

PDF issue: 2025-12-05

Urbanization promotes the loss of seasonal dynamics in the semi-natural grasslands of an East Asian megacity

Uchida, Kei Fujimoto, Hiroki Ushimaru, Atushi

(Citation)

Basic and Applied Ecology, 29:1-11

(Issue Date)

2018-06

(Resource Type)

journal article

(Version)

Accepted Manuscript

(Rights)

© 2018 Elsevier.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

(URL)

https://hdl.handle.net/20.500.14094/90006439

1	Urbanization promotes the loss of seasonal dynamics in the semi-natural grasslands of an
2	East Asian megacity
3	
4	Kei UCHIDA ^{a,b, *} , Hiroki FUJIMOTO ^a and Atushi USHIMARU ^a
5	
6	a. Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto
7	Kobe 657-8501, Japan
8	
9	b. Graduate School of Environment and Information Sciences, Yokohama National University,
10	79-7 Tokiwa-dai, Yokohama 240-8501, Japan
11	
12	*Corresponding author. Tel.: +81-(0)45-339-4355.
13	E-mail address: k.uchida023@gmail.com.
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

Abstract

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

25

The biodiversity of agricultural landscapes has been noticeably affected by rapid urbanization. Although many studies have examined species diversity per unit area (alpha diversity), knowledge about the patterns of species turnover (beta diversity) in urban areas remains limited. Furthermore, most beta diversity studies have focused on spatial heterogeneity; however, losses of temporal heterogeneity resulting from urbanization remain limited. In this study, we examined how urbanization is associated with decreases in the seasonal heterogeneity of species composition, which could be used as an indicator of the loss of seasonality by ecologists and policy makers aiming to conserve biodiversity. We investigated (1) changes in species richness based on seasonal averages (alpha diversity) and (2) the seasonal turnover of species composition (beta diversity) for flowering plants and butterflies along a rural-urban gradient in semi-natural grasslands. The response variables were alpha and beta diversity for flowering plants and butterflies, and the explanatory variables were urban areas within a 1-km radius of the center of each site. Increasing urban area caused both the seasonal alpha and beta diversity of flowering plants and butterflies to decline. These results supported the homogenization hypothesis for the seasonality of plants and butterflies in semi-natural grasslands surrounding dominant urban areas in East Asia. Future studies should focus on investigating how urbanization is causing both declines in seasonality and changes in the spatial heterogeneity of species composition and associated biodiversity loss. Ecologists and policy makers should focus on developing strategies to halt the loss of temporal biological heterogeneity to maintain biodiversity.

46

- Keywords: additive partitioning; agricultural lands; beta diversity; land-use change; species
- 48 turnover

Introduction

3

Land-use change reduces biodiversity in agricultural ecosystems globally (Sala et al., 2000;
Tilman et al., 2001; Foley et al., 2005). In recent decades, rapid urbanization has been one of the
main factors causing changes to biodiversity in agro-ecosystems (e.g., Blair & Johnson, 2008;
McKinney, 2008; Ushimaru, Kobayashi, & Dohzono, 2014). Biodiversity loss is partly the result
of reduced spatial and temporal heterogeneity in species composition (e.g., McKinney, 2006;
Smart et al., 2006; Tylianakis, Klein, & Tscharntke, 2005; Uchida & Ushimaru, 2015). Biotic
homogenization is a rapidly growing ecological issue worldwide, which is caused by the
combined effects of specialist and native species extinctions with invasions of generalist and
non-native species that are better able to adapt to anthropogenic changes in environmental
conditions (e.g., Olden, 2006; McKinney, 2006; Knop, 2016).
Most studies on biotic homogenization in urban areas have focused on spatial heterogeneity
(McKinney, 2006; Smart et al., 2006; Knop, 2016); however, changes in the temporal
heterogeneity of species composition due to urbanization are being overlooked (but see, La Sorte,
Tingley, & Hurlbert, 2014). Seasonal turnover in species composition shows how species share the
same habitat at different times of the year (Olesen et al., 2008; La Sorte, Tingley, & Hurlbert,
2014; Uchida & Ushimaru, 2015), and could be used as an indicator of biodiversity for deciding
where to implement conservation actions. Studies on biotic homogenization have confirmed that
seasonal heterogeneity in species composition, which is regulated by seasonal changes of weather
conditions, is fundamental for maintaining biodiversity (Benton, Vickery, & Wilson, 2003;
Tylianakis, Klein, & Tscharntke, 2005; Dalby et al., 2014). Seasonal turnover in species
composition is high in rainforest ecosystems, leading to greater biodiversity over the course of a
year, despite anthropogenic disturbances, which reduce temporal heterogeneity (Tylianakis, Klein,

73 & Tscharntke, 2005). Increased anthropogenic disturbance due to land-use changes might cause the number of some species to increase, particularly seasonal generalist species. On the other hand, 74 disturbances might cause the reproductive success of seasonal specialist species to decline due to 75 76 their life history traits (e.g., Soga & Koike, 2012; Huston & Wolverton, 2012; Nakahama et al., 77 2016). 78 Globally, 54% of the human population resided in urban areas in 2014, with this percentage being expected to increase to 66% by 2050 (United Nations, 2014). Megacities (total population > 79 10 million people) are expected to have a negative effect on biodiversity, and are primarily located 80 81 in Asia (United Nations, 2014). Urbanization studies are common in Europe and North America, 82 but remain limited in Monsoon Asia, where extensive areas of semi-natural ecosystems (i.e., 83 agricultural lands and secondary forests) have been replaced by urban areas due to rapid economic 84 growth during the second half of the 20th century (Liu, Zhan, & Deng, 2005; Saizen, Mizuno, & 85 Kobayashi, 2006; Tsuji et al., 2011). Traditionally, extensively managed agro-ecosystems have facilitated the persistence of high biodiversity in East Asia (Ishitani, Kotze, & Niemelä, 2003; 86 87 Uematsu et al., 2010; Tsuji et al., 2011; Uchida & Ushimaru, 2014); however, urbanization may 88 have caused species pools to diminish due to increased anthropogenic impacts (Olden & Rooney, 89 2006; Qian et al., 2006; Tsuji et al., 2011; Ramírez-Restrepo & MacGregor-Fors, 2017). Therefore, 90 a better understanding of how urbanization impacts semi-natural ecosystems surrounding megacities in East Asia is required. 91 Here, we focus on investigating the average seasonal species richness and temporal turnover of 92 species composition over the course of a year. Most previous studies have indicated that high 93 94 anthropogenic impact causes biological heterogeneity to decline (e.g., Vellend et al., 2007; Ekroos,

Heliölä, & Kuussaari, 2010; Uchida & Ushimaru, 2015). Furthermore, the spatial and temporal

heterogeneity of species composition may not necessarily be correlated. Plant and insect species

95

generally depend on the spatial heterogeneity of environmental factors (e.g., soil nutrients or climatic factors); however, some species do not necessarily exhibit seasonal specialization. Thus, we hypothesized that the loss of seasonal specialists and a prevalence of seasonal generalists cause the temporal turnover of species composition to decline with increasing urbanization. The temperate climatic zone, including Japan, exhibits clear seasonality, which contributes to a high temporal turnover in species composition. Therefore, it is important to assess whether both high alpha and high beta diversity result in high gamma diversity over the course of a year. Temporal dissimilarities in flowering plant composition were used to examine phenological variation in flowering activity, which approach is possible because the richness of flowering species is significantly correlated with total plant species richness (including species that do and do not flower) in this study region (Uchida & Ushimaru, 2015).

In this study, we tested changes in biodiversity along an urban-rural gradient, including changes from extensive to intensive management practices in semi-natural grasslands. We examined the average seasonal species richness (alpha diversity) and two components of the temporal turnover of species composition (beta diversity) to investigate whether biotic homogenization occurs in semi-natural ecosystems surrounding paddy fields along the urban-rural gradient of the Osaka-Kobe megacity, Japan. In this study area, urbanization has caused the cover of paddy fields to decrease more rapidly than that of forested areas over the last century (see Appendix A: Fig. 1, Table 1). We tested the effect of urbanization on the temporal alpha and beta diversity of plants and butterflies to determine whether: (1) urbanization causes both alpha diversity loss and within-year seasonal biotic homogenization (declines in β -diversity); (2) gamma diversity (representing biodiversity over the course of a year) depends on both alpha and beta diversity; and (3) the prevalence of seasonal generalists and/or the loss of seasonal specialists results in biotic homogenization.

1	0	1
1	Δ	- 1

123 Materials and methods

124

125

Study area and plots

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

The study was conducted in the Osaka-Kobe megacity, western Japan (~30 × 40 km², 34°43′– 57' N, 135°03'-25' E). The urban areas (residential, commercial, and industrial) were delineated in ArcGIS Spatial Analyst 9.3 (ESRI, Redlands, CA, USA) using land-use maps from 1896 to 1914 ("Kasei-Chikeizu" from the Imperial Japanese Army, Meiji era) and using high-resolution aerial photographs from the Geospatial Information Authority of Japan and Google Maps in 2012. In the Osaka-Kobe megacity area, paddy fields and secondary forests have decreased due to urbanization since the 1980s. Approximately 100 years ago, the study area was composed of 7.2% urban area, 20.4% agricultural land, and 61.9% forest. In contrast, by 2012, the study area was composed of 26.4% urban area, 14.1% agricultural land, and 52.3% forest (see Appendix A: Fig. 1 and Table 1). From ca. 1910 to 2012, paddy fields significantly decreased by 31%, whereas urban areas significantly increased by 368% (see Appendix A: Fig. 1 and Table 1). In the study area, semi-natural grasslands were maintained on the levees of paddy fields and irrigation ponds, and at the edges of paddy fields and secondary forests (dominated by Pinus densiflora and Quercus serrata), by periodic mowing (Uchida & Ushimaru, 2014). Although the map from ca. 1910 was used to illustrate the process of urbanization over the last century and to calculate changes in urban areas, information from this map was not included in the subsequent analyses. We selected 60 plots located on semi-natural grasslands across 20 paddy sites (three 3 × 20 m plots per site) along the rural-urban gradient based on the prepared geographic maps (Fig. 1). The

rural-urban gradient was based on the extent of urban area surrounding each site, and is shown in Fig.1. We then calculated the extent of the urban area within 500-m and 1-km radii of the center of each site for the statistical analyses (see Appendix A: Fig. 2). We identified a significant correlation between the urban areas within the 500-m and the 1-km radii ($R^2 = 0.92$, p < 0.01; R^2 value was calculated by Pearson's correlation and p value was tested by generalized linear model (GLM) with the Wald test); thus, we used the 1-km radius model in this study. The 20 sites were separated from one another by varying distances (Fig. 1), with a minimum distance of 1.2 km to avoid pseudoreplication. The three plots in each site were selected depending on area of continuous unfragmented habitat. Correlations between the distances of the three plots at each site and the urban gradient were not significant (p > 0.1; GLM with the Wald test). In addition, analysis of the landscape within a 1-km radius allowed us to compare our results with those of previous studies, which also examined the alpha diversity of grassland butterflies in similarly sized areas (Collinge, Prudic, & Oliver, 2003), including our previous reports on the alpha and beta diversity of semi-natural grasslands around paddy fields (Uchida & Ushimaru, 2014, 2015).

