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Abstract

In this paper, we derive and analyze a reaction-diffusion cholera model in bounded spa-
tial domain with zero-flux boundary condition and general nonlinear incidence functions.
The parameters in the model are space-dependent due to the spatial heterogeneity. By ap-
plying the theory of monotone dynamical systems and uniform persistence, we prove that
the model admits the global threshold dynamics in terms of the basic reproduction number
<0, which is defined by the spectral radius of the next generation operator. When all model
parameters are strictly positive constants, we study three types of nonlinear incidence func-
tions to achieve the global stability results on the unique positive cholera-endemic steady
state (CESS) whenever it exists. For all these examples, the sharp threshold property
based on the basic reproduction number was completely established by using Lyapunov
functional techniques under some realistic assumptions. Our numerical results reveal that
when <0 > 1, the convergence speed of the solution to the CESS becomes faster as the
diffusion coefficient d becomes larger in the spatially homogeneous case. While in the spa-
tially heterogeneous case, cholera can not be controlled by limiting the movement of host
individuals, and the spatial heterogeneity does not always enhance the disease persistence.

Keywords: Diffusive cholera model, Spatial heterogeneity, Lyapunov functional, Basic
reproduction number.

1 Introduction

Cholera is a severe water-borne infectious disease caused by the bacterium Vibrio cholerae.

The complexity of cholera dynamics lies in the fact that both direct contact with infected in-

dividuals (e.g. hugging, shaking hands, and eating food prepared by dirty hands) and indirect

∗Corresponding author. E-mail address: tkuniya@port.kobe-u.ac.jp
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contact from the environment to people ingesting the contaminated water or food are involved.

It can spread rapidly and lead to death within days if left untreated.

Mathematical models have played a central role in deeper understanding of cholera dynamics.

Therefore, it is reasonable to incorporate pathogens in the environment (water) into the disease

models, see for example, models with human transmission route (e.g. [1]), and models with both

the environment-to-human and human-to-human transmission pathways (e.g. [2–6]). Taking into

account various aspects related to epidemiological feature of cholera, such as hyperinfectivity [7],

age-structure [8–10], multiple infection stages [11], multi-group structure [5,11], spatiotemporally

heterogeneous environment [12], subsequent contributions have recently been proposed and ana-

lyzed. In the forms of mathematical models, all of these cholera models consist of many nonlinear

ordinary differential equations or mixed system of ordinary and partial differential equations.

In a recent work, Shuai and van den Driessche [13] divided a population into subpopula-

tions, and each subpopulation is further partitioned into three compartments: susceptible (Si),

infectious (Ii), and removed (Ri). Denote by Wi the number of pathogen shed by individuals

in Ii. They formulated and studied the following multigroup cholera model incorporates both

within-group and inter-group direct/indirect transmission:

dSi
dt

= Λi −
n∑
j=1

βijφi(Si)ϕj(Ij)−
n∑
j=1

λijφi(Si)ψj(Wj)− diSi,

dIi
dt

=
n∑
j=1

βijφi(Si)ϕj(Ij) +
n∑
j=1

λijφi(Si)ψj(Wj)− µiIi,

dWi

dt
= hi(Ii)− δiWi, i = 1, 2, ..., n.

(1.1)

Here functions φi, ϕi, ψi and hi are assumed to be differentiable, nonnegative, monotone non-

decreasing and concave. βij and λij are the direct and indirect transmission rates to Si from Ij

and Wj, respectively; Λi is the recruitment rate of susceptible individuals in the group i; di, µi, δi

are the death or removal rate of each subpopulation in group i, respectively. The authors com-

pletely demonstrated the construction of Lyapunov functions for above model by appealing a

matrix-theoretic method using the Perron eigenvector and a graph-theoretic method based on

Kirchhoff’s matrix tree theorem. In fact, in the above work, the spatial effect is described by the

multi-group structure and each subpopulation shares the same epidemiological parameters. We

see that in model (1.1), only infected individuals and pathogens can move in the habitat space,

and the movement of susceptible individuals is ignored.

In reality, the spread of infectious diseases are significantly affected by the spatial hetero-

geneity, for example, spatial position, water resource availability and hygiene conditions. The

movement of human hosts and dispersal of pathogens are also accepted as central role that af-

fects the spatial spreading of disease, which also requires complex disease models. The following
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partial differential equation (PDE) cholera model was proposed by Wang and Wang [14], which

includes the diffusion terms to describe the movement of human hosts and bacteria in a spatially

heterogeneous environment:

∂S

∂t
= D1∆S + Λ− Sf1(I)− Sf2(W )− dSi + σR, x ∈ [0, 1],

∂I

∂t
= D2∆I + Sf1(I) + Sf2(W )− (d+ γ)I, x ∈ [0, 1],

∂R

∂t
= D3∆R + γI − (d+ σ)R, x ∈ [0, 1],

∂W

∂t
= D4∆W + ξI + h(W )− δW, x ∈ [0, 1],

∂S

∂x
=
∂I

∂x
=
∂R

∂x
=
∂W

∂x
= 0, x = 0, 1.

(1.2)

Here, human population and the bacteria are assumed to undergo a diffusion process, which

is described by the diffusion terms D1∆S, D2∆I, D3∆R and D4∆W . Di > 0 (1 ≤ i ≤ 4)

are the diffusion coefficients of S, I, R and W , respectively. The functions f1(I) and f2(W )

represent the direct and indirect transmission rates, respectively. The function h(W ) represents

the intrinsic growth of the bacteria due to the fact that the vibrios can independently persist in

the environment. d and δ are the natural death rate of humans and bacteria, respectively. γ is

the recovery rate, σ is the immunity loss rate and ξ is the shedding rate of bacteria. Wang and

Wang [14] assumed that the habitat in (1.2) is one-dimensional and bounded, and investigated

how diffusive spatial spread affect the disease spread. They obtained that incorporating diffusive

spatial spread does not produce a Turing instability in some extent.

However, a habitat should be not necessarily one-dimensional, and this motivates us to con-

sider a PDE cholera model in a general bounded spatial domain. This constitutes one motivation

of this paper. Our second motivation comes from the fact that the diffusion coefficients as well

as several parameters of disease transmission rates involving space can be typically space de-

pendent, instead of constants, due to the spatial heterogeneity (see recent publications [15–19]).

The above two important factors related to PDE cholera model seem to have received little at-

tention. Our goal in this paper is to investigate the effect of spatial heterogeneity and general

nonlinear incidence functions on the dynamics of diffusive cholera models. To make things not

too complicated, we omit the intrinsic growth of the bacteria, and consider the solution dynamics

with zero-flux boundary condition. With these considerations, we consider the following diffusive

cholera model:
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
St = ∇ · [d1(x)∇S] + λ(x)− f1(x, S, I)− f2(x, S, P )− µ(x)S, x ∈ Ω, t > 0,

It = ∇ · [d2(x)∇I] + f1(x, S, I) + f2(x, S, P )− [µ(x) + γ(x)] I, x ∈ Ω, t > 0,

Pt = ∇ · [d3(x)∇P ] +m(x)I − η(x)P, x ∈ Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), P (x, 0) = P0(x), x ∈ Ω,

(1.3)

with
∂S

∂n
=
∂I

∂n
=
∂P

∂n
= 0, x ∈ ∂Ω, t > 0. (1.4)

Here S(x, t) and I(x, t) stand for the density of susceptible and infected individuals at location x

and time t, respectively, while P (x, t) stands for the concentration of the cholera bacteria in the

water source at location x and time t; d1(x), d2(x) and d3(x) are diffusion functions measuring the

mobility of susceptible and infected individuals and cholera at location x, respectively; λ(x) is the

recruitment rate of susceptible individuals; µ(x) is the natural death rate of susceptible individu-

als and infected individuals; γ(x) is the removal rate of infected individuals; m(x) is the shedding

rate of cholera bacteria from infected individuals; η(x) is the natural death rate of cholera bac-

teria; f1(x, S, I) and f2(x, S, P ) are general nonlinear incidence functions corresponding to the

direct infection transmission between susceptible and infected individuals and the indirect in-

fection transmission between susceptible individuals and cholera bacteria, respectively; Ω is a

habitat; n is the outward normal vector on ∂Ω; ∇ is the gradient operator. Throughout this

paper, we make the following assumptions.

(A1) Ω is a bounded domain in Rn, n ∈ N with sufficiently smooth boundary ∂Ω.

(A2) d1(·), d2(·), d3(·), λ(·), µ(·), γ(·),m(·), η(·) ∈ C2(Ω) and they are strictly positive and uni-

formly bounded on Ω.

(A3) f1(x, S, I) > 0 and f2(x, S, P ) > 0 for all x ∈ Ω and S, I, P > 0. f1(x, S, 0) = f1(x, 0, I) =

f2(x, S, 0) = f2(x, 0, P ) = 0 for all x ∈ Ω and S, I, P ≥ 0.

(A4) f1(x, S, I) and f2(x, S, P ) are twice continuously differentiable with respect to (x, S, I) ∈
Ω× R+ × R+ and (x, S, P ) ∈ Ω× R+ × R+, respectively.

The organization of this paper is as follows. In Section 2, we show the existence and unique-

ness of the global classical solution of system (1.3)-(1.4). We further show that the boundedness

of the solution and the existence of a continuous semiflow. In Section 3, we define the basic

reproduction number <0 for system (1.3)-(1.4) by the sprectral radius of the next generation

operator. In Section 4, under some additional assumptions on the functions f1 and f2, we in-

vestigate the threshold dynamics of system (1.3)-(1.4): the cholera-free steady state (CFSS) is

globally asymptotically stable if <0 < 1, whereas the system (1.3)-(1.4) is uniformly strongly

4



persistent if <0 > 1. In Section 5, we consider the spatially homogeneous case. Under the

assumptions of positivity, monotonicity and concavity on the nonlinear incidence functions, we

show that if <0 > 1, then the unique cholera-endemic steady state (CESS) exists and it is glob-

ally asymptotically stable. Specifically, we consider three special cases of the nonlinear incidence

functions. The proofs will be performed by using Lyapunov functional techniques. In Section

6, we perform numerical simulation that supports our theoretical results. We numerically show

that the diffusion coefficient affects to the convergence speed of the solution to the steady state,

cholera can not be controlled by limiting the movement of host individuals, and the spatial het-

erogeneity does not always enhance the disease persistence. Finally, Section 7 is devoted to the

discussion.

