

PDF issue: 2025-12-05

Mitochondrial DNA diversity and geographical distribution of sexual and asexual strains of the braconid parasitoid Meteorus pulchricornis

Fujie, Shunpei Wachi, Nakatada Umemoto, Hironobu Maeto, Kaoru

(Citation)

Entomologia Experimentalis et Applicata, 167(12):977-985

(Issue Date) 2019-12

(Resource Type) journal article

(Version)

Accepted Manuscript

(Rights)

© 2019 The Netherlands Entomological Society. This is the peer reviewed version of the following article: [Fujie, S., Wachi, N., Umemoto, H. and Maeto, K. (2019), Mitochondrial DNA diversity and geographical distribution of sexual and asexual strains of the braconid parasitoid Meteorus pulchricornis. Entomol Exp Appl, 167: 97... (URL)

https://hdl.handle.net/20.500.14094/90006628

Fujie, S., Wachi, N., Umemoto, H. and Maeto, K. (2019) Mitochondrial DNA

diversity and geographical distribution of sexual and asexual strains of the braconid parasitoid Meteorus pulchricornis. Entomologia Experimentalis et

Applicata 167(12): 977-985. DOI:10.1111/eea.12853

Mitochondrial DNA diversity and geographical distribution of

sexual and asexual strains of the braconid parasitoid Meteorus

pulchricornis

Shunpei Fujie^{1,2}, Nakatada Wachi³, Hironobu Umemoto¹ & Kaoru Maeto¹*

¹Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-

8501, Japan, ²Osaka Museum of Natural History, 1-23 Nagaikoen, Higashisumiyoshi, Osaka

546-0034, Japan, and ³Tropical Biosphere Research Center, University of the Ryukyus, 1

Senbaru, Nishihara, Okinawa 903-0213, Japan

Short title: *COI diversity of sexual and asexual braconids*

*Correspondence: Kaoru Maeto, Graduate School of Agricultural Science, Kobe University,

1-1 Rokkodai, Nada, Kobe 657-8501, Japan. E-mail: maeto@kobe-u.ac.jp

Key words: apomictic clone, arrhenotoky, COI, deuterotoky, Euphorinae, haplotype network,

Hymenoptera, Braconidae, Japanese islands, Spodoptera, thelytoky, uniparental reproduction

Accepted: 3 September 2019

1

Abstract

Asexuality is an important tool with regard to the use of parasitoid wasps as biocontrol agents. Asexual (apomictic thelytokous) strains of *Meteorus pulchricornis* (Wesmael) (Hymenoptera: Braconidae), a polyphagous endoparasitoid of lepidopteran larvae, are sympatric with sexual (arrhenotokous) strains in Japan. The results of phylogenetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) sequences indicated two major haplotype groups on the Japanese islands. The northern group I predominantly contained sexual strains, whereas the southern group II contained both sexual and asexual strains. Most asexual strains were likely derived within group II. An asexual strain recently established in New Zealand has the identical haplotype in Japan and was proven to have originated from East Asia. Three hypotheses on the evolution of asexuality are discussed for this parasitoid wasp, i.e., recessive gene, hybridization, and cytoplasmic element.

Introduction

Parasitoid wasps have been used as biological agents to regulate or control agricultural and forest pests. Further exploitation of parasitoid agents requires efficient mass propagation and a high population growth rate in the fields; thus, the reproductive modes of parasitoid wasps should be considered (e.g., Beukeboom & Zwaan, 2005; Tagami & Miura, 2007; Ye et al., 2018).

In sexual (biparental) reproduction of Hymenoptera, diploid females develop from fertilized eggs and haploid males from unfertilized eggs. Male-producing parthenogenesis is called arrhenotoky. Female-producing parthenogenesis, called thelytoky, results from asexual (uniparental) reproduction and is not uncommon among parasitoid wasps (Quicke, 1997, 2015). Asexual parasitoids are expected to be better biocontrol agents than sexual ones because they can be propagated at lower cost in mass rearing and reproduce more efficiently in the field (Stouthamer, 1993; Silva et al., 2000).

Thelytoky of parasitoid wasps is controlled by nuclear recessive genes (Sandrock & Vorburger, 2011), caused by bacterial infection (Stouthamer & Kazmer, 1994; Adachi-Hagimori et al., 2008), or due to hybridization (Vavre et al., 2004), but genetic relationships among sexual and asexual strains are still not well elucidated. When asexual populations are sympatric with conspecific sexual ones, there may be gene flow from sexual to asexual populations, as is known in many *Trichogramma* spp. (Stouthamer & Kazmer, 1994; Miura & Tagami, 2004) as well as in *Venturia canescens* (Gravenhorst) (Schneider et al., 2003), whereas some sexual and asexual populations may already be highly diversified, almost at the species level, as in the case of *Neochrysocharis formosa* (Westwood) (Adachi-Hagimori et al., 2011). Sexual and asexual populations of a common parasitoid of lepidopteran crop pests, *Meteorus pulchricornis* (Wesmael) (Hymenoptera: Braconidae), also coexist in Japan (Tsutsui et al. 2014), but their genetic differentiation has remained unexplained.

Meteorus pulchricornis is a polyphagous and koinobiont endoparasitoid of exposed lepidopteran larvae of species from the Papilionoidea, Pyraloidea, Noctuoidea, etc. (Maeto, 2018). It is distributed in the whole Palaearctic region, including Europe, China, Korea, and Japan (Marsh, 1979; Maeto, 1989; Chen & Wu, 2000; Stigenberg & Ronquist, 2011; Stigenberg & Shaw, 2013). In East Asia, it is a frequent parasitoid on species of Helicoverpa, Lymantria, Spodoptera, and other pest larvae (e.g., Marsh, 1979; Takashino et al., 1998; Nguyen et al., 2005; Liu & Li, 2006). Sexual strains and asexual strains are long known from Europe and East Asia, respectively (Marsh, 1979; Fuester et al., 1993; Mifsud et al., 2019), and an asexual population has been unintentionally introduced into New Zealand (Berry & Walker, 2004). Recently, Tsutsui et al. (2014) has found both sexual and asexual strains to be sympatric in Japan and demonstrated that the asexual strains are apomictic true clones (without meiosis) and not induced by any bacterial symbionts. However, the genetic relationships among sexual and asexual strains, as well as the origin and causal factor of their asexuality, are not understood.

As a first step in the investigation of the genetic structure of this parasitoid wasp *M. pulchricornis*, we examined the geographical distribution of sexual and asexual strains with analysis of mitochondrial cytochrome c oxidase subunit I (COI) gene fragment haplotypes on the Japanese islands, in order to understand the maternal origin of asexuality and possible reversion to sexual reproduction. An asexual strain found in New Zealand was also included in the analysis to know its relation to Japanese strains.

Materials and methods

Sampling regions and specimens

During 2001–2013, 115 individual wasps were collected from 21 regions (prefectures or islands) in Japan (Table S1). In the main study region Kagawa, Shikoku Island, most wasps were collected from soybean fields where *Spodoptera litura* (Fabricius) was abundant and regularly parasitized by *M. pulchricornis*. In other regions, wasps were collected from various environments (i.e., crop fields, woodlands, or their edges).