Relationships between environmental factors and urbanization

We calculated area of continuous unfragmented habitat including surveyed site within a 1-km radius and environmental factors (i.e., disturbance frequency and soil water content) to examine which environmental factors were correlated with the urban-rural gradient. To determine the disturbance frequency in 2014, we recorded the number of mowing events and herbicide applications in each plot during the agricultural season (April to October). We found that herbicides were applied once a year to semi-natural grasslands at only two of the 60 plots. Interviews with farmers at the study sites indicated that insecticides were not used in

semi-natural grasslands but were used a few times a year on crops at all sites. In most cases, the same farmer managed the semi-natural grasslands at each paddy site. We examined water content to represent soil environmental variables in the 60 plots. We collected three soil core (5 cm diameter, 5 cm depth) samples from three locations in each plot in mid-September. First, we mixed the three fresh soil samples from each plot into a single sample and weighed the sample. Then, the soil samples from all 60 plots were oven-dried at 70 °C for 72 h, weighed again and sieved (< 2 mm). We then calculated the soil water content using the fresh and dry weights of each soil sample (Nagata & Ushimaru, 2016). The disturbance frequency increased with increasing urban area within the 1-km radius of the center of each site (see Appendix A: Fig. 3, $R^2 = 0.14$, P < 0.05, according to Pearson's correlation and GLM with Wald test). Correlations between environmental factors (focal habitat area and soil water content) and urban area within the 1-km radius of the center of each site were not significant (see Appendix A: Fig. 3, P > 0.1, GLM with the Wald test). Although we detected a significant correlation between disturbance frequency and urbanization, previous studies implied that many unexpected variables (e.g., climatic fluctuation due to urbanization) could negatively affect biodiversity. Therefore, we used the urban gradient as an indicator of anthropogenic activity, including disturbance frequency, in this study.

185

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

Plant and butterfly data

187

188

189

190

191

192

186

Plant and butterfly diversity in each plot were surveyed four times across 2014 (late April, early June, mid-July, and mid-September). The four survey periods reflected different climatic conditions in the study area (see Appendix A: Table 2). These periods also corresponded to the peak flowering and butterfly flight in the study area (Uchida & Ushimaru, 2014). During each survey, the richness of all flowering plant species and richness and abundance of butterfly species

in each plot were recorded (three 3 × 20 m plots in each site). We recorded names of flowering plant species and counted number of flowering individuals of each species in each plot (entire 3 × 20 m plot area). Butterflies were observed for 15 min per plot (45 min per site) under sunny and warm condition. All butterflies were counted within the plots, and some of them were caught using a sweep-net to be identified and released, if necessary (Pollard & Yates, 1994; Uchida & Ushimaru, 2014). We spent the enough time (15 min per plot) to survey the butterfly species and to avoid double counting for preventing effect of survey methods on the diversity metrics.

Based on the data collected from the surveys, lists of flowering plant and butterfly species were prepared for each plot in each of the four time-periods (late April, early June, mid-July, and mid-September 2014). In total, we identified 295 flowering plant species, and 43 butterfly species (875 individuals).

We distinguished the seasonality of flowering plant and butterfly species by separating them into three groups based on classifications in field guides (see Appendix B; Hayashi, 1989; Satake et al., 1999; Shirouzu, 2006; Japan Butterfly Conservation Society, 2012): short flowering period/short flight period (i.e., the species is found in a particular season (one or two months) over the course of a year), intermediate flowering period/ intermediate flight period (i.e., found in two seasons (three or four months) over the course of a year), and long flowering period/ long flight period (i.e., found any time (more than five months) over the course of a year).

In addition, we classified plants and butterflies with different life-history traits based on their response to the rural-urban gradient. Plant species were divided into two groups: annual and perennial plants. Butterfly species were divided based on their life history traits, i.e., uni- and multi-voltinism (see Appendix B). Because not all species respond equally to land-use changes in semi-natural grasslands, it is essential to address the different responses of species and/or ecological trait groups to understand the mechanisms that drive species loss (Pykälä, 2005; Uchida

& Ushimaru, 2014; Knop, 2016). 217

218

Statistical analyses

220

- 221 Calculations of alpha diversity and two components of beta diversity
- 222 The alpha diversity of plants and butterflies was calculated as average species richness per each survey in each site. Next, we calculated two different beta diversity indices in each site to 223 224 examine changes in species composition due to urbanization. Additive partitioning of species 225richness (β_{add}) is frequently examined in biotic homogenization studies, even though low values of 226 this index indicate both low species turnover and low gamma diversity (Lande, 1996; Veech et al., 227 2002; Veech & Crist, 2010). The turnover components of Jaccard dissimilarity (β_{tu}) utilize species
- 228 composition to assess whether changes in beta diversity are caused by a loss of species
- 229 replacement (Baselga, 2012).
- 230 The $\beta_{\rm add}$ was calculated for each site as follows (Lande, 1996; Veech et al., 2002):

231
$$\beta_{add} = \frac{1}{N} \sum_{i=1}^{N} (\gamma - \alpha_i),$$

- where N is the number of the survey period (i.e., four) for flowering plants and butterflies, α_i is the 232
- 233 number of species for survey i, and γ is the total number of species for each site. High temporal
- $\beta_{\rm add}$ values indicate large temporal variation in species occurrence and increased variation in 234
- community composition (Uchida & Ushimaru, 2015). 235
- The β_{tu} was calculated for each site as follows (Baselga, 2012): 236

237
$$\beta_{tu} = \frac{2\left[\sum_{i < j} \min(b_{ij}, b_{ji})\right]}{\left[\sum_{i} S_i - S_T\right] + 2\left[\sum_{i < j} \min(b_{ij}, b_{ji})\right]},$$

where S_i is the total number of species in survey i, S_T is the total number of species in each site, and b_{ij} and b_{ji} are the number of species found exclusively in surveys i and j, respectively. High β_{tu} values indicate high temporal species replacement structure in species composition among each survey period (Baselga, 2012). Temporal heterogeneity of flowering plants and flying butterflies between each survey period was calculated by the value of two beta diversity (β_{add} and β_{tu}). These metrics were used to examine phenological variation in flowering plants and flying butterflies activity.

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

238

239

240

241

242

243

244

Changes in alpha diversity and the two components of beta diversity

A generalized linear mixed model (GLMM) was used to identify differences in alpha diversity and the two components of beta diversity in plant and butterfly communities at each site along the rural-urban gradient. The response variables were alpha-, β_{add} -, and β_{tu} - diversity in plants (Gaussian error and identity link) and butterflies (Gaussian error and identity link). The explanatory variable was the extent of urban area within a 1-km radius at each site. We identified whether sites occurred in coastal or valley areas (Fig. 1), and used this designation as a random term, because the study sites were spread over a broad geographic range; therefore, we nested variation in site location to analyze the GLMM. Note, we could not examine the relationships between the species traits of butterflies and the rural-urban gradient, because there was insufficient statistical power, due to the low richness and abundance in semi-natural grasslands surrounding major urban areas. We then tested whether the alpha and two beta diversity indices result in gamma diversity (i.e., total diversity over the course of a year). In the GLMM, the response variable was gamma diversity (Poisson error and log link) in each site, whereas the explanatory variables were alpha-, β_{add} -, and β_{tu} - diversity in each site. The significance of the estimated partial regression coefficients of the explanatory variables was determined using the Wald-test and R²

values (Nakagawa & Schielzeth, 2013).

Relationships between variation in the seasonality of species richness and the rural-urban gradient

The GLMM was used to examine the proportion of seasonal types (short, intermediate, and long) to total plant and butterfly species richness in each plot (Binomial error and logit link) and the extent of urban gradient. The response variable was the proportion of seasonal types (short, intermediate, and long) to total plant and butterfly species richness in each plot. The explanatory variable was the extent of urban area within a 1-km radius at each plot. To avoid pseudoreplication, the site identity (i.e., three plots in each site) was used as a random term. We identified whether sites occurred in coastal or valley areas (Fig. 1), and used this designation as a random term, because the study sites were spread over a broad geographic range; therefore, we nested variation in site location to analyze the GLMM. The significance of the estimated partial regression coefficients of the explanatory variables was determined using the Wald-test and R² values (Nakagawa & Schielzeth, 2013). In addition, we examined the relationships between seasonal type and species life history traits for all species (plant: annual and perennial; butterfly: voltinism) using Fisher's exact test.

All statistical analyses were performed using the software R for Statistical Computing (version 3.3.2; R Development Core Team). We used the following packages for statistical analyses: betaper to calculate beta diversity, lme4 to use the GLMM, and r2glmm to calculate the R^2 values of the GLM and GLMM.

Results

286	Alpha, two components of beta, and gamma diversity
287	The alpha and beta diversity of flowering plants and butterflies (average species richness per
288	each survey, β_{add} , and β_{tu}) decreased with increasing extent of urban area (Fig. 2; see Appendix A:
289	Table 3). The diversity of alpha and β_{add} for plant and butterfly species were strongly positively
290	correlated with total diversity over the course of a year (i.e., gamma diversity), and butterfly β_{tu}
291	was positively correlated with gamma diversity (Table 1).
292	
293	Relationships between the proportion of seasonal type of plants and butterflies and the
294	rural-urban gradient
295	Short-flowering plant species significantly decreased with increasing extent of urban area (Fig
296	3A, see Appendix A: Table 4), whereas long-flowering species significantly increased with
297	increasing extent of urban area (Fig. 3C, see Appendix A: Table 4). For butterfly species, short and
298	intermediate flight period species significantly and marginally significantly decreased with
299	increasing urban area, respectively (Fig. 3D, see Appendix A: Table 4), whereas long flight period
300	species significantly increased with increasing extent of urban area (Fig. 3F, see Appendix A:
301	Table 4). Annual species had significantly longer flowering period than perennial species (see
302	Appendix A: Fig. 4), and uni-voltine butterfly species had significantly shorter flight period than
303	multi-voltine species (see Appendix A: Fig. 4).
304	
305	
306	Discussion
307	
308	Biodiversity loss in the megacity

The present study supported the hypothesis that losses of average species richness per each survey and seasonal turnover of species composition are caused by increasing anthropogenic activities via urbanization. Many studies have shown that total and native species diversity decreases with increasing habitat fragmentation and human population density (e.g., Clark, Reed, & Chew, 2007; Fischer & Lindenmayer, 2007; Ramalho et al., 2014; Schmiedel, Bergmeier, & Culmsee, 2015). In contrast, some studies have reported that biodiversity in urban ecosystems is sometimes similar to, or even higher than, that documented in rural ecosystems (Magura, Lovei, & Tothmeresz, 2010; Turrini & Knop, 2016). Discrepancies among studies could be explained by three factors. First, higher biodiversity in urban areas, compared to rural ones, could be explained by resource complementarity. For example, resources for pollinators (nectar producing flowers or larval host plants) are often abundant in urbanized environments, such as amenity plants along roadside verges and private gardens (Salisbury et al., 2015). Second, other urban studies might underestimate the effect of urban extent on biodiversity. For example, although grassland quality strongly influences butterfly richness and abundance, the extent of urban development (5–30%) surrounding grasslands is not related to species richness (Collinge, Prudic, & Oliver, 2003). And the relationship between human population presence and species richness (vertebrate and plant) may be explained by scale dependence (Pautasso, 2007). Fine scale studies (sample unit is smaller than ca. 1 km) tend to show that biodiversity is negatively collated with human presence. In the present study, we focused on a wide range of urban area extent (1–91%) and found that the loss of species diversity in semi-natural grasslands surrounded by major urban areas varied according to urban extent. Future studies should investigate the gradient of urban extent/human populations and consider scale dependence surrounding study sites. Finally, some rural ecosystems are highly degraded. For example, cities in Switzerland have greater or similar insect diversity than the surrounding rural areas (Turini & Knop, 2016), which may be prevalent in agricultural landscapes

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

subject to intensive farming management (e. g., use of pesticides, disturbance from farm machinery, or clear-cuts after harvesting). The present study supported the explanation that arthropod diversity in more extensively managed agricultural areas, rather than in intensively managed landscapes, exceeded that of urban diversity (Turini & Knop, 2016). We focused on the Osaka-Kobe megacity, which was the world's seventh largest urban agglomeration in 2014 (United Nations, 2014). Our study suggests that semi-natural grasslands in the urban-dominated landscapes have low average richness in a given season, as well as low temporal species turnover, due to high anthropogenic effects on biodiversity at the local scale.

