち部(主桁)

粗骨材		باللار در مديار		VII.IE.++			単	位量(kg/n	r)		
最大寸法	スランプ	水セメント比	空风重	神育 材 学	-k	カンパ	細骨材	粗	骨材	混和	剤
Gmax (mm)	sı (cm)	(%)	All (%)	(%)	水 W	C	S1	G1	G2	高性能 減水剤	AE剤
20	15	39.0	4.5	46.6	150	385	849	579	386	2.80	1.50
	(b) 後打ち部(定着装置,床板)										
粗骨材	スランプ		~~~~~=	如日十十六			単	位量(kg/n	n ³)		
最大寸法	フロー	水セメント比	空风重	神育材学	-le	4.000	細骨材	粗情	骨材	混和	剤
Gmax (mm)	sl (cm)	(%)	All (%)	(%)	水 W	C C	S1	G1	G2	高性能 減水剤	AE剤
15	50	35.0	4.5	53.0	170	486	888	-	781	4.37	1.50

表-3 供試体一覧						
新旧界面の 処理方法	界面垂直 応力	炭素繊維 シート	供試 体数	記号		
	(N/mm^2)	積層数				
· > >	4	3	2	A-4-[1], A-4-[2]		
Aダイノ (ブラフト)	7	4	2	A-7-[1], A-7-[2]		
()) ~ ()	10	5	2	A-10-[1], A-10-[2]		
Bタイプ	4	3	2	B-4-[1],B-4-[2]		
(ブラスト+	7	4	2	B-7-[1],B-7-[2]		
剥離剤)	10	5	2	B-10-[1], B-10-[2]		

/11⇒+/+-

図-4 せん断実験図

写真-1 載荷実験状況

ート製とした.供試体は長さ 200mm 部分を先打ち部と して、後述する定着部実験における主桁コンクリートと 同じコンクリートで製作し,新旧界面に表面処理を行っ た後、後打ち部として定着装置のコンクリートを打設し て製作した.なお、基礎実験は後述する定着部の実験の 基礎物性を把握する位置づけとなることから、定着部の 実験と同じコンクリート、同じ新旧界面の表面処理方法 により供試体を製作することとした. コンクリートの材 料および配合を表-1、表-2に示す、先打ち部のコンクリ ートの目標圧縮強度は既設主桁に一般に適用されている 40N/mm²とし、後打ち部は目標圧縮強度を 60N/mm²とす る高流動コンクリートを用いた。また、供試体は曲げ破 壊を防止するため、上下面を炭素繊維シート(目付け 量:600g/m²,引張弾性率:245kN/mm²)により補強する こととし、シート積層数は供試体に作用させる界面垂直 応力に応じて設計計算結果から定めた.

次に、本実験の供試体一覧を表-3 に示す.供試体は 新旧界面の処理方法と界面垂直応力を実験要因とした. 新旧界面の処理方法は、ショットブラスト(噴出量:70 kg/m²/分)により処理する場合(以下, A タイプと称す る)と、ショットブラスト後にコンクリート型枠用の剥 離剤を新旧界面に塗布して、付着力を低減させた場合 (以下, Bタイプと称する)の2通りを考慮した.これ は、実橋の既設コンクリートは材齢が大きいことや列車 通過時の振動等の影響により、実橋での新旧界面の付着 力が実験供試体より小さくなる可能性があることを考慮 したためである.一方,界面垂直応力は実橋での適用予 定範囲である4~10N/mm²を考慮した.

図-5 クリップゲージ設置状況

図-6 ひび割れ性状

(2) 実験方法

せん断実験の概要図を図-4 に示す.実験では、はじ めに供試体側面に設置した4本のPC鋼棒を緊張して定 着し、供試体ごとに所定の界面垂直応力を作用させた. なお、載荷中の界面垂直応力を一定に保持することを目 的に、PC 鋼棒の端部には皿バネを設置した. その後、 載荷実験は既往の研究⁷を参考にして,逆対称モーメン トを作用させて、力学上新旧界面にせん断力のみを作用 させて行った.載荷実験時の状況を写真-1に示す.載

荷方法は単調載荷とし、載荷速度は 0.15~0.2mm/min とした.計測項目は変位および PC 鋼棒の張力とし、変位は新旧界面を跨いだ 2 つの標点の、鉛直方向のすべり変位と水平方向のひび割れ幅をクリップゲージにより計測した.クリップゲージの設置状況を図-5 に示す.また、PC 鋼棒の張力はロードセルにより計測した.

3. 基礎実験の結果および考察

(1) 破壊性状

実験の結果,全供試体において新旧界面を含むひび割 れ面で滑動する破壊性状を示した.実験終了後のひび割 れ性状を図-6 に示す.剥離剤を塗布した B タイプの供 試体では、ひび割れが概ね新旧界面に生じ、上下端部の み載荷点方向への斜めひび割れが生じた.一方、剥離剤 を塗布していない A タイプの供試体では、B タイプに比 べて、逆対称位置にある 2 つの載荷点を結ぶ面近傍での 斜めひび割れが卓越した.これは A タイプでは、新旧 界面の付着力が大きく、斜めひび割れが新旧界面でのひ び割れに先行したためと考えられる.したがって、A タ イプでは、滑動面に斜めひび割れ面が占める割合が B タイプに比べて大きく、滑動面の凹凸も大きくなった. また、A タイプでは、界面垂直応力が大きいほど斜めひ ひ割れが卓越する傾向が認められた.

(2) 荷重とすべり変位の関係

荷重とすべり変位の関係を新旧界面の処理方法ごとに、 図-7 に示す.なお、A-10-[2]は計測器の不備で 200kN 以 上の荷重の計測ができていなかった.なお、最大荷重は 実験時に確認しており、この値を用いて図を一部修正し た.また、B-10-[1]は偏心して載荷し、適切な実験とな らなかったことから、評価の対象外とした.

はじめに A タイプの結果を示すとともに、すべり挙動の評価もあわせて示す.載荷の初期段階では、荷重と

すべり変位が線形関係となり,界面垂直応力の大きさに 関わらず概ね同等の初期剛性となることが認められた. これは,Aタイプでは新旧界面の付着力が大きく,付着 の消失または斜めひび割れの発生により滑動面を形成す るまでの間は,界面垂直応力の大きさに関わらずすべり 変位が生じないためと考えられる.荷重を増加させると, ある荷重(以下,弾性限界荷重と称する)からすべり変 位が増加し始めて,非線形性を示すことが認められた. 弾性限界荷重時では,目視では確認ができなかったもの の,すでにひび割れが生じて滑動面を形成している状態 と推察され,滑動面では摩擦力のみでせん断伝達してい るものと推察される.そして,さらに荷重を増加させて 最大荷重に至ると,荷重低下をともなって新旧界面付近 のひび割れ面で急激な滑動が生じ,すべり変位が増大し た.