Male wasps were assigned to sexual (arrhenotokous and biparental) strains. Meanwhile, female wasps were fed a honey solution and reared on larvae of *S. litura* as host insects. Wasps and hosts were kept at 20–25 °C and L16:D8 photoperiod. If a female produced sons, or her daughters produced only sons without mating, she was classified as a sexual strain. If a female produced daughters that produced only daughters without mating, she was classified as an asexual (thelytokous and uniparental) strain. Only when a female produced sons as well as daughters without mating were their genotypes compared using the nuclear microsatellite (SSR) locus MP5230 (see the methods in Tsutsui et al., 2014). After confirming that the female and her daughters had the same diploid genotype and her sons had one of her alleles, she was regarded as having the property of partially sexual (deuterotokous) reproduction. For all other female wasps not producing offspring, the reproductive mode was regarded as unknown.

The original wasps or their offspring were killed and preserved in 99.5% ethanol and stored at -30 °C for later DNA analysis. Voucher specimens are deposited at the Osaka Museum of Natural History, Osaka, Japan.

DNA extraction and sequencing

DNA was extracted from a middle or hind leg of each specimen. The leg removed from an adult wasp was incubated with 20 μ l of 50 mM NaOH in a 0.2-ml tube at 95 °C for 15 min. The solution, mixed with 20 μ l of 0.2 mM Tris HCl (pH 8.0), was used as template for the PCR assay.

The mitochondrial gene fragment of COI (658 bp) was sequenced. The PCR primers used were LCO1490 (GGT CAA CAA ATC ATA AAG ATA TTG G) and HCO2198 (TAA ACT TCA GGG TGA CCA AAA AAT CA) designed by Folmer et al. (1994). PCR was conducted in a total volume of 25 µl containing 5 µl DNA template, 12.5 µl 2× KOD buffer, 5 µl dNTPs, 0.5 μl forward and reverse primers, 0.5 μl KOD FX NEO (Toyobo, Osaka, Japan), and 1 μl water. PCR products were purified with an Illustra GFX gel band purification column according to the manufacturer's instructions (GE Healthcare, Amersham, UK). The products were used as templates for direct sequencing. Direct sequencing reactions contained 2 µl of Big Dye direct-ready reaction buffer (Applied Biosystems, Foster City, CA, USA), 4 µl of dilution buffer, 4 pmoles of primer, and 150 ng of template in a final volume of 20 µl. Cycling conditions were 96 °C for 4 min, 25 cycles of [96 °C for 10 s, 48 °C for 5 s, and 60 °C for 4 min], and 60 °C for 7 min. Products were purified by alcohol precipitation, dissolved in 20 μl of template suppression reagent, and sequenced on an ABI 310 automated sequencer (Applied Biosystems). DNA sequences obtained were aligned with DNA Dynamo software (Blue Tractor Software, North Wales, UK). Sequence data were deposited in the database of DDBJ/EMBL/GenBank (Table S1).

Analyses of mitochondrial COI sequences

Haplotypes were defined based on the COI sequence data in DnaSP v.6.12.01 (Rozas et al., 2017), including those of two European specimens (accession numbers HQ263910 and HQ264010) collected in Sweden (Stigenberg & Ronquist, 2011).

For the sexual and asexual populations in the Kagawa region, the number of haplotypes, haplotype diversity (hd) (Nei, 1987), and nucleotide diversity (π) (Nei & Li, 1979) of each population, as well as the F_{ST} statistics (Hudson et al., 1992) between them, was estimated with DnaSP. Significance levels of the nearest-neighbor statistics (S_{nn}; Hudson, 2000) were computed by 1 000 permutation tests with DnaSP.

Neutrality test statistics, D (Tajima, 1989) and D*, F* (Fu & Li, 1993) were also estimated. To estimate the date of the population growth measured in units of mutational time ($\tau = 2\mu t$; t is the time in generations, and μ is the mutation rate per sequence and per generation) (Rogers & Harpending, 1992), the analyses of mismatch distribution were conducted as implemented in DnaSP. Effective population size after population growth (θ final) was regarded as infinite (Rogers, 1995). A 95% statistical parsimony network of COI haplotypes was constructed with TCS (Clement et al., 2000) implemented in PopART v.1.7 (Leigh & Bryant, 2015).

Phylogenetic tree analyses were performed with the methods of Bayesian inference (BI) (MrBayes v.3.2.7; Ronquist et al., 2012) and maximum-likelihood (ML) (RAxML; Stamatakis, 2006), including two sequences of *Meteorus* sp. (accession numbers LC495483 and LC495484) as an out-group. *Meteorus* sp. was an undescribed species most closely related to *M. pulchricornis* in Japan (S Fujie, unpubl.), from two female specimens of which DNA was extracted and COI gene fragment was sequenced as described above. For BI, the HKY+I+G model (Hasegawa et al., 1985) was selected as the best-fit substitution model of every codon position by MrModeltest v.2.3 (Nylander, 2004). Bayesian MCMC analyses were run for 2 million generations, sampling every 1 000 generations. The burn-in fraction was set

to 0.25 and the average standard deviation of split frequencies was 0.008. ML analysis was run in raxmlGUI v.1.3.1 (Silvestro & Michalak, 2012) based on the GTR+G model for 10 000 bootstrap replications. Mean genetic distances within and between major haplotype groups were calculated with the Kimura's two-parameter model (Kimura, 1980) in MEGA X (Kumar et al., 2018). Bootstrapped standard errors were obtained by 1 000 replications.

Three sequences of *M. pulchricornis* from the North Island of New Zealand (BOLD sequence ID: NZHYM680-11, NZHYM123-10, NZMG384-12) were compared with the haplotypes in Japan with MEGA X.

Results

Reproductive modes

Among 115 wasps of *M. pulchricornis* collected on the Japanese islands, 43 were assigned to be the sexual (biparental and arrhenotokous) strains, 30 were asexual (uniparental and thelytokous) strains, and one was a partially sexual (deuterotokous) strain (Table S1). In the last case (sample code KAGAWAT_11_26) found at Kagawa, a female produced daughters and a son without mating. The mother and two daughters had the same diploid genotype [fragment length = 189/191] and the son had one of the alleles [189] of the SSR locus MP2530, indicating that partial recovery of meiosis produced the male offspring whereas the daughters were apomictic clones (Tsutsui et al., 2014).

Haplotype diversity of the mitochondrial COI gene fragment

In total, 36 haplotypes were recognized from 117 COI sequences of *M. pulchricornis* based on 643 base pairs (Table S1). In the Kagawa region, the sexual and asexual populations, having 15 and six haplotypes, respectively, were significantly differentiated from each other in genetic structure (Table 1).

Although the estimates of Tajima's D were not significant, other neutrality statistics were

significantly negative for the asexual populations (Table 2), which suggests recent bottleneck and population expansion of asexual strains. This view was consistent with the lower estimates of expansion time (τ) from the mismatch distribution analyses in asexual populations than in sexual populations (Table 2).

Haplotype network

The parsimony networking indicated two major haplotype groups in Japan, groups I and II (Figure 1). One European haplotype (36) belonged to group I but another one (35) was an isolate. Within group I several small radiations of haplotypes became reticulated, whereas the haplotypes of group II were connected in a rather linear fashion.

Regarding the reproductive mode, the members of group I were sexual except for one asexual specimen bearing haplotype 13, whereas the members of group II contained sexual and asexual specimens (Figure 1). Within group II, sexual specimens bore haplotype 15, 24, or 32, and asexual specimens bore haplotype 24, 6, 3, or its relatives (4, 8, 9, 14, 21). Both sexual and asexual specimens shared haplotype 24. A partially sexual (deuterotokous) specimen shared haplotype 21 with asexual specimens (Figure 1).