2 Well-posedness of the problem

This section is devoted to prove that system (1.3)-(1.4) has a unique global classical solution.

Let us define the following differential operators:

A0
iϕ := ∇ · [di(·)∇ϕ] ,

D(A0
i ) :=

{
ϕ ∈ C2(Ω) ∩ C1(Ω) : A0

iϕ ∈ C(Ω),
∂ϕ

∂n
= 0, x ∈ ∂Ω

}
, i = 1, 2, 3.

From [20, Chapter 7], we see that for i = 1, 2, 3, the closure Ai of A0
i generates a C0-semigroup

{Ti(t)}t≥0 such that ui(t) = Ti(t)ϕ is the solution of u′i(t) = Aiui(t), t > 0 with ui(0) = ϕ ∈
D(Ai), where

D(Ai) :=

{
ϕ ∈ C(Ω) : lim

t→+0

(Ti(t)− Id)ϕ
t

exists

}
.

Here Id denotes the identity operator. Let us define the following nonlinear operators on Ω×R3:
F1(x, r) := λ(x)− f1(x, r1, r2)− f2(x, r1, r3)− µ(x)r1,

F2(x, r) := f1(x, r1, r2) + f2(x, r1, r3)− [µ(x) + γ(x)] r2,

F3(x, r) := m(x)r2 − η(x)r3,

x ∈ Ω, r = (r1, r2, r3) ∈ R3.

Let Xi := C(Ω), i = 1, 2, 3 and let

A :=
3∏
i=1

Ai, D(A) :=
3∏
i=1

D(Ai), T (t) :=
3∏
i=1

Ti(t), t ≥ 0,

F (x, r) := (F1(x, r), F2(x, r), F3(x, r)) (x, r) ∈ Ω× R3, X :=
3∏
i=1

Xi,

where X is equipped with the following norm:

‖ψ‖X := max{sup
x∈Ω

|ψ1(x)| , sup
x∈Ω

|ψ2(x)| , sup
x∈Ω

|ψ3(x)|}, ψ = (ψ1, ψ2, ψ3) ∈ X.
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We can then rewrite system (1.3)-(1.4) as the following abstract form in X:

ut(t) = Au(t) + F(u(t)), t > 0, u(0) = φ ∈ D(A) ⊂ X, (2.1)

where u(t) = (S(·, t), I(·, t), P (·, t)) ∈ X, t > 0, φ = (S0(·), I0(·), P0(·)) ∈ X and

F(ψ)(x) := F (x, ψ(x)), x ∈ Ω, ψ ∈ X.

From (2.1), a mild solution can be obtained as a continuous solution of the following integral

equation,

u(t) = T (t)φ+

∫ t

0

T (t− s)F(u(s))ds, t > 0, u(0) = φ ∈ X.

Let X+ be the positive cone of X. By using [20, Corollary 7.3.2], we prove the following proposition

on the existence of the unique classical solution in X+.

Proposition 2.1. Suppose that (A1)-(A4) hold. For each φ ∈ X+, system (1.3)-(1.4) has the

unique classical solution u(t) = u(t, φ) ∈ X+ defined on [0, σ), where σ = σ(φ) ≤ +∞. u(t)

is continuously differentiable and satisfies (2.1) on (0, σ). If σ < +∞, then ‖u(t)‖X → +∞ as

t→ σ − 0.

Proof. By [20, Corollary 7.3.2], it suffices to show that Fi(x, r) ≥ 0 for all i = 1, 2, 3, x ∈ Ω and

r ∈ R3
+ such that ri = 0. This is obvious from assumptions (A2) and (A3). This completes the

proof.

We now prove the following theorem on the existence and uniqueness of the global classical

solution of system (1.3)-(1.4).

Theorem 2.1. Suppose that (A1)-(A4) hold. For each φ ∈ X+, system (1.3)-(1.4) has the unique

global classical solution u(t) = u(t, φ) ∈ X+ such that u(t) ∈ D(A) on (0,+∞) and u(0) = φ.

Proof. By Proposition 2.1, it suffices to show that σ = σ(φ) = +∞ for any φ ∈ X+. On the

contrary, suppose that σ < +∞. By the first equation in (1.3) and assumptions (A2)-(A3), we

have

St ≤ ∇ · [d1(x)∇S] + λ+ − µ−S, x ∈ Ω, t > 0,

where λ+ := maxx∈Ω λ(x) ∈ (0,+∞) and µ− := minx∈Ω µ(x) ∈ (0,+∞). By the comparison

principle and the similar arguments as in [21, Proof of Theorem 1], we see that there exists a

positive constant M1 > 0 such that

0 ≤ S(x, t) ≤M1, t ∈ [0, σ), x ∈ Ω.

Thus, S does not blow up at t = σ. Suppose that f1(x̃, S(·, t), I(·, t))+f2(x̃, S(·, t), P (·, t))→ +∞
as t→ σ − 0 for some x̃ ∈ Ω. We then have from the first equation in (1.3) that St(x̃, t)→ −∞
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as t → σ − 0. This implies that S(x̃, t) < 0 in the neighborhood of σ, which contradicts to

the positivity of S. Hence, f1(x, S(·, t), I(·, t)) + f2(x, S(·, t), P (·, t)) < +∞ for all x ∈ Ω and

t ∈ [0, σ). By the second equation in (1.3) and assumption (A2), we have

It ≤ ∇ · [d2(x)∇I] + f+ −
(
µ− + γ−

)
I, x ∈ Ω, t > 0,

where

f+ := sup
(x,t)∈Ω×[0,σ)

[f1(x, S(x, t), I(x, t)) + f2(x, S(x, t), P (x, t))] < +∞,

and γ− := minx∈Ω γ(x) ∈ (0,+∞). Similar to the above argument, we see that there exists a

positive constant M2 > 0 such that

0 ≤ I(x, t) ≤M2, t ∈ [0, σ), x ∈ Ω.

Thus, I also does not blow up at t = σ. By the third equation in (1.3) and assumption (A2), we

have

Pt ≤ ∇ · [d3(x)∇P ] +m+M2 − η−P, x ∈ Ω, t > 0,

where m+ := maxx∈Ωm(x) ∈ (0,+∞) and η− := minx∈Ω η(x) ∈ (0,+∞). Similar to the above

argument, we see that there exists a positive constant M3 > 0 such that

0 ≤ P (x, t) ≤M3, t ∈ [0, σ), x ∈ Ω.

Thus, P also does not blow up at t = σ and this is a contradiction. Consequently, σ = +∞ and

the proof is complete.

In a similar way of the proof of Theorem 2.1, we obtain the following corollary on the bound-

edness of the solution.

Corollary 2.1. Suppose that (A1)-(A4) hold. For each solution u(t) = (S(·, t), I(·, t), P (·, t)),

t ≥ 0 of system (1.3)-(1.4) with initial condition φ ∈ X+, there exist positive constants M1,M2,M3 >

0 such that

0 ≤ S(x, t) ≤M1, 0 ≤ I(x, t) ≤M2, 0 ≤ P (x, t) ≤M3

holds for all x ∈ Ω and t ≥ 0.

Proof. The proof is done by replacing σ in the proof of Theorem 2.1 by +∞.

Moreover, by Theorem 2.1 and [20, Theorem 7.3.1], we obtain the following corollary on the

existence of a continuous semiflow.

Corollary 2.2. Suppose that (A1)-(A4) hold. For each φ ∈ X+, system (1.3)-(1.4) generates a

semiflow {Ψ(t)}t≥0 : X+ → X+ defined by Ψ(t)φ := u(t, φ), t ≥ 0. For any closed and bounded

subset B ∈ X+ and t > 0, Ψ(t)B has compact closure in X+.

Proof. The assertion directly follows from Theorem 2.1 and (d)-(e) of [20, Theorem 7.3.1].
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3 Basic reproduction number

In this section, we define the basic reproduction number <0 for system (1.3)-(1.4). The

cholera-free steady state (CFSS) of system (1.3)-(1.4) is given by Q0 := (S0(·), 0, 0) ∈ X+, where

S0(x) satisfies

0 = ∇ ·
[
d(x)∇S0

]
+ λ(x)− µ(x)S0, x ∈ Ω,

∂S0

∂n
= 0, x ∈ ∂Ω.

By a similar argument as in [22, Section 2.2] or [21, Section 2.1], we see that there always exists

the unique CFSS such that S0(x) > 0 on Ω. Linearizing the equations of I and P in system

(1.3)-(1.4) around CFSS, we obtain the following equations:
It = ∇ · [d2(x)∇I] +

∂f1(x, S0, 0)

∂I
I +

∂f2(x, S0, 0)

∂P
P − [µ(x) + γ(x)] I, x ∈ Ω, t > 0,

Pt = ∇ · [d3(x)∇P ] +m(x)I − η(x)P, x ∈ Ω, t > 0,

∂I

∂n
=
∂P

∂n
= 0, x ∈ ∂Ω, t > 0.

(3.1)

We now make the following additional assumption:

(A5) ∂f1(x, S0, 0)/∂I > 0 and ∂f2(x, S0, 0)/∂P > 0 for all x ∈ Ω.

Under assumption (A5), the linear system (3.1) is cooperative and irreducible. Substituting

I(x, t) = eκtϕ(x), P (x, t) = eκtψ(x) into (3.1) and dividing each equation by eκt, we obtain the

following eigenvalue problem:
κϕ = ∇ · [d2(x)∇ϕ] +

∂f1(x, S0, 0)

∂I
ϕ+

∂f2(x, S0, 0)

∂P
ψ − [µ(x) + γ(x)]ϕ, x ∈ Ω,

κψ = ∇ · [d3(x)∇ψ] +m(x)ϕ− η(x)ψ, x ∈ Ω,

∂ϕ

∂n
=
∂ψ

∂n
= 0, x ∈ ∂Ω.

(3.2)

Let Y := C(Ω)×C(Ω) and let Y+ be the positive cone of Y. By using the Krein-Rutman theorem

as in [20, Proof of Theorem 7.6.1], we can prove the following lemma:

Lemma 3.1. Suppose that (A1)-(A5) hold. There exists a principal eigenvalue κ0 of problem

(3.2) associated with a strictly positive eigenvector (ϕ0, ψ0) ∈ Y+.

