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ABSTRACT
In this paper, we are concerned with an SIR epidemic model with infection age and
spatial diffusion in the case of Neumann boundary condition. The original model
is constructed as a nonlinear age structured system of reaction-diffusion equations.
By using the method of characteristics, we reformulate the model into a system of
a reaction-diffusion equation and a Volterra integral equation. For the reformulated
system, we define the basic reproduction number R0 by the spectral radius of the
next generation operator, and show that if R0 < 1, then the trivial disease-free
steady state is globally attractive, whereas if R0 > 1, then the disease in the system
is persistent. Moreover, under an additional assumption that there exists a finite
maximum age of infectiousness, we show the global attractivity of a constant endemic
steady state for R0 > 1.
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1. Introduction

In 1927, Kermack and McKendrick [1] constructed a continuous-time SIR epidemic
model, in which the total population is divided into three subpopulations called sus-
ceptible (S), infective (I) and recovered (R). Their original model included the infec-
tion age, that is, time elapsed since the infection. Recently, in 2010, Magal et al. [2]
studied an SIR epidemic model with infection age, and proved that if the basic repro-
duction number R0 (see, for instance, [3–5]) is less than 1, then the trivial disease-free
steady state is globally asymptotically stable, whereas if R0 > 1, then the nontrivial
endemic steady state is so.

Epidemic models with spatial diffusion, which are suitable for diseases such as the
rabies ([6]) and the Black Death ([7]), have been studied for decades (see, for in-
stance, [6–9]). However, there are relatively few works on epidemic models with both
of the infection age and spatial diffusion. In [10], Webb studied an infection age-space
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structured SEIR epidemic model without birth and death processes, and showed the
existence and uniqueness of nonnegative global solution and convergence of the in-
fective population to zero as time goes to infinity. In [11], Fitzgibbon et al. studied
an infection age-space structured SEIR epidemic model for the crisscross dynamics,
which is a generalization of the model in [10]. In [12] and [13], Ducrot and Magal
studied the existence of travelling wave solutions in infection age-space structured SIR
epidemic models without and with external supplies, respectively. In [14], Zhang and
Wang studied a time-periodic infection age-space structured SIR epidemic model, and
showed that R0 is a threshold for the extinction or uniform persistence of the disease.

In this paper, we study an infection age-space structured SIR epidemic model with
birth and death processes. It is a generalization of the model in [2] to a spatially
diffusive system, and corresponds to the model studied in [13]. Although [13] focused on
the existence of travelling wave solutions in a spatially unbounded domain, this study
focus on the asymptotic behavior of solutions in a spatially bounded domain. In this
study, we derive the basic reproduction number R0 as the spectral radius of the next
generation operator, and show that if R0 < 1, then the trivial disease-free steady state
is globally attractive, whereas if R0 > 1, then the disease in the system is persistent.
Moreover, under an additional assumption that there exists a finite maximum age
of infectiousness, we show that a constant positive endemic steady state is globally
attractive if R0 > 1.

The organization of this paper is as follows. In Section 2, we formulate the main
model and reformulate it by using the method of characteristics to a coupled system
of a reaction-diffusion equation and a Volterra integral equation. In Section 3, we
prove the existence and uniqueness of positive global solution by using the Banach-
Picard fixed point theorem. In Section 4, we derive the basic reproduction number
R0 and show that if R0 > 1, then a space-independent endemic steady state for the
original model exists, whereas if R0 < 1, then the trivial disease-free steady state is
globally attractive. In Section 5, we prove the persistence of the disease in the system
for R0 > 1. In Section 6, under an additional assumption that there exists a finite
maximum age of infectiousness, we prove the global attractivity of a constant positive
endemic steady state for R0 > 1 by constructing a suitable Lyapunov function. Section
7 is devoted to the discussion.

2. The model

Let I(t, a, x) denote the infective population at time t ≥ 0, infection age a ≥ 0 and
position x ∈ Ω ⊂ R, where Ω := (`1, `2) ⊂ R is a spatially bounded domain. Let S(t, x)
and R(t, x) denote the densities of susceptible and recovered populations, respectively,
at time t ≥ 0 and position x ∈ Ω. We assume that all newborns are susceptible and let
b > 0 be the number of newborns per unit time. Let µ > 0 be the per capita natural
death rate per unit time. Let γ(a) be the per capita age-specific recovery rate, and let
β(a) be the per capita age-specific disease transmission rate per unit time. We make
the following assumptions,

(A1) γ ∈ L∞+ (0,+∞) and β ∈ L∞+ (0,+∞).
(A2) There exist 0 < a1 < a2 < +∞ such that β(a) > 0 for all a ∈ (a1, a2).

Let γ+ := ess.supa≥0 γ(a) < +∞, β+ := ess.supa≥0 β(a) < +∞. Let d1 > 0, d2 > 0
and d3 > 0 be the diffusion coefficients for susceptible, infective and recovered indi-
viduals, respectively. The boundary condition is Neumann: ∂xS(t, `1) = ∂xS(t, `2) =
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∂xR(t, `1) = ∂xR(t, `2) = 0 for all t > 0, and ∂xI(t, a, `1) = ∂xI(t, a, `2) = 0 for all
t > 0 and a > 0. The main model of this paper is formulated as the following system
with infection age and spatial diffusion, for t > 0, a > 0 and x ∈ [`1, `2],

∂S(t, x)

∂t
= d1

∂2S(t, x)

∂x2
+ b− S(t, x)

∫ +∞

0

β(a)I(t, a, x)da− µS(t, x),(
∂

∂t
+

∂

∂a

)
I(t, a, x) = d2

∂2I(t, a, x)

∂x2
− [µ+ γ(a)] I(t, a, x),

I(t, 0, x) = S(t, x)

∫ +∞

0

β(a)I(t, a, x)da,

∂R(t, x)

∂t
= d3

∂2R(t, x)

∂x2
+

∫ +∞

0

γ(a)I(t, a, x)da− µR(t, x),

(1)

combined with initial condition S(0, x) = φ1(x), I(0, a, x) = φ2(a, x), R(0, x) = φ3(x),
a ≥ 0, x ∈ [`1, `2]. Without loss of generality, we can make the following change of
variable, x 7→ π(x − `1)/ (`2 − `1), in which the domain becomes Ω = (0, π) and the
diffusion coefficients become di(π/(`2 − `1))2, i = 1, 2, 3 (we denote them again di,
i = 1, 2, 3). Note that the new diffusion coefficients depend on the length of domain.