Phylogenetic tree

The monophyly of group I was supported by BI (PP = 0.81) and ML (BP = 57%) and it was a bit more firmly supported by BI (PP = 0.97) and ML (BP = 61%) excluding European haplotype 36 (Figure 2). The monophyly of group II was supported by BI (PP = 1.00) and ML (BP = 70%) (Figure 2). Most asexual haplotypes of group II (haplotype 3, 4, 6, 8, 9, 14, and 21) were closely clumped in the same way as in the haplotype network (Figure 1), whereas the monophyly of the assemblage was not definitely supported (Figure 2). Phylogenetic position of the European haplotype 35 was unsolved.

Mean (\pm SE) genetic distances within groups I and II were 0.0062 \pm 0.0015 and 0.0081 \pm

0.0020, respectively, whereas the mean genetic distance between the two groups was 0.0246 ± 0.0050 . All three sequences recorded from New Zealand were completely identical to haplotype 3 of group II.

Geographical distribution

The specimens of group I were collected on the northern islands, i.e., Hokkaido, Honshu, and Shikoku (Figure 3A), whereas those of group II were collected in the southern part of Honshu, Tsushima, Shikoku, Kyushu, the Ryukyu Islands, and Ogasawara (Figure 3B). The distribution range of the two haplotype groups overlapped each other in the southern part of Honshu and Shikoku, where asexual haplotypes were found. Three major haplotypes of group II (3, 4, and 21), containing a large proportion of asexual specimens (Figure 1), were widely distributed in southern Honshu, Shikoku, Tsushima, Kyushu, and Ogasawara (Figure 3B). Though the reproductive mode of the two most derived haplotypes of group II (33 and 34) was unknown (Figure 1), each was collected on the southernmost islands, Iriomote and Yonaguni (Figure 3B).

Discussion

Two mitochondrial haplotype groups of *M. pulchricornis* are present on the Japanese islands, i.e., the northern group I and southern group II, with the distributional ranges overlapping in the middle of the islands. Group I contained predominantly sexual haplotypes, with only a single case of asexuality, whereas group II contained both sexual and asexual haplotypes. The majority of the asexual strains were likely derived within group II. An asexual strain recently established in New Zealand (Berry & Walker, 2004) bearing haplotype 3 of group II has undoubtedly come from East Asia.

No clear evidence of reversion to sexual reproduction is indicated within group II, but the presence of partially sexual reproduction (deuterotoky) producing both daughters and sons

without mating is suggested, although the sons' fertility remains unknown. In addition to the long-sustained asexual lineage of group II, another strain of asexuality in group I (haplotype 13) is suggested. These rare but interesting cases should be confirmed and elucidated in further studies. Besides multiple occurrence of asexuality, partially sexual reproduction, and recovered sexuality, mitochondrial introgression between strains may be also considered, as it is not uncommon in insects (Toews & Brelsford, 2012).

As shown in the results, the genetic divergence of the mitochondrial COI gene between groups I and II was approximately 2.5%. Estimated divergence rates of the COI gene in insects range from 1.5 to 3.6% Myr⁻¹ (Brower, 1994; Farrell, 2001; Papadopoulou et al., 2010). Therefore, the divergence of groups I and II likely dates back to approximately 0.8-0.3 Myr, in the middle of Pleistocene epoch. During and after this period, the Japanese islands were intermittently connected to the Asian continent and insects could come and go on several land bridge routes between them (Sakurai et al., 2009; Ito et al., 2015; Tojo et al., 2017). The origin and evolution of asexual strains during this time probably occurred not only within the Japanese islands, but in the whole of East Asia. Negative neutrality test statistics may indicate recent expansion of asexual populations. This may be due to the late immigration of asexual populations after previous establishment of sexual populations in the Japanese islands.

Three hypotheses for the evolution of asexuality – i.e., the recessive gene hypothesis, the hybridization hypothesis, and the cytoplasmic element hypothesis – are considered for this species. First, the recessive gene hypothesis explains that asexuality is induced by the homozygous state of nuclear recessive genes ordinarily masked in sexual populations. This is the case of automictic thelytoky in *Apis mellifera capensis* Eschscholtz (Lattorff et al., 2005), *Lysiphlebus fabarum* (Marshall) (Sandrock & Vorburger 2011), and probably also in *V. canescens* (Beukeboom & Pijnacker, 2000; Schneider et al., 2003; Mateo Leach et al., 2009). This process seems less likely for *M. pulchricornis* because most asexual specimens are virtually confined to a single and exclusively asexual mitochondrial lineage; however, some

exceptional observations of asexual specimens (in haplotypes 13 and 24) might suggest multiple occurrences of thelytoky by homozygous recessive alleles. Second, the hybridization hypothesis explains that an asexual strain without meiosis is accidentally born by the crossing of distantly related strains, for example, in the case of apomictic thelytoky of *Trichogramma* cacoeciae Marchal (Vavre et al., 2004). This may be likely for the apomictic thelytoky of M. pulchricornis (Tsutsui et al., 2014), because the northern and southern lineages of sexual haplotypes are touching in the distribution range of asexual haplotypes. Third, the cytoplasmic element hypothesis explains that asexuality is induced by cytoplasmic factors. For example, bacterial symbionts such as Wolbachia and Rickettsia are known to induce automictic or apomictic thelytoky in micro-hymenopterans (e.g., Stouthamer & Kazmer, 1994; Tagami & Miura, 2007; Adachi-Hagimori et al., 2008) and in the braconid Asobara japonica Belokobylskij (Kremer et al., 2009). Bacteria-induced thelytoky is unlikely for M. pulchricornis, because PCR assay with bacterial universal primers was negative and treatment with an antibacterial agent for several generations did not produce any male offspring (Tsutsui et al., 2014). However, other cytoplasmic elements, such as viruses, might contribute to the thelytoky of this species. A recent study of the thelytokous species Dinocampus coccinellae (Schrank) of the braconid subfamily Euphorinae, to which *M. pulchricornis* also belongs, suggested an RNA virus drives the manipulation of the host beetle behavior (Dheilly et al., 2015).

The present study, indicating a long-sustained maternal lineage of asexuality in *M*. *pulchricornis*, may possibly support the hybridization hypothesis or the cytoplasmic element hypothesis, rather than the recessive gene hypothesis. Nevertheless, experimental crossing between sexual strains and nuclear genetic analyses of sexual and asexual strains will aid in better understanding the origin and evolution of asexual strains.

Introduction of sexual strains of *M. pulchricornis* from Europe to North America as biocontrol agent against the gypsy moth resulted in failure (Fusco, 1981). However, this

species is a common polyphagous parasitoid of exposed lepidopteran larvae, including crop pests such as *Helicoverpa*, *Spodoptera*, and *Orgyia* (Maeto, 2018). Its genetic variation, especially among asexual strains, is of high interest for future efficient use as biocontrol agents. Although asexual strains are known to be apomictic clones (Tsutsui et al., 2014), they show marked genetic differentiation. For example, the reaction norms of body coloration (melanism) to cocoon temperature are markedly different among asexual strains (Abe et al., 2013). Such genetic differentiation has possibly occurred within each strain, but the present observation of deuterotoky may also suggest the occasional break of asexuality (due to the partial recovery of meiosis) and possible bidirectional gene flow between sexual and asexual strains. Genome-wide analyses of genetic differentiation using methods such as RAD-seq or MIG-seq (Wachi et al., 2018) will aid in identifying the pattern of gene flow among strains with different reproductive modes.