Although we detected a significant correlation between disturbance frequency and urbanization, previous studies indicated that the examined environmental factors might not be enough to explain decreases in species diversity. The urban area includes many unexpected variables (e.g., climatic fluctuation) that could negatively affect biodiversity. Although high diversity is exhibited in unique environments, such as nutrient-poor areas (Kleijn et al., 2009; Uematsu & Ushimaru, 2013) and heterogeneous landscapes (Tscharntke et al., 2005; Uchida & Ushimaru, 2015), all such species are negatively affected by anthropogenic activities. Further studies are required to determine the mechanisms of biodiversity loss using other potential variables of anthropogenic activities, especially when elucidating the relationship between biodiversity and urbanization.

Decreases in the temporal turnover of species composition in a megacity

The results of this study indicated that the decline in the seasonal heterogeneity of species composition (from April to September) in the megacity was caused by an increase in the seasonal generalists of both flowering plant and butterfly species. In contrast, the number of seasonal

specialists of flowering plant and butterfly species (i.e., species with short flowering/flight period) decreased along the rural-urban gradient (Fig. 3). We showed that most values of beta diversity were significantly correlated with total diversity over the course of a year (i.e., gamma diversity). Recently, conceptual and empirical studies emphasized that beta diversity was not necessarily correlated gamma diversity (Olden, 2006; Naaf & Wulf, 2010; Uchida & Ushimaru, 2015). These studies suggested that community similarity between sites often increased with the increasing species richness of each site (Naaf & Wulf, 2010). In other words, even if low beta diversity of between season was observed in the given region, high alpha diversity resulted in high gamma diversity. Our results indicated that both high alpha and high beta diversity of each survey season contributes total diversity over the course of a year. To our knowledge, this study is the first to demonstrate that the temporal heterogeneity of species composition is essential for the conservation of biodiversity across two-trophic levels in the urban environment.

The present study supported the hypothesis that anthropogenic activities causes beta diversity

The present study supported the hypothesis that anthropogenic activities causes beta diversity loss (e.g., Vellend et al., 2007; Ekroos, Heliölä, & Kuussaari, 2010; Uchida & Ushimaru, 2015). A previous study on spatial heterogeneity suggested that a higher species turnover in rural areas than in urban areas was driven by specialist species rather than generalist species (Knop, 2016). Urbanization leads to the local extinctions of infrequent and specialist butterfly species, including temporal specialists (Clark, Reed, & Chew, 2007; Soga & Koike, 2012; Ramírez-Restrepo & MacGregor-Fors, 2017). We suggest that seasonal generalist species with short generation times favor urbanized environmental conditions (e.g., plants, Albrecht & Haider, 2013; butterflies, Takami et al., 2004). According to the r/K species concept (Pianka, 1970), species with rapid regeneration times tolerate a high frequency or magnitude of disturbance. Declines in the temporal heterogeneity of flowering plant species along the rural-urban gradient may have been caused by increases in both the richness and abundance of annuals (e.g., *Rorippa indica*; *Stellaria uliginosa*

var. undulata), which have long and overlapping flowering periods through the course of a year, in parallel to decreases in perennials (e.g., Allium thunbergii; Taraxacum japonicum; Hemerocallis fulva var. kwanso; Iris ensata var. spontanea) that have clear phenological patterns. In addition, we showed that the decrease in the temporal heterogeneity of butterflies was caused by an increase in the number of multivoltine species (e.g., Pieris rapae, Pseudozizeeria maha) and a decrease in the abundance of seasonal specialist species with clear phenological patterns.

This study focused on relationships between urbanization and durations of flowering/flight period of each species (short, intermediate, and long). In the present study, we noted that 68% of short flowering period plants (64 species) and 100% of short flight period butterflies (five species) were categorized in seasonal species of spring to early summer (March to early July) according to field guides (Hayashi, 1989; Satake et al., 1999; Shirouzu, 2006; Japan Butterfly Conservation Society, 2012). These results indicate that researchers and policy makers should pay attention to the loss of short flowering/ flight period species in spring and early summer due to urbanization. Nakahama et al. (2016) showed that timing of mowing events during the mid to late flowering periods caused negative effects on reproductive success of grassland plant species. Although recent studies emphasized that seasonal variation of species diversity was one of significant issues in ecology (La Sorte, Tingley, & Hurlbert, 2014; Uchida & Ushimaru 2015; Graves et al. 2016), very few studies have shown that human activities exert clear negative impacts on seasonal variation of species diversity. This lack of information remains major issues for biodiversity conservation.

Conclusions regarding the loss of seasonal heterogeneity in semi-natural grasslands due to increasing anthropogenic impacts

Previous studies have indicated the importance of maintaining spatio-temporal heterogeneity in semi-natural biodiversity conservation (Benton, Vickery, & Wilson, 2003; Tscharntke et al., 2005; Uchida & Ushimaru, 2015). The loss of temporal variability in resource availability may limit the seasonal distribution of species from higher-trophic levels. For instance, species that provide pollination services are enhanced by the seasonality of plant activity (Tylianakis, Klein, & Tscharntke, 2005; Diaz et al., 2007; Kremen et al., 2007; Ushimaru, Kobayashi, & Dohzono, 2014). In addition, some relationships between biodiversity and cultural ecosystem services (e.g., people interested in wild flower viewing) stem from these temporal dynamics (Graves, Pearson, & Turner, 2017). Furthermore, temperate countries in Monsoon Asia, including Japan, exhibit four distinct seasons, in which the temporal turnover of biological activities has been fostered by certain aspects of the local cultures (Ministry of the Environment of Japan, 2016). In East Asia and globally, high biodiversity has been maintained in semi-natural ecosystems, supporting many endangered species, despite several types of land-use changes causing rapid decreases in diversity in recent decades (Foley et al., 2005; Kleijn et al., 2011; Koyanagi & Furukawa, 2013; Uematsu & Ushimaru, 2013; Uchida & Ushimaru, 2014). The use of extensive traditional management systems has been largely abandoned due to agricultural intensification and rapid urbanization in the mega-cities of Monsoon Asia, and globally. However, data on biodiversity in megacities remain limited worldwide; thus, more focused research is needed to study how urbanization affects biodiversity. In conclusion, future studies need to test whether temporal biological heterogeneity affects total biodiversity over the course of a year along the

427

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

428

429

Acknowledgements

rural-urban gradient at a global scale.

430	
431	We extend our sincere appreciation to Kylie Park and Masayoshi K. Hiraiwa for their comments
432	on draft of manuscript, and thank very much Makiko Hatada and Sogo Takahashi for their
433	assistance in field surveys.
434	
435	
436	Appendix A. Supplementary data
437	Supplementary data associated with this article can be found, in the online version, at
438	https://doi.org/XXXXX
439	
440	
441	References
442	
443	Aarssen, W. L. (2000). Why are most selfers annuals? A new hypothesis for the fitness benefit of
444	selfing. Oikos, 89, 606–612.
445	Albrecht, H., & Haider, S. (2013). Species diversity and life history traits in calcareous grasslands
446	vary along an urbanization gradient. Biodiversity and conservation, 22, 2243–2267.
447	Baselga, A. (2012). The relationship between species replacement, dissimilarity derived from
448	nestedness, and nestedness. Global Ecology and Biogeography, 21, 1223-1232.
449	Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: is habitat
450	heterogeneity the key? Trends in Ecology and Evolution, 18, 182-188.
451	Blair, R. B., & Johnson, E. M. (2008). Suburban habitats and their role for birds in the urban-rural
452	habitat network: points of local invasion and extinction? Landscape Ecology, 23, 1157–1169.
453	Clark, P. J., Reed, M., & Chew, F. S. (2007). Effects of urbanization on butterfly species richness,

- guild structure, and rarity. *Urban Ecosystems*, 10, 321–337.
- Collinge, S. K., Prudic K. L., & Oliver J. C. (2003). Effects of local habitat characteristics and
- landscape context on grassland butterfly diversity. Conservation Biology, 17, 178–187.
- Dalby, L., McGill, B. J., Fox, A. D., & Svenning, J. (2014). Seasonality drives global-scale
- diversity patterns in waterfowl (Anseriformes) via temporal niche exploitation. Global
- 459 *Ecology and Biogeography*, 23, 550–562.
- Diaz, S., Lavorel, S., De Bello, F., Que' tier, F., Grigulis, K., & Robson, T. M. (2007).
- Incorporating plant functional diversity effects in ecosystem service assessments. *Proceedings*
- of the National Academy of Science of the United States of America, 104, 20684–20689.
- Ekroos, J., Heliölä, J., & Kuussaari, M. (2010). Homogenization of lepidopteran communities in
- intensively cultivated agricultural landscapes. *Journal of Applied Ecology*, 47, 459–467.
- Fischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat frag-mentation: A
- synthesis. Global Ecology and Biogeography, 16, 265–280.
- Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005).
- Global consequences of land use. *Science*, 309, 570–574.
- Graves, R. A., Pearson, S. M., & Turner, M. G. (2017). Landscape dynamics of floral resources
- affect the supply of a biodiversity-dependent cultural ecosystem service. Landscape Ecology,
- 471 32, 415–428.
- Hayashi, Y. 1989. Wild flowers of Japan; Plains, seaside and hills. Yama-Kei publishers, Tokyo,
- Japan. (in Japanese)
- Huston, M. A., & Wolverton, S. (2011). Regulation of animal size by eNPP, Bergmanns rule, and
- related phenomena. *Ecological Monographs*, 81, 349–405.
- Ishitani, M., Kotze, D. J., & Niemela, J. (2003). Changes in carabid beetle assemblages across an
- urban-rural gradient in Japan. *Ecography*, 26, 481–489.