次に、Bタイプの結果について述べる.載荷初期では、 荷重とすべり変位は線形関係を示すものの、Aタイプと 異なり、界面垂直応力が大きくなるほど初期剛性は大き くなる傾向を示した.これは、Bタイプでは剥離剤の塗 布により付着力が概ね生じておらず、載荷の初期段階か ら摩擦力で抵抗するため、ごく微小なすべり変位が生じ、 界面垂直応力が大きいほどこのすべり変位が抑制された 結果と推察される.さらに、荷重を増加させると、Aタ イプと同様に、すべり変位は非線形性を示すようになり、 最大荷重に至って滑動する挙動を示した.

新旧界面の処理方法に関わらず,界面垂直応力が大き くなるほど,弾性限界荷重および最大荷重が大きくなる 傾向が認められた.また,剥離剤を塗布しない A タイ プの弾性限界荷重および最大荷重は, B タイプに比べ大 きくなる傾向が認められた.弾性限界せん断応力の差異 は、新旧界面の付着力の差異に起因し,最大荷重の差異 は斜めひび割れによる滑動面の凹凸性状の差異に起因し たものと推察される.さらに,最大荷重時のすべり変位 は A タイプが 0.05~0.25mm で, B タイプの 0.05~0.1mm

図-9 弾性限界せん断応力と界面垂直応力の関係

に比べて大きい傾向が認められた. これは、Aタイプの 滑動面が,斜めひび割れの影響で滑動面の凹凸が大きく なったことによるものと考えられる.

なお,全供試体において,最大荷重にはひび割れがす でに生じていると考えられることから、最大荷重の評価 にあたって、後述するひび割れ面のせん断伝達の考え方 を適用することは適切と考えられる.

(3) 荷重とひび割れ幅の関係

荷重とひび割れ幅の関係を図-8 に示す. すべての供 試体において、荷重が増加することによって、ひび割れ 幅が増加することが認められた. これは、ひび割れ面で のすべりが生じるときに、ひび割れ面の凹凸を相対する 凹凸が乗り越えることに起因するものと考えられる⁸. 最大荷重時のひび割れ幅は、すべり変位と同様に、Aタ イプが B タイプに比べて大きい傾向が認められた. な お、ひび割れ幅が増加することによって、最大荷重時の PC 鋼棒の張力は、導入張力 40kN~100kN に対して、A タイプで最大約 7kN, Bタイプで最大約 1kN 増加するこ とが認められた. 但し、新旧界面に作用する圧縮応力の 増加量は、A タイプで 0.7N/mm²、B タイプで 0.1N/mm² 程度であり、最大荷重に至るまでの界面垂直応力は概ね 一定となっていたことが認められた.

(4) 新旧界面の弾性限界せん断応力

弾性限界荷重を荷重とすべり変位関係から抽出し、新 旧界面の面積で除して,応力に換算した値を弾性限界せ ん断応力と定義する.なお、Aタイプの供試体は、斜め ひび割れが卓越したことから、実験値は新旧界面の弾性 限界せん断応力を表すとは言い難い、しかし、斜めひび 割れは新旧界面でのひび割れに先行して発生したと推察 され、実験値は新旧界面の弾性限界せん断応力を安全側 に評価できると考えられることから、Aタイプも見かけ の値として評価することにした. 図-9 に弾性限界せん 断応力と界面垂直応力の関係を示す. A タイプ, B タイ プの供試体ともに、弾性限界せん断応力は界面垂直応力 と正の相関となることが認められた. ただし、Aタイプ の供試体はばらつきが大きくなっている. これは、斜め ひび割れの発生荷重のばらつきに影響を受けた可能性が 考えられる. また, A タイプの弾性限界せん断応力は, B タイプに比べて大きく、新旧界面の付着力が弾性限界 せん断応力に大きな影響を与えることが認められた.

(5) 新旧界面のせん断強度

新旧界面のせん断強度は、最大荷重から換算した新旧 界面に作用するせん断力を新旧界面の面積で除して算定 した. なお, A タイプの供試体は, 斜めひび割れが卓越

したため、実験値は新旧界面のせん断強度を表すとは言 い難いが、弾性限界せん断応力と同様に、見かけの値と して安全側に評価することにした。新旧界面のせん断強 度と界面垂直応力の関係を図-10 に示す。A タイプ、B タイプの供試体ともに、せん断強度は界面垂直応力と正 の相関となることが認められた。また、A タイプのせん 断強度は、B タイプに比べて大きいことが認められた。 なお、A タイプの滑動面の凹凸は B タイプに比べて大き いことから、摩擦係数を表す傾きも A タイプが大きく なるとが想定されたが、本実験の範囲においては同等で あった。

ここで、AタイプとBタイプの摩擦係数が同等となっ たことについて考察を加える.本実験で採用している逆 対称モーメントを作用させる載荷方法は、新旧界面を有 しないコンクリートを対象に検討した過去の検討から、 逆対称位置にある 2 つの載荷点を結ぶ面の近傍で斜めひ び割れが発生しやすく、その場合のせん断強度は、間接 一面せん断試験や直接二面せん断試験などの試験方法に 比べて小さくなることが報告されている ^{7,9}. 滑動面が 一様に傾斜する場合の滑動面に作用する断面力を簡易な 構造計算により確認すると、滑動面が傾斜するほど、滑 動面に作用する圧縮力は低下し、せん断力はやや増加す ることとなるため、斜めひび割れが発生すると、最大荷 重は小さくなり、実験から推定されるせん断強度として も小さくなると考えられる. 本実験の A タイプでは, 図-6 に示したように、界面垂直応力が大きい供試体で 斜めひび割れが卓越して、そのせん断強度が小さく推定 されたため、A タイプの摩擦係数が小さく評価され、B タイプと同等になったものと推察される.