We now reformulate model (1). By using the method of characteristics to the second
equation in (1), we have

I(t, a, x) =


e−

∫ a
0
[µ+γ(σ)]dσ

∫ π

0

Γ2(a, x, y)I(t− a, 0, y)dy, t− a > 0, x ∈ [0, π],

e−
∫ t
0
[µ+γ(a−t+σ)]dσ

∫ π

0

Γ2(t, x, y)φ2(a− t, y)dy, a− t ≥ 0, x ∈ [0, π],

(2)

where

Γ2(a, x, y) :=
1

π
+

2

π

+∞∑
k=1

cos(ky) cos(kx)e−k
2d2a.

Let u(t, x) := I(t, 0, x). Substituting (2) into the third equation in (1), we obtain the
following coupled system of a reaction-diffusion equation of S and a Volterra integral
equation of u, for t > 0 and x ∈ [0, π],

∂S(t, x)

∂t
= d1

∂2S(t, x)

∂x2
+ b− u(t, x)− µS(t, x),

∂S(t, 0)

∂x
=
∂S(t, π)

∂x
= 0,

u(t, x) = S(t, x)

∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u(t− a, y)dyda+ S(t, x)F2(t, x),

F2(t, x) =

∫ +∞

t

β(a)e−
∫ t
0
{µ+γ(a−t+σ)}dσ

∫ π

0

Γ2(t, x, y)φ2(a− t, y)dyda,

(3)

combined with initial condition S(0, x) = φ1(x), u(0, x) = φ1(x)F2(0, x), x ∈ [0, π].
Note that we can omit the equation of R since system (3) is independent from R.

3. Existence and uniqueness of the solution

Let X := C ([0, π],R) with supremum norm | · |X , and let X+ be its positive cone.

Let Y := L1 (R+, X) with norm |ϕ|Y :=
∫ +∞
0 |ϕ(a)|X da, ϕ ∈ Y , and let Y + be its

positive cone. The following lemma directly follows from [15, Lemma 2.1].
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Lemma 3.1. 0 < Γ2(a, x, y) < π−1
(
ed2a + 1

)
/
(
ed2a − 1

)
for all a > 0 and x, y ∈

(0, π).

Using Lemma 3.1, we next prove the positivity of the solution.

Proposition 3.2. Let (S, u) be a solution of (3) corresponding to (φ1, φ2) ∈ X+×Y +

with an interval of existence [0, T ), T > 0. Then, S(t, x) > 0 and u(t, x) ≥ 0 for all
t ∈ (0, T ) and x ∈ [0, π].

Proof. Note that if (φ1, φ2) ∈ X+ × Y +, then we have u(0, x) = S(0, x)F2(0, x) =

φ1(x)
∫ +∞
0 β(a)φ2(a, x)da ≥ 0 for all x ∈ [0, π]. We define the linear operator Φ : Y →

Y as Φ(ϕ)(t, x) :=
∫ t
0 β(a)e−

∫ a
0
{µ+γ(σ)}dσ ∫ π

0 Γ2(a, x, y)ϕ(t − a, y)dyda, ϕ ∈ Y . Note
that Φ is positive, that is, Φ(Y +) ⊂ Y + by virtue of (A1) and Lemma 3.1. Then, (3)
can be rewritten in term of Φ, and implies that, for t ∈ [0, T ) and x ∈ [0, π],

∂S(t, x)

∂t
> d1

∂2S(t, x)

∂x2
− [µ+ Φ(u)(t, x) + F2(t, x)]S(t, x),

∂S(t, 0)

∂x
=
∂S(t, π)

∂x
= 0,

u(t, x) = S(t, x) [Φ(u)(t, x) + F2(t, x)] .

(4)

Since µ + Φ(u)(t, x) + F2(t, x) is continuous and bounded with respect to t and x,
it follows from a standard result for PDEs that S(t, x) > 0 for all t ∈ [0, T ) and
x ∈ [0, π]. Now, we focus on u. Suppose by contradiction that there exist x1 ∈ [0, π]
and t1 ∈ (0, T ) such that u(t, x) ≥ 0 for all t ∈ [0, t1] and x ∈ [0, π], u(t1, x1) = 0 and
u(t1 + ε, x1) < 0 for a small 0 < ε� 1. Since F2(t, x) ≥ 0, we have, for small enough ε,

u(t1 + ε, x1) =S(t1 + ε, x1)

∫ t1+ε

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x1, y)u(t1 + ε− a, y)dyda

+ S(t1 + ε, x1)F2(t1 + ε, x1) ≥ 0.

This leads to a contradiction. This completes the proof.

By using the Banach-Picard fixed point theorem, we prove the following theorem
on the existence and uniqueness of solution.

Theorem 3.3. Let (φ1, φ2) ∈ X+ × Y +. Then, the system (3) has a unique positive
solution defined on [0,+∞)× [0, π].

