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Abstract

Penalized estimation is a useful technique for variable selection when the
number of candidate variables is large. A crucial issue in penalized estima-
tion is the selection of the regularization parameter because the performance
of the estimator largely depends on an appropriate choice. However, no
theoretically sound selection method currently exists for the penalized esti-
mation of moment restriction models. To address this important issue, we
develop a novel information criterion, which we call the empirical likelihood
information criterion, to select the regularization parameter of the penalized
empirical likelihood estimator. The information criterion is derived as an es-
timator of the expected value of the Kullback–Leibler information criterion
from an estimated model to the true data generating process.
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1. Introduction

Variable selection has long been an important issue in empirical analysis.
Empirical researchers typically have a large number of candidate explanatory
variables from which they select the appropriate ones considering restriction
of the sample size and/or a preference for a parsimonious model.

Subset variable selection methods using information criteria were origi-
nally investigated by Andrews and Lu (2001) and Hong, Preston, and Shum
(2003) for moment restriction models. Andrews and Lu (2001) proposed cri-
teria that resemble the Akaike information criterion (AIC; Akaike 1973), the
Bayesian information criterion (BIC; Schwarz 1978), and the Hannan-Quinn
criterion (Hannan and Quinn 1979) based on the J-statistic of the GMM
estimator. Hong, Preston, and Shum (2003) replaced the J-statistic with
the generalized empirical likelihood (EL) statistic. Although these criteria
have attractive properties, they suffer from computational burden when the
number of candidate variables is large.

In the wake of the success of the penalized least squares estimator as a
method of variable selection (Tibshirani 1996; Fan and Li 2001; Zou and
Hastie 2005; Zou 2006; Zhang 2010), penalized GMM and EL estimators
have been proposed in the econometrics literature. Caner (2009) and Shi
(2016) considered the penalized GMM estimator with a Lasso-type penalty.
Caner and Zhang (2014) proposed the adaptive elastic net GMM estima-
tor. Leng and Tang (2012) and Chang, Chen, and Chen (2015) studied the
penalized empirical likelihood (PEL) estimator for independent and weakly
dependent observations, respectively. Chang, Tang, and Wu (2018) proposed
an alternative PEL estimator that imposes a penalty for both the parameter
of interest and the Lagrange multiplier of the EL estimator.

Most of the existing studies investigate the asymptotic properties of the
penalized GMM and EL estimators under the assumption that the regular-
ization parameter converges to zero at an appropriate rate. However, asymp-
totic theory does not guide the selection of the regularization parameter in an
actual implementation. Because the performance of the penalized estimators
largely depends on the choice of the regularization parameter, providing a
data-dependent selection method for the regularization parameter is a crucial
issue.

The purpose of this paper is to propose a new information criterion, which
we call the empirical likelihood information criterion (ELIC), for selecting the
regularization parameter of the PEL estimator. Our goal is to find a model
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that provides a good approximation rather than one that is correct. The idea
behind our information-theoretic approach has its origin in Akaike (1973).
We express a moment restriction model in the form of a set of probability
distributions and then evaluate the goodness of the model using an estimate
of the Kullback–Leibler information criterion (KLIC) from the estimated
model to the true data generating process (DGP). Our information criterion
is derived as a bias-corrected estimator of the KLIC.

There are a few studies related to ours. Shi (2016) proposed AIC- and
BIC-type criteria for the selection of the regularization parameter of the
penalized GMM estimator; these are modifications of the criteria of Andrews
and Lu (2001) and Wang, Li, and Leng (2009). Leng and Tang (2012) also
suggested a similar BIC-type criterion for the PEL estimator. However,
the asymptotic properties of the modified BICs are unknown in the case of
penalized GMM and EL estimation.

2. PEL Estimator and KLIC

Let y1, . . . ,yn be i.i.d. random vectors from an unknown distribution µ.
The parameter of interest, θ0 ∈ Θ ⊂ Rp, is identified by a set of moment
restrictions:

E [m(yi,θ0)] =

∫
m(y,θ0)dµ(y) = 0, (2.1)

where m : Rd×Θ→ Rr is a known vector-valued function with r > p. Some
elements of θ0 may be zero. If there is no value of θ0 ∈ Θ that satisfies all
moment restrictions, then the model is misspecified.