Proof. Since the linear system (3.1) is cooperative and irreducible, we can see as in [20, Proof of

Theorem 7.5.1] that it generates a compact and strongly positive semigroup {S(t)}t≥0 : Y+ →
Y+, generated by a linear operator L. Then, as shown in [20, Proof of Theorem 7.6.1], there

exists a µ0 ∈ R such that the resolvent operator B := (µId − L)−1 is compact and strongly

positive for all µ > µ0. By the Krein-Rutman theorem (see, e.g., [23, Theorem 3.2]), the spectral
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radius r(B) is a positive eigenvalue of operator B associated with a strictly positive eigenvector

w0 := (ϕ0, ψ0) ∈ Y+. Let κ0 := µ − 1/r(B). We then have Lw0 = κ0w0, and thus, S(t)w0 =

eκ0tw0, t ≥ 0. Hence, we see that κ0 is the principal eigenvalue of problem (3.2) associated with

the eigenvector w0 = (ϕ0, ψ0). This completes the proof.

Following the definition in [24], we define the basic reproduction number [25] by the spectral

radius <0 := r(K), where K is the next generation operator on Y defined by

Kψ(x) :=

∫ +∞

0

Φ(x)T (t)ψdt, x ∈ Ω, ψ =

(
ψ1

ψ2

)
∈ Y.

Here, Φ(x), x ∈ Ω is a matrix-valued function defined by

Φ(x) :=

 ∂f1(x, S0, 0)

∂I

∂f2(x, S0, 0)

∂P

m(x) 0

 , x ∈ Ω,

and {T (t)}t≥0 : Y→ Y is the solution semigroup associated with the following linear system:
It = ∇ · [d2(x)∇I]− [µ(x) + γ(x)] I, x ∈ Ω, t > 0,

Pt = ∇ · [d3(x)∇P ]− η(x)P, x ∈ Ω, t > 0,

∂I

∂n
=
∂P

∂n
= 0, x ∈ ∂Ω, t > 0.

Using [26, Theorem 3.5], we prove the following proposition.

Proposition 3.1. Suppose that (A1)-(A5) hold. <0 − 1 has the same sign as κ0.

Proof. Let us define the following matrix-valued function:

B(x) :=

(
∇ · [d2(x)∇]− [µ(x) + γ(x)] 0

0 ∇ · [d3(x)∇]− η(x)

)
, x ∈ Ω.

We then see that B is resolvent-positive and s(B) < 0, where s(·) denotes the spectral bound of

an operator. Moreover, by the arguments in the proof of Lemma 3.1, we see that L = Φ + B is

resolvent-positive, and thus, it follows from [26, Theorem 3.5] that κ0 = s(L) = s(Φ +B) has the

same sign as r(Φ(−B)−1)− 1. Since K = Φ(−B)−1 and <0 = r(K), we complete the proof.

Let us define the following sets.

X0 :=
{
ψ = (ψ1, ψ2, ψ3) ∈ X+ : ψ2(·) 6≡ 0 and ψ3(·) 6≡ 0

}
,

∂X :=
{
ψ = (ψ1, ψ2, ψ3) ∈ X+ : either ψ2(·) ≡ 0 or ψ3(·) ≡ 0

}
. (3.3)

Note that X0∪∂X = X+ and X0∩∂X = ∅. Before going to the next section, we give the following

useful lemma, which gives the strict positivity of the solution of system (1.3)-(1.4):
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Lemma 3.2. Suppose that (A1)-(A4) hold. Let Ψ(t)φ = (S(·, t), I(·, t), P (·, t)), t ≥ 0 be the

solution semiflow for system (1.3)-(1.4) with φ ∈ X0. Then, I(x, t) > 0 and P (x, t) > 0 for all

t > 0 and x ∈ Ω.

Proof. The assertion directly follows from the inequalities
It ≥ ∇ · [d2(x)∇I]− [µ(x) + γ(x)] I, x ∈ Ω, t > 0,

Pt ≥ ∇ · [d3(x)∇P ]− η(x)P, x ∈ Ω, t > 0,

∂I

∂n
=
∂P

∂n
= 0, x ∈ ∂Ω, t > 0,

and the strong maximum principle (see, e.g., [27, Chapter 3]). This completes the proof.

4 Threshold dynamics

In this section, we study the global asymptotic behavior of system (1.3)-(1.4) in connection

with the basic reproduction number <0. Motivated by [28], we make the following additional

assumptions:

(A6) f1(x, S, I) and f2(x, S, P ) are monotone non-decreasiong with respect to S ≥ 0 for all

x ∈ Ω and I, P ≥ 0.

(A7) The following inequalities hold for all x ∈ Ω and I, P ≥ 0:

f1(x, S0, I) ≤ ∂f1(x, S0, 0)

∂I
I and f2(x, S0, P ) ≤ ∂f2(x, S0, 0)

∂P
P.

We now prove the following theorem on the global asymptotic stability of the CFSS:

Theorem 4.1. Suppose that (A1)-(A7) hold. If <0 < 1, then the CFSS Q0 = (S0, 0, 0) ∈ X+ of

system (1.3)-(1.4) is globally asymptotically stable.

Proof. It follows from the first equation of (1.3) that

St ≤ ∇ · [d1(x)∇S] + λ(x)− µ(x)S, x ∈ Ω, t > 0.

We then see from the comparison principle and the argument in [22, Section 2.2] or [21, Lemma

1] that lim supt→+∞ S(x, t) ≤ S0(x) for all x ∈ Ω. Hence, without loss of generality, we can

assume that S(x, t) ≤ S0(x) for all x ∈ Ω and t ≥ 0. By assumptions (A6) and (A7), we have
It ≤ ∇ · [d2(x)∇I] +

∂f1(x, S0, 0)

∂I
I +

∂f2(x, S0, 0)

∂P
P − [µ(x) + γ(x)] I, x ∈ Ω, t > 0,

Pt = ∇ · [d3(x)∇P ] +m(x)I − η(x)P, x ∈ Ω, t > 0,

∂I

∂n
=
∂P

∂n
= 0, x ∈ ∂Ω, t > 0.

(4.1)
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Thus, we see that the solution of (3.1) is an upper solution. Let (I(·, t), P (·, t)) ∈ Y+, t ≥ 0

be the solution of (3.1) with initial condition I(x, 0) = Mϕ0(x) and P (x, 0) = Mψ0(x), x ∈ Ω,

where M > 0 is a sufficiently large constant and (ϕ0, ψ0) ∈ Y+ is the strictly positive eigenvector

of problem (3.2) associated with eigenvalue κ0. Since (ϕ0, ψ0) is strictly positive, we can assume

without loss of generality that M is so large that I(x, 0) ≥ I0(x) and P (x, 0) ≥ P0(x) for

all x ∈ Ω. By the comparison principle, we have that I(x, t) ≤ I(x, t) = Meκ0tϕ0(x) and

P (x, t) ≤ P (x, t) = Meκ0tψ0(x) for all x ∈ Ω and t ≥ 0. By Proposition 3.1, κ0 < 0, and thus,

I → 0 and P → 0 as t → +∞. There then exists for arbitrary small 0 < ε1 � minx∈Ω λ(x), a

large T1 > 0 such that f1(x, S, I) + f2(x, S, P ) ≤ f1(x, S0, I) + f2(x, S0, P ) ≤ ε1 for all x ∈ Ω and

t > T1. We then have from the first equation of (1.3) that

St ≥ ∇ · [d1(x)∇S] + λ(x)− ε1 − µ(x), x ∈ Ω, t > T1.

Similar to the above argument, we have that

S0
ε1

(x) ≤ lim inf
t→+∞

S(x, t) ≤ lim sup
t→+∞

S(x, t) ≤ S0(x), x ∈ Ω,

where S0
ε1

(x) satisfies

0 = ∇ ·
[
d(x)∇S0

ε1

]
+ λ(x)− ε1 − µ(x)S0

ε1
, x ∈ Ω,

∂S0
ε1

∂n
= 0, x ∈ ∂Ω.

Since ε1 is arbitrary and S0
ε1
→ S0 as ε1 → 0, we obtain that S → S0 as t→ +∞. This completes

the proof.

We next study the uniform persistence of system (1.3)-(1.4) for <0 > 1. For ε > 0, let us

define <ε := r(Kε), where

Kε :=

∫ +∞

0

Φε(x)T (t)ψdt, x ∈ Ω, ψ =

(
ψ1

ψ2

)
∈ Y

and

Φε(x) :=

 ∂f1(x, S0 − ε, ε)
∂I

∂f2(x, S0 − ε, ε)
∂P

m(x) 0

 , x ∈ Ω.

By the continuity, if <0 > 1, then there exists a sufficiently small ε > 0 such that <ε > 1 and

∂f1(x, S0 − ε, ε)
∂I

> 0 and
∂f2(x, S0 − ε, ε)

∂P
> 0 for all x ∈ Ω.

In what follows, we fix such an ε > 0 for <0 > 1. By a similar argument as in Proposition 3.1,

we see that the following eigenvalue problem has a positive eigenvalue κε > 0 associated with a
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strictly positive eigenvector (ϕε, ψε) ∈ Y+:
κϕ = ∇ · [d2(x)∇ϕ] +

∂f1(x, S0 − ε, ε)
∂I

ϕ+
∂f2(x, S0 − ε, ε)

∂P
ψ − [µ(x) + γ(x)]ϕ, x ∈ Ω,

κψ = ∇ · [d3(x)∇ψ] +m(x)ϕ− η(x)ψ, x ∈ Ω,

∂ϕ

∂n
=
∂ψ

∂n
= 0, x ∈ ∂Ω.

(4.2)

We now make the following additional assumption:

(A8) The following inequalities hold for all x ∈ Ω, S ≥ S0 − ε and 0 ≤ I, P ≤ ε:

f1(x, S, I) ≥ ∂f1(x, S0 − ε, ε)
∂I

I and f2(x, S, P ) ≥ ∂f2(x, S0 − ε, ε)
∂P

P.