Proof. We choose 0 < T � 1 to be satisfying h̃(T ) < 1, where h̃ is given below
by (7) (and clearly limα 7→0 h̃(α) = 0). Let YT := C([0, T ], X) with norm |v|YT :=
sup0≤t≤T |v(t, ·)|X , v ∈ YT . For (t, x) ∈ [0, T ]× [0, π], we have

S(t, x) = F1(t, x) +

∫ t

0

e−µ(t−a)
∫ π

0

Γ1(t− a, x, y) [b− u(a, y)] dyda, (5)

where F1(t, x) := e−µt
∫ π
0 Γ1(t, x, y)φ1(y)dy, and Γ1 is defined similarly to Γ2 by re-

placing d2 by d1. Thus, we can get a single equation in u given, for (t, x) ∈ [0, T ]×[0, π],
by

u(t, x) =

[
F1(t, x) +

∫ t

0

e−µ(t−a)
∫ π

0

Γ1(t− a, x, y) [b− u(a, y)] dyda

]
×
[∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u(t− a, y)dyda+ Fφ2
(t, x)

]
.

(6)
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Define the operator F : YT → YT given by the right side of the above expression of u.
Thus, existence and uniqueness of a continuous solution follow as a fixed point of F .

For two functions u1 and u2 in YT (we set ũ := u1 − u2), one can obtain

Fu1 −Fu2 = F1(t, x)

∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)ũ(t− a, y)dyda

+B

∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)ũ(t− a, y)dyda

− F2(t, x)

∫ t

0

e−µ(t−a)
∫ π

0

Γ1(t− a, x, y)ũ(a, y) dyda

−
∫ t

0

e−µ(t−a)
∫ π

0

Γ1(t− a, x, y)u1(a, y) dyda

∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u1(t− a, y)dyda

+

∫ t

0

e−µ(t−a)
∫ π

0

Γ1(t− a, x, y)u2(a, y) dyda

∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u2(t− a, y)dyda,

where B := b

∫ t

0
e−µ(t−a)

∫ π

0
Γ1(t− a, x, y) dyda. Then, we get (bellow L is the Lips-

chitz constant)

|Fu1 −Fu2| ≤ [F1(t, x) +B]

∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσda sup

0≤s≤t
|ũ(s, ·)|X

+ F2(t, x)

∫ t

0

e−µ(t−a)da sup
0≤s≤t

|ũ(s, ·)|X + L

∫ t

0

e−µ(t−a)
∫ π

0

Γ1(t− a, x, y) dyda sup
0≤s≤t

|ũ(s, ·)|X

+ L

∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)dyda sup
0≤s≤t

|ũ(s, ·)|X .

We put

h̃(T ) := sup
0≤s≤T

∣∣∣∣[F1(s, x) +B]

∫ s

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσda+ F2(s, x)

∫ s

0

e−µ(s−a)da

+L

∫ s

0

e−µ(s−a)da+ L

∫ s

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσda

∣∣∣∣
X

. (7)

This leads to |Fu1 −Fu2|YT ≤ h̃(T ) |u1 − u2|YT , which implies that the operator F is a
strict contraction in YT . Hence, it has a unique fixed point. This implies that the system
(3) has a unique local solution. To extend the domain of existence from [0, T ]× [0, π]
to [0,+∞)× [0, π], it suffices to show that the solution does not blow up in finite time.
In fact, by Proposition 3.2, we have that ∂tS(t, x) ≤ d1∂xxS(t, x) + b − µS(t, x) for
all t > 0 and x ∈ [0, π], which implies that S(t, x) is bounded above by the upper
solution b/µ for all t > 0 and x ∈ [0, π]. We now claim that u(t, x) < +∞ for all
t > 0 and x ∈ [0, π]. Suppose on the contrary that there exist t∗ > 0 and x∗ ∈ [0, π]
such that limt→t∗−0 u(t, x∗) = +∞. We then have from the first equation in (3) that
limt→t∗−0 ∂tS(t, x∗) = −∞, which implies that S(t, x∗) is negative in the neighborhood
of t∗. This contradicts to the positivity of S, which was proved in Proposition 3.2. Thus,
blow up never occurs, and we obtain a solution in C([0,+∞), X). The regularity can
be proved as well using the above integral formulations. This completes the proof.
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4. Basic reproduction number

It is easy to see that (3) has the disease-free steady state (S, u) = (b/µ, 0) ∈ X+×X+.
The second equation in (3) can be linearized around the disease-free steady state as

u(t, x) = (b/µ)
∫ t
0 β(a)e−

∫ a
0
{µ+γ(σ)}dσ ∫ π

0 Γ2(a, x, y)u(t − a, y)dyda for all t > 0 and
x ∈ [0, π]. Following the definition by Diekmann et al. [3], the basic reproduction
number R0 is given by the spectral radius of the next generation operator,

Kϕ(x) :=
b

µ

∫ +∞

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)ϕ(y)dyda, ϕ ∈ X.

That is, R0 := r(K), where r(·) denotes the spectral radius of an operator. To obtain
explicit R0, we prove the following lemma on the next generation operator K.

Lemma 4.1. K is strictly positive and compact.