次に、コンクリート標準示方書¹⁰に示される式(1)、 (2)による計算値と比較して、実験値の妥当性を検証した.なお、示方書では、設計上安全側に計算するため、 $\sigma_n \varepsilon 2$ で除しているが、今回は実験値の評価を目的とするため σ_n は2で除していない.

$$V_{cw} = \frac{\tau_c \cdot A_c}{\gamma_b} \tag{1}$$

$$\tau_{c} = \mu \cdot f'_{c} \cdot \sigma_{n}^{(1-b)}$$
(2)

ここに、 V_{cw} :設計せん断伝達耐力、 γ_b :部材係数 (=1.0)、 μ :平均摩擦係数(=0.45)、 f_c :コンクリートの圧縮強度、b:面性状を表す係数(ひび割れ面の場合は 2/3、適切な打継ぎ処理を行った場合は 1/2、打継ぎ処理を行わない場合は 2/5)、 σ_n :面に垂直に作用する平均圧縮応力度

せん断強度の実験値と b の値を変化させた計算値の比較を図-11 に示す. なお,計算において,コンクリート強度は,圧縮強度が低い主桁側の 59.5N/mm²を用いた.

剥離剤を塗布しない Aタイプは、示方書に基づくと b = 1/2 の計算値と比較するのが妥当と考えられるが、計算値は実験値を過小に評価した.一方、b=2/3の計算値

図-13 供試体形状図

は実験値を比較的良い精度で評価した. A タイプの供試 体の滑動面はひび割れ面が占める割合が増えたことから, 凹凸が大きくなったためと推察される. 但し, b = 2/3の 計算値においても,界面垂直応力 $\sigma_r = 10$ N/mm²の場合に は,計算値は実験値を過小に評価した. 一方,剥離剤を 塗布した B タイプは評価値 b = 2/5で概ね安全側に評価 できることが認められる. ただし,4N/mm²以上の圧縮 応力下では,実験値を過小評価する傾向が見られた. こ れらのことから,実験結果はせん断強度は界面垂直応力 と直線関係となり,計算値は指数関数となるため,界面 垂直応力によって多少の差は生じているものの,実験値 としての概ね妥当性は有すると考えられる.

4. 外ケーブルの定着部実験の概要

(1) 実験供試体

桁間定着装置を用いて実橋に外ケーブル補強工法を適 用した場合の概要図を図-12 に示す.定着装置の耐荷性 能は主桁による橋軸直角方向の拘束の影響を受けると考 えられるため、本実験の供試体は2つの主桁、定着装置 に加えて、床板も含めた断面をモデル化した.なお、供 試体では安全側の実験結果になるように、2 主桁ともに 外桁側の拘束力を模擬することとした.また、主桁の拘 束力は横桁にも影響を受けると考えられるが、定着装置 の設置位置により横桁の影響度合いが変化するため、本 実験では、後述する供試体の設置条件(境界条件)を変 化させて、横桁の位置が定着装置の耐荷性能等に与える 影響について評価することとした.

本実験の供試体形状を図-13 に示す.供試体は橋長 40 ~50mの鉄道橋ポストテンション単純 I 形桁を 1/4 に縮 小した断面形状とした.定着装置は,載荷によりハンチ 面で滑動させるため,実橋で適用する場合に比べて定着 装置の橋軸方向長さを低減した.また,定着装置や主桁

表-4	供試体-	一覧
-----	------	----

供試体 No.	記号	界面垂 直応力 (N/mm ²)	新旧界面の 処理方法	横桁 の 影響
1	4BWO	4	Aタイプ(ブラスト)	小
2	7BWO	7	Aタイプ(ブラスト)	小
3	10BWO	10	Aタイプ(ブラスト)	小
4	7UWO	7	Bタイプ(ブラスト+剥離剤)	小
5	7BSO	7	Aタイプ(ブラスト)	大

※ 界面垂直応力は緊結用 PC 鋼材の初期緊張力導入量から算出

での破壊を抑制するために、定着装置と主桁の鉄筋量を 増加させた.載荷実験は、供試体を実橋の状態から 90 度回転させ、外ケーブル緊張力を模擬した鉛直荷重を単 調増加させることにより行った.実橋では外ケーブル緊 張力が定着装置に偏心して作用するため、定着装置には 曲げモーメントが作用する.実験では実橋と同等の曲げ モーメントが作用するように、鉛直荷重の作用位置をハ ンチ面中心から 35mm離れた位置に設定した.また、実 橋では外ケーブルを傾斜して配置するため、外ケーブル の緊張時には、ハンチ面に鉛直方向の分力も作用するこ とになるが、傾斜角は 3~5°程度で、鉛直方向の分力 の影響は小さいため、実験では水平方向の分力のみを考 慮することとした.

供試体のハンチ面はショットブラストにより表面処理 を行い、ウェブや下フランジ側面と定着装置との間は、 発泡スチロール(厚さ 10mm)を設置した.また、緊結 用 PC 鋼棒の定着具となる上面支圧板および下面支圧板 には厚さ、19,70mmの鋼板をそれぞれ用いた.載荷板は 引張荷重 5000kN 級の外ケーブルの定着板を想定した寸 法とし、定着装置の載荷面が傾斜した場合に鉛直荷重の 偏心量が急激に変化することを防止するため、載荷板の 上面は R=300m の球面とした.

図-14 供試体の設置条件

表-5 鋼材の材料特性						
分割ます	呼び名	司旦	降伏点	引張強さ		
亚叫小门		記与	(N/mm ²)	(N/mm^2)		
PC鋼棒	φ17	SBPR930/1080	1022	1145		
AH-65-	D13	SD345	404	578		
政刑	D6	SD345	372	556		

(2) 供試体種類

供試体種類を表-4 に示す.実験では界面垂直応力, 新旧界面の処理方法,横桁の影響,下面支圧板の設置状態を変化させて,その影響を評価することとした.

界面垂直応力は,実橋での適用予定範囲である 4~ 10N/mm²を考慮することとした.

新旧界面の処理方法は、基礎実験と同様に、ショット ブラストにより処理する A タイプと、ショットブラス ト後に剥離剤を塗布して新旧界面の付着力を低減した B タイプの2通りを考慮した.