Acknowledgements

We cordially thank Yosuke Abe, Eiko Arai, Sho Furue, Masaru Hondo, Maki Inoue, Masato Ito, Rikio Matsumoto, Madoka Nakai, Yutaka Nakamatsu, Makoto Nishimura, Kentaro Tsujii, Yoko Tsutsui, Kyohei Watanabe, and Masaya Yago for kindly offering sample wasps. We also thank Shinji Sugiura for providing a photo of *M. pulchricornis*. Our sincere thanks are also due to Makio Takeda, Katsuhiko Sakamoto, and Yasuoki Takami (Kobe University) for accommodating us in their laboratories. This study was supported in part by a grant from JSPS KAKENHI (no. 17K19268) to KM and NW.

References

Abe Y, Nishimura T & Maeto K (2013) Causes of polymorphic melanism and its thermoregulatory function in a parasitoid wasp *Meteorus pulchricornis* (Hymenoptera: Braconidae). European Journal of Entomology 110: 627-632.

- Adachi-Hagimori T, Miura K & Stouthamer R (2008) A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. Proceedings of the Royal Society B 275: 2667-2673.
- Adachi-Hagimori T, Miura K & Abe Y (2011) Gene flow between sexual and asexual strains of parasitic wasps: a possible case of sympatric speciation caused by a parthenogenesis-inducing bacterium. Journal of Evolutionary Biology 24: 1254-1262.
- Berry JA & Walker GP (2004) *Meteorus pulchricornis* (Wesmael) (Hymenoptera: Braconidae: Euphorinae): an exotic polyphagous parasitoid in New Zealand. New Zealand Journal of Zoology 31: 33-44.
- Beukeboom LW & Pijnacker LP (2000) Automictic parthenogenesis in the parasitoid *Venturia* canescens (Hymenoptera: Ichneumonidae) revisited. Genome 43: 939-944.
- Beukeboom LW & Zwaan BJ (2005) Genetics. Insects as Natural Enemies: A Practical Perspective (ed. by MA Jervis), pp. 167-218. Springer, Dordrecht, The Netherlands.
- Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterfly *Heliconius erato* inferred from patterns of mitochondrial DNA Evolution.

 Proceedings of the National Academy of Sciences of the USA 91: 6491-6495.
- Chen JH & Wu ZS (2000) Systematic Studies on Meteorinae of China (Hymenoptera: Braconidae). Fujian Science and Technology Publishing House, Fujian, China (in Chinese with English summary).
- Clement M, Posada D & Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657-1659.
- Dheilly NM, Maure F, Ravallec M, Galinier R, Doyon J et al. (2015) Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proceedings of the Royal Society B 282: 20142773.
- Farrell BD (2001) Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of *Tetraopes* beetles. Molecular Phylogenetics and Evolution 18: 467-478.

- Folmer O, Black M, Hoeh W, Lutz R & Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates.

 Molecular Marine Biology and Biotechnology 3: 294-299.
- Fu YX & Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133: 693-709.
- Fuester RW, Taylor PB, Peng H & Swan K (1993) Laboratory biology of a uniparental strain of *Meteorus pulchricornis* (Hymenoptera: Braconidae), an exotic larval parasite of the gypsy moth (Lepidoptera: Lymantriidae). Annals of Entomological Society of America 86: 298-304.
- Fusco RA (1981) *Meteorus pulchricornis* (Wesmael). The Gypsy Moth: Research Toward Integrated Pest Management (ed. by CC Doane & ML McManus), pp. 368. Technical Bulletin 1584, United States Department of Agriculture Forest Service, Washington, DC, USA.
- Hasegawa M, Kishino H & Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160-174.
- Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155: 2011-2014.
- Hudson RR, Slatkin M & Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132: 583-589.
- Ito M, Watanabe K & Maeto K (2015) Molecular evidence resolving the confusion of two species of *Spilopteron* (Hymenoptera: Ichneumonidae) caused by marked geographical colour variation. European Journal of Entomology 112: 543-556.
- Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
- Kremer N, Charif D, Henri H, Bataille M, Prévost G et al. (2009) A new case of *Wolbachia* dependence in the genus *Asobara*: evidence for parthenogenesis induction in *Asobara*

- *japonica*. Heredity 103: 248-256.
- Kumar S, Stecher G, Li M, Knyaz C & Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549.
- Lattorff HMG, Moritz RFA & Fuchs S (2005) A single locus determines thelytokous parthenogenesis of laying honeybee workers (*Apis mellifera capensis*). Heredity 94: 533–537.
- Leigh JW & Bryant D (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110-1116.
- Liu YH & Li BP (2006) Developmental interactions between *Spodoptera exigua* (Noctuidae: Lepidoptera) and its uniparental endoparasitoid, *Meteorus pulchricornis* (Braconidae: Hymenoptera). Biological Control 38: 264-269.
- Maeto K (1989) Systematic studies on the tribe Meteorini (Hymenoptera, Braconidae) from Japan. V. the *pulchricornis* group of the genus *Meteorus* (1). Japanese Journal of Entomology 57: 581-595.
- Maeto K (2018) Polyphagous koinobiosis: the biology and biocontrol potential of a braconid endoparasitoid of exophytic caterpillars. Applied Entomology and Zoology 53: 433-446.
- Marsh PM (1979) The braconid (Hymenoptera) parasites of the gypsy moth, *Lymantria dispar* (Lepidoptera: Lymantriidae). Annals of the Entomological Society of America 72: 794-810.
- Mateo Leach I, Pannebakker BA, Schneider MV, Driessen G, van de Zande L & Beukeboom LW (2009) Thelytoky in Hymenoptera with *Venturia canescens* and *Leptopilina clavipes* as case studies. Lost Sex: The Evolutionary Biology of Parthenogenesis (ed. by I Schön, K Martens & P van Dijk), pp. 347-375. Springer, Dordrecht, The Netherlands.
- Mifsud D, Farrugia L & Shaw MR (2019) Braconid and ichneumonid (Hymenoptera) parasitoid wasps of Lepidoptera from the Maltese Islands. Zootaxa 4567: 47-60.

- Miura K & Tagami Y (2004) Comparison of life history characters of arrhenotokous and *Wolbachia*-associated thelytokous *Trichogramma kaykai* (Hymenoptera: Trichogrammatidae). Annals of the Entomological Society of America 97: 765-769.
- Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, NY, USA.
- Nei M & Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the USA 76: 5269-5273.
- Nguyen DH, Nakai M, Takatsuka J, Okuno S, Ishii T & Kunimi Y (2005) Interaction between a nucleopolyhedrovirus and the braconid parasitoid *Meteorus pulchricornis* (Hymenoptera: Braconidae) in the larvae of *Spodoptera litura* (Lepidoptera: Noctuidae). Applied Entomology and Zoology 40: 325-334.
- Nylander JAA (2004) MrModeltest v2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- Papadopoulou A, Anastasiou I & Vogler AP (2010) Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Molecular Biology and Evolution 27: 1659-1672.
- Quicke DLJ (1997) Parasitic Wasps. Chapman & Hall, London, UK.
- Quicke DLJ (2015) The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics, Evolution and Ecology. Wiley-Blackwell, Oxford, UK.
- Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49: 608-615.
- Rogers AR & Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552-569.
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.