Proof. The strict positivity is obvious by (A2) and Lemma 3.1. Let {ϕn}n∈N be
a bounded sequence in X such that |ϕn|X ≤ M, n ∈ N for some M > 0. Let
us define a sequence {ψn}n∈N by ψn := Kϕn. Then, we have for all n ∈ N and

x ∈ (0, π) that ψn(x) ≤ (b/µ)
∫ +∞
0 β(a)e−

∫ a
0
{µ+γ(σ)}dσ ∫ π

0 Γ2(a, x, y)dyda |ϕn|X ≤
(b/µ)

∫ +∞
0 β(a)e−

∫ a
0
{µ+γ(σ)}dσdaM . That is, {ψn}n∈N is uniformly bounded. Next, we

prove that {ψn}n∈N is equi-continuous. In fact, we have, for x, x̃ ∈ [0, π],

|ψn(x)− ψn(x̃)| = |Kϕn(x)−Kϕn(x̃)| ,

≤ b

µ

∫ +∞

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

|Γ2(a, x, y)− Γ2(a, x̃, y)|ϕn(y)dyda,

≤ bβ+

µ

∫ +∞

0

e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

2

π

∣∣∣∣∣
+∞∑
k=1

{cos(kx)− cos(kx̃)} cos(ky)e−k
2d2a

∣∣∣∣∣dyda |ϕn|X ,

≤ 2bβ+

πµ

∫ π

0

∣∣∣∣∣
+∞∑
k=1

{cos(kx)− cos(kx̃)} cos(ky)

∫ +∞

0

e−(µ+k2d2)ada

∣∣∣∣∣dyM,

=
2bβ+

πµ

∫ π

0

∣∣∣∣∣
+∞∑
k=1

{cos(kx)− cos(kx̃)} cos(ky)

µ+ k2d2

∣∣∣∣∣dyM, β+ = ess.sup
a≥0

β(a) ∈ (0,+∞). (8)

Let κ(x, y) :=
∑+∞

k=1 cos(kx) cos(ky)/
(
µ+ k2d2

)
, (x, y) ∈ [0, π] × [0, π]. Since κ(x, y)

is continuous on [0, π] × [0, π], it is uniformly continuous. Hence, for any ε > 0,
there exists a δ > 0 such that |κ(x, y)− κ(x̃, y)| ≤ µε/(2bβ+M) for all |x − x̃| ≤
δ and y ∈ [0, π]. For such ε and δ, we have from (8) that |ψn(x)− ψn(x̃)| ≤
(2bβ+/(πµ))

∫ π
0 |κ(x, y)− κ(x̃, y)| dyM ≤ ε, |x− x̃| ≤ δ. This implies that {ψn}n∈N

is equi-continuous. By the Ascoli-Arzela theorem, K is compact.

By Lemma 4.1, we see from the Krein-Rutman theorem ([16, Theorem 3.2]) that
R0 = r(K) is the only eigenvalue of K having a positive eigenvector. For constant

v ∈ X+ \ {0}, we have Kv = (b/µ)
∫ +∞
0 β(a)e−

∫ a
0
{µ+γ(σ)}dσ ∫ π

0 Γ2(a, x, y)dyda v =

(b/µ)
∫ +∞
0 β(a)e−

∫ a
0
{µ+γ(σ)}dσda v. That is, R0 = r(K) is given by

R0 = r(K) =
b

µ

∫ +∞

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσda. (9)

Note that this R0 is similar to the one obtained in [2,13].
Now, we can easily check that R0 is a threshold value for the existence of a positive

space-independent endemic steady state of the original system (1), which is a solution
of the following equations,
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
0 = b− u∗ − µS∗, dI∗(a)

da
= −(µ+ γ(a))I∗(a), a > 0,

u∗ = I∗(0) = S∗
∫ +∞

0

β(a)I∗(a)da, 0 =

∫ +∞

0

γ(a)I∗(a)da− µR∗.
(10)

The following theorem directly follows from the argument in [2, Section 1, p.1111].

Theorem 4.2. Suppose that R0 > 1. Then, the original system (1) has a space-
independent endemic steady state (S∗, I∗(a), R∗), which is a solution of (10).

Next, we prove the global attractivity of the disease-free steady state (S, u) =
(b/µ, 0) of (3) for R0 < 1. To this end, we prove the existence of upper bounds for S
and u in the following set, CM := {(φ1, φ2) ∈ X+ × Y + : 0 ≤ φ1(x) ≤ b/µ and 0 ≤
φ2(a, x) ≤Me−

∫ a
0
{µ+γ(σ)}dσ for all a ≥ 0 and x ∈ [0, π]}, where M > 0 is an arbitrary

large positive constant. We next prove the following proposition.

Proposition 4.3. Suppose that R0 < 1 and (φ1, φ2) ∈ CM . Then, 0 < S(t, x) ≤ b/µ
and 0 ≤ u(t, x) ≤M for all t > 0 and x ∈ [0, π].

Proof. The positivity follows from Proposition 3.2. From the first equation in (3),
we have that ∂tS(t, x) ≤ d1∂xxS(t, x) + b − µS(t, x) for all t > 0 and x ∈ [0, π].
We then see that S(t, x) = b/µ, t ≥ 0, x ∈ [0, π] is an upper solution, and thus,
S(t, x) ≤ S(t, x) = b/µ for all t > 0 and x ∈ [0, π], provided (φ1, φ2) ∈ CM . To prove
that u(t, x) ≤ M for all t > 0 and x ∈ [0, π], we suppose by contradiction that there
exist t2 > 0 and x2 ∈ [0, π] such that u(t, x) ≤ M for all t ∈ [0, t2] and x ∈ [0, π],
u(t2, x2) = M and u(t2 + ε, x2) > M for a small 0 < ε � 1. We then have from the
second equation in (3) that, for a small enough ε > 0,

u(t2 + ε, x2) ≤ b
µ

(∫ t2+ε

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσMda

+

∫ +∞

t2+ε

β(a)e−
∫ t2+ε
0 {µ+γ(a−t2−ε+σ)}dσ

∫ π

0

Γ2(t2 + ε, x, y)φ2(a− t2 − ε, y)dyda

)
,

≤ b
µ

(∫ t2+ε

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσMda

+

∫ +∞

t2+ε

β(a)e
−

∫ a
a−t2−ε

{µ+γ(σ)}dσ
Me−

∫ a−t2−ε
0 {µ+γ(σ)}dσda

)
,

≤ b
µ

∫ +∞

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσdaM = R0M < M,

which is a contradiction. This completes the proof.

