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16 Abstract 

17 Because rates of migration and genetic adaptation are slow, individual trees must initially 

18 acclimate to climate change via individual-level plasticity. Therefore, when predicting 

19 distribution and persistence of tree species under future climate change scenarios, we must 

20 take into account geographical variation in intra-individual plasticity. Here, we investigated 

21 geographical variation of intra-individual plasticity of Fagus crenata Blume (Japanese 

22 beech), a dominant species in late-successional, cool-temperate forests of Japan. We 

23 compared within-crown variation of leaf morphology (intra-crown leaf plasticity, ILP) among 

24 13 sites across the full distribution range of F. crenata. Generally, ILP was lower for trees in 

25 the Pacific than Japan-Sea genetic lineages, low for trees in southern sites, and high for trees 

26 in sites near the northern and altitudinal range edges. Among the 13 sites, ILP was correlated 

27 with environmental variables associated with temperature. Positive correlation between ILP 

28 and temperature variation suggested that environmental perturbation selects for high intra-

29 individual plasticity near northern and altitudinal range edges where F. crenata is expanding 

30 its distribution range. On the other hand, low ILP of trees in Pacific and southern sites, 

31 comprising geographically isolated populations, may reflect low acclimation potential to 

32 environmental perturbation. This could lead to local extinction if climatic conditions exceed 

33 the range of tolerance resulting in retreat of the Pacific and southern range edges of F. crenata 

34 in Japan.

35

36 Keywords: acclimation; geographical variation; habitat fragmentation; leaf functional trait; 

37 local adaptation; distribution range

38
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39 Introduction

40 Beech (Fagus spp.) occurs widely across cool-temperate forests of Asia, Europe, and North 

41 America (Fang and Lechowicz, 2006). Thermal conditions, such as growing season warmth 

42 determine geographical limits of the distribution of beech (Matsui et al., 2004a; Fang and 

43 Lechowicz, 2006; Bolte et al., 2007), which suggests that future climate change could impact 

44 beech distribution ranges (Matsui et al., 2004b; Gessler et al., 2007; Friedrichs et al., 2009; 

45 Dulamsuren et al., 2017). For example, recent growth decline observed in European beech 

46 (Fagus sylvatica L.) populations near its southern distribution limit could lead to consequent 

47 retreat of the southern range edge if warming and drying trends continue (Jump et al., 2006; 

48 Piovesan et al., 2008; Hacket-Pain et al., 2016). However, there are also contradicting reports 

49 of growth increase of European beech in the late twentieth century (Tegel et al., 2014), which 

50 has been attributed in part to the ability of trees to acclimate to climate variation and recover 

51 from stress-induced growth decline (Dulamsuren et al., 2017).

52 Trees have evolved retaining high intra-individual plasticity, which allows them to 

53 acclimate to changing environmental conditions during their long lifespan (Petit and Hampe, 

54 2006; Ishii et al., 2013; Duptie et al., 2015). Plasticity is highly adaptive for shade-tolerant 

55 trees such as beech, whose seedlings and saplings establish in the dark understory, and 

56 eventually grow to reach the bright canopy. European beech has high plasticity that allows it 

57 to acclimate to more severe drought conditions than previously assumed (Bolte et al., 2007). 

58 For example, European beech exhibits high phenological plasticity (Vitasse et al., 2010), 

59 which may enable it to acclimate to future climate conditions and persist in the trailing 

60 southern range edge (Duptie et al., 2015). For trees, whose rates of migration and genetic 

61 adaptation are slow (Petit and Hampe, 2006; Aitken et al., 2008; Shaw et al., 2012), intra-

62 individual plasticity may be an important trait contributing to greater acclimation potential 
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63 and persistence through future climate change (Thuiller et al., 2008; Chevin et al., 2010; 

64 Matesanz, 2010; Richter et al., 2012; Franks et al., 2014).

65 Adaptation of tree species to regional environmental conditions involve both genetic 

66 and phenotypic adaptation (Tateishi et al. 2010). For European beech, phenotypic plasticity at 

67 the population level has been compared using common garden experiments and provenance 

68 trials (e.g., Garcia-Plazaola and Becerril, 2000; Balaguer et al., 2001; Vitasse et al., 2009; 

69 Kreyling et al., 2014; e.g., Stojnic et al., 2015). However, artificial growing conditions may 

70 affect the expression of phenotypic plasticity (Urbas and Zobel, 2000) and because trees are 

71 long-lived, it is difficult to measure the expression of phenotypic plasticity through ontogeny. 

72 On the other hand, trees express plasticity at the individual level, such as intra-canopy trait 

73 variation of sun- vs. shade-leaves (Masarovicova and Stefancik, 1990; Sack et al., 2006). 

74 Because leaves of a single tree are genetically identical, within-tree trait variation represents 

75 intra-individual plasticity expressed in response to spatial (as opposed to temporal) variation 

76 in environmental conditions (Sultan, 2000; Sack et al., 2006; Ishii et al., 2007). Long-lived, 

77 sessile organisms like trees must cope with environmental perturbation through intra-

78 individual plasticity and this could determine their acclimation potential to future climate 

79 change. Geographical variation in intra-individual plasticity will influence population 

80 dynamics through its effects on tree growth and survival. Such effects should be considered 

81 when predicting future geographical distribution of tree species in relation to climate change 

82 (Nicotra et al., 2010; Vitasse et al., 2010; Duptie et al., 2015).

83 Leaf functional traits reflect the growth strategy, carbon economy, and resource use 

84 of plants worldwide (Wright et al., 2004; Perez-Harguindeguy et al., 2013). Functional-trait 

85 variation at the species level represents niche breadth (McGill et al., 2006; Nicotra et al., 

86 2010), while that at the individual level represents acclimation potential to environmental 

87 perturbation (Valladares et al., 2014). Leaf trait variation among species, as well as within 
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88 species and individuals, is considered an important predictor of plant response to climate 

89 change (Soudzilovskaia et al., 2013; Liancourt et al., 2015). Here, we compared within-crown 

90 variation of leaf morphology among trees in 13 sites across the full distribution range of F. 

91 crenata to elucidate geographical variation of intra-individual plasticity. F. crenata is a 

92 dominant species in late-successional, cool-temperate forests of Japan (Matsui et al., 2004a). 

93 It has a wide north-south distribution, ranging from Kuromatsunai Town in Hokkaido 

94 Prefecture (42.7°N, 140.3°E) to Mt. Takakuma in Kyushu Prefecture (31.3°N, 130.8°E) 

95 (Tomaru et al., 1998). The present distribution of F. crenata is believed to have been 

96 established about 7000 years ago as a result of northward and upward migration after the last 

97 glacial maximum, followed by retreat from the lowlands to high altitudes (Tsukada, 1982; 

98 Okaura and Harada, 2002; Hiraoka and Tomaru, 2009). On Honshu Island, the center of its 

99 distribution range, the altitudinal limit of F. crenata is approximately 1400 m (Okaura and 

100 Harada, 2002). In southwestern Japan (southern Honshu, Shikoku, and Kyushu islands), 

101 upward migrating populations became isolated on high elevation mountains and could face 

102 high risk of local extinction if growing conditions change due to climate change (Tomaru et 

103 al., 1998; Fujii et al. 2002; Matsui et al., 2004a; Hanaoka et al., 2007).