- Japan Butterfly Conservation Society. 2012. Field guide to the butterflies of Japan.
- 479 Seibundo-shinkosha, Tokyo, Japan. (in Japanese)
- 480 Kleijn, D., Kohler, F., Báldi, A., Batáry, P., Concepción, E.D., Clough, Y., et al., (2009). On the
- relationship between farmland biodiversity and land-use intensity in Europe. *Proceedings of*
- 482 *the royal society B*, 276, 903–909.
- Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G., & Tscharntke, T. (2011). Does conservation on
- farmland contribute to halting the biodiversity decline? *Trends in Ecology and Evolution*, 26,
- 485 474–481.
- 486 Kremen, C., Williams, N. M., Aizen, M. A., Gemmill-Herren, B., LeBuhn, G., Minckley, R., et al.
- 487 (2007). Pollination and other ecosystem services produced by mobile organisms: a conceptual
- framework for the effects of land-use change. *Ecology Letters*, 10, 299–314.
- Knop, E. (2016). Biotic homogenization of three insect groups due to urbanization. *Global*
- 490 *Change Biology*, 22, 228–236.
- Koyanagi, T., & Furukawa, T. (2013). Nation-wide agrarian depopulation threatens semi-natural
- grassland species in Japan: Sub-national application of the Red List Index. *Biological*
- 493 *Conservation*, 167, 1–8.
- Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple
- 495 communities. *Oikos*, 76, 5–13.
- La Sorte, F. A., Tingley, M. W., & Hurlbert, A. H. (2014). The role of urban and agricultural areas
- during avian migration: an assessment of within-year temporal turnover. Global Ecology and
- 498 *Biogeography*, 23, 1225–1234.
- Liu, J., Zhan, J., & Deng, X. (2005). Spatio-temporal Patterns and Driving Forces of Urban Land
- Expansion in China during the Economic Reform Era. *Ambio*, 34, 450–455.
- Magura, T., Lovei, G. L., & Tothmeresz, B. (2010). Does urbanization decrease diversity in

- ground beetle (Carabidae) assemblages? Global Ecology and Biogeography, 19, 16–26.
- McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. *Biological*
- 504 *Conservation*, 127, 247–260.
- McKinney, M. L. (2008). Effects of urbanization on species richness: A review of plants and
- animals. *Urban Ecosystems*, 11, 161–176.
- 507 Ministry of the Environment of Japan. (2016). Japan Biodiversity Outlook 2: Report of
- comprehensive assessment of biodiversity and ecosystem services in Japan. *Nature*
- Conservation Bureau, Ministry of the Environment, Government of Japan, Tokyo. (in
- Japanese)
- Naaf, T. & Wulf, M. (2010). Habitat specialists and generalists drive homogenization and
- differentiation of temperate forest plant communities at the regional scale. *Biological*
- 513 *Conservation*, 143, 848–855.
- Nagata, Y. K. & Ushimaru, A. (2016). Traditional burning and mowing practices support high
- grassland plant diversity by providing intermediate levels of vegetation height and soil pH.
- 516 Applied Vegetation Science, 19, 567–577.
- Nakagawa, S., & Schielzeth, H. (2013). A general and simplemethod for obtaining R² from
- generalized linear mixed-effects models. *Methods in Ecology and Evolution*, 4, 133–142.
- Nakahama, N., Uchida, K., Ushimaru, A., & Isagi, Y. (2016). Timing of mowing influences
- genetic diversity and reproductive success in endangered semi-natural grassland plants.
- *Agriculture, Ecosystems and Environment*, 221, 20–27.
- 522 Olden, J., & Rooney, T. P. (2006). On defining and quantifying biotic homogenization. *Global*
- *Ecology and Biogeography*, 15, 113–120.
- 524 Olesen, J. M., Bascompte, J., Elberling, H., & Jordano, P. (2008). Temporal dynamics in
- 525 pollination network. *Ecology*, 89, 1573–1582.

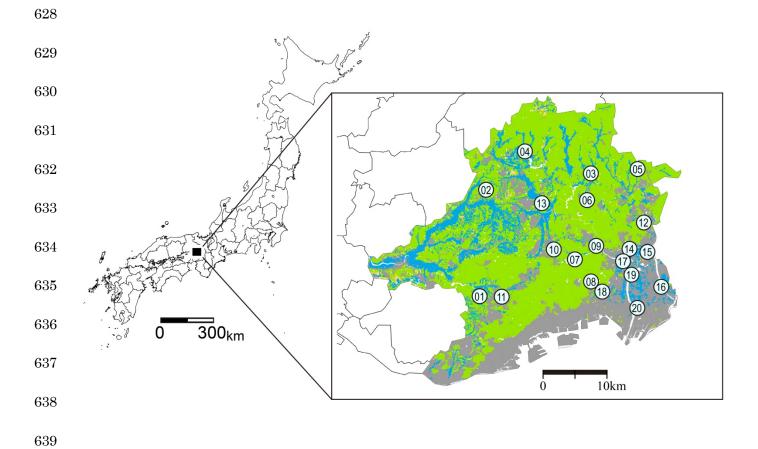
- Pautasso, M. (2007). Scale dependence of the correlation between human population presence and
- vertebrate and plant species richness. *Ecology Letters*, 10, 16–24.
- 528 Pianka, E. R. (1970). On r- and K-selection. American Naturalist, 104, 592–597.
- Pollard, E., & Yates, T. J. (1994). Monitoring butterflies for ecology and conservation: the British
- butterflymonitoring scheme. Chapman and Hall.
- Pykälä, J. 2005. Cattle grazing increases plant species richness of most species trait groups in
- mesicsemi-natural grasslands. *Plant Ecology*, 175, 217–226.
- Qian, H., & Ricklefs, R. E., (2006). The role of exotic species in homogenizing the North
- American flora. *Ecology Letters*, 9, 1293–1298.
- Ramalho, C. E., Laliberte, E., Poot, P., & Hobbs, R. J. (2014). Complex effects of fragmentation
- on remnant woodland plant communities of a rapidly urbanizing biodiversity hotspot. *Ecology*,
- 537 95, 2466–2478.
- Ramírez-Restrepo, L., & MacGregor-Fors, I. (2017). Butterflies in the city: a review of urban
- diurnal Lepidoptera. *Urban Ecosystems*, 20, 171–182.
- Saizen, I., Mizuno, K., & Kobayashi, S. (2006). Effects of land-use master plans in the
- metropolitan fringe of Japan. *Landscape and Urban Planning*, 78, 411–421.
- Sala, O. E., Stuart, C. F., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., et al. (2000). Global
- biodiversity scenarios for the year 2100. *Science*, 287, 1770–1774.
- 544 Salisbury, A., Armitage, J., Bostock, H., Perry, J., Tatchell, M., & Thompson, K. (2015) Enhancing
- gardens as habitats for flower-visiting aerial insects (pollinators): should we plant native or
- exotic species? *Journal of Applied Ecology*, 52, 1156–1164.
- 547 Satake, Y., Ooi, J., Kitamura, S., Watari, S., Tominari, T. 1999. Wild flowers of Japan Herbaceous
- Plants I, II, and III. Heibonsha, Tokyo, Japan. (in Japanese)
- 549 Schmiedel, I., Bergmeier, E., & Culmsee, H. (2015). Plant species richness patterns along a

- gradient of landscape modification intensity in Lower Saxony, Germany. Landscape and
- 551 *Urban Planning*, 141, 41–51.
- 552 Shirouzu, T. 2006. The butterflies of Japan in color. In Japanese. Gakken Holdings, Tokyo, Japan.
- 553 (in Japanese)
- Smart, S. M., Thompson, K., Marrs, R. H., Le Duc, M. G., Maskell, L. C., et al. (2006). Biotic
- homogenization and changes in species diversity across human-modified ecosystems.
- *Proceedings of the royal society B*, 273, 2659–2665.
- Soga, M., & Koike, S. (2012). Life-History Traits Affect Vulnerability of Butterflies to Habitat
- Fragmentation in Urban Remnant Forests. *Ecoscience*, 19, 11–20.
- Takami, Y., Koshio, C., Ishii, M., Fujii, H., Hidaka, T., & Shimizu, I. (2004). Genetic diversity
- and structure of urban populations of *Pieris* butterflies assessed using amplified fragment
- length polymorphism. *Molecular Ecology*, 13, 245–258.
- Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., et al. (2001).
- Forecasting agriculturally driven global environmental change. *Science*, 292, 281–284.
- Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape
- perspectives on agricultural intensification and biodiversity-ecosystem service management.
- *Ecology Letters*, 8, 857–874.
- Tsuji, M., Ushimaru, A., Osawa, T., & Mitsuhashi, H. (2011). Paddy associated frog declines via
- urbanization: a test of the dispersal dependent-decline hypothesis. Landscape and Urban
- 569 Planning, 103, 318–325.
- Turrini, T., & Knop, E. (2015). A landscape ecological approach identifies important drivers of
- urban biodiversity. *Global Change Biology*, 21, 1652–1667.
- 572 Tylianakis, J. M., Klein, A. M., & Tscharntke, T. (2005). Spatiotemporal variation in the diversity
- of hymenoptera across a tropical habitat gradient. *Ecology*, 86, 3296–3302.

- Uchida, K., & Ushimaru, A. (2014). Biodiversity declines due to land abandonment and
- intensification of agricultural lands: patterns and mechanisms. *Ecological Monographs*, 84,
- 576 637–658.
- 577 Uchida, K., & Ushimaru, A. (2015). Land abandonment and intensification diminish spatial and
- temporal β-diversity of grassland plants and herbivorous insect within paddy terraces.
- *Journal of Applied Ecology*, 52, 1033 –1043.
- 580 Uematsu, Y., Koga, T., Mitsuhashi, H., & Ushimaru, A. (2010). Abandonment and intensified use
- of agricultural land decrease habitats of rare herbs in semi-natural grasslands. Agriculture,
- *Ecosystems and Environment*, 135, 304–309.
- 583 Uematsu, Y., & Ushimaru, A. (2013). Topography- and management-mediated resource gradients
- maintain rare and common plant diversity around paddy terraces. *Ecological Applications*, 23,
- 585 1357–1366.
- United Nations. (2014). World Urbanization Prospects The 2014 Revision Published by the United
- 587 Nations ISBN 978-92-1-151517-6.
- Ushimaru, A., Kobayashi, A., & Dohzono, I. (2014). Does Urbanization Promote Floral
- Diversification? Implications from Changes in Herkogamy with Pollinator Availability in an
- 590 Urban-Rural Area. *American Naturalist*, 184, 258–267.
- Veech, J. A., Summerville, K. S., Crist, T. O., & Gering, J. C. (2002). The additive partitioning of
- species diversity: recent revival of an old idea. *Oikos*, 99, 3–9.
- Veech, J.A., & Crist, T.O. (2010). Toward a unified view of diversity partitioning. *Ecology*, 91,
- 594 1988–1992.
- Vellend, M., Verheyen, K., Flinn, M. K., Jacquemyn, H., Kolb, A., VanCalster, H., Peterken, et al.
- 596 (2007). Homogenization of forest plant communities and weakening of species—environment
- relationships via agricultural land use. *Journal of Ecology*, 95, 565–573.

Table 1. Estimated partial coefficients of the explanatory parameter (gamma diversity) in generalized linear models for response parameters (average species richness per each survey, beta diversity of additive partitioning of species richness, and beta diversity of turnover component of Jaccard dissimilarity). The significance of the explanatory variables was estimated using the Wald-test and calculated R² values.

	Gamma diversity						diversity	
	Plants Butter					utterflies		
Response variables	Estimated coefficient	t-value	P	R^2	Estimated coefficient	t-value	Р	R^2
Average species richness per each survey	0.30	14.02	< 0.01	0.92	0.41	14.62	< 0.01	0.92
Beta diversity (Additive partitioning of species richness)	0.70	32.07	< 0.01	0.98	0.61	20.01	< 0.01	0.96
Beta diversity (Turnover component of Jaccard dissimilarity)	0.01	1.13	0.27	0.07	0.01	2.39	0.03	0.24