Using Proposition 4.3, we prove the global attractivity of the disease-free steady
state for R0 < 1.

Theorem 4.4. Suppose that R0 < 1 and (φ1, φ2) ∈ CM . Then the disease-free steady
state (S, u) = (b/µ, 0) of (3) is globally attractive.

Proof. Let u∞(x) := lim supt→+∞ u(t, x) and U∞ := supx∈[0,π] u
∞(x) ≤M . Suppose

that U∞ > 0. Then, since R0 < 1, there exists an x∗ ∈ [0, π] such that u∞(x∗) >
R0U

∞. We then have
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R0U
∞ < u∞(x∗) ≤ b

µ
lim sup
t→+∞

(∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x∗, y)u(t− a, y)dyda

)
≤ b

µ
lim sup
t→+∞

(∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x∗, y)dyda

)
U∞ = R0U

∞,

which is a contradiction. Hence, U∞ = 0 and this implies that limt→+∞ u(t, x) = 0 for
all x ∈ [0, π]. For u = 0, S obeys the differential equation ∂tS(t, x) = d1∂xxS(t, x) +
b− µS(t, x) and it is easy to check that limt→+∞ S(t, x) = b/µ for all x ∈ [0, π]. This
completes the proof.

5. Persistence of the disease

In this section, we show the persistence of the disease in system (3) for R0 > 1. First,
we consider a semiflow associated with system (3). Based on (2), for solution u(t, x)
of system (3), we define

i(t, a, x) =


e−

∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u(t− a, y)dy, t− a > 0, x ∈ [0, π],

e−
∫ a
a−t{µ+γ(σ)}dσ

∫ π

0

Γ2(t, x, y)φ2(a− t, y)dy, a− t ≥ 0, x ∈ [0, π].

(11)

We prove the following lemma (see also [17, Section 9.4]).

Lemma 5.1. Let (φ1, φ2) ∈ X+ × Y +. There exists a continuous semiflow defined by
Θ (t, φ1, φ2) := (S(t, ·), i(t, ·, ·)) ∈ X+ × Y + for all t ≥ 0, associated with system (3).

Proof. To show the semiflow property of Θ, we define Sr(t, x) = S(r+t, x), ur(t, x) =
u(r + t, x) and ir(t, a, x) = i(r + t, a, x) for r ≥ 0, t ≥ 0, a ≥ 0 and x ∈ [0, π]. Then,
we have, for r ≥ 0, t ≥ 0 and x ∈ [0, π],

∂Sr(t, x)

∂t
= d1

∂2Sr(t, x)

∂x2
+ b− ur(t, x)− µSr(t, x), Sr(0, x) = S(r, x). (12)

From (11) and the second equation in (3), we have, for t ≥ 0 and x ∈ [0, π],

u(t, x) = S(t, x)

∫ +∞

0

β(a)i(t, a, x)da. (13)

Hence, we have, for r ≥ 0, t ≥ 0 and x ∈ [0, π],

ur(t, x) = Sr(t, x)

∫ +∞

0

β(a)ir(t, a, x)da. (14)

From (11), we have, for x ∈ [0, π],

ir(t, a, x) =


e−

∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)ur(t− a, y)dy, a < r + t,

e−
∫ a
a−r−t{µ+γ(σ)}dσ

∫ π

0

Γ2(r + t, x, y)φ2(a− r − t, y)dy, a ≥ r + t.

(15)

In addition, we have, for r ≥ 0, a > t ≥ 0, and x ∈ [0, π],

ir(0, a− t, x) =


e−

∫ a−t
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a− t, x, y)ur(t− a, y)dy, a ∈ [t, r + t),

e−
∫ a−t
a−r−t{µ+γ(σ)}dσ

∫ π

0

Γ2(r, x, y)φ2(a− r − t, y)dy, a > r + t.
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Hence, we have, for r ≥ 0, a > t ≥ 0, and x ∈ [0, π],

e−
∫ a
a−t{µ+γ(σ)}dσ

∫ π

0

Γ2(t, x, y)ir(0, a− t, y)dy

=


e−

∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)ur(t− a, y)dy, a ∈ [t, r + t),

e−
∫ a
a−r−t{µ+γ(σ)}dσ

∫ π

0

Γ2(r + t, x, y)φ2(a− r − t, y)dy, a > r + t.

(16)

Comparing (15) and (16), we have, for r ≥ 0 and x ∈ [0, π],

ir(t, a, x) =


e−

∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)ur(t− a, y)dy, t− a > 0,

e−
∫ a
a−t{µ+γ(σ)}dσ

∫ π

0

Γ2(t, x, y)ir(0, a− t, y)dy, a− t ≥ 0.

(17)

From (12), (14) and (17), we see that Θ (t, S(r, ·), i(r, ·, ·)) = (Sr(t), ir(t, ·, ·)) =
Θ (r + t, φ1, φ2) for all r ≥ 0 and t ≥ 0. Hence, the semiflow property of Θ holds.
The time-continuity of Θ follows from Theorem 3.3. This completes the proof.

Let D := {(φ1, φ2) ∈ X+×Y + : φ1(x)
∫ +∞
0 β(a)φ2(a, x)da > 0 for some x ∈ [0, π]}.

We now prove the following lemma (see [18, Lemma 6.1] for a similar idea).