For instance, we can easily check that the bilinear incidence rate f(·, x, y) = βxy, β > 0 and

the saturated incidence rate f(·, x, y) = βxy/(1 + αy), α, β > 0 satisfy this assumption. Under

these settings, we now prove the following lemma on the uniform weak persistence of system

(1.3)-(1.4) in norm ‖ · ‖X:

Lemma 4.1. Suppose that (A1)-(A8) hold. Suppose that <0 > 1 and let ε > 0 be a suffi-

ciently small constant as stated above. Then, the CFSS Q0 = (S0, 0, 0) ∈ X+ is a uniform

weak repeller. That is, for the solution semiflow Ψ(t)φ = (S(·, t), I(·, t), P (·, t)), t ≥ 0 with

φ = (S0(·), I0(·), P0(·)), we have

lim sup
t→+∞

∥∥Ψ(t)φ−Q0
∥∥
X ≥ ε, (4.3)

provided φ ∈ X0 = {ψ = (ψ1, ψ2, ψ3) ∈ X+ : ψ2(·) 6≡ 0 and ψ3(·) 6≡ 0}.

Proof. Suppose on the contrary that (4.3) does not hold. We then have that there exists a T > 0

such that S(t, x) ≥ S0(x)− ε and I(t, x), P (t, x) ≤ ε for all x ∈ Ω and t ≥ T . Under assumption

(A8), we have
It ≥ ∇ · [d2(x)∇I] +

∂f1(x, S0 − ε, ε)
∂I

I +
∂f2(x, S0 − ε, ε)

∂P
P − [µ(x) + γ(x)] I, x ∈ Ω, t > T,

Pt = ∇ · [d3(x)∇P ] +m(x)I − η(x)P, x ∈ Ω, t > T,

∂I

∂n
=
∂P

∂n
= 0, x ∈ ∂Ω, t > T.

By Lemma 3.2, we see that I(x, T ) > 0 and P (x, T ) > 0 for all x ∈ Ω. Since ϕε(x) and ψε(x)

are strictly positive on Ω, there exists a sufficiently small constant ζ > 0 such that I(x, T ) ≥
ζeκεTϕε(x) and P (x, t) ≥ ζeκεTψε(x) for all x ∈ Ω. Let (I(·, t), P (·, t)) ∈ Y+, t ≥ 0 be the solution
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of the following auxiliary system with initial condition I(x, T ) = ζeκεTϕε(x) and P (x, t) =

ζeκεTψε(x), x ∈ Ω:
It = ∇ · [d2(x)∇I] +

∂f1(x, S0 − ε, ε)
∂I

I +
∂f2(x, S0 − ε, ε)

∂P
P − [µ(x) + γ(x)] I, x ∈ Ω, t > T,

Pt = ∇ · [d3(x)∇P ] +m(x)I − η(x)P, x ∈ Ω, t > T,

∂I

∂n
=
∂P

∂n
= 0, x ∈ ∂Ω, t > T.

By the comparison theorem, we have that I(x, t) ≥ I(x, t) = ζeκεtϕε(x) and P (x, t) ≥ P (x, t) =

ζeκεtψε(x) for all x ∈ Ω and t ≥ T . Since κε > 0 for <0 > 1 as stated above, we have that

I(x, t)→ +∞ and P (x, t)→ +∞ as t→ +∞ for all x ∈ Ω, which contradicts to Corollary 2.1.

This completes the proof.

To prove the uniform strong persistence of system (1.3)-(1.4) for <0 > 1, we make the

following additional assumption:

(A9) There exist strictly positive continuous functions g1(x) and g2(x) such that

f1(x, S0, I) ≤ g1(x) and f2(x, S0, P ) ≤ g2(x), x ∈ Ω, I, P ≥ 0.

For instance, the saturated incidence rate satisfies this assumption. Note that this assumption

excludes the bilinear incidence rate (see [21] for the previous results in the case of bilinear

incidence rate). Under (A9), we prove the following theorem on the uniform strong persistence

of the disease in system (1.3)-(1.4):

Theorem 4.2. Suppose that (A1)-(A9) hold. If <0 > 1, then there exists a constant ε0 > 0 such

that

lim inf
t→+∞

I(t, x) ≥ ε0, lim inf
t→+∞

P (t, x) ≥ ε0,

provided φ ∈ X̃0, where X̃0 := {ψ = (ψ1, ψ2, ψ3) ∈ X+ : either ψ2(·) 6≡ 0 or ψ3(·) 6≡ 0} ⊂ X0.

Proof. We first prove the existence of a global attractor in X+. By the argument in the proof of

Theorem 4.1, we see that lim supt→+∞ S(x, t) ≤ S0(x) for all x ∈ Ω. By (A6) and (A9) and the

second equation of (1.3), we have

It ≤ ∇ · [d2(x)∇I] + g1(x) + g2(x)− [µ(x) + γ(x)] I, x ∈ Ω, t > 0.

Hence, as in the argument in the proof of Theorem 4.1, we see that there exists a strictly positive

function I0(x), x ∈ Ω such that lim supt→+∞ I(x, t) ≤ I0(x) for all x ∈ Ω. Then, for any ε̃ > 0,

there exists a sufficiently large t̃ > 0 such that

Rt ≤ ∇ · [d3(x)∇R] +m(x)
[
I0(x) + ε̃

]
− η(x)P, x ∈ Ω, t > t̃.
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We then see as above that there exists a strictly positive function R0(x), x ∈ Ω such that

lim supt→+∞R(x, t) ≤ R0(x) for all x ∈ Ω. Thus, we see that the solution semiflow Ψ(t), t ≥ 0

is point dissipative (note that S0(·), I0(·) and R0(·) are independent from the choice of initial

condition φ). Since the compactness of the semiflow Ψ(t), t ≥ 0 follows from Corollary 2.2, we

see from [29, Theorem 3.4.8] that Ψ(t), t ≥ 0 has a global attractor in X+.

We next prove that ∪φ∈M∂
ω(φ) = {Q0}, where M∂ := {φ ∈ ∂X : Ψ(t)φ ∈ ∂X for all t ≥ 0}

and ω(φ) := ∩t≥0∪s≥t {Ψ(s)φ} is the omega limit set. Let φ ∈M∂. We see from (3.3) that either

I(·, t) ≡ 0 or P (·, t) ≡ 0 for each t ≥ 0. By (A2) and (A3), it is easy to see that S(x, t) > 0

for all x ∈ Ω and t > 0. If I(·, t∗) ≡ 0 and P (·, t∗) 6≡ 0 for some t∗ ≥ 0, then it follows from

the third equation of (1.3) and the strong maximum principle as in the proof of Lemma 3.2 that

P (x, t) > 0 for all x ∈ Ω and t > t∗. Then, I(·, t) ≡ 0 and It(·, t) = f2(·, S, P ) > 0 for all t > t∗,

which is a contradiction. If I(·, t∗) 6≡ 0 and P (·, t∗) ≡ 0 for some t∗ ≥ 0, then we have in a similar

way that P (·, t) ≡ 0 and Pt(·, t) = m(·)I(·, t) > 0 for all t > t∗, which is a contradiction. Thus,

we have that I(·, t) ≡ 0 and P (·, t) ≡ 0 for all t ≥ 0. We then have from the first equation of

(1.3) that St = ∇ · [d1(x)∇S] + λ(x) − µ(x)S, x ∈ Ω, t > 0. Thus, as in the proof of Theorem

4.1, we see that S → S0 as t→ +∞. This implies that ∪φ∈M∂
ω(φ) = {Q0}.

As in [22, Proof of Theorem 2.5] or [21, Proof of Theorem 3], we define the generalized

distance function ρ : X+ → [0,+∞) as follows:

ρ(ψ) := min

{
min
x∈Ω

ψ2(x), min
x∈Ω

ψ3(x)

}
, ψ = (ψ1, ψ2, ψ3) ∈ X+.

It is easy to see from the above argument that ρ−1(0,+∞) ⊂ X0 and W s(Q0)∩ ρ−1(0,+∞) = ∅,
where W s(Q0) := {φ ∈ X+ : limt→+∞ ‖Ψ(t)φ−Q0‖X = 0} denotes the stable set of Q0. Moreover,

it is easy to see that Q0 does not form any cycle in ∂X0 and it is isolated in X. Thus, by [30,

Theorem 3], we can conclude that there exists an ε0 > 0 such that minφ∈X0

{
minψ∈ω(φ) ρ(ψ)

}
≥ ε0.

This implies that

lim inf
t→+∞

I(t, x) ≥ ε0, lim inf
t→+∞

P (t, x) ≥ ε0,

provided φ ∈ X0. It is easy to see from the strictly positivity of m(·) and f2(·, S, P ) for S, P > 0

that Ψ(t)φ ∈ X0 for all t > 0 if φ ∈ X̃0. This completes the proof.

For example, under assumptions (A1) and (A2) on other parameters, we can check that the

following functions f1 and f2 satisfy assumptions (A3)-(A9), for x ∈ Ω and S, I, P ≥ 0,

(i) (f1(x, S, I), f2(x, S, P )) =

(
β1(x)SI

1 + α1(x)I
,
β2(x)SP

1 + α2(x)P

)
, (4.4)

(ii) (f1(x, S, I), f2(x, S, P )) =

(
β1(x)S ln

(
1 +

I

1 + α1(x)I

)
, β2(x)S ln

(
1 +

P

1 + α2(x)P

))
,

(iii) (f1(x, S, I), f2(x, S, P )) =

(
β1(x)S

arctan (α1(x)I)

α1(x)
, β2(x)S

arctan (α2(x)P )

α2(x)

)
,
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βS ln [1 + I/(1 + αI)]
βS arctan(αI)/α

Fig. 1.An example of functions in (4.4) (i)-(iii), where α = β = S = 1 and 0 ≤ I ≤ 10.

where αi(·), βi(·) ∈ C2(Ω), i = 1, 2 are strictly positive and uniformly bounded on Ω. Note that

these functions have the monotonicity with respect to S, I and P , the concavity with respect to

I and P and the saturation effect with respect to I and P (see Fig. 1).

5 The spatially homogeneous case

In this section, we are concerned with cases study when the parameters are all strictly positive

constants. We will get the global stability results on unique positive steady state whenever

it exists by using Lyapunov functions. Denote by Q∗ := (S̄, Ī , P̄ ) the constant steady state

throughout this section.

In what follows, we make the following assumptions.

(B1) Ω is a bounded domain in Rn, n ∈ N with sufficiently smooth boundary ∂Ω.

(B2) d1, d2, d3, λ, µ, γ, m and η are independent of the variable x and strictly positive constants.