104 In adult trees of F. crenata, mean leaf size is larger for northern than southern 

105 populations (Hiura et al., 1996). Among populations within a narrow longitudinal range 

106 (34.5‒37.5°E) on Honshu Island, sun leaves are thicker for northern than southern 

107 populations, while shade leaves are thinner, resulting in higher intra-crown leaf plasticity 

108 (ILP) of northern populations (Shiraishi and Watanabe, 2002). Low ILP of southern 

109 populations may reflect low intra-individual plasticity, which could constrain their ability to 

110 acclimate to climate change. The objective of this study was to infer geographical variation of 

111 intra-individual plasticity and acclimation potential of F. crenata by comparing ILP across the 
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112 full distribution rage. In addition, to predict possible effects of climate change on the future 

113 distribution of F. crenata in Japan, we investigated environmental variables influencing ILP.

114

115 Methods

116 Study sites

117 To sample F. crenata across its full geographical range, we selected 13 study sites ranging 

118 from Soibetsu Beech Forest in Hokkaido Prefecture to Kyushu University Miyazaki Research 

119 Forest in Kyushu Prefecture near the northern to southern range edges, respectively (Table 1, 

120 Fig. 1). Shinshu University Alpine Field Center Nishikoma Field Station (1600 m a.s.l) and 

121 Sugadaira Daido Beech Forest (1315 m) in Nagano Prefecture were selected to represent 

122 altitudinal range edges in the center of the distribution.

123 Genetic studies of F. crenata indicate low allozyme-based genetic variation among 

124 populations, suggesting limited seed dispersal distance (Takahashi et al., 1994; Tomaru et al., 

125 1997), whereas mitochondrial DNA analyses indicate high genetic variation among 

126 populations suggesting extensive pollen dispersal and diversion into several regional groups 

127 (Koike et al., 1998; Tomaru et al., 1998; Fujii et al. 2002). Populations distributed in 

128 Hokkaido and northwestern, Japan Sea side of Honshu Island are genetically distinct from 

129 northeastern and southern populations on the Pacific side (Koike et al., 1998; Hiraoka and 

130 Tomaru, 2009). The genetic lineages of the sites in this study are indicated in Table 1 and Fig. 

131 1.

132

133 Field sampling

134 At each study site, we selected four to six mature trees of F. crenata for sampling. We 

135 avoided suppressed trees so that treetop leaves of all sample trees were fully exposed to the 

136 sky. Using modern arborist-style techniques, we climbed each tree using ropes and sampled 
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137 branches comprising several shoots with mature leaves (ca. 50 cm long) from the treetop, 

138 approximately 1 m below treetop, and from the lowest branch. We also sampled branches 

139 from two to three equidistant locations between the treetop and lowest branch. The sampled 

140 branches were sealed in black plastic bags to prevent leaf dehydration, and transported to the 

141 laboratory for further measurement on the day of sampling. The height (H, m) of each 

142 sampling location was measured using a tape measure stretched from average ground level. 

143 Hemispherical photographs were taken at each sampling location and analyzed using Gap 

144 Light Analyzer ver. 3.0 (Simon Frazer University, Burnaby, BC, Canada) to quantify the light 

145 environment as canopy openness (%) and to estimate LAI.

146

147 Leaf morphological traits

148 From each branch, we randomly selected 15 fully developed, mature leaves with no evidence 

149 of damage or herbivory, for measurement of leaf morphological traits. The leaves were 

150 scanned using a portable flatbed scanner (LiDE 90, Canon, Tokyo, Japan). We measured leaf 

151 thickness at two locations on either side of the leaf using a digital thickness meter (PK-1-

152 12UE, Mitsutoyo, Tokyo, Japan). Here, leaf thickness includes that of the secondary leaf vein. 

153 We decided to include vein thickness for all leaves, because for small leaves, the diameter of 

154 the thickness meter head was larger than the inter-vein distance such that the vein could not 

155 be avoided. The leaves were then oven-dried at 65°C to constant weight and weighted to 

156 determine dry mass. Using the scanned leaf images, we measured the area, length, width and 

157 number of veins of the sample leaves. Specific leaf area (SLA) was calculated as the ratio of 

158 leaf area to dry mass. Leaf shape index (LS) was calculated as leaf length/(distance from leaf 

159 base to widest part of leaf).

160
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161 Environmental variables

162 To examine the effect of environmental conditions on leaf trait variation, we calculated a suite 

163 of environmental variables representing climate and geographical location of each site 

164 (latitude, longitude, elevation). Climate data over the past 50 years (1965‒2015) were 

165 obtained from the nearest Japan Meteorological Society weather station for each site (Table 1) 

166 and used to calculate a suite of climate variables representing mean conditions 

167 (daily/monthly/annual mean temperature, precipitation, snowfall), variation 

168 (daily/monthly/annual ranges) and extremes (lowest/highest recorded). Data on relative 

169 humidity was only available for some of the sites. Therefore, water availability was assessed 

170 by the standardized precipitation evapotranspiration index (SPEI) downloaded from the 

171 Spanish National Research Council’s global database (http://spei.csic.es/). We also 

172 investigated relationships between tree structural characteristics (tree height, DBH, crown 

173 depth, LAI, etc.) and leaf traits. See Table S1 for a list of all environmental and structural 

174 variables analyzed.

175

176 Statistical analyses

177 We used principle components analysis (PCA) to investigate variation in leaf traits among the 

178 13 sites. To compare intra-crown leaf plasticity (ILP) between the two genetic lineages and 

179 among the 13 study sites, each trait was analyzed in relation to height and canopy openness 

180 using regression analysis. Because our main objective was to compare ILP among sites, data 

181 from individual trees were pooled for each site. We checked all data for normality and 

182 heteroscedasticity before analyses. Canopy openness was log-transformed to normalize the 

183 variance. The regression slope was considered a quantitative measure of ILP (Niinemets et 

184 al., 2003; Ishii et al., 2007). Because tree height varied among sites, we calculated relative 

http://spei.csic.es/
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185 height (Hrel = H / tree height) of each branch to compare sites using a common independent 

186 variable representing both height and light factors. 

187 We compared regression slopes between Japan-Sea and Pacific genetic lineages in an 

188 analysis of covariance (ANCOVA) with height, canopy openness and relative height as 

189 covariates, where a significant interaction term indicates difference in slope (Niinemets et al., 

190 2003). To compare regression slopes among the 13 sites, paired ANCOVA comparisons were 

191 made in descending order of slope estimates. We also compared regressions parameters 

192 simultaneously among all sites, where dummy variables corresponding to each site were 

193 tested for significance in a multiple regression model. Both analyses yielded similar statistical 

194 results. To infer the effect of environmental conditions at each site on ILP, Spearman’s rank 

195 correlation coefficients were calculated between plasticity of leaf traits (absolute value of the 

196 regression slope) and environmental variables.