We employ the PEL estimator of Leng and Tang (2012) to simultaneously
achieve variable selection and estimation. For a given value of a regularization
parameter κ, the PEL estimator for model (2.1) is defined as

(θ̂κ, λ̂κ) = arg min
θ∈Θ

arg max
λ∈Λ̂(θ)

{
1

n

n∑
i=1

log(1− λ′m(yi,θ)) +

p∑
j=1

pκ(θj)

}
,

where Λ̂(θ) = {λ ∈ Rr : λ′m(yi,θ) < 1, i = 1, . . . , n}, θj is the j-th element
of θ, and pκ(·) is a penalty function with the regularization parameter κ.
The candidates of the penalty function include the L1 penalty, the smoothly
clipped absolute deviation (SCAD) penalty (Fan and Li 2001), and the min-
imax concave penalty (Zhang 2010), for instance.
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To find an optimal regularization parameter, we need a criterion to eval-
uate the performance of the PEL estimator. For this purpose, we introduce
the KLIC for the moment restriction model. Let M denote the set of all
probability measures on Rd. For each θ ∈ Θ, we define Pθ = {P ∈ M :∫
m(y,θ)dP (y) = 0}. Then, we define P = ∪θ∈ΘPθ as the moment restric-

tion model. The KLIC from P to µ is defined as K(µ‖P) = minP∈P K(µ‖P ),
where

K(µ‖P ) =

{
−
∫

log
(
dP
dµ

(y)
)
dµ(y) if P � µ

∞ otherwise.

By a duality theorem, the KLIC is equivalently characterized as

K(µ‖P) = min
θ∈Θ

∫
log (1− λ(θ)′m(y,θ)) dµ(y),

where λ(θ) = arg maxλ∈Λ(θ)

∫
log(1 − λ′m(y,θ))dµ(y) and Λ(θ) ⊂ Rr is a

set of possible values of λ (see, for instance, Chen, Hong, and Shum 2007).
It is known that θ0 minimizes∫

log (1− λ(θ)′m(y,θ)) dµ(y). (2.2)

Minimizing the sample analog of (2.2) yields the EL estimator of Qin and
Lawless (1994). It can be verified that K(µ‖P) ≥ 0 and K(µ‖P) = 0 if and
only if µ ∈ P . Thus, the KLIC defines a pseudo-distance between the model
and the DGP. If the model is misspecified, then the minimizer of (2.2), which
we denote θ∗, is called the pseudo-true parameter value of the EL estimator.

The above argument suggests to use the following quantity to evaluate
the PEL estimator:

K(µ‖P̂κ) =

∫
log
(

1− λ̂
′
κm(y, θ̂κ)

)
dµ(y), (2.3)

where
dP̂κ
dµ

(y) =
1

1− λ̂
′
κm(y, θ̂κ)

.

The quantity (2.3) is interpreted as the KLIC from the estimated model to
the DGP. We view (2.3) as a loss for using κ and find the regularization
parameter that minimizes an estimate of the risk, that is, the expected value
of the loss.
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3. Empirical Likelihood Information Criterion

A simple estimator of the risk is

1

n

n∑
i=1

log
(

1− λ̂
′
κm(yi, θ̂κ)

)
. (3.1)

However, (3.1) is a biased estimator because (θ̂κ, λ̂κ) is correlated with yi.
We develop an information criterion by obtaining a bias-corrected estimator
of the risk.

Our bias correction idea for deriving the information criterion is the same
as that for deriving the AIC although Akaike (1973) used a parametric likeli-
hood instead of an EL. Akaike (1973) derived the bias under the assumptions
that (i) the parametric model is correctly specified and (ii) the parameter
is estimated by the maximum likelihood estimator. Konishi and Kitagawa
(1996) provided a general bias correction method that relaxes both condi-
tions (i) and (ii) although the model must be parametric. We extend the
result of Konishi and Kitagawa (1996) so that the method can be applied for
the moment restriction model.

In the following discussion, we consider an asymptotic framework in which
the sample size goes to infinity for each fixed κ. We do not a priori assume
that κ converges to zero at a certain rate because we aim to select κ in a
data-driven way. Moreover, we assume that r and p are fixed and finite.
However, our information criterion does not change even if r and p increase
slowly with the sample size as long as the main term of the bias does not
change.

Let K be a set of possible values of κ. For each κ ∈ K and P ∈ M, we
define the statistical functional of the PEL estimator:

(T P
θ,κ(P ),T P

λ,κ(P )) = arg min
θ∈Θ

arg max
λ∈Λ(θ)

{
EP [log (1− λ′m(yi,θ))] +

p∑
j=1

pκ(θj)

}
,

where EP denotes the expected value with respect to P . Moreover, we write
T P
κ (P ) = (T P

θ,κ(P )′,T P
λ,κ(P )′)′. The PEL estimator is written as (θ̂κ, λ̂κ) =

(T µ̂
θ,κ(µ̂),T µ̂

λ,κ(µ̂)), where µ̂ is the empirical distribution of y1, . . . ,yn. For a
fixed value of κ, the estimand of the PEL estimator is (θ∗κ,λ

∗
κ) = (T µ

θ,κ(µ),T µ
λ,κ(µ)).