It is easy to see that (B1) and (B2) are equivalent to (A1) and (A2) in the spatially homogeneous

case, respectively.

5.1 Nonlinear incidence functions with f1(S, I) and f2(S, P )

In this subsection, we still use general nonlinear incidence functions f1(S, I) and f2(S, P ) to

present the direct infection transmission between susceptible and infected individuals and the

indirect infection transmission between susceptible individuals and cholera bacteria, respectively.
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The model to be studied takes the following form:

∂S

∂t
= d1∆S + λ− f1(S, I)− f2(S, P )− µS, x ∈ Ω, t > 0,

∂I

∂t
= d2∆I + f1(S, I) + f2(S, P )− (µ+ γ)I, x ∈ Ω, t > 0,

∂P

∂t
= d3∆P +mI − ηP, x ∈ Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), P (x, 0) = P0(x), x ∈ Ω,

∂S

∂n
=
∂I

∂n
=
∂P

∂n
= 0, x ∈ ∂Ω, t > 0.

(5.1)

For the sake of simplicity, motivated by [28, Corollary 5.1], we make the following assumptions

on f1(S, I) and f2(S, P ).

(B3) f1(S, I) > 0 and f2(S, P ) > 0 for all S, I, P > 0. f1(S, 0) = f1(0, I) = f2(S, 0) = f2(0, P ) =

0 for all S, I, P ≥ 0.

(B4) f1(S, I) and f2(S, P ) are twice continuously differentiable with respect to (S, I) ∈ R × R
and (S, P ) ∈ R × R, respectively. ∂2f1(S, I)/∂I2 ≤ 0 and ∂2f2(S, P )/∂P 2 ≤ 0 for all

S, I, P ≥ 0.

(B5) ∂f1(S, I)/∂S ≥ 0, ∂f2(S, P )/∂S ≥ 0, ∂f1(S, I)/∂I ≥ 0 and ∂f2(S, I)/∂P ≥ 0 for all

S, I, P ≥ 0.

It is easy to see that (B3)-(B5) imply (A3)-(A6) in the spatially homogeneous case. Note that

they further imply (A7) and (A8) in the specially homogeneous case. In fact, by the second order

Taylor expansion,

0 = f1(S, 0) =f1(S, I) +
∂f1(S, I)

∂I
(0− I) +

∂2f1(S, ξ)

∂I2
I2

≤f1(S, I)− ∂f1(S, I)

∂I
I, S, I ≥ 0, (5.2)

where ξ ∈ R is a number such that |ξ| < |I|. Hence, if S ≥ S0 − ε and 0 ≤ I ≤ ε, then

f1(S, I) ≥ ∂f1(S, I)

∂I
I ≥ ∂f1(S0 − ε, ε)

∂I
I.

We can obtain a similar inequality for f2(S, P ). Thus, (A8) holds. Moreover, since

∂

∂I

(
f1(S, I)

I

)
=

1

I2

(
∂f1(S, I)

∂I
I − f1(S, I)

)
, S, I ≥ 0,

the above inequality (5.2) implies that f1(S, I)/I is monotone non-increasing with respect to I.

Hence, we have
f1(S0, I)

I
≤ lim

I→0

f1(S0, I)

I
=
∂f1(S0, 0)

∂I
,
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and thus,

f1(S0, I) ≤ ∂f1(S0, 0)

∂I
I.

We can obtain a similar inequality for f2(S0, P ). Thus, (A7) holds.

Clearly, system (5.1) has the CFSS Q0 = (S0, 0, 0), where S0 = λ/µ. Following the arguments

in Section 3, the next generation operator K is given by

Kψ =

∫ +∞

0

ΦT (t)ψdt, ψ =

(
ψ1

ψ2

)
∈ Y, (5.3)

where

Φ =

 ∂f1(S0, 0)

∂I

∂f2(S0, 0)

∂P

m 0

 ,

T (t)ψ =

 e−(µ+γ)t

∫
Ω

Γ2(t, ·, y)ψ1(y)dy 0

0 e−ηt
∫

Ω

Γ3(t, ·, y)ψ2(y)dy

 , ψ =

(
ψ1

ψ2

)
∈ Y.

Here Γi(t, x, y), t > 0, x, y ∈ Ω, i = 2, 3 denotes the Green’s functions associated with di∆,

i = 2, 3 subject to the Neumann boundary condition. Let ϕi :=
∫

Ω
ψi(x)dx, i = 1, 2. We then

have by integrating both sides of (5.3) that

K
(
ϕ1

ϕ2

)
=

 ∂f1(S0, 0)

∂I

∂f2(S0, 0)

∂P

m 0




1

µ+ γ
0

0
1

η

( ϕ1

ϕ2

)
.

Thus, <(5.1)
0 = r(K) is explicitly given as follows:

<(5.1)
0 =

1

2

∂f1(S0, 0)

∂I

1

µ+ γ
+

√(
∂f1(S0, 0)

∂I

1

µ+ γ

)2

+ 4
∂f2(S0, 0)

∂P

m

η(µ+ γ)

 . (5.4)

By Theorem 4.1, we immediately obtain the following theorem.

Theorem 5.1. Suppose that (B1)-(B5) hold. If <(5.1)
0 < 1, then the CFSS Q0 = (S0, 0, 0) =

(λ/µ, 0, 0) ∈ X+ of system (5.1) is globally asymptotically stable.

Proof. As stated above, (B1)-(B5) imply (A1)-(A7). Thus, the assertion directly follows from

Theorem 4.1.

Next, we focus on the constant positive cholera-endemic steady state (CESS) of system (5.1).

We denote it by Q∗ := (S̄, Ī , P̄ ) ∈ X+, if it exists, it should satisfy the following equations:
0 = λ− f1(S̄, Ī)− f2(S̄, P̄ )− µS̄,
0 = f1(S̄, Ī) + f2(S̄, P̄ )− (µ+ γ)Ī ,

0 = mĪ − ηP̄ .
(5.5)
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The following lemma concerns with the existence of the CESS, Q∗.

Lemma 5.1. Suppose that (B1)-(B5) hold. If <(5.1)
0 > 1, then there exists at least one CESS

Q∗ = (S̄, Ī , P̄ ) ∈ X+ of system (5.1).

Proof. By the third equation of (5.5), we have P̄ = mĪ/η. Thus, (5.5) can be rewritten as

follows.  0 = λ− g(S̄, Ī)− µS̄,
0 = g(S̄, Ī)− (µ+ γ)Ī ,

(5.6)

where g(S̄, Ī) = f1(S̄, Ī) + f2(S̄,mĪ/η). Similar to the argument in [28, Proof of Theorem 3.1],

we then see that the CESS Q∗ exists if

<1
0 := lim

I→0

g(S0, I)

g(S̄, I)
=
∂g(S0, 0)

∂I

1

µ+ γ
=
∂f1(S0, 0)

∂I

1

µ+ γ
+
∂f2(S0, 0)

∂P

m

η(µ+ γ)
> 1. (5.7)

If ∂f1(S0, 0)/∂I(µ + γ)−1 ≥ 2, then both of <(5.1)
0 and <1

0 are greater than 1 and the CESS Q∗

exists. If ∂f1(S0, 0)/∂I(µ + γ)−1 < 2, then we see by a simple calculation that <(5.1)
0 > 1 is

equivalent to <1
0 > 1. Thus, the CESS Q∗ exists. This completes the proof.

As shown in the above proof, we can regard <1
0 as the threshold value instead of <(5.1)

0 . Finally,

we aim to establish global stability results for CESS Q∗ by using Lyapunov functional. To this

end, we need the following additional assumption.

(B6) The following inequality holds for all S, P ≥ 0:(
f2(S̄, P̄ )

f2(S, P̄ )
− f1(S̄, Ī)

f1(S, Ī)

)(
1− f2(S, P )

f2(S̄, P̄ )

)
≤ 0. (5.8)

Note that (B6) is satisfied if the nonlinear incidence functions have separable forms as in Section

5.2. The following theorem concerns with the global asymptotic stability of the CESS.

Theorem 5.2. Suppose that (B1)-(B6) hold. If <1
0 > 1, then the CESS Q∗ =

(
S̄, Ī , P̄

)
∈ X+ of

system (5.1) with initial condition φ ∈ X0 is globally asymptotically stable.

Proof. We define

L1 [S, I, P ] (t) :=

∫
Ω

U1 [S, I, P ] (x, t)dx,

where

U1 [S, I, P ] (x, t) := S − S̄ −
∫ S

S̄

f1(S̄, Ī)

f1(z, Ī)
dz + Īg

(
I

Ī

)
+
f2(S̄, P̄ )

mĪ
g

(
P

P̄

)
.

The partial derivative of U1 [S, I, P ] with respect to t satisfies

∂U1

∂t
=

(
1− f1(S̄, Ī)

f1(S, Ī)

)
∂S

∂t
+

(
1− Ī

I

)
∂I

∂t
+
f2(S̄, P̄ )

mĪ

(
1− P̄

P

)
∂P

∂t
.
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Directly computing the derivative of L1 gives

∂L1

∂t
=

∫
Ω

{(
1− f1(S̄, Ī)

f1(S, Ī)

)
d14S +

(
1− Ī

I

)
d24I +

f2(S̄, P̄ )

mĪ

(
1− P̄

P

)
d34P

}
dx

+

∫
Ω

G1(t, x, S, I, P )dx,

where

G1(t, x, S, I, P ) = µS̄

(
1− f1(S̄, Ī)

f1(S, Ī)

)(
1− S

S̄

)
+ f1(S̄, Ī)

(
1− f1(S̄, Ī)

f1(S, Ī)
+
f1(S, I)

f1(S, Ī)
− Īf1(S, I)

If1(S̄, Ī)
+ 1− I

Ī

)
+ f2(S̄, P̄ )

(
1− f1(S̄, Ī)

f1(S, Ī)
+
f1(S̄, Ī)f2(S, P )

f1(S, Ī)f2(S̄, P̄ )
− Īf2(S, P )

If2(S̄, P̄ )
+ 1− I

Ī

)
+ f2(S̄, P̄ )

(
I

Ī
− IP̄

ĪP
− P

P̄
+ 1

)
= µS̄

(
1− f1(S̄, Ī)

f1(S, Ī)

)(
1− S

S̄

)
+ f1(S̄, Ī)

(
3− f1(S̄, Ī)

f1(S, Ī)
− Īf1(S, I)

If1(S̄, Ī)
− If1(S, Ī)

Īf1(S, I)

)
+ f1(S̄, Ī)

(
− 1 +

f1(S, I)

f1(S, Ī)
− I

Ī
+
If1(S, Ī)

Īf1(S, I)

)
+ f2(S̄, P̄ )

(
4− f2(S̄, P̄ )

f2(S, P̄ )
− Īf2(S, P )

If2(S̄, P̄ )
− IP̄

ĪP
− Pf2(S, P̄ )

P̄ f2(S, P )

)
+ f2(S̄, P̄ )

(
− 1 +

f2(S, P )

f2(S, P̄ )
− P

P̄
+
Pf2(S, P̄ )

P̄ f2(S, P )

)
+ f2(S̄, P̄ )

(
− f1(S̄, Ī)

f1(S, Ī)
+
f1(S̄, Ī)f2(S, P )

f1(S, Ī)f2(S̄, P̄ )
− f2(S, P )

f2(S, P̄ )
+
f2(S̄, P̄ )

f2(S, P̄ )

)
.