Figure legends

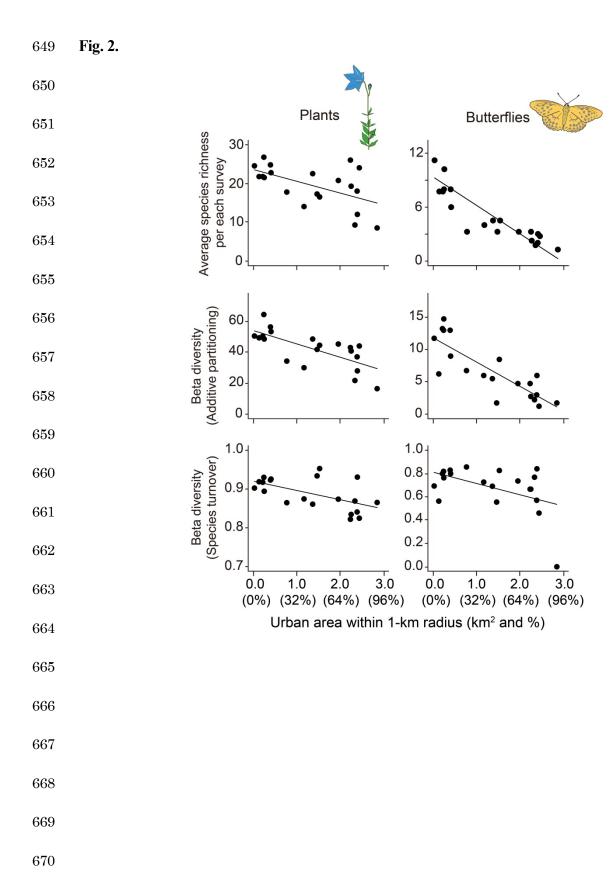
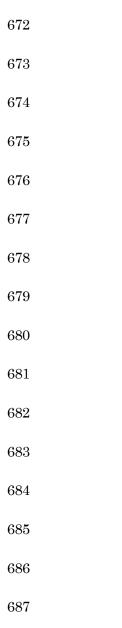
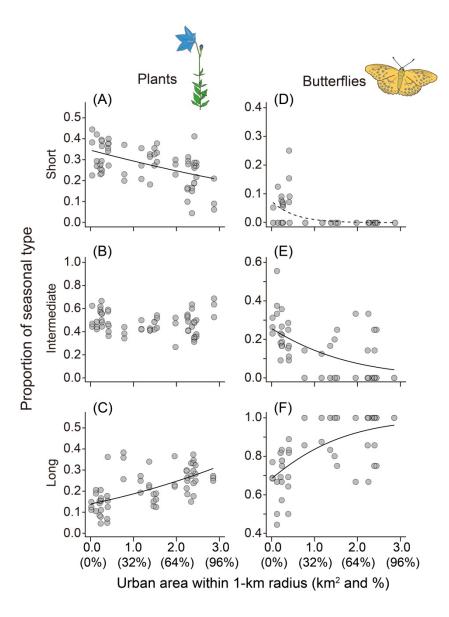

Fig. 1. The study was conducted in the south-eastern part of Hyogo Prefecture, Japan (~25 × 30 km², 34°48′–57′ N, 135°03′–24′ E). In the study area, semi-natural grasslands were maintained by periodic mowing on the levees of paddy fields and ponds and at the edges between paddy fields and secondary forests (paddy fields: blue; secondary forests and grassland: light green; residential lands and artificial lands: grey). The number in the circle represents the site's rank along the rural-urban gradient, with site 01 having the lowest extent of urban area in the surrounding habitat (1-km radius). Sites 01 to 13 were located in a valley area, whereas sites 14 to 20 were located in a coastal area. This information was used for analyses (see Material and methods section).

Fig. 2. Relationships between diversity components (average species richness per each survey at each site, beta diversity of additive partitioning of species richness, and beta diversity of turnover component of Jaccard dissimilarity) of flowering plant and butterfly species in each site along the rural-urban gradient. Solid lines represent significant coefficients at P < 0.05 estimated by the Wald-test (see Appendix A: Table 3).


Fig. 3. Relationships between the proportion of seasonal type (short, intermediate, and long flowering/flight period) to total plant and butterfly species richness in each plot along the rural-urban gradient. Solid lines represent significant coefficients at P < 0.05, the dashed line represents marginally significant coefficients at P < 0.1 estimated by the Wald-test (see Appendix A: Table 4).



1 Appendix A.

2

Table 1. Comparisons of area by land use (forests, paddy fields, urban areads, and others) between ca. 1910 and 2012.

4

5

		ca. 1910 2012		% of	
	area (km²)	% of study area	area (km²)	% of study area	maintaining areas
Forests	744.76	61.86	645.37	52.34	84.61
Paddy Fields	245.84	20.42	173.57	14.08	68.95
Urban (residential and artificial lands)	86.32	7.17	325.04	26.36	367.64 (increase)
others	126.98	10.55	88.97	7.22	68.44

7 **Table 2.** Monthly values of temperature, humidity, and rainfall for April, June, July, and September

8 2014 in the study area.

ı	r	7	١
١	L,	è	1

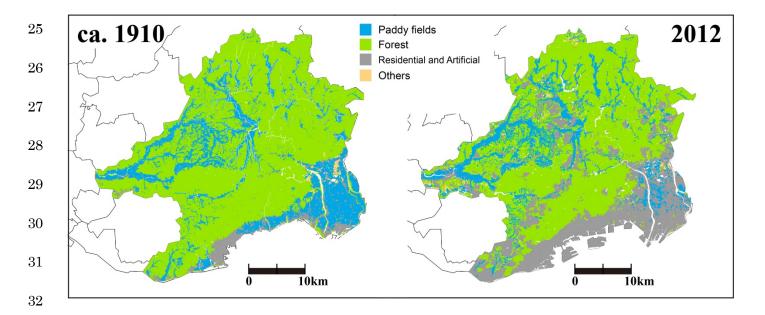

Month	climate variables	Temperature	Humidity	Precipitation
April	Minimum	10.8		
	Mean	14.6	56.0	
	Maximum	18.8		
	Sum total			72.5
June	Minimum	21.2		
	Mean	23.8	67.5	
	Maximum	27.4		
	Sum total			45.5
July	Minimum	24.9		
	Mean	27.3	71.7	
	Maximum	30.6		
	Sum total			69.5
September	Minimum	21.3		
	Mean	24.4	60.7	
	Maximum	28.0		
	Sum total			127.0

Table 3. Estimated partial coefficients of the explanatory parameter (urban gradient) in generalized linear mixed models for response parameters (average species richness per each survey, beta diversity of additive partitioning of species richness, and beta diversity of turnover component of Jaccard dissimilarity). The significance of explanatory variables was estimated using the Wald-test and calculated R^2 values.

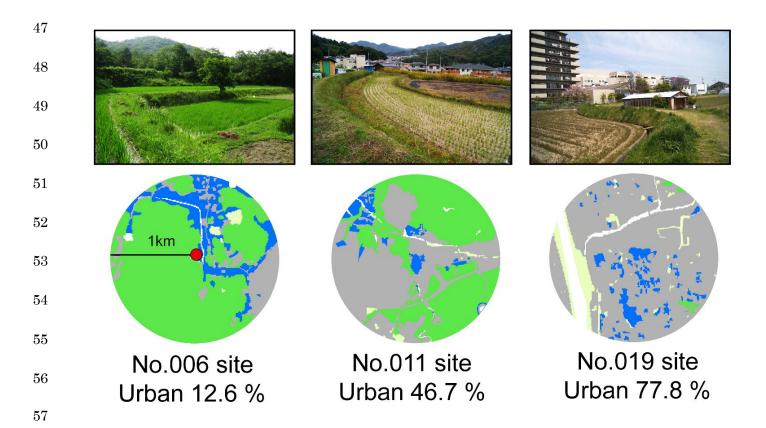

	Urban gradient					gradient	t	
	Plants				Butterflies			
Response variables	Estimated coefficient	t-value	P	R ²	Estimated coefficient	t-value	P	\mathbb{R}^2
Average species richness per each survey	-3.03	-2.81	< 0.01	0.29	-3.20	-6.68	< 0.01	0.82
Beta diversity (Additive partitioning of species richness)	-8.60	-4.27	< 0.01	0.49	-3.75	-6.43	< 0.01	0.69
Beta diversity (Turnover component of Jaccard dissimilarity)	-0.02	-3.13	< 0.01	0.34	-0.10	-2.33	0.03	0.22

Table 4. Estimated partial coefficients of the explanatory parameter (urban gradient) in generalized linear mixed models for response parameters of the proportion of seasonality type (short, intermediate, and long flowering/flight period) of total plant or butterfly species richness in each plot along the rural-urban gradient. The significance of the explanatory variables were estimated using the Wald-test and calculated R^2 values.

							Urban	gradient
		Plants					В	utterflies
Response variables	Estimated coefficient	t-value	P	R^2	Estimated coefficient	t-value	P	R^2
Short	-0.24	-4.18	< 0.01	0.50	-2.03	-1.70	0.09	0.99
Intermediate	-0.06	-1.07	0.28	0.02	-0.73	-3.47	< 0.01	0.44
Long	0.36	4.82	< 0.01	0.48	0.86	4.04	< 0.01	0.21

Fig. 1. Changes in the urban, paddy and forest areas from ca. 1910 to 2012 in the study area (south-eastern Hyogo Prefecture, Japan, $\sim 30 \times 40 \text{ km}^2$). The ca. 1910 map was constructed based on land-use maps of 1896–1914. Blue: paddy fields, Light green: secondary forests, Grey: residential lands and artificial lands, white and yellow: others. Urbanization drive rapidly declines paddy fields rather than forests (see Appendix A: Table 1).

Fig. 2. We surveyed study sites along a rural-to-urban gradient. For example, the extent of urban area inside a 1km radius of the center of site No.006 was 12.6 % (0.39km²). We surveyed semi-natural grasslands surrounding agricultural lands. Blue: paddy fields, light green: secondary forests, grey: residential lands and artificial lands, and white and yellow: other.

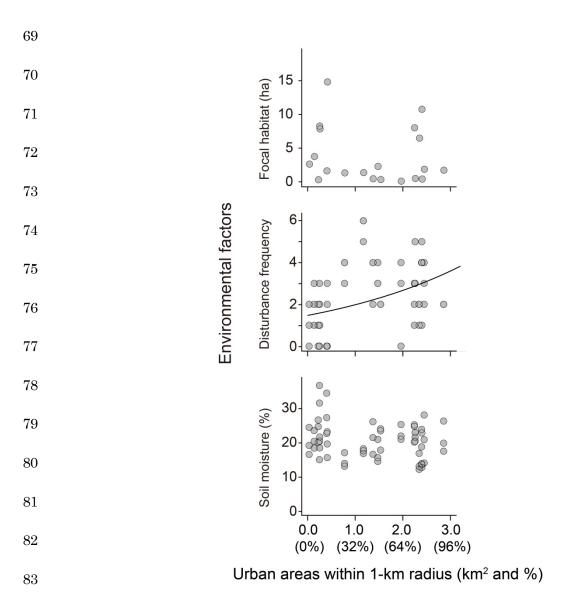
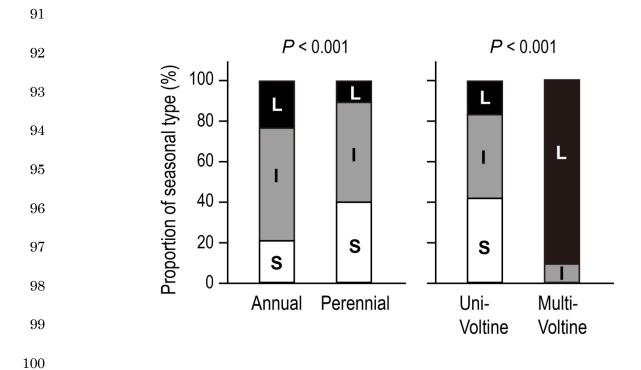



Fig. 3. Relationships between three environmental factors, such as focal habitat (area of continuous unfragmented habitat including survey site within a 1-km radius), disturbance frequency, and soil moisture, and the extent of urban area. Solid lines represent significant coefficients at p < 0.05 (see Materials and Methods section in detail).

Fig. 4. Comparisons between seasonal type of each species and life-history trait (Plant: annual and perennial, butterfly: uni- and multi-voltine). The significance of the explanatory variables was estimated by fisher's exact test. S: short; I: intermediate; L: long, classifications are explained by Material and Methods section.

1 Appendix B.

2

- Table 1. This table shows the category of flowering period and months of appearance at each species in the present study. We investigated
- 4 flowering period using field guides as follows.