Lemma 5.2. Suppose that R0 > 1. Then, there exists a positive constant ε1 > 0 such
that lim supt→+∞ |u(t, ·)|X > ε1, provided (φ1, φ2) ∈ D.

Proof. Since R0 > 1, we can choose ε1 > 0 such that

b− ε1
µ

∫ +∞

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσda > 1. (18)

Suppose by contradiction that there exists T1 > 0 such that u(t, x) ≤ ε1 for all t ≥ T1
and x ∈ [0, π]. By (18), there exist sufficiently large T2 > T1 and small λ > 0 so that

R̃ :=
b− ε1
µ

(
1− e−µh

) ∫ +∞

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσe−λada > 1. (19)

where h = T2 − T1. For all t ≥ T2 and x ∈ [0, π], we have ∂tS(t, x) ≥ d1∂xxS(t, x) +
b− ε1 − µS(t, x). Hence, by constructing a sub solution, we have

S(t, x) ≥e−µ(t−T1)

∫ π

0

Γ1(t− T1, x, y)S(T1, y)dy +
b− ε1
µ

(
1− e−µ(t−T1)

)
≥b− ε1

µ

(
1− e−µh

)
for all t ≥ T2 and x ∈ [0, π]. By Lemma 5.1, without loss of generality, we can assume
that T2 = 0 (and thus, T1 = −h) by taking S(T2, x) and i(T2, a, x) as a new initial
condition. Hence, we have for all t ≥ 0 and x ∈ [0, π] that

u(t, x) ≥ b− ε1
µ

(
1− e−µh

) ∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u(t− a, y)dyda. (20)

It is obvious that
∫ +∞
0 e−λtu(t, x)dt < +∞ for all x ∈ [0, π]. Let x̃ ∈ [0, π] such that∫ +∞

0 e−λtu(t, x̃)dt = minx∈[0,π]
∫ +∞
0 e−λtu(t, x)dt. By (20), we have
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∫ +∞

0

e−λtu(t, x̃)dt

≥ b− ε1
µ

(
1− e−µh

) ∫ +∞

0

e−λt
∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x̃, y)u(t− a, y)dydadt,

≥ b− ε1
µ

(
1− e−µh

) ∫ +∞

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσe−λa

∫ π

0

Γ2(a, x̃, y)

∫ +∞

a

e−λ(t−a)u(t− a, y)dtdyda,

≥ b− ε1
µ

(
1− e−µh

) ∫ +∞

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσe−λa

∫ π

0

Γ2(a, x̃, y)

∫ +∞

0

e−λtu(t, y)dtdyda,

≥ R̃
∫ +∞

0

e−λtu(t, x̃)dt. (21)

By (19), the inequality (21) implies that
∫ +∞
0 e−λtu(t, x̃)dt >

∫ +∞
0 e−λtu(t, x̃)dt, which

is a contradiction. This completes the proof.

Using Lemma 5.2, we prove the following proposition on the strong | · |X -persistence
of the disease in system (3) (see also [19, the proof of Theorem 1]).

Proposition 5.3. Suppose that R0 > 1. For any (φ1, φ2) ∈ D, there exists a positive
constant ε2 > 0 such that lim inft→+∞ |u(t, ·)|X > ε2.

Proof. Suppose by contradiction that lim inft→+∞ |u(t, ·)|X > ε2 does not hold for
any ε2 > 0. Then, by Lemma 5.2, there exist increasing sequences {tk}+∞k=1, {θk}

+∞
k=1,

{τk}+∞k=1 and a decreasing sequence {ek}+∞k=1 such that tk > θk > τk, limk→+∞ ek = 0
and

|u(τk, ·)|X > ε1, |u(θk, ·)|X = ε1, |u(tk, ·)|X < ek < ε1,

and |u(t, ·)|X < ε1 for all t ∈ (θk, tk).
(22)

Let {Sk}+∞k=1 and {uk}+∞k=1 be functional sequences in X such that Sk := S(θk, ·) ∈ X
and uk := u(θk, ·) ∈ X, respectively. From (5) and (6), we can apply the Ascoli-
Arzela theorem as in the proof of Lemma 4.1 to obtain that there exist (S∗, u∗) ∈
X+ × X+ such that limk→+∞ Sk = S∗ and limk→+∞ uk = u∗ (otherwise we can
choose convergent subsequences). Let (S̃, ũ) be a solution of (3) for φ1(x) = S∗(x) and
φ2(a, x) = e−

∫ a
0
{µ+γ(σ)}dσ ∫ π

0 Γ2(a, x, y)u∗(y)dy for all a ≥ 0 and x ∈ [0, π]. Note that
the choice of φ2 is based on (11). By Lemma 5.2, there exist τ ′ > 0, m > 0 such that

|ũ(τ ′, ·)|X > ε1 and |ũ(t, ·)|X > m for all t ∈ (0, τ ′). (23)

For each k ∈ N, let ũk(t, ·) := u(θk + t, ·). From (23) and the semiflow property of Θ
which is proved by Lemma 5.1, we have for sufficiently large k that

|ũk(τ ′, ·)|X > ε1 and |ũk(t, ·)|X > m > ek for all t ∈ (0, τ ′). (24)

In contrast, for t̃k := tk − θk, we have from (22) that∣∣ũk(t̃k, ·)
∣∣
X
< ek < ε1 and |ũk(t, ·)|X < ε1 for all t ∈ (0, t̃k). (25)

If τ ′ < t̃k, the second inequality in (25) contradicts to the first inequality in (24). If
τ ′ ≥ t̃k, (25) contradicts to the second inequality in (24). This completes the proof.
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6. Global attractivity of the endemic steady state

In this section, we show the global attractivity of the positive endemic steady state
for R0 > 1 under the following additional assumption.