横桁の影響は、図-14 に示すように供試体の設置条件 を変化させて考慮することとした. 横桁の影響を小さく する供試体では、図-14(a)に示すように、鋼製架台およ び固定用 PC 鋼材の定着板と供試体との間に、低摩擦材 料であるテフロン板(テフロン板同士の摩擦係数: 0.1)を2枚挿入し、横桁による主桁横方向の拘束をで きる限り低減させた. なお, 鉛直荷重は供試体図心に対 して偏心して載荷するため、供試体全体が浮き上がる可 能性が懸念されたことから、鉛直に配置する拘束用 PC 鋼棒を設置して、載荷前に1本あたり 50kN の緊結力を 導入した.一方、横桁の影響を大きくする供試体では、 図-14(b)に示すように、テフロン板を挿入せずに鋼製架 台に直接供試体を載せて、固定用 PC 鋼棒を1本あたり 100kNの緊結力を導入し、供試体下面の摩擦力によって 主桁の横方向の移動を拘束した. さらに, 拘束用 PC 鋼 材を上下端部に配置して手締めで固定することによって, 主桁の横方向の拘束力を付加した.

写真-2 載荷試験状況

(3) 供試体製作

供試体は,はじめに主桁部のコンクリートを打設した 後,材齢 18 日まで気中養生した.その後,ハンチ面の 表面処理を行い,定着装置と床板部のコンクリートを打 設した.そして,定着装置コンクリートの打設から5日 後に脱型し,下面支圧板と緊結用 PC 鋼材を配置したう えで,移動等による定着装置の損傷を防止するため,緊 結用 PC 鋼材に緊張力 10kN 程度の仮緊張を行った.そ の後,定着装置コンクリートの打設から28日後以降に, 緊結用 PC 鋼材の本緊張を行い,供試体種類に応じて図-14 に示した固定用 PC 鋼棒の配置と緊張,拘束用 PC 鋼 棒の配置を行って供試体を製作した.なお,拘束用 PC 鋼棒は手締めにより定着し,緊張力は概ね導入していな い.主桁および定着装置に用いたコンクリートの材料, 配合は,基礎実験の供試体と同様で表-1,表-2 のとおり である.また,鋼材の材料特性を表-5に示す.

(4) 載荷実験方法

載荷実験は 150t 載荷試験反力フレームを用いて, 2000kN ジャッキにより鉛直荷重を作用させて行った.

図-17 剥離に関するハンチ面の応力状態

載荷実験時の状況を**写真-2**に示す.載荷荷重は 10kN ず つ単調増加させ、ひび割れの状況は 50kN ごとに確認し た.

$S = \sqrt{\left(\frac{N_p \cdot \sin\theta}{2}\right)^2 + \left(\frac{P}{2}\right)^2} \tag{3}$

(5) 計測項目

定着部の挙動を把握するため、定着装置や主桁の各位 置の変位、緊結用 PC 鋼棒の張力を計測した.計測位置 を図-15 に示す.変位の計測では、特にハンチ面付近の 挙動を詳細に把握するため変位計を密に配置した.また、 緊結用 PC 鋼棒の張力は、PC 鋼棒 1 本あたりひずみゲー ジを 2 枚貼付して計測した.なお、以降の評価に用いた 計測項目は図中において計測名を付した.

(6) ハンチ面に作用する断面力

供試体のハンチ面に作用する断面力の概要図を図-16 に示す.緊結用 PC鋼棒に緊結力 N_p を作用させると、ハ ンチ面には垂直に作用する圧縮力、平行に作用するせん 断力として $N_p/2 \cdot \cos \theta$, $N_p/2 \cdot \sin \theta$ が作用する. 一方、 荷重 P を作用させると、ハンチ面には鉛直方向のせん 断力 P/2 が作用する. このため、載荷時のハンチ面に は、 $N_p/2 \cdot \sin \theta \ge P/2$ の合力、すなわち式(3)で計算され るせん断力 Sが作用すると考えられる. このため、耐荷 性能の評価においては、式(3)で算出されるせん断力を 用いることとした. なお、界面垂直応力 σ_n は、ハンチ 面に垂直に作用する圧縮力 $N_p/2 \cdot \cos \theta$ をハンチの面積 で除して求められる. ここに, *S*: せん断力, *N_p*: 緊結用 PC 鋼棒の合力, θ: ハンチの角度, *P*: 載荷荷重

(7) 剥離荷重の計算値

載荷荷重を増加させると, 偏心曲げモーメントの作用 により, 定着装置はある段階でハンチ面の載荷側縁から 剥離すると考えられる.剥離に着目したハンチ面の応力 状態を図-17 に示す.本研究では,剥離が生じ始める荷 重を剥離荷重と称し,剥離荷重は,式(4)のようにハン チ面の載荷側縁応力度が 0N/mm²となる時点と仮定して, 式(7)により計算した.なお,剥離荷重より大きな荷重 を作用させた場合には,回転の図心位置が定着装置前面 側へ移動するとともに定着装置の回転挙動が著しくなる と考えられる.

$$\sigma_h + \sigma_n = 0 \tag{4}$$

$$\sigma_h = \frac{N_p}{2 \cdot h \cdot L} \tag{5}$$

$$\sigma_p = \frac{M}{W_c} \tag{6}$$

$$P_{h0} = \frac{N_p \cdot L}{6 \cdot h} \tag{7}$$

ここに、 σ_h :水平投影した緊結用 PC 鋼棒の緊結力によるハンチ面の応力、 σ_p :載荷荷重によるハンチ面載荷側 縁応力、M:O点回りにおけるモーメント(=- $P \cdot h$)、 W_c :水平投影したハンチ面の断面係数(=($2b_w \cdot L^2$)/6)、 h:ハンチ中央から載荷位置までの水平距離、L:定着装 置長、 b_w :ハンチ幅

5. 定着部実験の結果および考察

(1) 基準供試体(7BWO)の載荷時の挙動

a) 荷重と鉛直変位の関係

載荷時の定着部の挙動を評価するにあたって、基準供 試体となる 7BWO を対象に評価を行った.