5

- 6 Satake, Y., Ooi, J., Kitamura, S., Watari, S., Tominari, T. 1999. Wild flowers of Japan Herbaceous Plants I, II, and III. Heibonsha, Tokyo,
- 7 Japan. (in Japanese)
- 8 Hayashi, Y. 1989. Wild flowers of Japan; Plains, seaside and hills. Yama-Kei publishers, Tokyo, Japan. (in Japanese)

Family name	Species name	Category of seasonality	Months of appearance in the study		Life-history form
Acanthaceae	Justicia procumbens L. var. procumbens	M		9	annual
Alliaceae	Allium macrostemon Bunge	S	5	9	perennial
Alliaceae	Allium thunbergii G.Don	S		9	perennial
Amaranthaceae	Achyranthes bidentata Blume var. japonica Miq.	S		9	perennial
Amaryllidaceae	Lycoris radiata (L'Hér.) Herb.	S		9	perennial
Apiaceae	Cyclospermum leptophyllum (Pers.) Sprague ex Britton et P.Wilson	NA	5		annual
Apiaceae	Sium ninsi L.	S		9	perennial
Apiaceae	Torilis japonica (Houtt.) DC.	M	6	7	annual

Apocynaceae	Vincetoxicum glabrum (Nakai) Kitag.	M				9	perennial
Apocynaceae	Vincetoxicum pycnostelma Kitag.	S		6	7	9	perennial
Aquifoliaceae	<i>Ilex serrata</i> Thunb.	M		6			woody
Araceae	Pinellia ternata (Thunb.) Breitenb.	M	5				perennial
Araliaceae	Hydrocotyle ramiflora Maxim.	M		6	7		perennial
Asteraceae	Achillea millefolium L.	M		6			perennial
Asteraceae	<i>Artemisia indica</i> Willd. var. <i>maximowiczii</i> (Nakai) H.Hara	S				9	perennial
Asteraceae	Artemisia japonica Thunb.	M			7		perennial
Asteraceae	Aster ageratoides Turcz. subsp. amplexifolius Kitam., excl. syn.	M				9	perennial
Asteraceae	Aster rugulosus Maxim.	M				9	perennial
Asteraceae	Aster scaber Thunb.	M				9	perennial
Asteraceae	Aster yomena (Kitam.) Honda	M				9	perennial
Asteraceae	Atractylodes japonica Koidz. ex Kitam.	S				9	perennial
Asteraceae	Bidens frondosa L.	S				9	annual
Asteraceae	Bidens pilosa L. var. pilosa	M				9	annual
Asteraceae	Cirsium japonicum Fisch. ex DC.	M	5	6	7	9	perennial
Asteraceae	Cirsium sieboldii Miq.	S				9	perennial
Asteraceae	Conyza canadensis (L.) Cronquist	M				9	annual
Asteraceae	Coreopsis lanceolata L.	M		6	7		perennial
Asteraceae	Crassocephalum crepidioides (Benth.) S.Moore	M				9	annual
Asteraceae	Eclipta alba (L.) Hassk.	M				9	annual
Asteraceae	Eclipta thermalis Bunge	M				9	annual
Asteraceae	Erigeron annuus (L.) Pers.	L	5	6	7	9	annual
Asteraceae	Erigeron philadelphicus L.	L	5	6			annual
Asteraceae	Eupatorium lindleyanum DC.	M			7	9	perennial
Asteraceae	Eupatorium makinoi T.Kawahara et Yahara	M				9	perennial
Asteraceae	Galinsoga quadriradiata Ruiz et Pav.	L			7	9	annual
Asteraceae	Gamochaeta coarctata (Willd.) Kerguelen	L	5	6	7		perennial

Asteraceae	Gnaphalium affine D.Don	M	5	6	7		annual
Asteraceae	Gnaphalium japonicum Thunb.	L	5	6	7		perennial
Asteraceae	Hypochaeris radicata L.	L	5	6	7	9	perennial
Asteraceae	Inula salicina L. var. asiatica Kitam.	M			7		perennial
Asteraceae	Ixeridium dentatum (Thunb.) Tzvelev subsp. dentatum	M	5	6	7		perennial
Asteraceae	Ixeris japonica (Burm.f.) Nakai	M	5	6			perennial
Asteraceae	Lactuca indica L. var. laciniata (Houtt.) H.Hara	M				9	annual
Asteraceae	Lapsanastrum apogonoides (Maxim.) J.H.Pak et K.Bremer	M	5	6			annual
Asteraceae	Lapsanastrum humile (Thunb.) J.H.Pak et K.Bremer	M	5	6	7		annual
Asteraceae	Leibnitzia anandria (L.) Turcz.	L	5				perennial
Asteraceae	Picris hieracioides L. subsp. japonica (Thunb.) Krylov	L		6	7		annual
Asteraceae	Senecio vulgaris L.	L		6			annual
Asteraceae	Solidago virgaurea L. subsp. asiatica (Nakai ex H.Hara) Kitam. ex H.Hara	M				9	perennial
Asteraceae	Sonchus asper (L.) Hill	L	5				annual
Asteraceae	Sonchus oleraceus L.	L	5	6			annual
Asteraceae	Synurus palmatopinnatifidus (Makino) Kitam. var. palmatopinnatifidus	S				9	perennial
Asteraceae	Taraxacum japonicum Koidz.	S	5	6	7		perennial
Asteraceae	Taraxacum officinale Weber ex F.H.Wigg.	L	5	6	7	9	perennial
Asteraceae	<i>Tephroseris integrifolia</i> (L.) Holub subsp. <i>kirilowii</i> (Turcz. ex DC.) B.Nord.	S	5				perennial
Asteraceae	Youngia japonica (L.) DC.	L	5	6	7		annual
Boraginaceae	Bothriospermum zeylanicum (J.Jacq.) Druce	S			7	9	annual
Boraginaceae	<i>Trigonotis peduncularis</i> (Trevir.) Benth. ex Hemsl.	M	5	6			annual
Brassicaceae	Capsella bursa-pastoris (L.) Medik.	M	5			9	annual

Brassicaceae	Cardamine flexuosa With.	M	5			9	annual
Brassicaceae	Lepidium virginicum L.	S	5	6			annual
Brassicaceae	Rorippa indica (L.) Hiern	L	5	6	7	9	annual
Brassicaceae	Rorippa palustris (L.) Besser	M	5	6	7		annual
Brassicaceae	Thlaspi arvense L.	M			7		annual
Campanulaceae	Adenophora triphylla (Thunb.) A.DC. subsp. aperticampanulata Kitam.	M				9	perennial
Campanulaceae	Campanula punctata Lam. var. punctata	S			7		perennial
Campanulaceae	Platycodon grandiflorus (Jacq.) A.DC.	S				9	perennial
Campanulaceae	Triodanis perfoliata (L.) Nieuwl.	S		6			annual
Caryophyllaceae	Cerastium fontanum Baumg. subsp. vulgare (Hartm.) Greuter et Burdet var. angustifolium (Franch.) H.Hara	S	5	6	7		perennial
Caryophyllaceae	Cerastium glomeratum Thuill.	S	5				annual
Caryophyllaceae	Dianthus superbus L. var. longicalycinus (Maxim.) F.N.Williams	M			7	9	perennial
Caryophyllaceae	Sagina japonica (Sw.) Ohwi	L	5	6			annual
Caryophyllaceae	Stellaria aquatica (L.) Scop.	L		6			perennial
Caryophyllaceae	Stellaria neglecta Weihe	L	5	6		9	annual
Caryophyllaceae	Stellaria uliginosa Murray var. undulata (Thunb.) Fenzl	L	5				annual
Commelinaceae	Commelina communis L.	M		6	7	9	annual
Commelinaceae	Tradescantia reflexa Raf.	NA		6			annual
Convolvulaceae	Calystegia pubescens Lindl. f. major (Makino) Yonek.	S		6	7		perennial
Convolvulaceae	Ipomoea lacunosa L.	NA				9	annual
Crassulaceae	Sedum bulbiferum Makino	S		6			annual
Cyperaceae	Carex arenicola F.Schmidt	S	5	6			perennial
Cyperaceae	Carex biwensis Franch.	M	5				perennial
Cyperaceae	Carex capillacea Boott	M	5				perennial
Cyperaceae	Carex dickinsii Franch. et Sav.	S			7		perennial

Cyperaceae	Carex dispalata Boott	M	5				perennial
Cyperaceae	Carex gibba Wahlenb.	S		6			perennial
Cyperaceae	Carex lanceolata Boott	M	5				perennial
Cyperaceae	Carex lenta D.Don var. lenta	M				9	perennial
Cyperaceae	Carex leucochlora Bunge	M	5	6		9	perennial
Cyperaceae	Carex maximowiczii Miq.	S		6	7		perennial
Cyperaceae	Carex phacota Spreng.	S	5				perennial
Cyperaceae	Carex rugata Ohwi	S	5				perennial
Cyperaceae	Carex spp. 1	NA				9	NA
Cyperaceae	Carex spp. 2	NA	5				NA
Cyperaceae	Carex thunbergii Steud.	S	5				perennial
Cyperaceae	Cyperus brevifolius (Rottb.) Hassk. var. leiolepis (Franch. et Sav.) T.Koyama	M			7	9	perennial
Cyperaceae	Cyperus difformis L.	M				9	annual
Cyperaceae	Cyperus iria L.	M			7	9	annual
Cyperaceae	Cyperus microiria Steud.	M			7	9	annual
Cyperaceae	Cyperus nipponicus Franch. et Sav. var. spiralis Ohwi	M				9	annual
Cyperaceae	Cyperus pygmaeus Rottb.	M				9	annual
Cyperaceae	Eleocharis congesta D.Don var. japonica (Miq.) T.Koyama	L			7		annual
Cyperaceae	Eleocharis wichurae Boeck.	M			7	9	perennial
Cyperaceae	Fimbristylis autumnalis (L.) Roem. et Schult.	M				9	annual
Cyperaceae	Fimbristylis complanata (Retz.) Link f. exaltata T.Koyama	M		6	7	9	perennial
Cyperaceae	Fimbristylis littoralis Gaudich.	M				9	perennial
Cyperaceae	Rhynchospora chinensis auct. non Nees et Meyen	M				9	perennial
Cyperaceae	Scirpus wichurae Boeck. f. concolor (Maxim.) Ohwi	M			7	9	perennial
Cyperaceae	Scleria parvula Steud.	M				9	perennial

Dioscoreaceae	Dioscorea japonica Thunb.	S			7		perennial
Droseraceae	<i>Drosera peltata</i> Thunb. var. <i>nipponica</i> (Masam.) Ohwi	S		6			perennial
Droseraceae	Drosera rotundifolia L.	M		6	7		perennial
Ericaceae	Rhododendron kaempferi Planch. var. kaempferi	M	5				woody
Ericaceae	Rhododendron macrosepalum Maxim.	S	5				woody
Euphorbiaceae	Acalypha australis L.	M				9	annual
Euphorbiaceae	Chamaesyce maculata (L.) Small	L		6		9	annual
Euphorbiaceae	Chamaesyce nutans (Lag.) Small	L				9	annual
	Amphicarpaea bracteata (L.) Fernald subsp.						
Fabaceae	edgeworthii (Benth.) H.Ohashi var. japonica (Oliv.) H.Ohashi	M				9	annual
Fabaceae	Astragalus sinicus L.	M	5				annual
Fabaceae	Desmodium paniculatum (L.) DC.	S				9	annual
Fabaceae	Desmodium podocarpum DC. subsp. oxyphyllum (DC.) H.Ohashi	M				9	perennial
Fabaceae	Dunbaria villosa (Thunb.) Makino	S				9	perennial
Fabaceae	Glycine max (L.) Merr. subsp. soja (Siebold et Zucc.) H.Ohashi	S				9	annual
Fabaceae	Indigofera pseudotinctoria Matsum.	M			7	9	woody
Fabaceae	Kummerowia striata (Thunb.) Schindl.	S				9	annual
Fabaceae	Lespedeza bicolor Turcz.	M			7	9	woody
Fabaceae	Lespedeza cuneata (Dum.Cours.) G.Don	M				9	perennial
Fabaceae	Lespedeza pilosa (Thunb.) Siebold et Zucc.	M				9	perennial
Fabaceae	Lotus corniculatus L. var. corniculatus	L		6			perennial
Fabaceae	Lotus corniculatus L. var. japonicus Regel	L		6	7	9	perennial
Fabaceae	Sophora flavescens Aiton	S		6			perennial
Fabaceae	Medicago lupulina L.	M	5	6			annual
Fabaceae	Trifolium dubium Sibth.	M	5				annual
Fabaceae	Trifolium pratense L.	M		6			perennial