- Systematic Biology 61: 539-542.
- Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P et al. (2017) DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution 34: 3299-3302.
- Sakurai A, Hamanishi Y, Maeto K & Naito C (2009) Molecular biogeography of two sibling species of the sawfly genus *Macrophya* (Hymenoptera: Tenthredinidae) in Japan. Zoological Science 26: 325-329.
- Sandrock C & Vorburger C (2011) Single-locus recessive inheritance of asexual reproduction in a parasitoid wasp. Current Biology 21: 433-437.
- Schneider MV, Driessen G, Beukeboom LW, Boll R, Eunen KV et al. (2003) Gene flow between arrhenotokous and thelytokous populations of *Venturia canescens* (Hymenoptera). Heredity 90: 260-267.
- Silva IMMS, Van Meer MMM, Roskam MM, Hoogenboom A, Gort G & Stouthamer R (2000) Biological control potential of *Wolbachia*-infected versus uninfected wasps: laboratory and greenhouse evaluation of *Trichogramma cordubensis* and *T. deion* strains. Biocontrol Science and Technology 10: 223-238.
- Silvestro D & Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution 12: 335-337.
- Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.
- Stigenberg J & Ronquist F (2011) Revision of the western Palearctic Meteorini

 (Hymenoptera, Braconidae), with a molecular characterization of hidden Fennoscandian species diversity. Zootaxa 3084: 1-95.
- Stigenberg J & Shaw MR (2013) Western Palaearctic Meteorinae (Hymenoptera: Braconidae) in the National Museums of Scotland, with rearing, phenological and distributional data, including six species new to Britain, and a discussion of a potential route to speciation.

- Entomologist's Gazette 64: 251-268.
- Stouthamer R (1993) The use of sexual versus asexual wasps in biological control. Entomophaga 38: 3-6.
- Stouthamer R & Kazmer DJ (1994) Cytogenetics of microbe-associated parthenogenesis and its consequence for geneflow in *Trichogramma* wasps. Heredity 73: 317-327.
- Tagami Y & Miura K (2007) Sex determination and mass production of parasitic Hymenoptera. Japanese Journal of Applied Entomology 51: 1-20 (in Japanese).
- Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
- Takashino K, Kobayashi H & Okada T (1998) Research on parasitic natural enemies to larvae of two *Helicoverpa* species in Shikoku. Proceedings of the Association for Plant Protection of Shikoku 33: 49-55 (in Japanese).
- Toews DPL & Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology 21: 3907-3930.
- Tojo K, Sekiné K, Takenaka M, Isaka Y, Komaki S et al. (2017) Species diversity of insects in Japan: their origins and diversification processes. Entomological Science 20: 357-381.
- Tsutsui Y, Maeto K, Hamaguchi K, Isaki Y, Takami Y et al. (2014) Apomictic parthenogenesis in a parasitoid wasp *Meteorus pulchricornis*, uncommon in the haplodiploid order Hymenoptera. Bulletin of Entomological Research 104: 307-313.
- Vavre F, de Jong JH & Stouthamer R (2004) Cytogenetic mechanism and genetic consequences of thelytoky in the wasp *Trichogramma cacoeciae*. Heredity 93: 592-596.
- Wachi N, Matsubayashi KW & Maeto K (2018) Application of next-generation sequencing to the study of non-model insects. Entomological Science 21: 3-11.
- Ye FY, Zhu CD, Yefremova Z, Liu WX, Guo JY & Wan FH (2018) Life history and biocontrol potential of the first female-producing parthenogenetic species of *Diglyphus* (Hymenoptera: Eulophidae) against agromyzid leafminers. Scientific Reports 8: 3222.

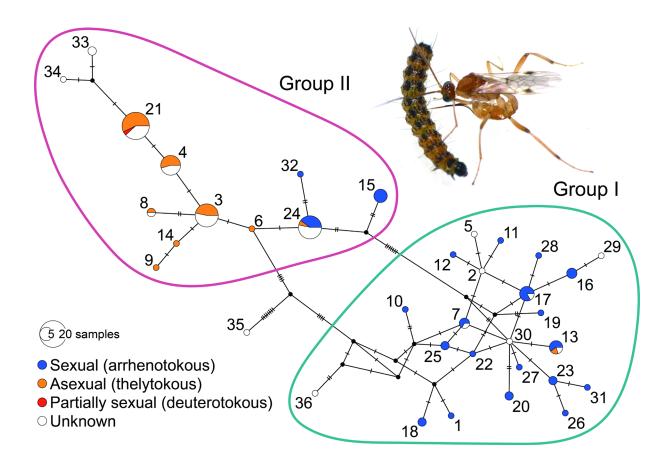
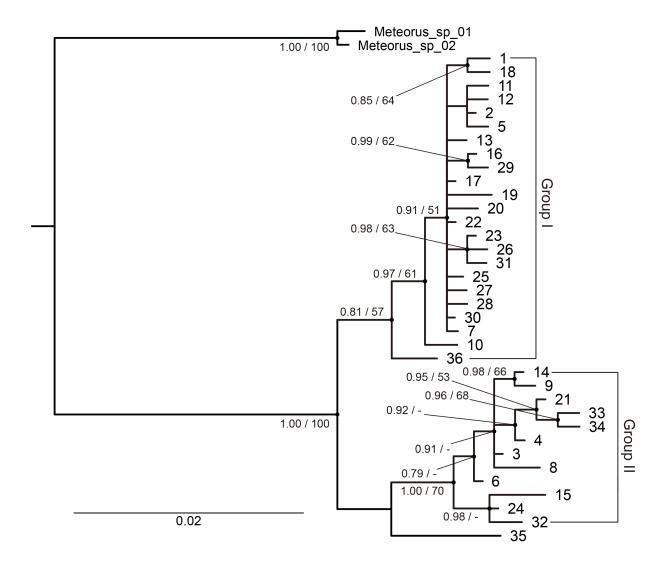
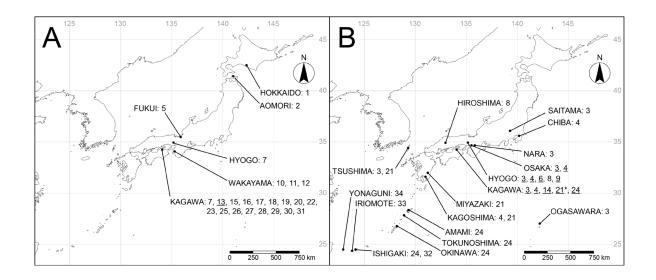




Figure 1 Statistical parsimony network of mitochondrial COI haplotypes of *Meteorus* pulchricornis. The network contains 117 specimens of 36 haplotypes, among which haplotypes 35 and 36 are from Europe and all others are from the Japanese islands. Perpendicular bars on the edges represent single base substitutions. The sizes of haplotype circles are proportional of the number of specimens and each circle graph shows the composition of reproductive models. All haplotypes except 35 are arranged into groups I and II. Photo provided by Shinji Sugiura.

Figure 2 Bayesian 50% majority-rule consensus tree of mitochondrial COI haplotypes of *Meteorus pulchricornis*. Bayesian inference (BI) posterior probability (>0.7) and maximum-likelihood (ML) bootstrap proportion (>50%) are indicated at the left and right of the slash, respectively.

Figure 3 Distribution of COI haplotypes of (A) group I and (B) group II of *Meteorus pulchricornis* on the Japanese islands. The number of haplotypes collected is indicated after the name of each region. Those including asexual specimens in each region are underlined and the asterisk indicates the inclusion of a partially sexual specimen. Created with SimpleMappr (http://www.simplemappr.net).