197 For logistic reasons, our sampling had to be spread over three field seasons 

198 (2015~2017). To compare potential inter-annual variation, we conducted field sampling every 

199 year in Mt. Rokko, Hyogo Prefecture. Although 2015 was a mast year, 2016 and 2017 were 

200 non-mast years, inter-annual variation of ILP among sampling years was non-significant or 

201 inconsistent (Table S2). We, therefore, inferred that geographical variation of ILP is greater 

202 than inter-annual variation and that data from different years could be compared among the 13 

203 sites.

204

205 Results

206 Scanned leaf images from representative trees at each site are shown in relation to height in 

207 Fig. 2. Although tree height and crown-base height varied among sites, there was no 

208 consistent trend with latitude or genetic lineage. Both sun and shade leaves tended to be larger 

209 for trees in northern than southern sites. The difference in leaf area was more marked for 
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210 shade leaves. These trends were reflected in the results of PCA, where northern sites were 

211 distributed toward the upper right (greater leaf thickness, mass and area), while southern sites 

212 were distributed toward the lower left (Fig. 3). Axis 1 and 2 explained 44.1 and 25.1%, 

213 respectively, of the total variance in leaf traits among sites. Axis 1 was positively correlated 

214 with measures of leaf size (area, length, width). We chose leaf area to represent this variation. 

215 Axis 2 was positively correlated with measures of leaf volume (mass, thickness) and 

216 negatively correlated with measures of leaf dimensions (length/width ratio). We chose leaf 

217 thickness and mass to represent this variation. Reflecting these relationships, SLA was 

218 positively correlated with both Axis 1 and 2.

219 There was no difference between Japan-Sea and Pacific genetic lineages in plasticity 

220 of leaf area in response to height and relative height, as indicated by similar regression slopes 

221 (Table 2). Leaf-area plasticity in response to canopy openness was higher for trees in the 

222 Pacific genetic lineage. In contrast, plasticity of leaf thickness, mass and SLA were all lower 

223 for trees in the Pacific genetic lineage. Leaf-area plasticity in response to height was higher 

224 (steeper regression slopes) for trees in northern than southern sites (Fig. 4). Leaf-area 

225 plasticity was highest (steepest, most negative slope) for trees in Nishikoma followed by 

226 Soibetsu, representing the altitudinal and northern range edge, respectively. Leaf-area 

227 plasticity was high for trees in northern sites (Shirakami, Kawatabi, Naeba, Ogawa, and 

228 Sugadaira) and low for southern sites (Wakasugi, Rokko, Takanosu, Ehime, and Miyazaki). 

229 Similar latitudinal trends in leaf-area plasticity were observed in response to canopy openness 

230 and relative height (Table 3). Among the three independent variables, relative height showed 

231 the highest correlation with leaf area, as assessed by r-square values. The latitudinal trend in 

232 plasticity was not as apparent for leaf thickness and leaf mass. Plasticity of SLA in response 

233 to height and relative height was highest for trees in Kawatabi (third highest latitude) and 

234 Sugadaira (second highest altitude). SLA plasticity in response to canopy openness was high 
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235 for trees in northern sites (Soibetsu, Kawatabi Naeba, and Sugadaira), while it was low for 

236 sites south of Wakasugi. Nishikoma (altitudinal range edge), however, was among the sites 

237 with low SLA plasticity (Fig. 5).

238 Among leaf traits, only leaf-area plasticity, which showed greatest variability among 

239 sites, yielded statistically significant relationships with environmental variables (Table 4). 

240 Reflecting the latitudinal and altitudinal trends, leaf-area plasticity (absolute value of the 

241 regression slope in relation to height, canopy openness and relative height) was correlated 

242 with environmental variables associated with temperature. Leaf-area plasticity in response to 

243 canopy openness was positively correlated with days of precipitation. Among the 

244 environmental variables, the highest RS value (-0.936) was observed for the relationship 

245 between leaf-area plasticity in relation to relative height and lowest recorded daily minimum 

246 temperature. Leaf-area plasticity was correlated with several variables reflecting variation and 

247 extremes in environmental conditions (minimum/maximum, highest/lowest recorded, 

248 historical variation). For each independent variable, the relationship between the top three 

249 environmental variables and leaf-area plasticity are shown in Fig. 5. Other significant 

250 correlations are listed in Table S3. Structural characteristics, including crown depth and LAI, 

251 were not correlated with plasticity, suggesting that structural variation, such crown recession, 

252 nor variation of crown light environment among sites are not the cause of geographical 

253 variation in ILP.

254

255 Discussion

256 Our results show that intra-crown leaf plasticity (ILP) of F. crenata varies across its 

257 geographical distribution range. Of the leaf traits examined, leaf area showed the greatest 

258 geographical variation of ILP. While minimum leaf area of sun leaves was similar (ca. 10 

259 cm2) among the sites, maximum leaf area of shade leaves varied more than three-fold, ranging 
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260 from ca 20 cm2 near the southern range (Miyazaki) to ca 70 cm2 near the northern range edge 

261 (Soibetsu). The high variability of shade-leaf area contributed to variation of leaf-area 

262 plasticity among sites. As illustrated in the relationship between SLA and canopy openness 

263 (Fig. 5), low ILP was not necessarily caused by variation in intra-canopy light environment 

264 among sites. Although, some sites with low ILP like EHI and MIY had higher minimum 

265 canopy openness, reflecting shallower, less shaded crowns, minimum canopy openness was 

266 also high for SOI and NAE, which had high ILP. This is also reflected in the lack of 

267 correlation between ILP and LAI. In many plants, low-light conditions of the lower canopy 

268 favor greater resource allocation to light-intercepting area (Tognetti et al., 1998; Pearcy, 

269 2007; Valladares and Niinemets, 2007). Our results indicate that F. crenata trees in northern 

270 sites are able to realize larger light-intercepting area of shade-leaves in response to the same 

271 gradient of within-crown light intensity than trees in southern sites. Leaf thickness is also an 

272 important morphological trait that varies vertically within the crown of many tree species 

273 (e.g., Eschrich et al., 1989; Gratani et al., 2006; Sack et al., 2006; Hallik et al., 2012). Thicker 

274 leaves with more developed palisade parenchyma are adaptive for exploiting the high-light 

275 environment of the upper canopy, as well as for decreasing surface-area to volume ratio in 

276 response to increasing evaporative demand (Pallardy, 2008; Coble and Cavaleri, 2015). While 

277 we observed intra-crown plasticity of leaf thickness in all 13 sites, there was less geographical 

278 variation among sites compared to leaf area. This may be due to our measurement method, 

279 which included leaf veins in leaf thickness. More detailed examinations of leaf anatomy (e.g., 

280 Sack et al., 2006; Chin and Sillett, 2017; Coble and Cavaleri, 2017) may elucidate clearer 

281 differences among sites underlying geographical variation of leaf-thickness plasticity.