In a usual notation of a statistical functional, there is no superscript P
and the functional is simply written as T (·). We use the notation T P

κ (·)

5



to indicate that the functional of a sparse estimator depends on P (Öllerer,
Croux, and Alfons 2015). This is because zero components in T P

κ (P ) are
generally different from those of TQ

κ (Q) when P 6= Q.
Let T κ(·) = T µ

κ(·) and T̂ κ(·) = T µ̂
κ(·). We impose the following condi-

tions.

(A.1) For all κ ∈ K, T̂ κ(·) = T κ(·) with probability approaching one.

(A.2) For all κ ∈ K, T κ(µ̂) has the following von Mises expansion:

T κ(µ̂) = T κ(µ) +
1

n

n∑
j=1

T (1)
κ (yj;µ) +

1

2n2

n∑
j=1

n∑
k=1

T (2)
κ (yj,yk;µ) + rκ,n

with ‖rκ,n‖ = op(n
−1).

(A.3) m(y,θ) is twice continuously differentiable with respect to θ.

(A.4) pκ(θ) is twice continuously differentiable in θ for |θ| > 0.

Roughly speaking, condition (A.1) is satisfied if the zero component in θ̂κ
coincides with the zero components in θ∗κ with probability approaching one.
This condition is satisfied for commonly used penalty functions, such as the
L1 penalty and the SCAD penalty, if n−1

∑n
i=1 log(1−λ′m(yi,θ)) converges

in probability to E[log(1−λ′m(yi,θ))] uniformly over θ ∈ Θ and λ ∈ Λ(θ).
In condition (A.2), T (1)

κ (y;µ) and T (2)
κ (y, z;µ) are given by the Gâteaux

derivatives of T κ(·):

T (1)
κ (y;µ) =

d

dt
T κ((1− t)µ+ tδy)

∣∣∣∣
t=0

and

T (2)
κ (y, z;µ) =

d2

dtds
T κ((1− s− t)µ+ tδy + sδz))

∣∣∣∣
t=0,s=0

,

where δy is the point mass at y. Notice that T (1)
κ (y;µ) is the influence func-

tion of T κ(·) at µ. The explicit forms of T (1)
κ (y;µ) and T (2)

κ (y, z;µ) are given,
for instance, by Gatto and Ronchetti (1996) and La Vecchia, Ronchetti, and
Trojani (2012) for the M-estimator.

Let γ = (θ′,λ′)′ and φ(y,γ) = ∂ log(1− λ′m(y,θ))/∂γ. We obtain the
following theorem.
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Theorem 3.1. Suppose that conditions (A.1)–(A.4) hold. Then, for each
κ ∈ K, we obtain

1

n

n∑
i=1

log
(

1− λ̂
′
κm(yi, θ̂κ)

)
−
∫

log
(

1− λ̂
′
κm(y, θ̂κ)

)
dµ(y) =

1

n
bκ+op

(
1

n

)
,

where bκ satisfies

E[bκ] = tr

(∫
T (1)
κ (y;µ)φ(y,T κ(µ))′dµ(y)

)
. (3.2)

The proof is given in the supplemental material.
The ELIC is obtained by estimating E[bκ]. We estimate E[bκ] by a sample

analog of (3.2):

b̂κ = tr

(
1

n

n∑
i=1

T̂
(1)

κ (yi; µ̂)φ(yi, T̂ κ(µ̂))′

)
.

To obtain T̂
(1)

κ (y; µ̂), we invoke the fact that the nonzero components of
the PEL estimator can be written in the form of the M-estimator. Let qκ
be the number of nonzero components in θ̂κ and write θ̂κ = (θ̂

′
1κ, θ̂

′
2κ)
′ =

(θ̂
′
1κ,0

′)′ ∈ Rqκ×Rp−qκ . Let θ1κ be the qκ×1 sub-vector of θ whose elements
are estimated to be nonzero. Moreover, let m(yi,θ1κ) = m(yi, (θ

′
1κ,0

′)′)

and Mκ(yi,θ1κ) = ∂m(yi,θ1κ)/∂θ
′
1κ. Then, γ̂1κ = (θ̂

′
1κ, λ̂

′
κ)
′ solves the

first-order condition:

0 =
n∑
i=1

ψκ(yi, γ̂1κ) =
n∑
i=1

 − Mκ(yi,θ̂1κ)′λ̂κ

1−λ̂′
κm(yi,θ̂1κ)

+ r(θ̂1κ)

− m(yi,θ̂1κ)

1−λ̂′
κm(yi,θ̂1κ)

 ,

where r(θ̂1κ) = (p′κ(θ̂1κ1), . . . , p′κ(θ̂1κqκ))′. Thus, the elements of T̂
(1)

κ (y; µ̂)
that corresponds to γ̂1κ are[

− 1

n

n∑
i=1

∂ψκ(yi, γ̂1κ)

∂γ ′1κ

]−1

ψκ(y, γ̂1κ).