(A3) There exists a positive constant a† ∈ (a2,+∞) such that β(a) = 0 for all a > a†.

That is, a† represents the maximum age of infectiousness. Under (A3), we have that
F2(t, x) = 0 for all t > a† and x ∈ [0, π]. Hence, for all t > a† and x ∈ [0, π], we have

u(t, x) =S(t, x)

∫ t

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u(t− a, y)dyda,

=S(t, x)

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u(t− a, y)dyda. (26)

In addition, from (13), we have u(a†+τ, x) = S(a†+τ, x)
∫ a†
0 β(a)i(a†+τ, a, x)da for all

τ ∈ [−a†, 0] and x ∈ [0, π], where i is defined by (11). Hence, by the semiflow property
of Θ (Lemma 5.1), we can take the following values as the new initial condition,

φ̃1(x) := S(a†, x), φ̃2(τ, x) := u(a† + τ, x), τ ∈ [−a†, 0], x ∈ [0, π]. (27)

From (26) and (27), regarding t = a† as t = 0, the system (3) can be rewritten to the
following time-delayed system, for t > 0 and x ∈ [0, π],

∂S(t, x)

∂t
= d1

∂2S(t, x)

∂x2
+ b− u(t, x)− µS(t, x),

∂S(t, 0)

∂x
=
∂S(t, π)

∂x
= 0,

u(t, x) = S(t, x)

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u(t− a, y)dyda.

(28)

with initial condition S(0, x) = φ̃1(x) and u(τ, x) = φ̃2(τ, x), τ ∈ [−a†, 0], x ∈ [0, π].
The constant endemic steady state (S∗, u∗) ∈ (X+ \ {0})× (X+ \ {0}) of (28) satisfy

b = u∗ + µS∗, u∗ = S∗
∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσda u∗. (29)

By Theorem 4.2, we immediately obtain the following theorem.

Theorem 6.1. Suppose that R0 > 1. Then, system (28) has a constant endemic
steady state (S∗, u∗) ∈ (X+ \ {0})× (X+ \ {0}).

To prove the global attractivity of (S∗, u∗) for R0 > 1, we construct a Lyapunov
function V (S, ut) := V1(S) + V2(ut), where V1(S) :=

∫ π
0 g (S(t, x)/S∗) dx and

V2(ut) :=

∫ π

0

∫ a†

0
β(a)e−

∫ a
0
{µ+γ(σ)}dσ

∫ a

0

∫ π

0
Γ2(θ, x, y)u∗g

(
u(t− θ, y)

u∗

)
dydθdadx,

where g(r) = r − 1 − ln r, r > 0. Since g(r) ≥ 0 for all r > 0 and g(r) = 0 if and
only if r = 1 (see, e.g., [20]), V (S, ut) is nonnegative and equals to zero if and only
if (S, u) = (S∗, u∗). By Proposition 3.2, V1(S) is bounded for all t > 0, provided
(φ1, φ2) ∈ D. To show the boundedness of V2(ut), we prove the following lemma.

Lemma 6.2. Suppose that R0 > 1 and (φ1, φ2) ∈ D. Then, there exists a T̂ > 0 such

that u(t, x) > 0 for all t > T̂ and x ∈ [0, π].

Proof. By Proposition 5.3, there exists a T̃ > 0 such that |u(t, ·)|X > ε2 for all

t ≥ T̃ . By (A2), Lemma 3.1 and Proposition 3.2, we then have that u(t, x) ≥
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S(t, x)
∫ a2

a1
β(a)e−

∫ a
0
{µ+γ(σ)}dσ ∫ π

0 Γ2(a, x, y)u(t− a, y)dyda > 0 for all t > T̂ := T̃ + a2
and x ∈ [0, π]. This completes the proof.

By Lemma 6.2, we see that if R0 > 1 and (φ1, φ2) ∈ D, then V2(ut) is bounded for

all t > 0 (taking t = T̂ as a new initial time), and thus, V (S, ut) is so. Using V (S, ut),
we finally prove the following theorem,

Theorem 6.3. Suppose that R0 > 1 and (φ1, φ2) ∈ D. Then, the constant endemic

steady state (S∗, u∗) ∈ (X+ \ {0})2 is globally attractive.

Proof. In what follows, for the sake of simplicity, we write S(t, x) and u(t, x) as S
and u, respectively. From the Neumann boundary condition and the first equation in
(29), the derivative of V1(S) along the solution trajectory of (28) is calculated as

V̇1(S) =

∫ π

0

(
1

S∗
− 1

S

)
∂S

∂t
dx =

∫ π

0

(
1

S∗
− 1

S

)(
d1
∂2S

∂x2
+ b− u− µS

)
dx,

= d1

[(
1

S∗
− 1

S

)
∂S

∂x

]π
0

− d1
∫ π

0

(
1

S

∂S

∂x

)2

dx+

∫ π

0

(
1

S∗
− 1

S

)
(u∗ + µS∗ − u− µS) dx,

= −d1
∫ π

0

(
1

S

∂S

∂x

)2

dx−
∫ π

0

µ

S∗S
(S − S∗)2 dx+

∫ π

0

(
u∗

S∗
− u∗

S
− u

S∗
+
u

S

)
dx. (30)

On the other hand, from the second equation in (29), the derivative of V2(ut) along
the solution trajectory of (28) is calculated as

V̇2(ut) =

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ a

0

∫ π

0

Γ2(θ, x, y)u∗
∂

∂t
g

(
u(t− θ, y)

u∗

)
dydθdadx,

= −
∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ a

0

∫ π

0

Γ2(θ, x, y)u∗
∂

∂θ
g

(
u(t− θ, y)

u∗

)
dydθdadx,

=

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

[
Γ2(0, x, y)u∗g

(
u(t, y)

u∗

)