282 SLA is a leaf functional trait that reflects the resource exploitation/conservation 

283 trade-off (Perez-Harguindeguy et al., 2013). Among the 13 sites, SLA converged to ca 0.1 

284 cm2 g‒1 at treetop, suggesting this is the minimum attainable value for F. crenata representing 
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285 the conservative leaf-trait syndrome of tolerance to drought stress in response to the high 

286 evaporative demand of the treetop. Differences among sites in SLA plasticity was, therefore 

287 determined by its maximum value (i.e., SLA of shade leaves) representing the exploitative 

288 leaf-trait syndrome where resource allocation to light-intercepting area is maximized under 

289 low-light conditions (Fajaro and Siefert, 2016; Liu et al., 2016). When compared among 

290 species, high SLA plasticity is associated with low productivity (Liu et al., 2016). In this 

291 study, however, because SLA converges among sites to a minimum value at treetop, where 

292 sun-leaves of all sample trees are receiving high irradiance, high SLA plasticity reflects 

293 greater acclimation potential to low irradiance, i.e., exploitation of the full gradient of light 

294 intensities from treetop to lower canopy. Our results indicate that in response to the same 

295 gradient of within-crown light intensity, trees in Japan-Sea and northern sites are able to 

296 allocate resources to light-capturing area of shade leaves more efficiently than trees in Pacific 

297 and southern sites. Japan-Sea and northern regions of Japan receive less solar radiation 

298 throughout the year than Pacific and southern regions (Iizumi et al. 2008). Greater SLA 

299 plasticity may reflect broader light-resource niche and contribute to increasing photosynthetic 

300 productivity of F. crenata giving them a competitive advantage over other tree species (Coble 

301 et al., 2017). In these regions, F. crenata dominates over other species in mature late-

302 successional forest, contributing more than 90% of stand basal area (Nakashizuka, 1988; 

303 Homma et al., 1999; Yasaka et al., 2003). Our results also expand the findings of Shiraishi 

304 (2002), who found higher ILP for northern populations within a limited longitudinal range in 

305 northern Honshu, to the full distribution range of F. crenata.

306 Variation among sites in ILP suggests intra-individual plasticity also varies among 

307 regions, which could affect acclimation potential of individual trees to future climate change. 

308 Sites near the northern and altitudinal range edges represent the leading edge of northward 

309 and upward migration of F. crenata after the last glacial maximum (Tsukada, 1982; Okaura 
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310 and Harada, 2002; Hiraoka and Tomaru, 2009). Trees in these sites exhibited high ILP, which 

311 was associated with greater environmental variation, namely temperature. Intra-individual 

312 plasticity may be adaptive in novel sites after colonization or migration, because it enables 

313 individuals to acclimate quickly to new environmental conditions (Agrawal, 2001; Yeh and 

314 Price, 2004). Although genetic diversity tends to be low for populations near range edges 

315 (Vucetich and Waite, 2003; Chang et al., 2004; Hampe and Petit, 2005; Bridle and Vines, 

316 2007; Kawecki, 2008), intra-individual plasticity could compensate for slow genetic 

317 adaptation of long-lived organisms and contribute to their persistence in variable 

318 environments by increasing individual-level acclimation potential (Magi et al., 2011; Reed et 

319 al., 2011). Intra-individual plasticity is more adaptive in environments where individuals 

320 experience heterogeneous conditions, because it broadens the fundamental niche of a species 

321 (Valladares et al., 2007). Because the annual range of climatic fluctuation is greater at higher 

322 latitudes, species adapted to such conditions should have broader thermal tolerance niche 

323 (climatic variability hypothesis, sensu Janzen, 1967), which could be realized by increasing 

324 physiological flexibility and intra-individual plasticity (Valladares et al., 2014). Along with 

325 latitude, environmental variation also tends to be greater in sub-alpine environments (Billings 

326 and Mooney, 1968; Smithson et al., 2008). Environmental fluctuation at high latitude and 

327 altitude, therefore, is likely to select for high intra-individual plasticity in plants (Bradshaw, 

328 1965; Ghalambor et al., 2007), especially long-lived trees (Sultan, 2000; Sultan and Spencer, 

329 2002; Vasseur and McCann, 2007; Richter et al., 2012). In Japan, winter temperatures are 

330 lower and snow fall is greater on the Japan Sea side resulting in highly variable climate, 

331 which could select for high intra-individual plasticity in F. crenata. Plasticity modulates 

332 species responses to changing environments and could buffer against immediate fitness 

333 declines due to rapid climate change (Reed et al., 2011; Richter et al., 2012; Jung et al., 2014; 

334 Anderson and Gezdon, 2015). Acclimation via intra-individual plasticity may also explain 
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335 growth increase of European beech in response to climate change at higher elevations in the 

336 center of its distribution range (Dulamsuren et al., 2017). As with F. crenata, this growth 

337 increase may reflect advancement of the altitudinal distribution range of beech in response to 

338 global warming.

339 Because plasticity incurs costs such as maintaining sensory and regulatory 

340 mechanisms to detect environmental conditions, it may not be adaptive in stable environments 

341 (DeWitt et al., 1998). Fixed traits, as opposed to plasticity, are favored in stressful 

342 environments (Van Kleunen and Fischer, 2005; Ghalambor et al., 2007; Sambatti and Caylor, 

343 2007; Sánchez-Gómez et al., 2008; Auld et al., 2010). In marginal populations, plasticity may 

344 not be adaptive because high levels of environmental stress render the relative cost of 

345 plasticity higher than for central populations (Magi et al., 2011). In European beech, stronger 

346 adaptation to local climate of geographically marginal than central populations (Kreyling et 

347 al., 2014) and high degree of drought resistance of populations near the southern range edge 

348 (Sánchez-Gómez et al., 2013), are both associated with low plasticity. In this study, low 

349 intra-individual plasticity was associated with higher temperature and fewer days of 

350 precipitation, suggesting that hotter, dryer conditions may select for low plasticity in F. 

351 crenata. However, measures of aridity, such as SPEI, were not correlated with leaf-area 

352 plasticity in this study, suggesting that further investigation is needed to elucidate the effect of 

353 water availability on leaf trait plasticity of F. crenata.

354 The degree of plasticity and the rate of genetic evolution of a population, determine 

355 its acclimation and adaptation potentials, respectively, to environmental perturbation (Thuiller 

356 et al., 2008). Initially, trees can respond to climate change through plasticity, i.e. individual-

357 level acclimation in phenology, resource allocation, etc. (DeLucia et al., 2000; Rehfeldt et al., 

358 2002; Vitasse et al., 2010). However, if the rate of adaptive evolution lags behind 

359 environmental change and genetic adaptation is slow, then tree populations may not be able to 
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360 persist in the long term (Aitken et al., 2008; Lindner et al., 2009; Kuparinen et al., 2010; 

361 Shaw et al., 2012). Studies of forest dynamics along altitudinal gradients suggest that changes 

362 in tree species composition due to climate change are already taking place (Lenoir et al., 

363 2009). Compared to other plants, trees tend to have low migration rates (Aitken et al., 2008). 