Fabaceae	Trifolium repens L.	L	5	6	7	9	perennial
Fabaceae	Vicia hirsuta (L.) Gray	M	5				annual
Fabaceae	Vicia sativa L. subsp. nigra (L.) Ehrh.	M	5	6			annual
Fabaceae	Vicia tetrasperma (L.) Schreb.	S	5				annual
Fumariaceae	Corydalis incisa (Thunb.) Pers.	M	5				annual
Gentianaceae	Gentiana scabra Bunge var. buergeri (Miq.) Maxim. ex Franch. et Sav.	M				9	perennial
Gentianaceae	Swertia japonica (Schult.) Makino	M				9	annual
Geraniaceae	Geranium carolinianum L.	M	5	6	7		annual
Geraniaceae	Geranium thunbergii Siebold ex Lindl. et Paxton	M				9	perennial
Haloragaceae	Haloragis micrantha (Thunb.) R.Br.	M				9	perennial
Hemerocallidacea e	Hemerocallis citrina Baroni var. vespertina (H.Hara) M.Hotta	M			7		perennial
Hemerocallidacea e	Hemerocallis fulva L. var. kwanso Regel	S			7		perennial
Hyacinthaceae	Barnardia japonica (Thunb.) Schult. et Schult.f.	S				9	perennial
Hydrangeaceae	Deutzia crenata Siebold et Zucc.	M		6			woody
Hypericaceae	Hypericum erectum Thunb.	M			7	9	perennial
Hypericaceae	Hypericum laxum (Blume) Koidz.	M			7		annual
Iridaceae	Crocus sativus L.	NA				9	perennial
Iridaceae	<i>Iris ensata</i> Thunb. var. <i>spontanea</i> (Makino) Nakai ex Makino et Nemoto	S		6	7		perennial
Iridaceae	Sisyrinchium rosulatum E.P.Bicknell	S	5	6	7		perennial
Juncaceae	Juncus decipiens (Buchenau) Nakai	M	5	6	7		perennial
Juncaceae	Luzula capitata (Miq.) Miq. ex Kom.	S	5	6			perennial
Juncaceae	Luzula multiflora (Ehrh.) Lejeune	M	5				perennial
Lamiaceae	Ajuga decumbens Thunb.	M	5	6	7		perennial
Lamiaceae	Clinopodium chinense (Benth.) Kuntze subsp. grandiflorum (Maxim.) H.Hara	S			7	9	perennial
Lamiaceae	Clinopodium gracile (Benth.) Kuntze	M	5	6	7	9	perennial

Lamiaceae	Glechoma hederacea L. subsp. grandis (A.Gray) H.Hara	S	5				perennial
Lamiaceae	Isodon inflexus (Thunb.) Kudô	S				9	perennial
Lamiaceae	Lamium amplexicaule L.	M	5				annual
Lamiaceae	Lamium purpureum L.	S	5				annual
Lamiaceae	Lycopus maackianus (Maxim. ex Herder) Makino	M				9	perennial
Lamiaceae	Mentha canadensis L. var. piperascens (Malinv. ex Holmes) H.Hara	M			7		perennial
Lamiaceae	<i>Prunella vulgaris</i> L. subsp. <i>asiatica</i> (Nakai) H.Hara	M		6	7		perennial
Lamiaceae	Salvia japonica Thunb.	L			7	9	perennial
Lamiaceae	Scutellaria indica L.	S		6	7		perennial
Lauraceae	Lindera umbellata Thunb.	S	5				woody
Liliaceae	Lilium japonicum Houtt.	S		6			perennial
Liliaceae	<i>Tricyrtis macropoda</i> Miq. subsp. <i>affinis</i> (Makino) Kitam.	M				9	perennial
Linderniaceae	Lindernia procumbens (Krock.) Borbás	M				9	annual
Linnaeaceae	Abelia spp.	NA					woody
Lobeliaceae	Lobelia chinensis Lour.	L		6	7	9	perennial
Lythraceae	Ammannia coccinea Rottb.	L				9	annual
Lythraceae	Lythrum anceps (Koehne) Makino	S				9	perennial
Melanthiaceae	Chionographis japonica Maxim.	S		6			perennial
Melanthiaceae	Helonias orientalis (Thunb.) N.Tanaka	S	5				perennial
Myrsinaceae	Lysimachia clethroides Duby	S		6	7		perennial
Myrsinaceae	Lysimachia fortunei Maxim.	S			7	9	perennial
Myrsinaceae	Lysimachia japonica Thunb.	S	5	6	7	9	perennial
Nartheciaceae	Aletris luteoviridis (Maxim.) Franch.	M			7		perennial
Nartheciaceae	Aletris spicata (Thunb.) Franch.	M		6	7		perennial
Onagraceae	Ludwigia epilobioides Maxim.	M				9	annual
Onagraceae	Oenothera biennis L.	L			7	9	annual

Onagraceae	Oenothera rosea L'Hér. ex Aiton	L	5	6	7	9	perennial
Orchidaceae	Bletilla striata (Thunb.) Rchb.f.	S		6			perennial
Orchidaceae	Epipactis thunbergii A.Gray	M		6	7		perennial
Orchidaceae	Platanthera minor (Miq.) Rchb.f.	S			7		perennial
Orchidaceae	Pogonia minor (Makino) Makino	M		6			perennial
Orchidaceae	Spiranthes sinensis (Pers.) Ames subsp. australis (R.Br.) Kitam., excl. basion.	L			7	9	perennial
Orobanchaceae	<i>Melampyrum roseum</i> Maxim. var. <i>japonicum</i> Franch. et Sav.	M		6	7		annual
Orobanchaceae	Monochasma sheareri (S.Moore) Maxim.	S	5				annual
Oxalidaceae	Oxalis corniculata L.	L	5	6	7	9	perennial
Oxalidaceae	Oxalis debilis Kunth subsp. corymbosa (DC.) Lourteig	S	5	6	7		perennial
Oxalidaceae	Oxalis dillenii Jacq.	L	5	6	7	9	perennial
Phrymaceae	Mazus miquelii Makino	S	5				perennial
Phrymaceae	Mazus pumilus (Burm.f.) Steenis	L	5	6	7	9	annual
Plantaginaceae	Nuttallanthus canadensis (L.) D.A.Sutton	S	5	6			annual
Plantaginaceae	Plantago asiatica L.	L		6	7	9	perennial
Plantaginaceae	Plantago virginica L.	M	5	6	7		annual
Plantaginaceae	Veronica arvensis L.	M	5	6	7		annual
Plantaginaceae	Veronica persica Poir.	S	5	6			annual
Poaceae	Agrostis canina L.	NA		6			perennial
Poaceae	Agrostis clavata Trin. subsp. matsumurae (Hack. ex Honda) Tateoka	S	5	6			perennial
Poaceae	Agrostis valvata Steud.	S		6			perennial
Poaceae	Alopecurus aequalis Sobol. var. amurensis (Kom.) Ohwi	M	5	6	7		annual
Poaceae	Andropogon virginicus L.	M				9	perennial
Poaceae	Anthoxanthum odoratum L.	M		6			perennial
Poaceae	Arundinella hirta (Thunb.) Tanaka	M				9	perennial

Poaceae	Beckmannia syzigachne (Steud.) Fernald	S	5		7		annual
Poaceae	Briza minor L.	M		6			annual
Poaceae	Bromus catharticus Vahl	S	5	6	7		perennial
Poaceae	Calamagrostis brachytricha Steud.	M				9	perennial
Poaceae	Cymbopogon tortilis (J.Presl) Hitchc. var. goeringii (Steud.) HandMazz.	M				9	perennial
Poaceae	Dactylis glomerata L.	S		6			perennial
Poaceae	Digitaria ciliaris (Retz.) Koeler	L			7	9	annual
Poaceae	Eccoilopus cotulifer (Thunb.) A.Camus	S				9	perennial
Poaceae	Echinochloa crus-galli (L.) P.Beauv. var. crus-galli	M			7	9	annual
Poaceae	Eleusine indica (L.) Gaertn.	M			7	9	annual
Poaceae	Elymus racemifer (Steud.) Tzvelev	M		6	7		perennial
Poaceae	Elymus tsukushiensis Honda var. transiens (Hack.) Osada	M		6	7		perennial
Poaceae	Eragrostis curvula (Schrad.) Nees	L		6			perennial
Poaceae	Festuca arundinacea Schreb.	M	5	6	7		perennial
Poaceae	Festuca ovina L. subsp. coreana (St.Yves) E.B.Alexeev	M		6			perennial
Poaceae	Festuca parvigluma Steud.	S		6			perennial
Poaceae	Imperata cylindrica (L.) Raeusch. var. koenigii (Retz.) Pilg.	M		6			perennial
Poaceae	Isachne globosa (Thunb.) Kuntze	M			7		perennial
Poaceae	Leptochloa chinensis (L.) Nees	M				9	annual
Poaceae	Lolium multiflorum Lam.	M	5	6			annual
Poaceae	Miscanthus sinensis Andersson	M				9	perennial
Poaceae	Moliniopsis japonica (Hack.) Hayata	M				9	perennial
Poaceae	Oplismenus undulatifolius (Ard.) Roem. et Schult.	M				9	perennial
Poaceae	Paspalum dilatatum Poir.	M		6	7	9	perennial
Poaceae	Paspalum distichum L.	M			7		perennial

Poaceae	Paspalum thunbergii Kunth ex Steud.	M		6	7	9	perennial
Poaceae	Paspalum urvillei Steud.	NA				9	perennial
Poaceae	Pennisetum alopecuroides (L.) Spreng.	M				9	perennial
Poaceae	Phragmites australis (Cav.) Trin. ex Steud.	M				9	perennial
Poaceae	Phragmites japonicus Steud.	M				9	perennial
Poaceae	Poa acroleuca Steud.	M	5	6			annual
Poaceae	Poa annua L.	L	5	6	7	9	annual
Poaceae	Poa chapmaniana Scribn.	NA				9	annual
Poaceae	Poa compressa L.	NA	5				perennial
Poaceae	Poa trivialis L.	NA		6	7	9	perennial
Poaceae	Sacciolepis spicata (L.) Honda ex Masam. var. spicata	M				9	annual
Poaceae	Setaria faberi R.A.W.Herrm.	M			7	9	annual
Poaceae	Setaria glauca (L.) P.Beauv. var. pallidefusca (Schumach.) T.Koyama	M				9	annual
Poaceae	Setaria pumila (Poir.) Roem. et Schult.	M				9	annual
Poaceae	Setaria viridis (L.) P.Beauv.	M			7	9	annual
Poaceae	Sorghum halepense (L.) Pers.	M			7	9	perennial
Poaceae	Themeda japonica (Willd.) Tanaka	S				9	perennial
Poaceae	Trisetum bifidum (Thunb.) Ohwi	S	5	6	7		perennial
Poaceae	Vulpia myuros (L.) C.C.Gmel.	S		6			annual
Poaceae	Zoysia japonica Steud.	S		6	7		perennial
Polygalaceae	Polygala japonica Houtt.	M	5	6			perennial
Polygonaceae	Persicaria longiseta (Bruijn) Kitag.	L	5		7	9	annual
Polygonaceae	Polygonum sieboldii	M				9	annual
Polygonaceae	Rumex acetosa L.	M	5	6			perennial
Polygonaceae	Rumex acetosella L. subsp. pyrenaicus (Pourret ex Lapeyr.) Akeroyd	M		6			perennial
Polygonaceae	Rumex japonicus Houtt.	M	5	6	7	9	perennial
Ranunculaceae	Clematis terniflora DC.	S				9	perennial