− Γ2(a, x, y)u∗g

(
u(t− a, y)

u∗

)
+

∫ a

0

∂

∂θ
Γ2(θ, x, y)u∗g

(
u(t− θ, y)

u∗

)
dθ

]
dydadx,

=

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

[
u∗g

( u
u∗

)
−
∫ π

0

Γ2(a, x, y)u∗g

(
u(t− a, y)

u∗

)
dy

]
dadx

+

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ a

0

∫ π

0

d2
∂2Γ2(θ, x, y)

∂x2
dxu∗g

(
u(t− θ, y)

u∗

)
dθdyda,

=

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u∗
[
g
( u
u∗

)
− g

(
u(t− a, y)

u∗

)]
dydadx

+

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ a

0

d2

[
∂Γ2(θ, x, y)

∂x

]π
0

u∗g

(
u(t− θ, y)

u∗

)
dθdyda,

=

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u∗
[
u

u∗
− u(t− a, y)

u∗
+ ln

u(t− a, y)

u

]
dydadx,

=

∫ π

0

( u
S∗
− u

S

)
dx+

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u∗ ln
u(t− a, y)

u
dydadx.

(31)

Hence, combining (30) and (31), we calculate the derivative of V (S, ut) along the
solution trajectory of (28) as
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V̇ (S, ut) = V̇1(S) + V̇2(ut),

= −d1
∫ π

0

(
1

S

∂S

∂x

)2

dx−
∫ π

0

µ

S∗S
(S − S∗)2 dx+

∫ π

0

(
u∗

S∗
− u∗

S

)
dx

+

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u∗ ln
u(t− a, y)

u(t, x)
dydadx,

= −d1
∫ π

0

(
1

S

∂S

∂x

)2

dx−
∫ π

0

µ

S∗S
(S − S∗)2 dx+

∫ π

0

(
2
u∗

S∗
− u

S∗
u∗

u
− u∗

S

)
dx

+

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u∗ ln
u(t− a, y)

u
dydadx,

= −d1
∫ π

0

(
1

S

∂S

∂x

)2

dx−
∫ π

0

µ

S∗S
(S − S∗)2 dx+

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u∗

×
[
2− Su(t− a, y)

S∗u
− S∗

S
+ ln

u(t− a, y)

u

]
dydadx,

= −d1
∫ π

0

(
1

S

∂S

∂x

)2

dx−
∫ π

0

µ

S∗S
(S − S∗)2 dx+

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u∗

×
[
1− Su(t− a, y)

S∗u
+ ln

Su(t− a, y)

S∗u
+ 1− S∗

S
+ ln

S∗

S

]
dydadx,

= −d1
∫ π

0

(
1

S

∂S

∂x

)2

dx−
∫ π

0

µ

S∗S
(S − S∗)2 dx−

∫ π

0

∫ a†

0

β(a)e−
∫ a
0
{µ+γ(σ)}dσ

∫ π

0

Γ2(a, x, y)u∗

×
[
g

(
Su(t− a, y)

S∗u

)
+ g

(
S∗

S

)]
dydadx ≤ 0.

Hence, we have V̇ (S, ut) ≤ 0 and the equality holds if and only if S(t, x) = S∗ and
u(t, x) = u(t − a, y) for all t > a†, 0 < a < a† and x, y ∈ (0, π). From the first
equation in (28), when S(t, x) = S∗ for all t > a† and x ∈ (0, π), we have u(t, x) =

d1∂xxS
∗ + b− µS∗ = u∗. Hence, the largest invariant set such that V̇ (S, ut) = 0 is the

constant endemic steady state {(S∗, u∗)} ∈ (X+ \ {0})2. By the invariance principle
(see [21, p.168, Theorem 4.2]), we can conclude that the constant endemic steady state
is globally attractive. This completes the proof.

7. Discussion

In this paper, we proposed and analyzed an age-space-structured SIR epidemic model
(1), which is a system of partial differential equations in one-dimensional spatially
bounded domain with homogeneous Neumann boundary conditions. This model is
a generalization of the model studied in [2] to the spatially heterogeneous system.
By using the method of the characteristics, we derived a coupled system (3) of a
reaction-diffusion equation and a Volterra integral equation. The problem of existence,
positivity and uniqueness of the solution was treated by using the Banach-Picard fixed
point theorem in an appropriate Banach space (Theorem 3.3). Moreover, we studied
the asymptotic behavior of the system. The basic reproduction numberR0 was derived
based on the classical definition by Diekmann et al. [3] as the spectral radius of the
next generation operator. First, we focused on the behavior of the trivial steady state
and we gave a necessary and sufficient condition (R0 < 1) for global attractivity of the
disease-free steady state (Theorem 4.4). This situation corresponds to the eradication
of disease from the population. Related again to the basic reproduction number R0, we
then proved the persistence of the disease in system (3) for R0 > 1 (Proposition 5.3)
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using the persistence theory (see [17,19]). Moreover, under the additional assumption
(A3) that there exists a maximum age a† of infectiousness, we proved the global
attractivity of the positive constant endemic steady state (S∗, u∗) for R0 > 1. In the
proof, we constructed a suitable Lyapunov function. In conclusion, it is clarified that
R0 plays the role of the threshold for the asymptotic behavior of the solution, that is,
the eradication or persistence of the disease after a long time.

In the forthcoming works, we will continue to analyze the influence of the diffusion
of the susceptible and infected population on the asymptotic behaviors in the case of
Dirichlet boundary conditions and more general n-dimensional spatial domains (n ≥
2). In such cases, we guess that the model will provide more various insights on the
spatial effects to the epidemic problem.
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