364 In addition, dispersal may be limited by physical barriers such as geographical features 

365 (mountains and valleys) as well as anthropogenic habitat fragmentation (Honnay et al., 2002; 

366 Jump and Penuelas, 2005; Jackson and Sax, 2010). Because of milder weather conditions, 

367 human population densities are higher on the Pacific side of Japan. As a result, many natural 

368 forests comprising F. crenata have been cleared and those remaining have become 

369 geographically isolated (Nagaike and Kamitani, 1999; Hiraoka and Tomaru, 2009). Our 

370 results suggest trees in isolated populations of F. crenata in Pacific and southern regions of 

371 Japan have limited acclimation potential to climate change and these populations may risk 

372 local extinction due to increased mortality if climatic conditions exceed their acclimation 

373 potential or the rate of change in environmental conditions exceeds that of genetic adaptation. 

374 This would lead to future retreat of the Pacific and southern range edges of F. crenata. On the 

375 other hand, increased mortality can accelerate evolutionary adaptation of trees to climate 

376 change by shortening generation turnover time (Kuparinen et al., 2010). 

377 Most models predicting future vegetation change in response to climate change 

378 assume species responses to environmental conditions are similar across distributional ranges 

379 (e.g., Matsui et al., 2004b for F. crenata). Although some models incorporate intraspecific 

380 variation and local adaptation to predict species distribution (e.g., Oney et al., 2013), these 

381 variations reflect genetic differences among populations and not plasticity within populations 

382 and individuals. Similarly, previous studies on trait variation of F. crenata compared only 

383 mean traits among a few sites (e.g., Tateishi et al. 2010) or in a common garden experiment 

384 (Yamasaki et al. 2007; Osada et al. 2015), which represent genetic variation among and 
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385 phenotypic variation within populations, This study is a first attempt to compare intra-

386 individual plasticity across the full geographic distribution range of F. crenata. Our results, 

387 therefore, contribute to understanding of the geographical variation in individual-level 

388 acclimation potential and help improve predictions of the future distribution of F. crenata in 

389 response to climate change.
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Table 1. Description of study sites and sample trees for the 13 sites of F. crenata. Sites are listed in order of decreasing latitude (north to south) with 
prefectures in ( ). Site names in normal and bold fonts indicate Japan-Sea and Pacific genetic lineages, respectively.

Site
Site

Code
Location

Elevation
(m a.s.l.)

Mean 
temperature 

(°C)

Precipitation
(mm yr−1)

Meteorological 
station

Number 
of trees

DBH
(cm)

Tree 
height

(m)
Soibetsu Beech Forest
(Hokkaido)

SOI 42°41’N, 
140°16’E

45 7.9 1400 Kuromatsunai 4 25~38 17~24

Shirakami Range
(Aomori)

SHI 40°34’N,
140°08’E

342 7.2 1550 Ikarigaseki 4 51~79 27~28

Kawatabi Field Center
(Miyagi)

KAW 38°47’N,
140°47’E

560 8.3 1650 Kawatabi 4 18~42 20~23

Sendai Tohoku Univ. Botanical 
Garden (Miyagi)

SEN 38°15’N,
140°51’E

140 11.9 1250 Sendai 4 27~50 20~23

Mt. Naeba
(Niigata)

NAE 36°47’N,
138°46’E

860 8.9 2230 Naeba 4 22~28 20~23

Ogawa Forest Reserve
(Ibaragi)

OGA 36°56’N,
140°35’E

635 9.6 1450 Daigo 5 88~109 22~27

Sugadaira Daido Beech Forest
(Nagano) 

SUG 36°30’N,
138°20’E

1315 6.2 1200 Sugadaira 4 37~94 22~28

Nishikoma Field Station
(Nagano)

NIS 35°49'N,
137°51’E

1600 3.0 2250 Ina 4 25~72 12~16

Wakasugi Natural Forest
(Okayama)

WAK 35°15’N,
134°24’E

1045 9.1 2950 Imaoka 4 51~76 22~27

Mt. Rokko
(Hyogo)

ROK 34°47’N,
135°16’E

800 10.1 1850 Kobe 6 18~64 19~23

Mt. Takanosu
(Hiroshima)

TAK* 34°34’N,
132°45’E

864 10.3 1450
Higashihiroshi

ma
4 46~87 24~27

Komenono Field Station
(Ehime)

EHI 33°55’N,
132°55’E

880 10.5 1800 Matsuyama 4 30~73 16~22

Miyazaki Research Forest
(Miyazaki)

MIY 32°23’N,
131°01’E

1190 9.9 3100 Kuraoka 4 17~43 13~17

*Genetic lineage of the Mt. Takanosu site is unknown.



Table 2. Results of linear regression analyses comparing leaf morphological traits between Japan-Sea and Pacific genetic lineages of F. crenata in relation to 

height (H), canopy openness (OC) and relative height (Hrel). All regressions were significant (P < 0.05) except for the one with r-square value in grey. 

Regression slopes, representing plasticity, and intercepts were compared among sites (excluding Takanosu whose genetic lineage is unknown) by ANCOVA. 

Genetic lineages with significantly steeper slopes (higher plasticity) and greater intercepts are indicated in bold (P < 0.05). 

Leaf H (m) 　 　 　 Oc (%) 　 　 　 Hrel 　 　
trait

lineage
Slope Intercept r2 　 Slope Intercept r2 　 Slope Intercept r2

Area Jpn Sea -0.773 38.6 0.168 　 -14.1 45.6 0.145 　 -23.5 42.0 0.252
(cm2) Pacific -0.682 30.2 0.147 　 -22.4 53.1 0.432 　 -20.1 34.5 0.239

　
Thickness Jpn Sea 0.008 0.164 0.494 　 0.162 0.067 0.446 　 0.210 0.155 0.529

(mm) Pacific 0.005 0.225 0.352 　 0.114 0.141 0.389 　 0.145 0.198 0.484
　 　 　 　 　 　 　 　 　 　 　 　 　

Leaf mass Jpn Sea 3.544 90.3 0.123 　 81.9 33.7 0.149 　 91.9 83.4 0.134
(mg) Pacific 1.933 105.0 0.044 　 -9.9 140.1 0.002 　 55.0 93.2 0.053

　
SLA Jpn Sea -0.011 0.383 0.627 　 -0.207 0.485 0.593 　 -0.308 0.416 0.766

(cm2 mg−1) Pacific -0.007 0.259 0.517 　 -0.152 0.380 0.620 　 -0.198 0.300 0.716



Table 3. Results of linear regression analyses comparing leaf morphological traits of F. crenata among the 
13 sites in relation to height (H), canopy openness (OC) and relative height (Hrel). Regression significance 
is indicated by asterisks next to r-square values (** P < 0.01). Regression slopes, representing plasticity, 
and intercepts were compared among sites by ANCOVA. Sites with the same letter are not significantly 
different (P < 0.05). Site names in bold indicate Pacific genetic lineage.