荷重と定着装置前面の鉛直変位との関係を図-18 に示 す.計測位置は図-15 のとおりである.載荷の初期段階 では、各変位計は概ね線形挙動を示したが、定着装置の 全体挙動を把握するために上面支圧板側に設置した HI の変位は、約 200kNから非線形性を示すようになった. また、概ね同じ荷重で、ハンチ面でのすべりを計測する ために設置した H2 の変位も非線形性を示すようになっ た.H2 の変位の増加はハンチ面付近でひび割れが生じ、 微小なすべりが生じ始めたものと考えられ、H1 と H2の 変位が同等の荷重で線形挙動を示さなくなったことは、

定着装置としての弾性限界がハンチ面付近でのすべりに 依存したためと推察できる.このことから、本研究にお ける弾性限界荷重は、ハンチ面での鉛直変位と荷重の関 係から線形挙動を示さなくなる最大の荷重を抽出するこ とにした.さらに、荷重を増加させると、430kN付近で H2(主桁 R 側)の変位が急増するものの、さらに大きな荷 重に抵抗して最大荷重に至り、ハンチ面付近に生じたひ び割れ面において、荷重低下を伴って急激に滑動した.

b) ハンチ面のすべり挙動

ハンチ面でのすべりが先行した主桁 R 側のハンチ面 を対象に、すべり挙動を詳細に評価する.本実験では、 図-15 に示すように、ハンチ面に変位計を3方向に設置 しており, H2, H4, H5 の変位計をそれぞれ, 鉛直すべ り、水平すべり、ひび割れ幅と称し、荷重との関係を 図-19 に示す. 載荷荷重が約 200kN に達すると, 鉛直す べりは非線形性を示して増加し始めるが、このとき水平 すべりも増加し始めることが認められた. その後、荷重 が約430kNを超過すると鉛直すべり、水平すべりのほか、 ひび割れ幅も増加し始めた. このことから, ハンチ面の すべり挙動は、載荷方向の鉛直すべりのみではなく、水 平すべり、ひび割れ幅も増加することが認められた. な お、水平すべりは緊結用 PC 鋼棒の緊張力がハンチ面水 平方向のせん断力として作用することに起因して生じ, ひび割れ幅の増加はひび割れ面の凹凸を相対する凹凸が 乗り越えることに起因して生じるものと考えられる.

※fc: コンクリートの圧縮強度, Np: 緊結用 PC 鋼棒の合力, のn: 界面垂直応力, Pan: 弾性限界荷重,

Pmx:最大荷重, Smx:ハンチ面に作用する最大合成せん断力, Pn:剥離が生じ始める鉛直荷重の計算値,

6.97

197

593.0

3206

Vow:設計せん断伝達耐力(面性状を表す係数bには,70WOは25,その他は12を用いた)

345.1

c) 荷重と主桁の開きの関係

5

主桁の開きを把握するために設置した H6, H7 の変位 と荷重との関係を図-20 に示す. 主桁の開きの計測は, 定着装置の高さ位置に変位計を設置することが好ましい が,下面支圧板により設置が困難であったため,定着装 置と供試体上下端部との中間の高さにおいて,下フラン ジ間の変位を計測した.計測の結果,定着装置より下側 の主桁は,載荷の初期段階から荷重に比例して外側に開 くことが認められたが,約 200kN 付近から主桁の開きが 増加し始めて,非線形性を示すようになった.前述のよ うに,ハンチ面のすべりも同等の荷重から増加し始めて いることから,ハンチ面の水平すべりが主桁の開きを生 じさせる原因になったものと考えられる.一方,定着装 置より上側の主桁はわずかに閉じる挙動を示した.

7BSO

d) 荷重と緊結用 PC 鋼棒の張力変化量との関係

荷重と緊結用 PC 鋼棒の張力変化量の関係を図-21 に 示す.この図には、P_{ho}の計算値を併せて示す.載荷の 初期段階では上側の PC1 は張力が線形的に増加、下側 の PC3 の張力は減少、中央の PC2 の張力は概ね変化し ない挙動を示した.これは、荷重を偏心して作用させて いるために、定着装置の前面側では圧縮応力が増加、載 荷面側では減少して、コンクリートが弾性変形し、PC 鋼材の定着長が変化したためと考えられる.そして、荷 重 300kN 付近から PC1 の張力がさらに増加し始め、 400kN 付近から PC2 の張力も増加し始めた. PC 鋼棒の 張力の増加は、載荷荷重が P_{ko}を超過した直後から生じ ており、ハンチ面の載荷側端部から剥離が生じて、定着 装置の回転挙動が著しくなったことに起因するものと推 察される.

371

157.7

e) 供試体の挙動

a)~d)の計測結果から推察される,7BWOの載荷時の 挙動を図-22にまとめる.載荷初期では弾性挙動を示す ものの,荷重が約200kNとなった時に,ハンチ面付近に ひび割れが生じて滑動面を形成し,微小なすべりが生じ 始めることによって,定着装置は非線形性を有する挙動 に遷移した.なお,ひび割れ面でのすべりは鉛直すべり と同時に,水平すべりとひび割れ幅の増加も生じ,さら にハンチ面の水平すべりは主桁を外側へ開く挙動も生じ させた(図-21(b)).さらに荷重を増加させると,図-21(c)のように400kN付近からハンチ面での剥離が生じ 始めて,定着装置の回転挙動が卓越することとなり,緊 結用 PC 鋼棒の張力が増加することが認められた.その 後、定着装置はハンチ面でのすべり挙動と回転挙動を生 じながら、最終的に定着装置がハンチ面で滑動した.な お、7BWO以外のすべての供試体についても、同様の挙 動が認められた.

(2) 全供試体の実験結果

全供試体の実験結果一覧を表-6 に示す.表には,式 (7)で示した剥離荷重 P_{ho} および式(1)で示した設計せん断 伝達耐力 V_{av} の計算値をあわせて示した.界面垂直応力 を変化させた,4BWO,7BWO,10BWOを比較すると, 界面垂直応力が増加することにより,弾性限界荷重 P_{dm} および最大荷重 P_{max} が増加した.新旧界面の付着力を低 下させた7UWOは7BWOに比べて, P_{dm} および P_{max} が低 下した.また,横桁の影響を大きくした7BSOは7BWO に比べ, P_{max} がやや小さいものの, P_{dm} および P_{max} に有 意な差が生じなかった.最大荷重時のせん断力 S_{max} の実 験値は,計算値である設計せん断伝達耐力 V_{av} を大きく 上回る結果となった.

(3) 破壊性状

a) ひび割れ性状

主桁のひび割れ状況およびひび割れの確認時点を写 真-3,表-7 にそれぞれ示す.写真-3(a)に示すひび割れは, 定着装置の下側の主桁下フランジに発生し,すべての供 試体で確認された.写真-3(b)に示すひび割れは,主桁外 側面のハンチ付近に鉛直方向に生じており,定着装置の 滑動後に確認された.これらの主桁に生じたひび割れの 発生メカニズム推定図を図-23 に示す.定着部では, 5.(1)で示したように,ハンチ面で水平すべりが生じ,主 桁が外側に開く挙動が認められている.下フランジのひ び割れは,主桁が外側に開くときに下面支圧板がその開 きを拘束するために生じたものと推察される.また,主 桁外側面のひび割れは,主桁が床板および下面支圧板で 両端を固定された状態で,水平すべりに起因してハンチ 付近で外側に変位したために生じた曲げひび割れと推察 される.これらのことから,主桁のひび割れは,ハンチ 面のすべりが生じる始める弾性限界荷重以上で発生する ものと考えられる.