Moreover, the elements of T̂
(1)

κ (y; µ̂) that correspond to θ̂2κ are zero because
the distribution of θ̂2κ degenerates. Thus, we obtain the following informa-
tion criterion:

ELIC(κ) = 2
n∑
i=1

log
(

1− λ̂
′
κm(yi, θ̂κ)

)
− 2b̂κ,
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where

b̂κ = tr

[− n∑
i=1

∂ψκ(yi, γ̂
′
1κ)

∂γ ′1κ

]−1 n∑
i=1

ψκ(yi, γ̂1κ)φκ(yi, γ̂1κ)
′


with

φκ(yi, γ̂1κ) =

 − Mκ(yi,θ̂1κ)′λ̂κ

1−λ̂′
κm(yi,θ̂1κ)

− m(yi,θ̂1κ)

1−λ̂′
κm(yi,θ̂1κ)

 .

The second term of the ELIC is called the penalty term, which effectively
balances between goodness-of-fit and model parsimony. We select the value
of κ that minimizes the ELIC.

Although our main focus is on the selection of the regularization parame-
ter, the ELIC can also be used for a classical subset selection problem. When
κ = 0, we have

E[b0] = tr

(
E

[
−∂φ(yi,γ

∗)

∂γ ′

]−1

E[φ(yi,γ
∗)φ(yi,γ

∗)′]

)
,

where γ∗ = (θ∗′,λ(θ∗)′)′. Furthermore, if the moment restriction model is
correctly specified, then we have E[b0] = r − p. Thus, the ELIC coincides
with the AIC of Hong, Preston, and Shum (2003), which can be used for the
subset variable selection for the EL estimation.

If we approximate the bias of the PEL estimator by r−qκ, then we obtain

AIC(κ) = 2
n∑
i=1

log
(

1− λ̂
′
κm(yi, θ̂κ)

)
− 2(r − qκ).

Zou, Hastie, and Tibshirani (2007) showed that the number of nonzero coef-
ficients is an unbiased estimator for the number of degrees of freedom of the
Lasso; our result is similar to theirs.

For regression models, it is known that the AIC tends to select overfit-
ting models when the sample size is small. As suggested by an anonymous
reviewer, a remedy for this problem is to use the AICC of Hurvich and Tsai
(1989), which is a bias-corrected version of the AIC. However, they estab-
lished the bias correction method only for linear regression and autoregressive
models. As far as we know, a bias correction method has not been estab-
lished even for general parametric likelihood models. A theoretical derivation
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of the AICC for the PEL estimator will further complicates the problem be-
cause our AIC depends not only on the number of parameters but also on
the number of moment restrictions as well as the size of the regularization
parameter. We would like to explore this issue in a future project.
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Supplement to “Regularization Parameter Selection for

Penalized Empirical Likelihood Estimator”

Tomohiro Ando Naoya Sueishi

November 7, 2018

Abstract

This supplement contains results of Monte Carlo study and the proof of the theorem in the

main paper.

A Monte Carlo Study

We compared the ELIC, the AIC, and the BIC, where the BIC is given by

BIC(κ) = 2
n∑

i=1

log
(
1− λ̂

′
κm(yi, θ̂κ)

)
− log n(r − qκ).

Following the proof of Theorem 1 in Zhang, Li, and Tsai (2010), we can show that the BIC

asymptotically identifies the true model if the model is correctly specified and p is fixed.

However, the BIC does not have a theoretical justification when p increases with the sample

size.

Leng and Tang (2012) suggested the following modified BIC:

BICM(κ) = 2
n∑

i=1

log
(
1− λ̂

′
κm(yi, θ̂κ)

)
+ Cn(log n)qκ.

Although the value of Cn cannot be uniquely determined, they recommend Cn = max{log log p, 1}.
We do not report the result of BICM because there is little difference between the BIC and

the BICM when p is less than 20.

Calculation of the ELIC necessitates first and second derivatives of the objective function

of the PEL estimator. In our simulation, we used a numerical derivative calculation, which is

often employed in the literature (see, for instance, Ando 2007).

We conducted three simulations. Case 1 considered a correctly specified model. We assessed

the performance of the criteria in terms of the detection of model sparsity and mean squared

error (MSE) of the estimator. Case 2 considered the nonparametric IV estimation problem,
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which is the case where candidate models are misspecified. Case 3 compared the AIC and the

ELIC as bias estimators. Cases 1 and 3 employed the SCAD penalty:

pκ(u) =


κ|u| |u| ≤ κ

−(u2 − 2aκ|u|+ κ2)/[2(a− 1)] κ < |u| ≤ aκ

(a+ 1)κ2/2 |u| > aκ.