Ranunculaceae	Ranunculus japonicus Thunb.	S	5	6			perennial
Ranunculaceae	Ranunculus sceleratus L.	S	5				annual
Ranunculaceae	Ranunculus silerifolius H.Lév. var. glaber (H.Boissieu) Tamura	L	5	6	7	9	perennial
Ranunculaceae	Thalictrum minus L. var. hypoleucum (Siebold et Zucc.) Miq.	M			7	9	perennial
Rosaceae	Agrimonia pilosa Ledeb. var. viscidula (Bunge) Kom.	S				9	perennial
Rosaceae	Potentilla freyniana Bornm.	S	5	6			perennial
Rosaceae	Potentilla hebiichigo Yonek. et H.Ohashi	S	5				perennial
Rosaceae	Potentilla kleiniana Wight et Arn. subsp. anemonifolia (Lehm.) Murata	S	5	6	7		perennial
Rosaceae	Rubus parvifolius L.	M		6	7		woody
Rosaceae	Sanguisorba officinalis L.	M				9	perennial
Rubiaceae	Galium spurium L. var. echinospermon (Wallr.) Hayek	S	5				annual
Rubiaceae	Galium trachyspermum A.Gray	S		6	7		perennial
Rubiaceae	Gardenia jasminoides Ellis	S			7		woody
Rubiaceae	Neanotis hirsuta (L.f.) W.H.Lewis var. hirsuta	S				9	annual
Rubiaceae	Paederia scandens (Lour.) Merr.	S			7	9	woody
Rubiaceae	Sherardia arvensis L.	L		6			annual
Ruscaceae	Liriope minor (Maxim.) Makino	M	5		7	9	perennial
Salicaceae	Salix sieboldiana Blume	S	5				woody
Santalaceae	Thesium chinense Turcz.	M	5	6	7		perennial
Saururaceae	Houttuynia cordata Thunb.	S		6	7		perennial
Saxifragaceae	Astilbe microphylla Knoll	M			7		perennial
Saxifragaceae	Chrysosplenium grayanum Maxim.	S	5				perennial
Solanaceae	Solanum ptychanthum Dunal	L			7	9	annual
Thymelaeaceae	Diplomorpha trichotoma (Thunb.) Nakai	M				9	woody
Urticaceae	Boehmeria spicata (Thunb.) Thunb.	M			7	9	woody

Valerianaceae	Patrinia scabiosifolia Fisch. ex Trevir.	M		9	perennial
Valerianaceae	Valerianella locusta (L.) Laterr.	S	5		annual
Verbenaceae	Verbena brasiliensis Vell.	M	6	7	perennial
Violaceae	Viola grypoceras A.Gray var. grypoceras	S	5		perennial
Violaceae	Viola mandshurica W.Becker	S	5		perennial
Violaceae	Viola verecunda A.Gray	S	5		perennial
Violaceae	Viola violacea Makino var. violacea	S	5		perennial
Vitaceae	Cavratia japonica (Thunb.) Gagnep.	M		7	perennial

Table 2. This table shows the category of flight period and months of appearance at each species in the present study. We investigated flight period using field guides as follows.

14

15

16

Shirouzu, T. 2006. The butterflies of Japan in color. In Japanese. Gakken Holdings, Tokyo, Japan. (in Japanese)

Japan Butterfly Conservation Society. 2012. Field guide to the butterflies of Japan. Seibundo-shinkosha, Tokyo, Japan. (in Japanese)

Species name	Category of seasonality	Months of appearance in the study				Voltinism U: uni, M: multi		
Graphium sarpedon (Linnaeus, 1758)	L				9	M		
Papilio dehaanii C. & R. Felder, 1864	L	4				M		
Papilio helenus Linnaeus, 1758	M		6			M		
Papilio machaon Linnaeus, 1758	L	4	6		9	M		
Papilio protenor Cramer, 1775	L	4	6			M		
Papilio xuthus Linnaeus, 1767	L	4	6	7	9	M		
Anthocharis scolymus Butler, 1866	S	4				U		
Colias erate (Esper, 1805)	L	4	6	7	9	M		
Eurema mandarina (de l'orza, 1869)	L	4	6	7	9	M		
Pieris melete (Ménétriès, 1857)	L	4	6	7	9	M		
Pieris rapae (Linnaeus, 1758)	L	4	6	7	9	M		
Celastrina argiolus (Linnaeus, 1758)	L		6		9	M		
Callophrys ferrea (Butler, 1866)	S	4				U		
	Graphium sarpedon (Linnaeus, 1758) Papilio dehaanii C. & R. Felder, 1864 Papilio helenus Linnaeus, 1758 Papilio machaon Linnaeus, 1758 Papilio protenor Cramer, 1775 Papilio xuthus Linnaeus, 1767 Anthocharis scolymus Butler, 1866 Colias erate (Esper, 1805) Eurema mandarina (de l'orza, 1869) Pieris melete (Ménétriès, 1857) Pieris rapae (Linnaeus, 1758) Celastrina argiolus (Linnaeus, 1758)	Graphium sarpedon (Linnaeus, 1758) Papilio dehaanii C. & R. Felder, 1864 Papilio helenus Linnaeus, 1758 M Papilio machaon Linnaeus, 1758 L Papilio protenor Cramer, 1775 L Papilio xuthus Linnaeus, 1767 L Anthocharis scolymus Butler, 1866 Colias erate (Esper, 1805) L Eurema mandarina (de l'orza, 1869) Pieris melete (Ménétriès, 1857) Pieris rapae (Linnaeus, 1758) L Celastrina argiolus (Linnaeus, 1758)	Species name Category of seasonality Graphium sarpedon (Linnaeus, 1758) Papilio dehaanii C. & R. Felder, 1864 Papilio helenus Linnaeus, 1758 Papilio machaon Linnaeus, 1758 Papilio protenor Cramer, 1775 L Papilio xuthus Linnaeus, 1767 L Anthocharis scolymus Butler, 1866 Colias erate (Esper, 1805) L Eurema mandarina (de l'orza, 1869) Pieris melete (Ménétriès, 1857) Pieris rapae (Linnaeus, 1758) Celastrina argiolus (Linnaeus, 1758) L	Species name Category of seasonality appearange appearange structured in the seasonality Graphium sarpedon (Linnaeus, 1758) L Papilio dehaanii C. & R. Felder, 1864 L 4 Papilio helenus Linnaeus, 1758 M 6 Papilio machaon Linnaeus, 1758 L 4 6 Papilio protenor Cramer, 1775 L 4 6 Papilio xuthus Linnaeus, 1767 L 4 6 Anthocharis scolymus Butler, 1866 S 4 Colias erate (Esper, 1805) L 4 6 Eurema mandarina (de l'orza, 1869) L 4 6 Pieris melete (Ménétriès, 1857) L 4 6 Pieris rapae (Linnaeus, 1758) L 4 6 Celastrina argiolus (Linnaeus, 1758) L 6	Species name Category of seasonality appearance in study Graphium sarpedon (Linnaeus, 1758) L Papilio dehaanii C. & R. Felder, 1864 L 4 Papilio helenus Linnaeus, 1758 M 6 Papilio machaon Linnaeus, 1758 L 4 6 Papilio protenor Cramer, 1775 L 4 6 Papilio xuthus Linnaeus, 1767 L 4 6 7 Anthocharis scolymus Butler, 1866 S 4 4 6 7 Eurema mandarina (de l'orza, 1869) L 4 6 7 Pieris melete (Ménétriès, 1857) L 4 6 7 Pieris rapae (Linnaeus, 1758) L 4 6 7 Celastrina argiolus (Linnaeus, 1758) L 6 6	Species name Category of seasonality appearance in the study Graphium sarpedon (Linnaeus, 1758) L 9 Papilio dehaanii C. & R. Felder, 1864 L 4 Papilio helenus Linnaeus, 1758 M 6 Papilio machaon Linnaeus, 1758 L 4 6 9 Papilio protenor Cramer, 1775 L 4 6 7 9 Anthocharis scolymus Butler, 1866 S 4 4 6 7 9 Eurema mandarina (de l'orza, 1869) L 4 6 7 9 Pieris melete (Ménétriès, 1857) L 4 6 7 9 Pieris rapae (Linnaeus, 1758) L 4 6 7 9 Celastrina argiolus (Linnaeus, 1758) L 6 9		

Lycaenidae	Curetis acuta Moore, 1877	L		6	7		M
Lycaenidae	Everes argiades (Pallas, 1771)	L	4	6	7	9	M
Lycaenidae	Japonica lutea (Hewitson, 1865)	S		6			U
Lycaenidae	Lycaena phlaeas (Linnaeus, 1761)	L	4	6	7	9	M
Lycaenidae	Zizeeria maha (Kollar, 1844)	L	4	6	7	9	M
Nymphalidae	Argynnis paphia (Linnaeus, 1758)	M				9	U
Nymphalidae	Argyreus hyperbius (Linnaeus, 1763)	L		6	7	9	M
Nymphalidae	Argyronome laodice (Pallas, 1771)	M			7	9	U
Nymphalidae	Damora sagana (Doubleday, 1847)	M				9	U
Nymphalidae	Ladoga glorifica (Fruhstorfer, 1909)	L		6			M
Nymphalidae	Lethe sicelis (Hewitson, 1862)	L		6	7	9	M
Nymphalidae	Libythea lepita Moore,1858	L	4	6			U
Nymphalidae	Minois dryas (Scopoli, 1763)	M			7	9	U
Nymphalidae	Mycalesis gotama Moore, 1858	L		6		9	M
Nymphalidae	Nephargynnis anadyomene (C. & R. Felder, 1862)	L		6			U
Nymphalidae	Neptis pryeri Butler, 1871	L				9	M
Nymphalidae	Neptis sappho (Pallas, 1771)	L	4	6	7	9	M
Nymphalidae	Nymphalis xanthomelas (Esper, 1781)	S	4				U
Nymphalidae	Polygonia c-aureum (Linnaeus, 1758)	L		6		9	M
Nymphalidae	Vanessa cardui (Linnaeus, 1758)	L		6	7		M
Nymphalidae	Vanessa indica (Herbst, 1794)	L	4	6			M
Nymphalidae	Ypthima argus Butler, 1866	L	4	6	7	9	M
Hesperiidae	Erynnis montanus (Bremer, 1861)	S	4				U
Hesperiidae	Isoteinon lamprospilus C. & R. Felder, 1862	M			7		U
Hesperiidae	Leptalina unicolor (Bremer & Grey, 1852)	L				9	M
Hesperiidae	Parnara guttata (Bremer & Grey, 1852)	L		6		9	M

Hesperiidae	Pelopidas mathias (Fabricius, 1798)	L	6	7 9	M
Hesperiidae	Polytremis pellucida (Murray, 1875)	M	6	7 9	M
Hesperiidae	Potanthus flavus (Murray, 1875)	M		7 9	M
Hesperiidae	Thoressa varia (Murray, 1875)	L	6	9	M