次に、載荷実験終了後に確認した定着装置に生じたひ び割れ状態を写真-4 に示す.定着装置載荷面では、す べての供試体で最大荷重時の急激な滑動に伴う衝撃によ って、比較的不規則なひび割れが生じ、著しくコンクリ

表-7 ひび割れの確認時点

供試体 No.	記号	主桁下フランジ	主桁外面側面			
1	4BWO	載荷荷重350kN	滑動後			
2	7BWO	載荷荷重500kN	滑動後			
3	10BWO	載荷荷重450kN	滑動後			
4	7UWO	載荷荷重400kN	滑動後			
5	7BSO	載荷荷重450kN	滑動後			

(a) 主桁下フランジ (b) 主桁外側側面 写真-3 主桁のひび割れ状況

図-23 主桁ひび割れの発生メカニズム

(a) 載荷面

(b) 定着装置前面 写真-4 定着装置のひび割れ性状 (7BWO)

25 鉛直すへりと水平すへりの関係 (界面垂直応力の影響)

800

700

600

∰ 400

100

0

₹ 500

ートが損傷した.一方,定着装置前面では,すべての供 試体で,ハンチ面のみにひび割れが認められた.

b) 滑動面の状態

実験終了後に供試体を解体して確認した,ハンチ面に おける滑動面の状況を写真-5 に示す.全供試体でハン チ面付近にひび割れが発生し,主桁と定着装置が分離し ている状況が認められたが,剥離剤を塗布していない 4BWO,7BWO,10BWOの供試体では,写真-5(a),(b)に 示すように,ハンチ面の一部分で定着装置のコンクリー トが主桁側に付着し,部分的に新旧界面が滑動面となっ ていない状況が確認された.定着装置のコンクリートが 付着している箇所は,載荷面側に多くみられ,定着装置 内部に生じたひび割れが,新旧界面でのひび割れに先行 したためと考えられる.一方,7BSO と7UWO では写 真-5(c)に示すように,新旧界面の全面が滑動面を形成し ていたことが認められた.

(4) 界面垂直応力の大きさが定着部の挙動に与える影響の評価

界面垂直応力を変化させた 4BWO, 7BWO, 10BWO の荷重と鉛直すべりの関係を図-24 に示す. なお,界面 垂直応力が大きいほど,最大荷重や弾性限界荷重が大き くなるとともに,弾性限界荷重以降の同荷重時における 鉛直すべりは抑制される傾向が認められた.

次に、界面垂直応力の大きさがハンチ面でのすべり挙

図-27 荷重と主桁開きの関係(界面垂直応力の影響)

主桁開き(mm)

動に与える影響を評価する.鉛直すべりと水平すべりの 影響との関係を図-25 に示す.界面垂直応力が大きいほ ど,鉛直すべりに対して水平すべりが大きくなる傾向が 認められた.これは,界面垂直応力が大きいほど,緊結 用 PC 鋼棒の緊結力が大きく,ハンチ面水平方向のせん 断力も大きくなることに起因したものと考えられる.次 に,鉛直すべりとひび割れ幅の関係を図-26 に示す.ど の供試体も,載荷初期段階ではコンクリートの弾性変形 の影響でひび割れ幅が減少したものの,鉛直すべりが 01~0.2mm以上となると,ひび割れ幅が増加する挙動が 認められた.しかし,界面垂直応力の大きさによる傾向 は認められなかった.ひび割れ幅は,滑動面の凹凸性状 の山の高さに依存するものと考えられ、4BWO,7BWO, 10BWO の滑動面は定着装置コンクリートが付着して凹 凸性状が様々であったことから,界面垂直応力に依存し

375

なかったものと考えられる.

また,界面垂直応力の大きさが既設主桁に与える影響 を評価するため,荷重と主桁開きの関係を図-27 に示す. 界面垂直応力が大きいほど,同じ荷重における主桁の開 きが小さくなる傾向が認められる.界面垂直応力が大き いほど水平すべりは卓越するが,すべり量が抑制される ことから,主桁の開きは抑制されたものと考えられる.

(5) ハンチ面の付着力の大きさが定着部の挙動に与え る影響の評価

新旧界面の処理方法を変化させた 7BWO, 7UWO の荷 重と鉛直すべりの関係および鉛直すべりと水平すべりの 関係を図-28, 図-29 にそれぞれ示す. 図には横桁の影響 を大きくした 7BSO の結果もあわせて示す. ハンチ面の 付着を低減した 7UWO は, 7BWO に比べて最大荷重が 低下するものの, ハンチ面のすべり挙動に優位な差は認 められなかった. なお,最大荷重の差異は, 7UWO の 滑動面が新旧界面であったのに対し, 7BWO は一部ひび 割れ面となっており,滑動面の凹凸性状に起因したもの と考えられる. 次に,荷重と主桁の開きの関係を図-30 に示す. 主桁の開き挙動についても,付着力を低下させ た 7UWO は 7BWO と概ね同等であった. これらのこと から, ハンチ面の付着力が低下した場合には,定着装置 の耐荷性能が低下するものの,すべり挙動や既設主桁に 与える影響は同等であると考えられる.

(6) 横桁が定着部の挙動に与える影響の評価

7BSO の最大荷重は、横桁の拘束力を付加することに より、7WBO より大きくなると想定されたが、図-28 か ら、7BSOの最大荷重は7WBOよりやや小さく、有意な 差が認められなかった. そこで、横桁の影響を大きくし た 7BSO が想定した拘束効果を有していたかを確認した. 図-30 に示した荷重と主桁開きの関係を確認すると、水 平すべりが生じ始めて主桁の開きが増加し始めたあと、 7BSO の主桁開き量は 7BWO に比べて小さく、7BSO は 主桁の開きが抑制されていることが認められた. ただし, 主桁開きの計測位置は定着装置と供試体下面の中間であ り、定着装置高さ位置での主桁の開きを示したものでは ない. そこで、図-29 に示す鉛直すべりと水平すべりの 関係から、定着装置位置での拘束状態を推測することと した、主桁の拘束力が大きい場合には、ハンチ面での水 平すべりが小さくなると考えられるが、7BSOの水平す べり量は 7BWO に対してやや大きくなる結果であった. このことから、定着装置の高さにおける主桁の開きは、 7BSO が 7BWO に対してやや大きく、 拘束力は 7BSO が 7BWO よりやや小さかったものと推察される. これらの 計測結果に基づく, 主桁の開き状況のイメージ図を図-31 に示す.