Following the suggestion of Fan and Li (2001), we set a = 3.7. Case 2 employed the L2 penalty.

Case 1: Variable selection DGP is specified by the following equations:

yi = x′
iβ + εi, xi = zi + ηi,

where β = (β1, . . . , βp)
′ and xi = (xi1, . . . , xip)

′ are the p-dimensional vector of coefficients and

explanatory variables, respectively. As we will see below, p changes with n. The vector zi =

(zi1, . . . , zip)
′ is independent of εi and was generated from a p-dimensional normal distribution

N(0,Σz). Moreover, the vector (η′
i, εi)

′ was generated from a (p + 1)-dimensional normal

distribution N(0,Σηε), where

Σηε =



1 0 · · · 0 ρη1εσ

0 1
. . .

... ρη2εσ
...

. . .
. . . 0

...

0 · · · 0 1 ρηpεσ

ρη1εσ ρη2εσ · · · ρηpεσ σ2


.

Note that ρηkε specifies the magnitude of endogeneity.

Let σz,jk be the (j, k)-th element of Σz. We consider two different settings. We first consider

the following setting for Σz and Σηε.

DGP 1 : β = (0.2, 0.12, 0, 0,−0.2, 0, . . . , 0)′,

σz,jk = 1 (j = k) and σz,jk = 0.1 (j ̸= k),

ρηkε = 0.5 (k = 1, . . . , 4) and ρηkε = 0 (k = 5, . . . , p).

There are four endogenous predictors among p variables because the value of ρηkε is nonzero

for k = 1, . . . , 4. Moreover, there are three nonzero coefficients in β. We let the variance σ2

vary at 0.1, 0.5 and 1.0.

In the second setting, the number of nonzero coefficients increases from 3 to 8.

DGP 2 : β = (0.2, 0.12, 0.1, 0,−0.2, 0, 0.2, 0.15, 0.5, 0.5, 0, 0, . . . , 0)′,

σz,jk = 1 (j = k), σz,jk = 0.1 (j ̸= k), and ρηkε = 0.8 (k = 1, . . . , p).

All p variables are endogenous in this setting.

We estimated the model by using the following moment restrictions:

E [m(yi,β)] = E[a(zi)(yi − x′
iβ)] = 0,

2



where a(zi) = (zi1, . . . , zip, z
2
i1, . . . , z

2
ip)

′ is the vector of instrumental variables. Thus, the

number of moment restrictions, r, is 2p. Similar to Chang, Chen, and Chen (2015), the

dimension p was tied to the sample size n. We set p = ⌊6n2/15⌋, where ⌊·⌋ is the operator that
truncates the decimal numbers. The sample size was set to be n = 100, 200, 500 and 1000.

The candidate values of κ were prepared as 10−k/4 for k = 0, 1, ...., 20.

To evaluate the performance of each criterion, we calculated the percentages of correctly

identified nonzero coefficients (C) and correctly identified zero coefficients (ZC), which were

defined as follows:

C =

∑
j:βj ̸=0 I(β̂j ̸= 0)∑p
j=1 I(βj ̸= 0)

and ZC =

∑
j:βj=0 I(β̂j = 0)∑p
j=1 I(βj = 0)

,

where I(·) is the indicator function. If the true model is identified, then C = ZC = 1. In

addition to C and ZC, we calculated the MSE, which is given as

MSE =
1

n

n∑
i=1

{
x′
i(β − β̂)

}2
.

Tables 1 and 2 report the average values of C, ZC, and MSE over 200 repetitions. With

regard to sparsity, as predicted from theory, the BIC performed better than did the AIC or

the ELIC. In each case, the percentage of correctly specified ZC was close to one for the BIC,

whereas it is slightly less than one for the AIC and the ELIC. In particular, the ELIC tends

to select overfitted models. However, the difference between the three criteria diminishes as

the sample size increases. Although the BIC performs well in identifying ZC, it tends to select

underfitted models compared to the AIC and the ELIC. The percentage of correctly specified

coefficients for the BIC is rather smaller. As a result, the MSE of the BIC is larger than that

of either the AIC or the ELIC.

Case 2: Nonparametric IV model Application of our selection criterion is not limited

to sparse estimation. Our ELIC can be employed in many situations where regularization is

necessary. A potential application is nonparametric IV estimation. The instability of nonpara-

metric IV estimators unless properly regularized is well known because of the ill-posed inverse

problem (Carrasco, Florens, and Renault 2007).