Table 1 Genetic variation of COI sequences (643 bp) in sexual (S) and asexual (A) populations of *Meteorus pulchricornis* in Kagawa

	Populations		
	Sexual	Asexual	
Sample size	31	20	
No. segregating sites	25	16	
No. haplotypes	15	6	
Haplotype diversity (hd)	0.935	0.621	
Nucleotide diversity (π)	0.0087	0.0041	
F _{ST} value between S and A	0.6801		
P value of S _{nn}	<0.001		

Table 2 Neutral test statistics and estimates of expansion time from the mismatch distribution analyses

	Tajima's D	Fu and Li's D*	Fu and Li's F*	τ
Group 1 (mainly sexual)	-1.45371	-2.42467	-2.48250	2.950
Group 2 (mainly asexual)	-1.44794	-2.81914*	-2.75359*	0.788
Sexual (all individuals)	0.26491	-0.41106	-0.20971	2.642
Asexual (all individuals)	-1.64839	-3.21478*	-3.19223*	0.000
Sexual (Kagawa)	-0.43916	0.18358	-0.02151	1.404
Asexual (Kagawa)	-1.62173	-2.66591*	-2.74183*	0.000

^{*}P<0.05. The statistical significances of D* and F* were determined using the critical values obtained by Fu and Li (1993) as implemented in DnaSP.

Supporting Information

Table S1 Examined individuals of *Meteorus pulchricornis*, mtCOI haplotypes, and GenBank accession numbers.

 Table S1 Examined individuals of Meteorus pulchricornis, mtCOI haplotypes, and GenBank accession numbers