以上より、本実験の範囲においては、横桁の拘束は定 着装置位置での主桁の拘束力に影響を与えていなかった ものと考えられ、最大荷重にも有意な差が生じなかった

と推察される. なお, 横桁が定着装置の耐荷機構に影響 を及ぼさなかった理由には, 下面支圧板による主桁の拘 束が横桁に比べて相対的に大きかったことが考えられる.

(7) 弾性限界荷重の評価

弾性限界荷重はハンチ面に作用するせん断力として評価することとし、弾性限界荷重時のせん断力(以下,弾 性限界せん断力と称する)とハンチ面に垂直に作用する 垂直力(以下,ハンチ面垂直力と称する)の関係を図-32に示す、弾性限界せん断力はハンチ面垂直力と明確 な線形関係になっていることが認められた。

次に、定着部実験で得られた弾性限界荷重の妥当性 を、3.(4)で示した基礎実験の結果と比較することにより 検証した.比較にあたって、ハンチ面に作用する弾性限 界せん断応力を新旧界面の面積で除すことによって、弾性 限界せん断応力を算出した.弾性限界せん断応力と界面 垂直応力の関係における定着部実験と基礎実験の比較を 図-33 に示す.新旧界面に剥離剤を塗布した B タイプで は、定着部実験と基礎実験でやや乖離しているものの、 定着部実験と基礎実験の弾性限界せん断応力は概ね同程 度の大きさであることが認められた.弾性限界は滑動面 ですべりが生じ始めた段階と考えられ、この段階では定 着部実験においても主桁の拘束の影響が小さく、定着部 実験のハンチ面の応力状態は基礎実験と大きな差異がな いためと考えられる.

(8) 剥離荷重の評価

図-21 に示したように、定着装置の図心高さに位置する PC 鋼棒 (図-15 に示す PC2) は、剥離荷重の計算値を超過すると定着装置の回転挙動が卓越して、その張力は増加に転じることが認められた.このことから、本研究では、剥離荷重の実験値として PC2 の張力が最小となる荷重を抽出することにした.剥離荷重の実験値と P_{ho} (計算値)の関係を図-34 に示す. P_{ho} は剥離荷重の実験値をやや過大評価する傾向にあるが、概ね精度よく評価できることが認められた.

(9) 最大荷重の評価

最大荷重の評価はハンチ面に作用するせん断力として 評価することとし、最大せん断力とハンチ面垂直力の関 係における実験値と計算値の比較を図-35 に示す.計算 値は、式(1)に基づき、面性状を表す係数 bを変化させた 結果を示している.なお、計算にあたり、コンクリート の圧縮強度には強度が小さい主桁コンクリートの値を用 いた.示方書に基づくと、4BWO、7BWO、10BWO、 7BSO は bを 1/2 とする計算値、7UWO は bを 2/5 とする 計算値と比較することになるが、計算値は実験値を過度 に安全側に評価した.また、5.(3)に示したように滑動面 が一部ひび割れ面となったことから、bを 2/3 とした計 算値と比較しても、計算値は実験値を過小評価し、実験 値は計算値より大きくなる結果となった.

次に、定着部実験で得られた最大せん断力を基礎実験 と比較して評価を行った.比較の指標はせん断強度とす ることとし、定着部実験のせん断強度は最大せん断力を 新旧界面の面積で除して算出した.定着部実験と基礎実 験のせん断強度の比較を図-36 に示す.新旧界面の処理 方法に関らず、定着部実験のせん断強度は基礎実験より 大きくなることが認められた.また、界面垂直応力が大 きいほど定着部実験と基礎実験のせん断強度に大きく乖 離する傾向が認められた.

ここで、定着部実験の最大せん断力が計算値または基礎実験より大きくなった原因について考察する.載荷時に認められた定着部の挙動(図-22(b),(c))が最大せん

図-37 定着部の挙動が最大せん断力に与える影響

断力に与える影響を表した概要図を図-37 に示す.はじ めに、ハンチ面でのすべり挙動が最大せん断力に与える 影響について推察する. すべり挙動には、2 方向の鉛直 すべりと水平すべりが生じることが認められたが、鉛直 すべりについては最大せん断力に与える影響は小さいと 考えられる.一方,水平すべりは,幾何的には緊結用 PC 鋼棒の定着間距離を減少させ、緊結力の低下につな がると考えられる. その一方で, 水平すべりは主桁を外 側方向へ変位させ、この主桁の変形に伴う反力が、定着 装置に作用すると考えられる. この結果, ハンチ面に垂 直に作用する圧縮力が増加し、最大せん断力は増加する と考えられる、また、ひび割れ面でのすべりに伴うひび 割れ幅の増加も、主桁を外側に変位させる挙動や緊結用 PC 鋼棒の張力の増加につながり、最終的に最大せん断 力を増加させると考えられる. また、ハンチ面での剥離 に伴い定着装置の回転挙動が卓越すると、載荷面側の緊 結用 PC 鋼棒の張力が増加することとなり、その張力の 増加分はハンチ面の前面側に作用する圧縮力として付加 されることとなる. このことから, ハンチ面に作用する 圧縮応力の総和が増加して,最大せん断力が増大するも のと想定される.

このように、桁間定着装置は、弾性限界荷重後に生じ るすべり挙動や定着装置の回転挙動が生じることにより、 最大せん断力を増加させる要因が多く存在する.今回の 実験結果から、これらの影響を分離して詳細に評価する ことは困難であるが、最大せん断力が増加する要因とし ては、主桁の拘束効果等により新旧界面の圧縮力が増加 した影響が大きいものと推察される.また、界面垂直応 力が大きい場合に、実験値は計算値や基礎実験の値と乖 離する傾向が認めらたが、界面垂直応力が大きい場合に は緊結用 PC 鋼棒の緊結力が大きく、水平すべり、主桁 の開き量、主桁の拘束力が大きくなることから、最大せ ん断力も大きくなったことがその要因と推察される.

6. まとめ

本研究では、主桁間隔の狭い PCI 形桁に適用できる外 ケーブル補強工法の開発のため、考案した定着装置の耐 荷性能および定着部の挙動、既設主桁に及ぼす影響を評 価することを目的に、基礎実験としてせん断実験、定着 部を模擬した供試体の載荷実験を行った.以下に、本研 究で得られた知見を示す.