DGP is specified by

yi = g(xi) + εi, xi = zi + ηi,

where εi, ηi, and zi were generated as
εi

ηi

zi

 ∼ N




0

0

0

 ,


σ2 0.5σ 0

0.5σ 1 0

0 0 1


 .
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Table 1: Correctly specified model (DGP1). C: the percentage of correctly identified nonzero

coefficients; ZC: the percentage of correctly identified zero coefficients; MSE: the average of the

mean squared errors.

DGP 1

σ2 = 0.1 MSE C ZC

n ELIC AIC BIC ELIC AIC BIC ELIC AIC BIC

100 0.0468 0.0506 0.0687 0.91 0.86 0.72 0.82 0.93 0.96

200 0.0411 0.0410 0.0494 0.93 0.92 0.86 0.89 0.93 0.94

500 0.0329 0.0325 0.0354 0.96 0.97 0.94 0.93 0.93 0.94

1000 0.0280 0.0281 0.0314 0.98 0.98 0.96 0.94 0.94 0.94

σ2 = 0.5

100 0.1154 0.1271 0.1448 0.70 0.48 0.29 0.87 0.96 0.98

200 0.0864 0.0937 0.1294 0.81 0.72 0.40 0.95 0.97 0.99

500 0.0772 0.0790 0.0927 0.82 0.81 0.68 0.98 0.98 0.99

1000 0.0753 0.0764 0.0806 0.83 0.82 0.76 0.99 0.99 1.00

σ2 = 1.0

100 0.1630 0.1499 0.1687 0.63 0.47 0.24 0.89 0.94 0.97

200 0.1191 0.1312 0.1532 0.69 0.51 0.24 0.93 0.94 0.98

500 0.0958 0.1000 0.1492 0.74 0.65 0.25 0.94 0.94 0.98

1000 0.0935 0.0974 0.1236 0.74 0.70 0.46 0.94 0.95 0.99
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Table 2: Correctly specified model (DGP2). C: the percentage of correctly identified nonzero

coefficients; ZC: the percentage of correctly identified zero coefficients; MSE: the average of the

mean squared errors.

DGP 2

σ2 = 0.1 MSE C ZC

n ELIC AIC BIC ELIC AIC BIC ELIC AIC BIC

100 0.0909 0.1159 0.2186 0.94 0.90 0.78 0.70 0.82 0.89

200 0.0443 0.0449 0.0741 0.99 0.99 0.95 0.73 0.87 0.92

500 0.0327 0.0305 0.0311 1.00 1.00 1.00 0.75 0.89 0.97

1000 0.0285 0.0280 0.0281 0.99 1.00 1.00 0.87 0.97 1.00

σ2 = 0.5

100 0.2488 0.2551 0.3664 0.78 0.75 0.62 0.73 0.85 0.91

200 0.2240 0.2013 0.3054 0.79 0.76 0.60 0.80 0.89 0.94

500 0.1635 0.1560 0.1655 0.83 0.84 0.80 0.94 0.93 0.95

1000 0.1511 0.1468 0.1562 0.83 0.85 0.82 0.99 0.98 0.99

σ2 = 1.0

100 0.4159 0.4720 0.5382 0.68 0.53 0.46 0.69 0.83 0.90

200 0.2956 0.2479 0.3944 0.69 0.77 0.53 0.85 0.85 0.97

500 0.1741 0.1741 0.1977 0.80 0.80 0.75 0.98 0.98 0.98

1000 0.1690 0.1692 0.1693 0.81 0.81 0.80 0.99 0.99 0.99
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We considered three different specifications for g(x):

DGP 1 : g(x) = −0.1 log(|x|) + 0.3 sin(πx).

DGP 2 : g(x) = 0.5 sin(x/3).

DGP 3 : g(x) = −0.02x.

To approximate unknown true functions, we fit the linear combination of the set of p = 15

basis functions. We used cubic B-spline basis functions for b(xi). The moment restrictions are

E [m(yi,β)] = E
[
a(zi)(yi − b(xi)

′β)
]
= 0.

The vector of instrumental variables was set as a(zi) = (a1(zi)
′,a2(zi)

′,a3(zi)
′)′ with

a1(zi) = (|zi|, zi, z2i , . . . , z6i )′

a2(zi) = (sin(πzi), sin(2πzi), . . . , sin(6πzi))
′

a3(zi) = (cos(zi), cos(zi/2), . . . , cos(zi/6))
′.

Our estimator can be viewed as an EL analog of the penalized series estimator of Newey and

Powell (2003) and Blundell, Chen, and Kristensen (2007). Notice that the moment restriction

models are misspecified because of the approximation error.