Using the arithmetic-geometric mean and the monotonicity of the function f1(S, I) with respect
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to S (see assumption (B5)), we have

G1(t, x, S, I, P ) ≤ f1(S̄, Ī)

(
− 1 +

f1(S, I)

f1(S, Ī)
− I

Ī
+
If1(S, Ī)

Īf1(S, I)

)
+ f2(S̄, P̄ )

(
− 1 +

f2(S, P )

f2(S, P̄ )
− P

P̄
+
Pf2(S, P̄ )

P̄ f2(S, P )

)
+ f2(S̄, P̄ )

(
− f1(S̄, Ī)

f1(S, Ī)
+
f1(S̄, Ī)f2(S, P )

f1(S, Ī)f2(S̄, P̄ )
− f2(S, P )

f2(S, P̄ )
+
f2(S̄, P̄ )

f2(S, P̄ )

)
= f1(S̄, Ī)

(
I

Ī
− f1(S, I)

f1(S, Ī)

)(
f1(S, Ī)

f1(S, I)
− 1

)
+ f2(S̄, P̄ )

(
P

P̄
− f2(S, P )

f2(S, P̄ )

)(
f2(S, P̄ )

f2(S, P )
− 1

)
+ f2(S̄, P̄ )

(
f2(S̄, P̄ )

f2(S, P̄ )
− f1(S̄, Ī)

f1(S, Ī)

)(
1− f2(S, P )

f2(S̄, P̄ )

)
.

Under the assumption (B4), we can conclude that I/Ī ≤ f1(S, I)/f1(S, Ī) ≤ 1 for 0 < I ≤ Ī,

and 1 ≤ f1(S, I)/f1(S, Ī) ≤ I/Ī for I > Ī. In a similar way, we can obtain similar inequalities

for f2(S, P ). Further from assumption (B6), we have the following inequality.

∂L1

∂t
≤
(

1− f1(S̄, Ī)

f1(S, Ī)

)
d14S +

(
1− Ī

I

)
d24I +

f2(S̄, P̄ )

mĪ

(
1− P̄

P

)
d34P

}
dx

= −
[
d1f1(S̄, Ī)

∫
Ω

∂f1(S,Ī)
∂S

|∇S|2
(f1(S, Ī))2

dx+ d2Ī

∫
Ω

|∇I|2
I2

dx+ d3
f2(S̄, P̄ )P̄

mĪ

∫
Ω

|∇P |2
P 2

dx

]
≤ 0.

Therefore, L1 is a Lyapunov function for the system (5.1). Obviously, ∂L1/∂t = 0 if and only if

(S, I, P ) = (S̄, Ī , P̄ ).

By using some standard arguments, we can see that

(S(x, t), I(x, t), P (x, t))→ (S̄, Ī , P̄ ) in [L2(Ω)]2, as t→∞.

Recall that ‖S(·, t)‖L∞ , ‖I(·, t)‖L∞ and ‖P (·, t)‖L∞ are bounded due to Theorem 2.1. Hence

by [31, Theorem A2], for some positive constant C0, we have

‖S(·, t)‖C2(Ω̄) + ‖I(·, t)‖C2(Ω̄) + ‖P (·, t)‖C2(Ω̄) ≤ C0.

Hence, the Sobolev embedding theorem allows one to claim

(S(x, t), I(x, t), P (x, t))→ (S̄, Ī , P̄ ) in [L∞(Ω)]2, as t→∞.

We can use LaSalle’s invariance principle to show that the system (5.1) admits a connected global

attractor on X+ and

lim
t→∞

(S(·, t), I(·, t), P (·, t)) =
(
S̄, Ī , P̄

)
.

That is, Q∗ is globally asymptotically stable for (5.1). This completes the proof.
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5.2 Nonlinear incidence functions with φ(S)ϕ(I) and φ(S)ψ(P )

In this subsection, we consider nonlinear incidence functions with φ(S)ϕ(I) and φ(S)ψ(P )

that is commonly used in previous literature [13,28,32,33].

Under the assumptions (B1) and (B2), we consider the following model.

∂S

∂t
= d1∆S + λ− φ(S)ϕ(I)− φ(S)ψ(P )− µS, x ∈ Ω, t > 0,

∂I

∂t
= d2∆I + φ(S)ϕ(I) + φ(S)ψ(P )− (µ+ γ)I, x ∈ Ω, t > 0,

∂P

∂t
= d3∆P +mI − ηP, x ∈ Ω, t > 0,

(5.9)

with the same initial and boundary conditions as in model (5.1). We further give the additional

assumptions on φ(S) and ϕ(I).

(B3’) All nonnegative functions φ(·), ϕ(·) and ψ(·) only vanish at 0.

(B4’) φ(·), ϕ(·) and ψ(·) are monotone non-decreasing with respect to S, I, P ≥ 0.

(B5’) ∂2ϕ(I)/∂I2 ≤ 0 and ∂2ψ(P )/∂P 2 ≤ 0 for all I, P ≥ 0.

Clearly, system (5.9) has the CFSS Q0 = (S0, 0, 0), where S0 = λ/µ. Similar arguments as

in subsection 5.1, we define

<(5.9)
0 =

1

2

φ(S0)
∂ϕ(0)

∂I

1

µ+ γ
+

√(
φ(S0)

∂ϕ(0)

∂I

1

µ+ γ

)2

+ 4φ(S0)
∂ψ(0)

∂P

m

η(µ+ γ)

 . (5.10)

We set

<2
0 = φ(S0)

∂ϕ(0)

∂I

1

µ+ γ
+ φ(S0)

∂ψ(0)

∂P

m

η(µ+ γ)
.

Note that <2
0 > 1 is equivalent to <(5.9)

0 > 1. We have the following result.

Lemma 5.2. Suppose that (B1)-(B2) and (B3’)-(B5’) hold. If <2
0 < 1, then the CFSS Q0 =

(S0, 0, 0) = (λ/µ, 0, 0) ∈ X+ of system (5.9) is globally asymptotically stable; If <0 > 1, then

there exists at least one CESS Q∗ = (S̄, Ī , P̄ ) ∈ X+ of system (5.9).

Theorem 5.3. Suppose that (B1)-(B2) and (B3’)-(B5’) hold. If <2
0 > 1, then the CESS Q∗ =(

S̄, Ī , P̄
)
∈ X+ of system (5.9) with initial condition φ ∈ X0 is globally asymptotically stable.

Proof. Note that the steady state of the system (5.9) satisfies the following equations:
λ = φ(S̄)ϕ(Ī) + φ(S̄)ψ(P̄ ) + µS̄,
(µ+ γ)Ī = φ(S̄)ϕ(Ī) + φ(S̄)ψ(P̄ ),
mĪ = ηP̄ .

(5.11)
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We define

L2 [S, I, P ] (t) :=

∫
Ω

U2 [S, I, P ] (x, t)dx,

where

U2 [S, I, P ] (x, t) :=

∫ S

S̄

φ(z)− φ(S̄)

φ(z)
dz + Īg

(
I

Ī

)
+
φ(S̄)ψ(P̄ )

mĪ
g

(
P

P̄

)
.

The partial derivative of U2 [S, I, P ] with respect to t satisfies

∂U2

∂t
=

(
1− φ(S̄)

φ(S)

)
∂S

∂t
+

(
1− Ī

I

)
∂I

∂t
+
φ(S̄)ψ(P̄ )

mĪ

(
1− P̄

P

)
∂P

∂t
.

Directly computing the derivative of L2 gives

∂L2

∂t
=

∫
Ω

{(
1− φ(S̄)

φ(S)

)
d14S +

(
1− Ī

I

)
d24I +

φ(S̄)ψ(P̄ )

mĪ

(
1− P̄

P

)
d34P

}
dx

+

∫
Ω

G2(t, x, S, I, P )dx,

where

G2(t, x, S, I, P ) = µS̄

(
1− φ(S̄)

φ(S)

)(
1− S

S̄

)
+ φ(S̄)ϕ(Ī)

(
1− φ(S̄)

φ(S)
+
ϕ(I)

ϕ(Ī)
− Īφ(S)ϕ(I)

Iφ(S̄)ϕ(Ī)
+ 1− I

Ī

)
+ φ(S̄)ψ(P̄ )

(
1− φ(S̄)

φ(S)
+
ψ(P )

ψ(P̄ )
− Īφ(S)ψ(P )

Iφ(S̄)ψ(P̄ )
+ 1− I

Ī

)
+ φ(S̄)ψ(P̄ )

(
I

Ī
− IP̄

ĪP
− P

P̄
+ 1

)
= µS̄

(
1− φ(S̄)

φ(S)

)(
1− S

S̄

)
+ φ(S̄)ϕ(Ī)

(
3− φ(S̄)

φ(S)
− Īφ(S)ϕ(I)

Iφ(S̄)ϕ(Ī)
− Iϕ(Ī)

Īϕ(I)

)
+ φ(S̄)ϕ(Ī)

(
− 1 +

ϕ(I)

ϕ(Ī)
− I

Ī
+
Iϕ(Ī)

Īϕ(I)

)
+ φ(S̄)ψ(P̄ )

(
4− φ(S̄)

φ(S)
− Īφ(S)ψ(P )

Iφ(S̄)ψ(P̄ )
− IP̄

ĪP
− Pψ(P̄ )

P̄ψ(P )

)
+ φ(S̄)ψ(P̄ )

(
− 1 +

ψ(P )

ψ(P̄ )
− P

P̄
+
Pψ(P̄ )

P̄ψ(P )

)
.