Leaf H (m) O c (%) H rel

trait Slope Inercept r 2 Slope Inercept r 2 Slope Inercept r 2

SOI -2.13 . B. . . . 68.8 A. . . . . . . 0.454 ** -57.1 A. . . . . . . 124.9 A. . . . . . 0.455 ** -53.9 A. . . . . . 74.2 A. . . . . . 0.578 **
SHI -1.20 . . C. . . 52.4 . . C. . . . . 0.584 ** -22.6 . . CD. . . . 59.2 . . C. . . . 0.409 ** -32.6 . . C. . . . 52.4 . . C. . . . 0.588 **

KAW -1.02 . . CD. . 41.0 . . . . E. . . 0.321 ** -24.6 . . C. . . . . 63.3 . . C. . . . 0.368 ** -20.5 . . . . EF. 39.8 . . . D. . . 0.276 **
SEN -0.69 . . . . E. 38.3 . . . . E. . . 0.312 ** -13.0 . . . . . F. . 46.3 . . . D. . . 0.241 ** -14.9 . . . . . F. 38.2 . . . D. . . 0.304 **
NAE -1.12 . . CD. . 40.6 . . . . E. . . 0.389 ** -29.7 . B. . . . . . 71.1 . B. . . . . 0.463 ** -23.5 . . . . E. . 39.8 . . . D. . . 0.344 **
OGA -1.22 . . C. . . 43.1 . . . . E. . . 0.609 ** -21.1 . . CDE. . . 50.7 . . . D. . . 0.565 ** -28.5 . . . D. . . 40.3 . . . D. . . 0.492 **
SUG -1.27 . . C. . . 48.8 . . . D. . . . 0.568 ** -20.0 . . CDE. . . 48.9 . . . D. . . 0.597 ** -34.6 . . C. . . . 49.7 . . C. . . . 0.610 **
NIS -3.23 A. . . . . 56.9 . B. . . . . . 0.761 ** -16.9 . . . . E. . . 49.5 . . . D. . . 0.284 ** -39.9 . B. . . . . 57.4 . B. . . . . 0.779 **

WAK -0.87 . . . D. . 42.0 . . . . E. . . 0.256 ** -9.4 . . . . . FGH 41.4 . . . . E. . 0.075 ** -21.3 . . . . EF. 42.4 . . . D. . . 0.247 **
ROK -0.30 . . . . . F 18.9 . . . . . . G. 0.195 ** -5.5 . . . . . . . H 22.0 . . . . . . G 0.275 ** -7.1 . . . . . . G 19.8 . . . . . F. 0.248 **
TAK -0.67 . . . . E. 28.5 . . . . . F. . 0.504 ** -11.7 . . . . . FG. 32.3 . . . . . F. 0.364 ** -17.0 . . . . EF. 28.5 . . . . E. . 0.493 **
EHI -0.57 . . . . E. 21.5 . . . . . . G. 0.190 ** -18.4 . . . DE. . . 41.8 . . . . E. . 0.364 ** -18.1 . . . . EF. 26.5 . . . . E. . 0.446 **
MIY -0.33 . . . . . F 16.0 . . . . . . . H 0.162 ** -7.8 . . . . . . GH 25.1 . . . . . . G 0.195 ** -5.2 . . . . . . G 15.8 . . . . . . G 0.147 **
SOI 0.011 . . CD. . . 0.136 . . . D. . 0.566 ** 0.350 A. . . . . . -0.248 . . . . . . . H 0.680 ** 0.253 . . . D. . . 0.129 . . . . . F. 0.558 **
SHI 0.004 . . . . . . G 0.234 A. . . . . 0.346 ** 0.151 . . . . E. . 0.107 . . C. . . . . 0.599 ** 0.145 . . . . . F. 0.218 . B. . . . . 0.604 **

KAW 0.015 A. . . . . . 0.073 . . . . . F 0.793 ** 0.236 . . C. . . . -0.052 . . . . . F. . 0.757 ** 0.326 . B. . . . . 0.072 . . . . . . G 0.800 **
SEN 0.009 . . . . E. . 0.210 . B. . . . 0.721 ** 0.177 . . . D. . . 0.072 . . . D. . . . 0.669 ** 0.128 . . . . . F. 0.247 A. . . . . . 0.566 **
NAE 0.006 . . . . . F. 0.174 . . C. . . 0.578 ** 0.141 . . . . E. . 0.052 . . . D. . . . 0.760 ** 0.131 . . . . . F. 0.178 . . . D. . . 0.529 **
OGA 0.004 . . . . . . G 0.212 . B. . . . 0.357 ** 0.096 . . . . . F. 0.168 . B. . . . . . 0.499 ** 0.127 . . . . . F. 0.200 . BCD. . . 0.435 **
SUG 0.011 . . C. . . . 0.109 . . . . E. 0.607 ** 0.215 . . C. . . . 0.034 . . . D. . . . 0.702 ** 0.350 A. . . . . . 0.068 . . . . . . G 0.711 **
NIS 0.006 . . . . . F. 0.229 A. . . . . 0.215 ** 0.076 . . . . . . G 0.194 A. . . . . . . 0.229 ** 0.093 . . . . . . G 0.207 . BC. . . . 0.557 **

WAK 0.010 . . . D. . . 0.145 . . . D. . 0.458 ** 0.221 . . C. . . . -0.007 . . . . E. . . 0.566 ** 0.287 . . C. . . . 0.117 . . . . . F. 0.572 **
ROK 0.007 . . . . . F. 0.207 . B. . . . 0.382 ** 0.102 . . . . . F. 0.160 . B. . . . . . 0.381 ** 0.150 . . . . . F. 0.189 . . CD. . . 0.508 **
TAK 0.010 . . CD. . . 0.118 . . . . E. 0.684 ** 0.184 . . . D. . . 0.051 . . . D. . . . 0.718 ** 0.253 . . . D. . . 0.116 . . . . . F. 0.690 **
EHI 0.009 . . . . E. . 0.184 . . C. . . 0.615 ** 0.158 . . . . E. . 0.053 . . . D. . . . 0.293 ** 0.146 . . . . . F. 0.193 . BCD. . . 0.446 **
MIY 0.013 . B. . . . . 0.149 . . . D. . 0.784 ** 0.280 . B. . . . . -0.159 . . . . . . G. 0.734 ** 0.223 . . . . E. . 0.149 . . . . E. . 0.783 **
SOI 3.77 . . CD. . . 146.5 A. . . . 0.084 ** 49.9 . B. 127.2 A. . . . 0.017 NS 71.9 . BC. . 151.6 A. . . . 0.061 **
SHI 2.46 . . . . EF. 109.1 . . C. . 0.155 ** 73.4 . B. 66.9 . BC. . 0.315 ** 94.4 . B. . . 99.6 . . C. . 0.307 **

KAW 3.85 . . CD. . . 89.2 . . CD. 0.144 ** 67.2 . B. 46.4 . BC. . 0.117 ** 83.0 . B. . . 89.0 . . C. . 0.145 **
SEN 6.72 A. . . . . . 76.3 . . . D. 0.336 ** 157.4 A. . -48.2 . . . . E 0.404 ** 154.6 A. . . . 69.9 . . . D. 0.369 **
NAE 1.46 . . . . . F. 104.5 . . C. . 0.033 NS 13.3 . . C 92.7 . B. . . 0.017 NS 39.4 . . CDE 99.6 . . C. . 0.049 *
OGA 0.31 . . . . . . G 127.9 . B. . . 0.002 NS 4.0 . . C 128.1 A. . . . 0.001 NS 13.3 . . . . E 123.9 . B. . . 0.005 NS
SUG 2.62 . . . DEF. 54.3 . . . . E 0.273 ** 26.4 . . C 67.8 . BC. . 0.107 ** 59.6 . BCD. 59.7 . . . DE 0.213 **
NIS 3.33 . . CDE. . 125.4 . B. . . 0.066 * 22.5 . . C 125.9 A. . . . 0.009 NS 98.3 . B. . . 97.8 . . C. . 0.236 **