- (1) せん断実験の結果,新旧界面の付着力が小さい B タイプの供試体は,概ね新旧界面でひび割れが生じ て滑動面を形成したが,付着力が大きい A タイプ の供試体は,新旧界面付近に斜めひび割れが発生し, 滑動面にひび割れ面が占める割合が増加した.この 結果,新旧界面の付着力の差異により,滑動面の凹 凸性状に大きな差異が生じた.なお,A タイプの供 試体は斜めひび割れが生じたことから,実験値は弾 性限界せん断応力およびせん断強度を過小評価する と考えられるが,安全側の評価となることを踏まえ て,見かけの値として評価することとした.
- (2) 新旧界面のすべり挙動は、付着力の大きさに関わらず、載荷初期では弾性挙動を示すが、新旧界面付近のひび割れ面で微小なすべりが生じることによって、非線形性を示す挙動となることが認められた. さらに荷重を増加させると、すべりやひび割れ幅が増加しながら最大荷重に至り、荷重低下をともなって急激に滑動する挙動となることが認められた.
- (3) 新旧界面の弾性限界せん断応力およびせん断強度は、 界面垂直応力が大きいほど、新旧界面の付着力が大 きいほど増加することが認められた.なお、付着力 がせん断強度に影響した理由として、付着力が大き い供試体では滑動面の凹凸性状が大きくなったため と推察された.
- (4) 定着部実験の結果,定着装置は載荷の初期段階では

弾性挙動を示すが,ハンチ面付近のひび割れ面で微 小なすべり挙動が生じることによって非線形性を示 し始め,定着装置の回転挙動も卓越しながら最大荷 重に至り,ハンチ面付近で滑動する挙動が認められ た.

- (5) ハンチ面付近でのすべり挙動は載荷方向のすべりの みではなく、橋軸直角方向のすべりやひび割れ幅の 増加も生じることが認められた.
- (6) 主桁では下フランジ部が開く挙動が生じ、下フランジと主桁外側にひび割れが生じる影響が認められた. これらは、弾性限界荷重以降にハンチ面付近で生じる橋軸直角方向のすべりに起因したものと推察された.
- (7) 定着装置の回転挙動が卓越するときの荷重は、偏心 曲げモーメントによりハンチ面の引張縁の応力がゼ ロとなる時の計算値により比較的精度よく評価でき ることを確認した.
- (8) 定着装置の最大荷重は、コンクリート標準示方書に示される計算値または基礎実験の結果より大きくなることが認められた.定着装置ではハンチ面でのすべり挙動や回転挙動が生じ、主桁の拘束効果が発揮されこと等により、ハンチ面に垂直に作用する圧縮力が増加したことがその一因と推察された.
- (9) 定着装置ハンチ面の弾性限界せん断力,最大せん断力は,界面垂直応力が大きいほど,新旧界面の付着力が大きいほど増加することが認められた.
- (10) 本実験の範囲においては、横桁が定着装置の耐荷性 能に与える影響は小さいことが認められた.

謝辞:本実験を行うにあたって(株)中研コンサルタン ト,三井住友建設(株)に多大なるご協力を賜りました. また,本論文をまとめるにあたり,「持続可能な鉄道コ ンクリート構造物検討委員会」((公社)日本材料学会) の委員各位より多数のご助言を賜りました.末筆ながら 深く感謝の意を表します.

参考文献

- プレストレスト・コンクリート建設業協会:外ケー ブル方式によるコンクリート橋の補強マニュアル (案) 〔改定版〕, 2007.4
- 2) 湯淺康史,園田紘一郎,木戸弘大,森川英典:主桁 間隔の狭い PCI 形桁における外ケーブルの桁間定着 に関する実験的検討,第 22 回プレストレストコン クリートの発展に関するシンポジウム論文集, pp.311-316, 2013.10
- 湯淺康史,森川英典,福田圭祐,松岡勉:主桁間隔の狭い鉄道 PCI 形桁に適用する外ケーブル定着体の 実験的検討,土木学会第 70 回年次学術講演会,V-37,2015.9
- 浅井洋,長田光司,野島昭二,藤原保久,池田尚治:外ケーブル補強工法定着部に関する検討,土木 学会論文集 E, Vol.63, No.2, pp.223-234, 2007.4
- 5) 槇谷貴光,香取慶一,林静緒:コンクリート打継ぎ 面における表面粗さの評価とせん断力伝達能力に関 する実験研究,コンクリート工学年次論文報告集, Vol.17, No.2, pp.171-176, 1995.6
- 6) 引寺隆世, OnurGedik, 栗田康平, 田才晃:ウォー タージェット処理を施したコンクリート接合面の表 面粗さが接合面せん断耐力に与える影響に関する研 究, コンクリート工学年次論文集, Vol.33, No.2, pp.1021-1026, 2011.
- (1) 魚本健人,峰松敏和:コンクリートのせん断強度試験方法に関する基礎的研究,コンクリート工学, Vol.19, No.4, pp.106-117, 1981.4
- 8) 田辺忠顕,檜貝勇,梅原秀哲,二羽淳一郎:コンク リート構造,1992.6
- 9) 遠藤孝夫,青柳征夫:コンクリートのせん断試験方法に関する一考察,第32回土木学会年次学術講演会,pp.32-33,1977.10
- 10) 土木学会:コンクリート標準示方書(設計編), 2013.

(2016.9.13 受付)

THE STUDY ON LOAD CARRYING CAPACITY OF ANCHORAGE UNIT FOR EXTERNAL CABLES ON PC-I BRIDGE WITH NARROW DISTANCE BETWEEN ADJACENT MAIN GIRDERS

Koji YUASA, Hidenori MORIKAWA and Keisuke FUKUTA

Strengthening by external cables is often used in case it is necessary to recover or improve the loadcarrying capacity of prestressed concrete girder. However, in the case of PC-I girder bridges with the narrow distance between adjacent main girders, the conventional anchorage units for external cables cannot be applied. Therefore, the authors proposed and developing a new anchorage unit.

In this paper, loading tests were conducted to evaluate load-bearing mechanism and performance of the proposed anchorage unit. As a result of the tests, it was found that the anchorage unit showed small slip behavior at the interface between new and old concrete and rotating behavior before maximum loads and had large load-carrying capacity due to constraint effect. Also, the effects of the normal stress or the condition of interface or transverse girder on load-carrying capacity ware evaluated.