Using the arithmetic-geometric mean and the monotonicity of the function φ(S) with respect to
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S (see assumption (B4’)), we have

G2(t, x, S, I, P ) ≤ φ(S̄)ϕ(Ī)

(
− 1 +

ϕ(I)

ϕ(Ī)
− I

Ī
+
Iϕ(Ī)

Īϕ(I)

)
+ φ(S̄)ψ(P̄ )

(
− 1 +

ψ(P )

ψ(P̄ )
− P

P̄
+
Pψ(P̄ )

P̄ψ(P )

)
= φ(S̄)ϕ(Ī)

(
I

Ī
− ϕ(I)

ϕ(Ī)

)(
ϕ(Ī)

ϕ(I)
− 1

)
+ φ(S̄)ψ(P̄ )

(
P

P̄
− ψ(P )

ψ(P̄ )

)(
ψ(P̄ )

ψ(P )
− 1

)
.

From the concavity of the functions ϕ(I) and ψ(P ) with respect to I and P (see assumption

(B5’)), we have (
I

Ī
− ϕ(I)

ϕ(Ī)

)(
ϕ(Ī)

ϕ(I)
− 1

)
≤ 0, and

(
P

P̄
− ψ(P )

ψ(P̄ )

)(
ψ(P̄ )

ψ(P )
− 1

)
.

It follows that

∂L2

∂t
≤
(

1− φ(S̄)

φ(S)

)
d14S +

(
1− Ī

I

)
d24I +

φ(S̄)ψ(P̄ )

mĪ

(
1− P̄

P

)
d34P

}
dx

= −
[
d1φ(S̄)

∫
Ω

∂φ(S)
∂S
|∇S|2

φ(S)2
dx+ d2Ī

∫
Ω

|∇I|2
I2

dx+ d3
φ(S̄)ψ(P̄ )P̄

mĪ

∫
Ω

|∇P |2
P 2

dx

]
≤ 0.

Therefore, L2 is a Lyapunov function for the system (5.9). Similar arguments as in subsection

5.1, ∂L2/∂t = 0 if and only if (S, I, P ) = (S̄, Ī , P̄ ). We can use LaSalle’s invariance principle to

show that the system (5.9) admits a connected global attractor on X+ and

lim
t→∞

(S(·, t), I(·, t), P (·, t)) =
(
S̄, Ī , P̄

)
.

That is, Q∗ is globally asymptotically stable for (5.9). This completes the proof.

Remark 5.1. Note that the left expression in (5.8) becomes zero and thus (B6) automatically

holds in nonlinear incidence functions with φ(S)ϕ(I) and φ(S)ψ(P ).

5.3 Nonlinear incidence functions with β1SI and β2SP

In this subsection, we study the following model.

∂S

∂t
= d1∆S + λ− β1SI − β2SP − µS, x ∈ Ω, t > 0,

∂I

∂t
= d2∆I + β1SI + β2SP − (µ+ γ)I, x ∈ Ω, t > 0,

∂P

∂t
= d3∆P +mI − ηP, x ∈ Ω, t > 0,

(5.12)
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with the same initial and boundary conditions as in model (5.1). Clearly, system (5.12) has the

CFSS Q0 = (S0, 0, 0), where S0 = λ/µ. The basic reproduction number is given by

<(5.12)
0 =

1

2

 β1S
0

µ+ γ
+

√(
β1S0

µ+ γ

)2

+ 4
m

η

β2S0

µ+ γ

 . (5.13)

As in the previous subsections, we see that <(5.12)
0 > 1 if and only if <3

0 > 1, where

<3
0 =

β1S
0

µ+ γ
+

β2S
0m

η(µ+ γ)
. (5.14)

If <3
0 > 1, then the unique Q∗ takes the following form

Q∗ =

(
µ+ γ

β1 + β2m/η
,

µ

β1 + β2m/η
(<3

0 − 1),
mµ

η(β1 + β2m/η)
(<3

0 − 1)

)
.

Lemma 5.3. If <3
0 < 1, the CFSS Q0 = (S0, 0, 0) = (λ/µ, 0, 0) ∈ X+ of system (5.12) is globally

asymptotically stable; If <3
0 > 1, then there exists at least one CESS Q∗ = (S̄, Ī , P̄ ) ∈ X+ of

system (5.12).

Theorem 5.4. If <3
0 > 1, then the CESS Q∗ =

(
S̄, Ī , P̄

)
∈ X+ of system (5.12) with initial

condition φ ∈ X0 is globally asymptotically stable.

Proof. We define

L3 [S, I, P ] (t) :=

∫
Ω

U3 [S, I, P ] (x, t)dx,

where

U3 [S, I, P ] (x, t) := S̄g

(
S

S̄

)
+ Īg

(
I

Ī

)
+
β2S̄P̄

mĪ
g

(
P

P̄

)
.

The partial derivative of U3 [S, I, P ] with respect to t satisfies

∂U3

∂t
=

(
1− S̄

S

)
∂S

∂t
+

(
1− Ī

I

)
∂I

∂t
+
β2S̄P̄

mĪ

(
1− P̄

P

)
∂P

∂t
.

Directly computing the derivative of L3 gives

∂L3

∂t
=

∫
Ω

{(
1− S̄

S

)
d4S +

(
1− Ī

I

)
d4I +

β2S̄P̄

mĪ

(
1− P̄

P

)
d4P

}
dx

+

∫
Ω

G1(t, x, S, I, P )dx,
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where

G1(t, x, S, I, P ) = µS̄

(
2− S̄

S
− S

S̄

)
+ β1S̄Ī

(
1− S̄

S
+
I

Ī
− S

S̄
+ 1− I

Ī

)
+ β2S̄P̄

(
1− S̄

S
+
P

P̄
− ĪSP

IS̄P̄
+ 1− I

Ī

)
+ β2S̄P̄

(
I

Ī
− P̄ I

P Ī
− P

P̄
+ 1

)
=

(
µS̄ + β1S̄Ī

)(
2− S̄

S
− S

S̄

)
+ β2S̄P̄

(
3− S̄

S
− ĪSP

IS̄P̄
− P̄ I

P Ī

)
.

Using the arithmetic-geometric mean, the following inequality holds,

∂L1

∂t
≤
∫

Ω

{(
1− S̄

S

)
d4S +

(
1− Ī

I

)
d4I +

β2S̄P̄

mĪ

(
1− P̄

P

)
d4P

}
dx

= − d
[
S̄

∫
Ω

|∇S|2
S2

dx+ Ī

∫
Ω

|∇I|2
I2

dx+
β2S̄(P̄ )2

mĪ

∫
Ω

|∇P |2
P 2

dx

]
≤ 0.

Therefore, L3 is a Lyapunov function for the system (5.12). Similar arguments as in subsection

5.1, ∂L3/∂t = 0 if and only if (S, I, P ) = (S̄, Ī , P̄ ). We can use LaSalle’s invariance principle to

show that the system (5.12) admits a connected global attractor on X+ and

lim
t→∞

(S(·, t), I(·, t), P (·, t)) =
(
S̄, Ī , P̄

)
.

That is, Q∗ is globally asymptotically stable for (5.12). This completes the proof.

Remark 5.2. Note that all assumptions on nonlinear incidence functions are satisfied with

bilinear incidence function. In fact, incidence functions that are commonly used in the literature

satisfy assumptions in subsection 5.1 and 5.2, including, for example, saturating incidence for

the direct or indirect transmission.

Remark 5.3. We set some assumptions on nonlinear incidence functions in subsection 5.1 and

5.2. The main reason lies in that these assumption must ensure that the existence of endemic

equilibrium. On the other hand, these condition are all sufficient condition to establish global

stability results, under which oscillations are excluded.

Remark 5.4. Note that if we let (S(x, t), I(x, t), P (x, t)) represent the concentrations of healthy

cells (CD4 T cells), infected cells and virions at time t in location x, respectively, then model

(5.12) is the one studied in [21] except for the diffusion parameters, which studied a diffusive

within-host HIV model with virus-to-cell and cell-to-cell transmission mechanism. The global
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stability of unique positive constant steady state is proved by using the similar Lyapunov func-

tional. Further, if diffusion parameters are all spatially homogeneous, then section 3 studied

in [21] remains hold for our model (5.12), that is, the conditions of existence and nonexistence

of the traveling wave solutions are also needed for (5.12).

6 Numerical simulation

In this section, we perform numerical simulation that supports our theoretical results. For

the sake of simplicity, we restrict our attention to the spacially 1-dimensional case: Ω ⊂ R. In

what follows, we fix the following parameters.
λ = 1 [N ], µ = 1 [T−1], γ = 10 [T−1], m = 10 [N−1T−1], η = 20 [T−1], Ω = (0, 20),

d := d1 = d2 = d3 > 0,

S0(x) = 1− I0(x), I0(x) = 0.01e−(x−10)2 , P0(x) = 0, x ∈ [0, 20].

(6.1)

where N and T denote the unit population and the unit time, respectively. It is obvious that

assumptions (A1) and (A2) are satisfied. Although these parameters are not based on any

obserbed data, a rough biological justification is as follows: the total population λ/µ is normalized

as 1; the average infectious period 1/γ is 1/10 times shorter than the average life span 1/µ; m = 10

number of cholera bacteria are produced by one infective population per unit of time; the average

life span 1/η of bacteria is 1/20 times shorter than the average life span of human. We further

assume the saturated incidence functions:

f1(x, S, I) =
β1(x)SI

1 + I
, f2(x, S, P ) =

β2(x)SP

1 + P
, (6.2)

where βi(·) ∈ C2(Ω), i = 1, 2 are strictly positive and uniformly bounded on Ω. As stated in

(4.4), assumptions (A3)-(A9) are satisfied in this case.

6.1 The spatially homogeneous case

First, we consider the spatially homogeneous case: βi(x) ≡ βi > 0, i = 1, 2. We can easily

check that all assumptions needed in the previous section are satisfied. <0 can be computed by

(5.13).