WAK 4.29 . . C. . . . 98.7 . . CD. 0.154 ** 142.9 A. . -11.8 . . . D. 0.265 ** 97.8 . B. . . 105.4 . . C. . 0.120 **
ROK 3.62 . . CD. . . 50.2 . . . . E 0.395 ** 56.9 . B. 25.8 . . C. . 0.378 ** 81.6 . BC. . 41.1 . . . . E 0.481 **
TAK 2.21 . . . . EF. 58.9 . . . . E 0.155 ** 52.9 . B. 27.0 . . C. . 0.208 ** 66.6 . BC. . 51.7 . . . DE 0.210 **
EHI 0.24 . . . . . . G 82.2 . . . D. 0.001 NS -21.5 . . C 120.5 A. . . . 0.016 NS -27.7 . . . DE 105.6 . . C. . 0.040 *
MIY 5.22 . B. . . . . 42.3 . . . . E 0.555 ** 84.2 . B. -49.0 . . . . E 0.247 ** 86.4 . B. . . 43.0 . . . DE 0.542 **
SOI -0.013 . . C. . 0.379 . . . D. . . . 0.814 ** -0.298 A. . . . . . 0.649 A. . . . . 0.522 ** -0.298 . . . D. . . . 0.393 . . . . E. . . . . 0.883 **
SHI -0.011 . . . DE 0.410 . . C. . . . . 0.812 ** -0.181 . . . . E. . 0.427 . . . D. . 0.774 ** -0.295 . . . D. . . . 0.411 . . . D. . . . . . 0.820 **

KAW -0.018 A. . . . 0.461 . B. . . . . . 0.977 ** -0.255 . B. . . . . 0.575 . B. . . . 0.791 ** -0.377 . B. . . . . . 0.459 . B. . . . . . . . 0.967 **
SEN -0.011 . . . DE 0.328 . . . . . F. . 0.903 ** -0.207 . . . D. . . 0.473 . . C. . . 0.634 ** -0.228 . . . . . F. . 0.326 . . . . . . . H. . 0.882 **
NAE -0.011 . . . DE 0.360 . . . . E. . . 0.739 ** -0.239 . . C. . . . 0.559 . B. . . . 0.880 ** -0.232 . . . . . F. . 0.357 . . . . . . G. . . 0.702 **
OGA -0.010 . . . DE 0.347 . . . . EF. . 0.813 ** -0.158 . . . . . F. 0.377 . . . . E. 0.673 ** -0.261 . . . . E. . . 0.353 . . . . . . G. . . 0.806 **
SUG -0.016 . B. . . 0.520 A. . . . . . . 0.804 ** -0.255 . B. . . . . 0.568 . B. . . . 0.690 ** -0.437 A. . . . . . . 0.556 A. . . . . . . . . 0.873 **
NIS -0.009 . . . . E 0.266 . . . . . . . H 0.409 ** -0.159 . . . . EF. 0.371 . . . . E. 0.710 ** -0.151 . . . . . . . H 0.280 . . . . . . . . I . 0.583 **

WAK -0.010 . . . . E 0.337 . . . . EF. . 0.778 ** -0.177 . . . . E. . 0.415 . . . D. . 0.584 ** -0.281 . . . D. . . . 0.373 . . . . . F. . . . 0.891 **
ROK -0.011 . . . D. 0.308 . . . . . . G. 0.594 ** -0.139 . . . . . . G 0.350 . . . . . F 0.446 ** -0.232 . . . . . F. . 0.329 . . . . . . . H. . 0.686 **
TAK -0.014 . . C. . 0.423 . . C. . . . . 0.878 ** -0.214 . . . D. . . 0.478 . . C. . . 0.565 ** -0.350 . . C. . . . . 0.429 . . C. . . . . . . 0.913 **
EHI -0.010 . . . . E 0.277 . . . . . . . H 0.734 ** -0.173 . . . . EF. 0.414 . . . D. . 0.631 ** -0.183 . . . . . . G. 0.281 . . . . . . . . I . 0.764 **
MIY -0.010 . . . . E 0.255 . . . . . . . H 0.878 ** -0.183 . . . . E. . 0.446 . . . D. . 0.748 ** -0.135 . . . . . . . H 0.235 . . . . . . . . . J 0.795 **

Area (cm2)

Thickness
(mm)

Leaf mass
(mg)

SLA
(cm2 mg−1)

Site
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Table 4. Spearman's rank correlation coefficients (Rs) between plasticity (absolute value of the regression 

slope in relation to independent variable) of leaf area and environmental variables. Top ten environmental 

variables are listed in order of decreasing Rs.

Independent Environmental variable 　 　
variable 　 RS P

Height Annual mean temperature -0.857 <0.001
　 Minimum daily mean temperature -0.827 <0.001
　 Lowest recorded daily minimum temperature -0.822 <0.001
　 Lowest recorded monthly mean temperature -0.710 0.007
　 Mean temperature during leafy season -0.674 0.012
　 Historical monthly variation (max – min recorded) 0.644 0.018
　 Highest recorded monthly precipitation -0.642 0.018
　 Minimum monthly mean temperature -0.640 0.019
　 Mean temperature at bud formation -0.620 0.024
　 Maximum monthly mean temperature -0.607 0.028
　 　 　 　

Canopy openness Latitude 0.793 0.001 
　 Monthly days of precipitation (winter) 0.787 0.001 
　 Monthly days of precipitation (annual) 0.767 0.002 
　 Lowest recorded minimum daily temperature -0.690 0.009 
　 Elevation -0.688 0.009 
　 Daily minimum temperature -0.638 0.019 
　 Highest recorded monthly days of precipitation 0.594 0.032 
　 Lowest recorded monthly mean temperature -0.592 0.033 
　 Historical monthly variation (max – min recorded) 0.588 0.035 
　 Monthly precipitation (summer) -0.579 0.038 
　 　 　 　

Relative height Lowest recorded daily minimum temperature -0.937 <0.001
　 Minimum daily temperature -0.847 <0.001
　 Mean temperature at leaf emergence -0.796 0.001 
　 Historical monthly variation (max – min recorded) 0.719 0.006 
　 Latitude 0.718 0.006 
　 Lowest recorded monthly mean temperature -0.716 0.006 
　 Highest recorded monthly precipitation -0.715 0.006 
　 Mean temperature during leafy season -0.692 0.009 
　 Mean annual temperature -0.679 0.011 
　 Maximum temperature at leaf emergence -0.677 0.011 

 



Figure captions

Fig. 1. Location and elevation of 13 study sites spread across the full distribution range of F. crenata in Japan. 

See Table 1 for names of study sites. Site names in normal and bold fonts indicate Japan-Sea and 

Pacific genetic lineages, respectively. *The genetic lineage of the Mt. Takanosu site is unknown. Lines 

indicate northern and southern distribution limits. Dotted line indicates the geographic boundary 

between the two genetic lineages.