region	sample code		reproduction mode		latitude(N/E)	collection date
HOKKAIDO AOMORI	HOKKAIDON 12 01 AOMORIM 12 01	₹ 주	Arrhenotokous Unknown	JAPAN: Hokkaido Pref., Niikappu Town, Takae JAPAN: Aomori Pref., Mutsu City, Ohata-cho, Sasukegawa	42.370, 142.303 41.448, 141.116	
SAITAMA CHIBA	SAITAMAO 13 02 CHIBAY 13 01	우 우	Unknown Unknown	JAPAN: Saitama Pref., Ogawa Town, Soybean-field JAPAN: Chiba Pref., Yachiyo City, Malabar spinach-field	36.057, 139.262 35.722, 140.100	
GASAWARA	OGASAWARA 08 01	우	Unknown	JAPAN: Tokyo Pref., Tairajima-Is., Ogasawara-vil.	26.585, 142.155	2008/04/08 (host) 2008/04/12 emerged
UKUI SAKA	FUKUIO 13 01 OSAKAT 11 04	우우	Unknown Thelytokous	JAPAN: Fukui Pref., Ooi Town, Natasho-notaoi JAPAN: Osaka Pref., Takatsuki City, Nanpeidai, Akutagawa-ryokuchi	35.394, 135.552 34.867, 135.590	
SAKA	OSAKAT 11 05	우	Thelytokous	JAPAN: Osaka Pref., Takatsuki City, Nanpeidai, Akutagawa-ryokuchi	34.867, 135.590	2011/08/24
SAKA SAKA	OSAKAT 11 06 OSAKAT 11 07	우	Thelytokous Thelytokous	JAPAN: Osaka Pref., Takatsuki City, Nanpeidai, Akutagawa-ryokuchi JAPAN: Osaka Pref., Takatsuki City, Nanpeidai, Akutagawa-ryokuchi	34.867, 135.590 34.867, 135.590	
SAKA	OSAKAT 11 09	우우우	Thelytokous	JAPAN: Osaka Pref., Takatsuki City, Nanpeidai, Akutagawa-ryokuchi	34.867, 135.590	2011/06/09
SAKA SAKA	OSAKAH 12 01 OSAKAH 12 03	우	Unknown Unknown	JAPAN: Osaka Pref., Higashiosaka City, Hiraoka-park JAPAN: Osaka Pref., Higashiosaka City, Hiraoka-park	34.669, 135.656 34.669, 135.656	
SAKA	OSAKAH 12 03 OSAKAH 12 05	우 우	Unknown	JAPAN: Osaka Pret., Higashiosaka City, Hiraoka-park JAPAN: Osaka Pref., Higashiosaka City, Hiraoka-park	34.669, 135.656	
ARA	NARAN 12 01	우 우	Unknown	JAPAN: Nara Pref., Nara City, Oobuchiike-park	34.708, 135.744	
ARA ARA	NARAY 12 02 NARAN 12 03	후	Unknown Unknown	JAPAN: Nara Pref., Yamatokoriyama City, Yata-cho JAPAN: Nara Pref., Nara City, Oobuchiike-park	34.663, 135.736 34.708, 135.744	
YOGO	HYOGON_08_01	우	Thelytokous	JAPAN: Hyogo Pref., Nishinomiya City, Kitayama	34.768, 135.320	2008/06
YOGO	HYOGON 09 01	우	Thelytokous	JAPAN: Hyogo Pref., Nishinomiya City, Nigawa	34.779, 135.339	2009/05
YOGO YOGO	HYOGOSO 09 01 HYOGOKS 11 01	우 우	Thelytokous Thelytokous	JAPAN: Hyogo Pref., Shin-onsen Town JAPAN: Hyogo Pref., Kasai City, Uzurano-cho	35.624, 134.449 34.879, 134.862	
YOGO	HYOGOKS 11 03	우	Unknown	JAPAN: Hyogo Pref., Kasai City, Ozurano-cho	34.879, 134.862	
YOGO YOGO	HYOGOKS 11 05 HYOGOKS 11 06	오 장	Thelytokous Arrhenotokous	JAPAN: Hyogo Pref., Kasai City, Uzurano-cho JAPAN: Hyogo Pref., Kasai City, Uzurano-cho	34.879, 134.862 34.879, 134.862	
YOGO	HYOGOKS 11 11	우	Unknown	JAPAN: Hyogo Pref., Kasai City, Ozurano-cho	34.879, 134.862	
YOGO AKAYAMA	HYOGOSD 12 01 WAKAYAMAK 12 01	오 장	Unknown Arrhenotokous	JAPAN: Hyogo Pref., Sanda City, Arimafuji-park JAPAN: Wakayama Pref., Kimino Town, Ta	34.915, 135.219 34.142, 135.414	
AKAYAMA	WAKAYAMAK 12 01 WAKAYAMAK 12 02	ď	Arrhenotokous	JAPAN: Wakayama Pref., Kimino Town, Ta	34.142, 135.414	
AKAYAMA	WAKAYAMAK 12 03	ď	Arrhenotokous	JAPAN: Wakayama Pref., Kimino Town, Ta	34.142, 135.414	2012/05/19
IROSHIMA	HIROSHIMAS_08_01	우	Unknown	JAPAN: Hiroshima Pref., Shobara City	34.858, 133.017	2008/08/15
AGAWA	KAGAWAZ_01_01	우	Thelytokous	JAPAN: Kagawa Pref., Zentsuji City, Soybean field	34.229, 133.787	2001
AGAWA	KAGAWAT 08 01	_	Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Soybean field	34.343, 134.047	
AGAWA AGAWA	KAGAWAT 09 01 KAGAWAT 09 02	우 우	Thelytokous Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Soybean field JAPAN: Kagawa Pref., Takamatsu City, Soybean field	34.343, 134.047 34.343, 134.047	
	KAGAWAT 09 02 KAGAWAT_09_03	+			34.343, 134.047	
AGAWA			Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Soybean field		
AGAWA AGAWA	KAGAWAT_10_28 KAGAWAT_11_01	우 ở	Unknown Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_11_06	우	Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2011/10/12
AGAWA AGAWA	KAGAWAT_11_07 KAGAWAT_11_08	우 우	Arrhenotokous Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_11_11	ď	Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2011/10/12
AGAWA AGAWA	KAGAWAT_11_14 KAGAWAT_11_16	우 우	Arrhenotokous Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_11_20	우	Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2011/10/12
AGAWA AGAWA	KAGAWAT_11_21 KAGAWAT_11_22	주 ~	Unknown Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	2011/10/12 2011/10/12
AGAWA	KAGAWAT_11_23	우우	Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2011/10/12
AGAWA AGAWA	KAGAWAT_11_25 KAGAWAT_11_26	우 우	Arrhenotokous Deuterotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_11_27	우	Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki Cito, Soybean-field	34.277, 134.001	2011/10/12
AGAWA AGAWA	KAGAWAT_11_29 KAGAWAT_11_31	우 우	Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_11_31	우	Thelytokous Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	
AGAWA AGAWA	KAGAWAT_11_33 KAGAWAT_11_34	우우	Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA AGAWA	KAGAWAT_11_34 KAGAWAT_11_35	후	Thelytokous Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	
AGAWA	KAGAWAT_11_36	오	Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2011/10/12
AGAWA AGAWA	KAGAWAT_11_37 KAGAWAT_11_38	₹ 주	Arrhenotokous Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_11_39		Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2011/10/12
AGAWA AGAWA	KAGAWAT_12_01 KAGAWAT_12_03	우우우	Arrhenotokous Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_12_04	우	Unknown	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2012/10/02
AGAWA AGAWA	KAGAWAT_12_11 KAGAWAT_12_17	우 우	Arrhenotokous Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_12_18	수 우	Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2012/10/02
AGAWA AGAWA	KAGAWAT_12_20 KAGAWAT_12_24	우	Arrhenotokous Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_12_25	우	Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2012/10/02
AGAWA AGAWA	KAGAWAT_12_26 KAGAWAT_12_33	우 우	Arrhenotokous Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	2012/10/02 2012/10/02
AGAWA	KAGAWAT_12_35	우	Unknown	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2012/10/02
AGAWA AGAWA	KAGAWAT_12_37 KAGAWAT_12_41	우 우	Arrhenotokous Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	2012/10/02 2012/10/02
AGAWA	KAGAWAT_12_44	우	Unknown	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2012/10/02
AGAWA AGAWA	KAGAWAT_12_45 KAGAWAT_12_47	우 우	Arrhenotokous Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_12_48	우	Unknown	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2012/10/02
AGAWA AGAWA	KAGAWAT_12_49 KAGAWAT_12_54	우우	Arrhenotokous Unknown	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_12_60	우	Unknown	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2012/10/02
AGAWA AGAWA	KAGAWAT_12_62 KAGAWAT_12_63	우 우	Arrhenotokous Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	2012/10/02 2012/10/02
AGAWA	KAGAWAT_12_65	우	Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2012/10/02
AGAWA AGAWA	KAGAWAT_12_66 KAGAWAT_12_67	우 우	Arrhenotokous Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_12_68	우	Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2012/10/02
AGAWA AGAWA	KAGAWAT_12_71 KAGAWAT_12_73	후 우	Arrhenotokous Arrhenotokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001 34.277, 134.001	
AGAWA	KAGAWAT_12_76	우	Thelytokous	JAPAN: Kagawa Pref., Takamatsu City, Nishiyamazaki-cho, Soybean-field	34.277, 134.001	2012/10/02
SUSHIMA SUSHIMA	TSUSHIMA_02_01 TSUSHIMA_02_03	후 우	Unknown Unknown	JAPAN: Nagasaki Pref., Tsushima-Is. Mitsushima Town, Oofunakoshi JAPAN: Nagasaki Pref., Tsushima-Is. Mitsushima Town, Oofunakoshi	34.281, 129.352 34.281, 129.352	
YAZAKI	MIYAZAKIA_13_02	우	Unknown	JAPAN: Miyazaki Pref., Aya Town, Okra-field	31.999, 131.253	2013/09/25
YAZAKI AGOSHIMA	MIYAZAKIA_13_03 KAGOSHIMAS_13_01	후 우	Unknown Unknown	JAPAN: Miyazaki Pref., Aya Town, Okra-field JAPAN: Kagoshima Pref., Shibushi City, Shibushi chou, Chou, Taro-field	31.999, 131.253 31.478, 131.100	
AGOSHIMA	KAGOSHIMAS_13_02	우	Unknown	JAPAN: Kagoshima Pref., Shibushi City, Shibushi chou, Chou, Taro-field	31.478, 131.100	2013/09/25
AGOSHIMA MAMI	KAGOSHIMAS_13_03 AMAMIA_11_01	우 우	Unknown Arrhenotokous	JAPAN: Kagoshima Pref., Shibushi City, Shibushi chou, Chou, Taro-field JAPAN: Kagoshima pref., Amami-is., Amami City, Nase-asani-cho	31.478, 131.100 28.396, 129.490	
IMAN	AMAMIA_11_02	우	Arrhenotokous	JAPAN: Kagoshima pref., Amami-is., Amami City, Nase-asani-cho	28.396, 129.490	2011/06/27
MAMI MAMI	AMAMIA_11_03 AMAMIU_13_01	후 우	Unknown Unknown	JAPAN: Kagoshima pref., Amami-is., Amami City, Chuo-rindo JAPAN: Kagoshima pref., Amami-is., Uken Vil.	28.349, 129.450 28.281, 129.297	
IMAN	AMAMIS_13_02	우	Unknown	JAPAN: Kagoshima pref., Amami-is., Setouchi Town, Mt. Yui	28.187, 129.314	2013/07/06
MAMI MAMI	AMAMIS_13_03 AMAMIS_13_04	우	Unknown Unknown	JAPAN: Kagoshima pref., Amami-is., Setouchi Town, Mt. Yui JAPAN: Kagoshima pref., Amami-is., Setouchi Town, Mt. Yui	28.187, 129.314 28.187, 129.314	
OKUNOSHIMA	TOKUNOSHIMAT_13_01	후	Unknown	JAPAN: Kagoshima pref., Tokunoshima-is., Tokunoshima Town, Tete	27.876, 128.909	2013/07/02
OKUNOSHIMA	TOKUNOSHIMAT_13_02	우	Unknown	JAPAN: Kagoshima pref., Tokunoshima-is., Tokunoshima Town, Kedoku	27.843, 128.951	2013/07/02
OKUNOSHIMA OKUNOSHIMA	TOKUNOSHIMAT_13_03 TOKUNOSHIMAT_13_04		Arrhenotokous Arrhenotokous	JAPAN: Kagoshima pref., Tokunoshima-is., Tokunoshima Town, Kedoku JAPAN: Kagoshima pref., Tokunoshima-is., Tokunoshima Town, Kedoku	27.843, 128.951 27.843, 128.951	2013/07/02 2013/07/02
KINAWA	OKINAWAK_13_02	ď	Arrhenotokous	JAPAN: Okinawa Pref., Okinawa-Is., Kunigami Vil., Yona	26.763, 128.216	2013/06/27 (Light trap)
KINAWA SHIGAKI	OKINAWAK_13_03 ISHIGAKII_12_01	₹ 주	Arrhenotokous Unknown	JAPAN: Okinawa Pref., Okinawa-Is., Kunigami Vil., Yona JAPAN: Okinawa Pref., Ishigaki-Is., Ishigaki City, Mt. Omoto	26.763, 128.216 24.416, 124.191	2013/06/27 (Light trap) 2012/03/18
HIGAKI	ISHIGAKII_12_02	اتح	Arrhenotokous	JAPAN: Okinawa Pref., Ishigaki-Is., Ishigaki City, Sakieda, Mt. Yarabu	24.440, 124.088	2012/03/28
IOMOTE IOMOTE	IRIOMOTET_01 IRIOMOTET_02	우 우	Unknwon Unknwon	JAPAN: Okinawa Pref., Iriomote-Is. Taketomi Town, Uehara JAPAN: Okinawa Pref., Iriomote-Is. Taketomi Town, Uehara	24.402, 123.805 24.402, 123.805	
	YONAGUNIY_12_01	*	Unknown	JAPAN: Okinawa Pref., Iriomote-is. Taketomi Town, Genara JAPAN: Okinawa Pref., Yonaguni-Is., Yonaguni Town, Yonaguni, Mt. Kubura	24.456, 122.963	
ONAGUNI UROPE	EUROPE_15	후	Unknown	Sweden	Unknown	Unknown