For (d, β1, β2) = (1, 3, 15), we obtain <0 ≈ 0.9733 < 1. Thus, we see from Theorem 5.1

that the CFSS Q0 = (S0, 0, 0) = (1, 0, 0) ∈ X+ is globally asymptotically stable. In fact, we can

observe in Fig. 2 that the density of infected individuals I(x, t) converges to zero as time evolves.

For (d, β1, β2) = (1, 5, 15), we obtain <0 ≈ 1.0837 > 1. Thus, we see from Theorem 5.2 that

the CESS Q∗ =
(
S̄, Ī , P̄

)
∈ X+ is globally asymptotically stable. In fact, we can observe in Fig.
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Fig. 2.Time evolution of I(x, t) of system (5.1) with (6.1)-(6.2) for (d, β1, β2) = (1, 3, 15) (<0 ≈ 0.9733 < 1).
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Fig. 3.Time evolution of I(x, t) of system (5.1) with (6.1)-(6.2) for (d, β1, β2) = (1, 5, 15) (<0 ≈ 1.0837 > 1).

3 that the density of infected individuals I(x, t) converges to a positive constant distribution as

time evolves.

As shown in Section 5, the constant CESS Q∗ = (S̄, Ī , P̄ ) and the basic reproduction number

<0 are independent from the diffusion coefficients. Fig. 4 shows that the diffusion coefficient d

only affects the convergence speed of the solution to the CESS. More specifically, the convergence

speed becomes larger as the diffusion coefficient d becomes larger (see Fig. 4).

6.2 The spatially heterogeneous case

Next, we consider the spatially heterogeneous case. We assume (6.1) and (6.2) with

β1(x) = β1

(
1 + 0.05 sin

13πx

20

)
, β2(x) = β2

(
1 + 0.05 sin

13πx

20

)
, x ∈ [0, 20], (6.3)

where β1 > 0 and β2 > 0 are positive constants. It is easy to check that all assumptions needed

in the previous sections are satisfied. In this case, the next generation operator K is given by,

for ψ = (ψ1, ψ2) ∈ Y and x ∈ [0, 20],

Kψ(x) =

∫ +∞

0

∫ 20

0

(
β1(x) β2(x)
m(x) 0

)(
Γ(t, x, y)e−(µ+γ)t 0

0 Γ(t, x, y)e−ηt

)(
ψ1(y)
ψ2(y)

)
dy dt,
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(a) d = 1. (b) d = 0.01.

Fig. 4.Time evolution of I(x, t) of system (5.1) with (6.1)-(6.2) for (β1, β2) = (5, 15) (<0 ≈ 1.0837 > 1). (a) d = 1;
(b) d = 0.01.
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Fig. 5.Time evolution of I(x, t) of system (1.3)-(1.4) with (6.1)-(6.3) for (d, β1, β2) = (1, 3, 15) (<0 ≈ 0.9789 < 1).

where

Γ(t, x, y) =
1

20
+

1

10

+∞∑
n=1

cos
nπx

20
cos

nπy

20
e−d(

nπ
20 )

2
t, t > 0, x, y ∈ [0, 20]. (6.4)

In what follows, for the computation of <0 = r(K), we employ the Fredholm discretization

method to the integral operator K as in [34, Section 3.1.2].

For (d, β1, β2) = (1, 3, 15), we obtain <0 ≈ 0.9789 < 1. Thus, we see from Theorem 4.1

that the CFSS Q0 = (S0, 0, 0) = (1, 0, 0) ∈ X+ is globally asymptotically stable. In fact, we can

observe in Fig. 5 that the density of infected individuals I(x, t) converges to zero as time evolves.

For (d, β1, β2) = (1, 5, 15), we obtain <0 ≈ 1.0907 > 1. Thus, we see from Theorem 4.2

that the disease in system (1.3)-(1.4) is uniformly persistent. In fact, we can observe in Fig. 6

that the density of infected individuals I(x, t) is uniformly bounded below by a positive constant
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Fig. 6.Time evolution of I(x, t) of system (1.3)-(1.4) with (6.1)-(6.3) for (d, β1, β2) = (1, 5, 15) (<0 ≈ 1.0907 > 1).

(a) d = 1. (b) d = 0.01.

Fig. 7.Time evolution of I(x, t) of system (1.3)-(1.4) with (6.1)-(6.3) for (β1, β2) = (3.2, 15). (a) d = 1 (<0 ≈
0.9897 < 1); (b) d = 0.01 (<0 ≈ 1.0078 > 1).

for sufficiently large t. Moreover, we can see in the figure that I(x, t) converges to a spatially

heterogeneous CESS as time evlolves.

In contrast with the spatially homogeneous case, the basic reproduction number <0 in this

case depends on the diffusion coefficient d. We see from (6.4) and the Krein-Rutman theorem

[23, Theorem 3.2] that <0 is decreasing with respect to d. Thus, the CFSS Q0 can lose its

stability if the diffusion coefficient d is small. For instance, for (d, β1, β2) = (1, 3.2, 15), we have

<0 ≈ 0.9897 < 1, and thus, the CFSS Q0 is globally asymptotically stable (Fig. 7 (a)). However,

if we change the value of d from 1 to 0.01, then we have <0 ≈ 1.0078 > 1, and thus, the disease

persists (Fig. 7 (b)).

Finally, we investigate the effect of the spatial heterogeneity on the basic reproduction number
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Fig. 8.The basic reproduction number <0 with (6.5) for 0 < c < 1 and (a) k = 1, (b) k = 3 and (c) k = 5.

<0. We use the following parameters.
λ = 1, µ = 1, γ = 10, m = 10, η = 20, Ω = (0, 1),

d = d1 = d2 = d3 = 1, f1(x, S, I) =
β1(x)SI

1 + I
, f2(x, S, P ) =

β2(x)SP

1 + P
,

β1(x) = 5 (1 + c cos kπx) , β2(x) = 15 (1 + c cos kπx) , x ∈ [0, 1],

(6.5)

where 0 < c < 1 and k ∈ N. The average values of β1(x) and β2(x) are
∫ 1

0
β1(x)dx = 5 and∫ 1

0
β2(x)dx = 15, respectively. Thus, we can regard c as the intensity of the spatial heterogeneity

(see also [22, Section 3.1]). For k = 1, we see from Fig. 8 (a) that <0 is monotone increasing

with respect to c. Thus, as claimed in [22], the spatial heterogeneity can enhance the disease

spread in this case. However, for k = 3 and k = 5, we see from Fig. 8 (b)-(c) that <0 is not

monotone increasing with respect to c. Thus, as opposed to the suggestion in [22], the spatial

heterogeneity does not always enhance the disease spread in these cases.

7 Discussion

It is widely known in current mathematical cholera studies that cholera transmission involves

both direct (i.e. human-to-human) and indirect (i.e. environment-to-human) routes. Thus,

multiple interactions among the human host, the pathogen, and the environment may affect

the cholera transmission. In an effort to gain deeper understanding of cholera dynamics, we

formulate and analyze a nonlinear reaction-diffusion model to capture the effect of movements

of human hosts and bacteria in a spatially heterogeneous environment.

For this mathematical model, we define the basic reproduction number, <0, which is char-

acterized as the spectral radius of the next generation operator. Mathematical results re-

veal that <0 = 1 serves a threshold. The disease will not die out if <0 < 1 and the dis-

ease persist if <0 > 1. Our results in Section 5 reveal some fundamental differences between

three types of nonlinear incidence function in such spatial models when constructing Lyapunov
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functionals. Under certain assumptions, it is shown that if <1
0,<2

0,<3
0 < 1, then the CFSS

Q0 = (S0, 0, 0) = (λ/µ, 0, 0) ∈ X+ of system (5.1), (5.9), (5.12) is globally asymptotically stable,

respectively. Whereas if <1
0,<2

0,<3
0 > 1, then the CESS Q∗ = (S̄, Ī , P̄ ) ∈ X+ of system (5.1),

(5.9), (5.12) is globally asymptotically stable, respectively.

Our results are established on some nonlinear restricts on incidence function for the direct or

indirect transmission. Assumptions (A1)-(A4) play a crucial role in proving that (1.3)-(1.4) has

a unique global classical solution, so that (1.3)-(1.4) generates a semiflow {Ψ(t)}t≥0 : X+ → X+

defined by Ψ(t)φ := u(t, φ), t ≥ 0. Under assumption (A5), the linear system (3.1) is cooperative

and irreducible, which also ensures that eigenvalue problem (3.2) admits a principal eigenvalue κ0,

associated with a strictly positive eigenvector (ϕ0, ψ0) ∈ Y+ from the Krein-Rutman theorem.

(A6)-(A8) demonstrate the monotonicity and concavity of the nonlinear incidence functions

f1(S̄, Ī) and f2(S̄, P̄ ) with respect to S, I, P ≥ 0, which play an important role in applying the

comparison principle. Further, (A9) is devoted to proving that the solution semiflow Ψ(t), t ≥ 0

is point dissipative. Based on this, semiflow Ψ(t) enjoys compactness (see Corollary 2.2) such

that Ψ(t), t ≥ 0 has a global attractor in X+. It is easy to see that (B1)-(B5) implies (A1)-(A8)

in the specially homogeneous case.

Our numerical results in subsection 6.1 reveal that CFSS Q0 and CESS Q∗ are globally asymp-

totically stable when basic reproduction number less and larger than 1, respectively. In Fig. 4,

we found that the convergence speed becomes faster as the diffusion coefficient d becomes larger,

although basic reproduction number <0 are independent it. In subsection 6.2, we investigate the

effect of spatial heterogeneity on disease dynamics. With strong contrast to subsection 6.1, basic

reproduction number depends on the diffusion coefficient (<0 is decreasing with respect to d).

Thus, form Theorems 4.1 and 4.2, we can conclude that cholera can not be controlled by limiting

the movement of host individuals. In Fig. 8 (a)-(c), we found that <0 is not always monotone

increasing with respect to c. Thus, as opposed to the suggestion in [22], the spatial heterogeneity

does not always enhance the disease spread in these cases.

We argue that, however, bilinear incidence function does not satisfy the assumption (A9). In

fact, individuals and cholera pathogen disperse at different rates, which further brings some new

challenges due to the unboundedness of the bilinear incidence function. We leave it as future

investigation.
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