The candidate values of κ were prepared as 0 and 101−k/2.5 for k = 0, 1, ...., 20. As noted

in Section 3.3, both the AIC and the BIC select κ = 0 because their penalty term does not

change with κ. By contrast, our proposed ELIC can incorporate penalty amounts.

The results are summarized in Table 3. We report the averages and the standard devi-

ations of MSE over 200 repetitions. The standard deviations illustrate that the MSE is not

particularly volatile even though the number of repetitions is rather small. As a benchmark,

we report the MSE of the estimator that uses the infeasible best regularization parameter.

The result of the best estimator is labeled Oracle. Moreover, we report the MSE of the nonpe-

nalized EL estimator (κ = 0). We observe that the PEL estimator with the ELIC performed

better than the nonpenalized EL estimator in all cases. Furthermore, the MSE of the ELIC

converges towards Oracle as the sample size increases. These results suggest that our ELIC

can be used not only for sparse estimation but also in a wide variety of other settings.

Case 3: Bias estimation This simulation investigates how well the bias correction term

of the ELIC and the AIC estimates the true bias. We again considered nonparametric IV

estimation with the true function g(x) = −0.7x. The error variance, the number of basis

functions, and the vector of instrumental variables were set as σ2 = 0.5, p = 10, and a(zi) =

(log |zi|, (log |zi|)2, . . . , (log |zi|)12)′, respectively. Moreover, the SCAD penalty was employed.

Figure 1 plots the true bias (dotted line), the estimate of the ELIC (solid line), and the

estimate of the AIC (dashed line) for κ = 10−1 and 10−3. The vertical axis is the size of the

bias, and the horizontal axis is the sample size. The sample size was set to be n = 100, 200, 400,

and 800. We report the averages of the estimates over 10,000 repetitions.
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Table 3: Nonparametric IV model (DGP1). MSE over 200 repetitions are reported. Oracle: the

MSE of the estimator that uses the infeasible best regularization parameter; SD: standard deviation

of the MSE.

DGP 1:

σ2 = 0.1 n ELIC κ = 0 Oracle

100 0.01405 0.01605 0.01026

SE 0.00044 0.00049 0.00032

200 0.00846 0.00949 0.00703

SE 0.00026 0.00029 0.00021

500 0.00546 0.00563 0.00503

SE 0.00014 0.00015 0.00013

1000 0.00418 0.00427 0.00396

SE 0.00011 0.00011 0.00010

σ2 = 0.2 n ELIC κ = 0 Oracle

100 0.03038 0.03696 0.01818

SE 0.00091 0.00090 0.00043

200 0.01901 0.02131 0.01323

SE 0.00042 0.00046 0.00026

500 0.01127 0.01238 0.00947

SE 0.00032 0.00032 0.00025

1000 0.00912 0.00947 0.00843

SE 0.00016 0.00016 0.00016
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Table 3: (Continued) Nonparametric IV model (DGP2).

DGP 2:

σ2 = 0.1 n ELIC κ = 0 Oracle

100 0.01554 0.01797 0.01100

SE 0.00036 0.00039 0.00019

200 0.00861 0.00962 0.00634

SE 0.00019 0.00021 0.00011

500 0.00446 0.00509 0.00336

SE 0.00010 0.00010 0.00006

1000 0.00271 0.00309 0.00209

SE 0.00006 0.00006 0.00004

σ2 = 0.2 n ELIC κ = 0 Oracle

100 0.03180 0.03597 0.01506

SE 0.00107 0.00102 0.00039

200 0.01452 0.01888 0.00771

SE 0.00046 0.00046 0.00013

500 0.01060 0.01218 0.00535

SE 0.00027 0.00029 0.00013

1000 0.00760 0.00815 0.00470

SE 0.00017 0.00017 0.00008
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Table 3: (Continued) Nonparametric IV model (DGP3).

DGP 3:

σ2 = 0.1 n ELIC κ = 0 Oracle

100 0.01243 0.01618 0.00562

SE 0.00046 0.00050 0.00018

200 0.00755 0.00919 0.00401

SE 0.00023 0.00021 0.00013

500 0.00383 0.00442 0.00284

SE 0.00009 0.00010 0.00008

1000 0.00243 0.00269 0.00206

SE 0.00007 0.00007 0.00006

σ2 = 0.2 n ELIC κ = 0 Oracle

100 0.02651 0.03078 0.01008

SE 0.00080 0.00074 0.00027

200 0.01613 0.01970 0.00884

SE 0.00044 0.00048 0.00027

500 0.01057 0.01138 0.00705

SE 0.00032 0.00032 0.00022

1000 0.00722 0.00750 0.00553

SE 0.00018 0.00018 0.00011
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Because the exact value of the true bias is unknown even in the simulation, it was evaluated

numerically. We obtained the bias through the following iterative calculations. In the k-th

step of the iteration, we first generated a set of n observations {y(k)
1 , . . . ,y