Fig. 2. Intra-crown variation of leaf morphology among 13 study sites of F. crenata. Scanned leaf images 

from single trees at each site are shown in relation to height. The center of each leaf is plotted at the 

height of its location in the crown. Sites are in order of descending latitude (north to south from left to 

right). Site names are as in Table 1 and Fig. 1.

Fig. 3. Ordination diagram of the results of principle component analysis (PCA) based on leaf traits of 13 

study sites. Centroids of each site are plotted. Symbol shapes indicate genetic lineage (△: Japan Sea; O: 

Pacific; ◊: Unknown). Site names are as in Table 1 and Fig. 1. Leaf trait codes are as follows: LA: leaf 

area; LT: leaf thickness; LM: leaf mass; SLA: specific leaf area; LL: leaf length; LW: leaf width; 

LL/LW: leaf length to width ratio; LS: leaf shape index; LV: number of leaf veins. Table shows r2 

values of the relationship between axis scores and trait values. Asterisks indicate significant correlations 

(** P < 0.01).

Fig. 4. Relationship between leaf area and height of F. crenata at 13 study sites. Graphs are arranged in order 

of descending latitude (north to south) of the study sites (left to right, top to bottom). Symbols represent 

individual trees within each site. Comparison of regression lines for all sites shown in lower right (See 

Table 3 for statistical test results). Site names are as in Table 1 and Fig. 1.

Fig. 5. Relationship between specific leaf area (SLA) and canopy openness of F. crenata at 13 study sites. 

Graphs are arranged in order of descending latitude (north to south) of the study sites (left to right, top 

to bottom). Symbols represent individual trees within each site. Comparison of regression lines for all 

sites shown in lower right (See Table 3 for statistical test results). Site names are as in Table 1 and Fig. 

1.
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Fig. 6. Relationship between intra-crown leaf-area plasticity of F. crenata (absolute value of the regression 

slope in relation to independent variable) and environmental variables for the 13 study sites. For each 

independent variable, three environmental variables with highest correlations from Table 4 are shown. 

Symbols are as in Fig. 3.
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Fig. 1



Fig. 2



Fig. 3
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Fig 6.



Table S1. List of environmental/structural variables investigated in relation to intra-individual plasticity.

Variable type Variable name
Temperature/precipitation Annual mean

Maximum annual mean
Minimum annual mean
Year to year variation (maximum – minimum annual mean)
Monthly mean (annual/summer/winter)
Maximum monthly mean
Minimum monthly mean
Highest recorded monthly mean
Lowest recorded monthly mean
Historical monthly variation (highest –lowest recorded monthly mean)
Daily mean temperature
Daily maximum temperature
Daily minimum temperature
Highest recorded daily maximum temperature
Lowest recorded daily minimum temperature
Historical daily temperature variation (highest daily max – lowest daily min)
Monthly days of precipitation (annual/summer/winter)
Highest recorded monthly days of precipitation
Lowest recorded monthly days of precipitation
Historical monthly precipitation variation (highest – lowest recorded days/mo)

Aridity Annual mean SPEI*
Maximum annual SPEI
Minimum annual SPEI
Historical variation (maximum – minimum annual SPEI)

Growing season Days of growing season**
Mean/max/min temperature at bud formation
Mean/max/min temperature at leaf emergence
Mean/max/min temperature during growing season
Monthly precipitation during growing season
Monthly days of precipitation during growing season

Location Latitude 
Longitude
Elevation

Tree structure Diameter at breast height
Tree height
Crown-base height
Crown depth
Crown width
Leaf area index

* Standardized Precipitation-Evaporation Index
** Monthly mean temperature > 5°C (Kira 1991)



TableS2. Results of linear regression analyses comparing leaf morphological traits among observation years for F. crenata in Mt. Rokko in relation to height 
(H), canopy openness (OC) and relative height (Hrel). Regression slopes, representing plasticity, and intercepts were compared among sites by ANCOVA. All 
All regressions were significant (P < 0.01). Estimates of slopes and intercepts labeled with the same letter are not significantly different (P < 0.05).

Leaf H (m) 　 　 　 　 　 Oc (%) 　　 　 　 　 Hrel 　 　 　　

trait
Year

Slope 　Intercept 　 r2 　 Slope 　Intercept 　 r2 　 Slope 　Intercept 　 r2

2015 -0.31 A 21.0 A 0.185 　 -8.4 A 27.4 A 0.301 　 -8.6 A 21.9 A 0.266

2016 -0.29 A 17.6 B 0.263 　 -5.9 B 22.2 B 0.319 　 -6.9 A 18.5 B 0.344Area (cm2)

2017 -0.24 A 18.4 B 0.160 　 -5.0 B 20.9 B 0.358 　 -5.4 A 18.9 B 0.182

2015 0.007 A 0.200 A 0.495 　 0.078 B 0.182 A 0.174 　 0.159 A 0.182 B 0.629

2016 0.006 A 0.218 A 0.342 　 0.180 A 0.055 B 0.651 　 0.176 A 0.181 B 0.556
Thickness

(mm)
2017 0.006 A 0.205 A 0.330 　 0.091 B 0.182 A 0.533 　 0.103 B 0.211 A 0.306

2015 4.77 A 43.3 A 0.597 　 48.9 B 39.2 A 0.135 　 91.0 A 41.1 A 0.613

2016 3.04 B 55.6 A 0.316 　 71.9 A -3.4 C 0.470 　 78.0 A 41.7 A 0.450Leaf mass (mg)

2017 3.53 B 48.4 A 0.395 　 63.6 A 21.2 B 0.650 　 79.3 A 40.5 A 0.458

2015 -0.014 A 0.375 A 0.806 　 -0.202 A 0.460 A 0.394 　 -0.28 A 0.384 A 0.856

2016 -0.011 B 0.281 B 0.691 　 -0.169 B 0.396 B 0.601 　 -0.203 B 0.298 B 0.669
SLA

(cm2 mg−1)
2017 -0.009 B 0.290 B 0.528 　 -0.141 C 0.340 C 0.610 　 -0.210 B 0.311 B 0.615



Table S3. Spearman's rank correlation coefficients (Rs) between plasticity (absolute value of the 
regression slope in relation to independent variable) of leaf traits and climatic variables. 
Statistically significant (P < 0.05) environmental variables are listed in order of decreasing Rs.

Leaf Independent Climatic variable RS P

trait variable 　 　 　

Thickness Relative height Maximum temperature (leaf emergence) -0.562 0.046 

　 　 　 　 　

SLA Relative height Mean monthly precipitation (summer) -0.622 0.023 

　 　 Mean tree height 0.598 0.031 

　 　 Maximum temperature (leaf emergence) -0.578 0.039 

　 　 　 　 　

SLA Canopy openness Mean monthly days of precipitation (winter) 0.667 0.013 

　 　 Mean monthly days of precipitation (annual) 0.656 0.015 

　 　 Lowest recorded monthly days of precipitation 0.623 0.023 

　 　 Maximum temperature (leaf emergence) -0.605 0.028 

　 　 Distance from Sea of Japan -0.554 0.050 

 