(k)
n } and obtained

the parameter estimate (θ̂
(k)

κ , λ̂
(k)

κ ). Next, we generated m observations {ỹ(k)
1 , . . . , ỹ

(k)
m } that

are independent of {y(k)
1 , . . . ,y

(k)
n } and calculated

1

n

n∑
i=1

log
(
1− λ̂

(k)′
κ m(y

(k)
i , θ̂

(k)

κ )
)
− 1

m

m∑
j=1

log
(
1− λ̂

(k)′
κ m(ỹ

(k)
j , θ̂

(k)

κ )
)
. (A.1)

We set m = 2, 000, 000. The bias was approximated by the average of (A.1) over k =

1, . . . , 10, 000.

We observe from Figure 1 that the simple estimator, which is given by (3.1) in the main

paper, has a significant bias as an estimate of the risk, and the bias decreases as the sample

size increases. Moreover, the true bias is larger for smaller κ. This is because κ = 10−3 is too

small to stabilize the estimator, and hence, the value of the risk tends to be large.

Overall, the ELIC can capture the behavior of the true bias. In contrast, the AIC fails to

estimate the bias, particularly when κ is small. This result suggests that the ELIC outperforms

the AIC when the performance of the estimator is sensitive to the choice of the regularization

parameter.

B Proof of Theorem 3.1

Our proof is similar to that for Theorem of 2.1 of Konishi and Kitagawa (1996). By conditions

(A.1) and (A.2) in the main paper, the PEL estimator can be expanded as

T̂ κ(µ̂) = T κ(µ) +
1

n

n∑
j=1

T (1)
κ (yj ;µ) +

1

2n2

n∑
j=1

n∑
k=1

T (2)
κ (yj ,yk;µ) + op

(
1

n

)
. (B.1)

Here, we can take T
(1)
κ (y;µ) and T

(2)
κ (y, z;µ) so that they satisfy∫
T (1)

κ (y;µ)dµ(y) = 0 (B.2)

and ∫
T (2)

κ (y, z;µ)dµ(y) =

∫
T (2)

κ (y, z;µ)dµ(z) = 0. (B.3)

By the theory of U-statistics, we see that the second and third terms of the right-hand side of

(B.1) are of order Op(n
−1/2) and Op(n

−1), respectively.
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Figure 1: The true bias (dotted line) and asymptotic bias estimates of ELIC (solid line) and AIC

(dashed line).
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Expanding n−1
∑n

i=1 log(1− λ̂
′
κm(yi; θ̂κ)) around T κ(µ) yields

1

n

n∑
i=1

log(1− λ̂
′
κm(yi; θ̂κ))

=
1

n

n∑
i=1

log(1− T λ,κ(µ)
′m(yi,T θ,κ(µ))) +

1

n2

n∑
i=1

n∑
j=1

T (1)
κ (yj ;µ)

′ϕ(yi,T κ(µ))

+
1

2n3

n∑
i=1

n∑
j=1

n∑
k=1

T (2)
κ (yj ,yk;µ)

′ϕ(yi,T κ(µ))

+
1

2n3

n∑
i=1

n∑
j=1

n∑
k=1

T (1)
κ (yj ;µ)

′∂ϕ(yi,T κ(µ))

∂γ ′ T (1)
κ (yk;µ) + op

(
1

n

)
.

Similarly, we have∫
log(1− λ̂

′
κm(y, θ̂κ))dµ(y)

=

∫
log(1− T λ,κ(µ)

′m(y,T θ,κ(µ))dµ(y) +
1

n

n∑
j=1

T (1)
κ (yj ;µ)

′
∫

ϕ(y,T κ(µ))dµ(y)

+
1

2n2

n∑
j=1

n∑
k=1

T (2)
κ (yj ,yk;µ)

′
∫

ϕ(y,T κ(µ))dµ(y)

+
1

2n2

n∑
j=1

n∑
k=1

T (1)
κ (yj ;µ)

′
[∫

∂ϕ(y,T κ(µ))

∂γ ′ dµ(y)

]
T (1)

κ (yk;µ) + op

(
1

n

)
.

Thus, using (B.2) and (B.3), we obtain

1

n

n∑
i=1

log
(
1− λ̂

′
κm(yi; θ̂κ)

)
−

∫
log

(
1− λ̂

′
κm(y, θ̂κ)

)
dµ(y) =

1

n
bκ + op

(
1

n

)
,

where bκ satisfies

E[bκ] = tr

(∫
T (1)

κ (y;µ)ϕ(y,T κ(µ))
′dµ(y)

)
.

2
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