collection stage	collector or source	COI haplotype	haplotype group	GenBank accession no.
adult	Shunpei FUJIE	1	I	LC467388
adult host (<i>Spodoptera litura</i>)	Shunpei FUJIE Eiko ARAI	2	I II	LC467389 LC467390
host (<i>Spodoptera litura</i>)	Maki INOUE	4 3	II	LC467391
host (<i>Parnara ogasawarensis</i>) adult	Masaya YAGO Shunpei FUJIE	5	II I	LC467392 LC467393
adult adult	Shunpei FUJIE Shunpei FUJIE	3 4	II II	LC467394 LC467395
adult	Shunpei FUJIE	3	II	LC335975
adult adult	Shunpei FUJIE Shunpei FUJIE	4 4	II II	LC467396 LC467397
cocoon	Shunpei FUJIE	4	II	LC467398
cocoon	Shunpei FUJIE Shunpei FUJIE	4 4	II II	LC467399 LC467400
adult	Shunpei FUJIE	3	II II	LC467401
adult cocoon	Shunpei FUJIE Shunpei FUJIE	3	II	LC467402 LC467403
adult	Sho FURUE (Sequenced by Y. Abe) "HYOGO 08 U" (Abe et al., 2013)	3	II	LC467404
adult	Kaoru MAETO (Sequenced by Y. Abe)	4	II	LC467405
adult adult	Kaoru MAETO (Sequenced by Y. Abe) Shunpei FUJIE	9 6	II II	LC467406 LC467407
adult	Shunpei FUJIE	3 4	II II	LC467408
adult adult	Shunpei FUJIE Shunpei FUJIE	7	I	LC467409 LC467410
adult adult	Shunpei FUJIE Shunpei FUJIE	7 8	I II	LC467411 LC467412
adult	Shunpei FUJIE	10	Ī	LC467413
adult adult	Shunpei FUJIE Shunpei FUJIE	11 12	I I	LC467414 LC467415
	Kaoru MAETO (Sequenced by Y. Abe)	8	П	
adult	"HIROSHIMA_08_U" (Abe et al., 2013)	o .		LC467416
Unknown	Nguyen et al. 2005 (Sequenced by Y. Abe) "KAGAWA_01_U" (Abe et al., 2013; Tsutsui et al., 2014)	21	II	LC467417
Unknown	Sho FURUE (Sequenced by Y. Abe)	13	I	LC467418
Unknown	Kaoru MAETO et al. (Sequenced by Y. Abe)	14 3	II II	LC467419
Unknown	Kaoru MAETO et al. (Sequenced by Y. Abe) Kaoru MAETO et al. (Sequenced by Y. Abe)		П	LC467420
Unknown	"KAGAWA_09_B" (Tsutsui et al., 2014)	15	II	LC467421
Unknown host (<i>Spodoptera litura</i>) or cocoon	Shunpei FUJIE Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	3 16	II I	LC467422 LC467423
host (Spodoptera litura) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	15 17	II I	LC467424
host (<i>Spodoptera litura</i>) or cocoon host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	3	II	LC467425 LC467426
host (<i>Spodoptera litura</i>) or cocoon host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	13 7	I I	LC467427 LC467428
host (Spodoptera litura) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	13	I	LC467429
host (<i>Spodoptera litura</i>) or cocoon host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	18 13	I I	LC467430 LC467431
host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	15	II	LC467432
host (<i>Spodoptera litura</i>) or cocoon host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	19 20	I I	LC467433 LC467434
host (Spodoptera litura) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	21	II	LC467435
host (<i>Spodoptera litura</i>) or cocoon host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	21 16	II I	LC467436 LC467437
host (<i>Spodoptera litura</i>) or cocoon host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	21 21	II II	LC467438 LC467439
host (Spodoptera litura) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	21	II	LC467440
host (Spodoptera litura) or cocoon host (Spodoptera litura) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	21 21	II II	LC467441 LC467442
host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	13	I	LC467443
host (<i>Spodoptera litura</i>) or cocoon host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	22 23	I I	LC467444 LC467445
host (Spodoptera litura) or cocoon	Kaoru MAETO, Kyohei WATANABE, Hironobu UMEMOTO and Shunpei FUJIE	24	II	LC467446
adult adult	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	25 4	I II	LC467447 LC467448
adult adult	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	21 18	II I	LC467449
host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	17	I	LC467450 LC467451
host (Spodoptera litura) or cocoon host (Spodoptera litura) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	17 15	I II	LC467452 LC335976
host (Spodoptera litura) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	26	I	LC335977
host (<i>Spodoptera litura</i>) or cocoon host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	3 17	II I	LC335978 LC335979
adult	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	3	II	LC467453
adult host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	21 27	I	LC467454 LC467455
host (<i>Spodoptera litura</i>) or cocoon host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	21 21	П	LC467456
nost (Spodoptera litura) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	25	I	LC467457 LC467458
host (<i>Spodoptera litura</i>) or cocoon host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	23 17	I I	LC467459 LC467460
nost (Spodoptera litura) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	28	I	LC467461
adult adult	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	29 30	I	LC467462 LC467463
nost (Spodoptera litura) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	31 21	I II	LC467464
adult adult	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	21	II	LC467465 LC467466
nost (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	17 16	I I	LC467467 LC467468
adult	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	21	II	LC467469
host (<i>Spodoptera litura</i>) or cocoon host (<i>Spodoptera litura</i>) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	20 15	I II	LC467470 LC467471
host (Spodoptera litura) or cocoon	Kaoru MAETO, Hironobu UMEMOTO and Shunpei FUJIE	21	II	LC467472
adult adult	E & R. MATSUMOTO E & R. MATSUMOTO	3 21	II II	LC467473 LC467474
host (<i>Spodoptera litura</i>)	Maki INOUE	21	II	LC467475
nost (<i>Spodoptera litura</i>) nost (<i>Spodoptera litura</i>)	Maki INOUE Maki INOUE	21 4	II	LC467476 LC467477
nost (<i>Spodoptera litura</i>)	Maki INOUE Maki INOUE	21 21	П	LC467478
nost (<i>Spodoptera litura</i>) adult	Shunpei FUJIE	24	II	LC467479 LC467480
adult adult	Shunpei FUJIE Shunpei FUJIE	24 24	II II	LC467481 LC467482
adult	Masato ITO	24	II	LC467483
adult adult	Shunpei FUJIE Shunpei FUJIE	24 24	II II	LC467484 LC467485
adult	Shunpei FUJIE	24	II	LC467486
adult adult	Shunpei FUJIE Shunpei FUJIE	24 24	II II	LC467487 LC467488
adult	Shunpei FUJIE	24	II	LC467489
adult adult	Shunpei FUJIE Shunpei FUJIE	24 24	II II	LC467490 LC467491
adult	Shunpei FUJIE	24	II	LC467492
adult adult	Masato ITO Kentaro TSUJII	24 32	II II	LC467493 LC467494
reared from Mythimna separata on	Kougakukan University	33	II	LC467495
reared from Mythimna separata on	Kougakukan University	33 34	II	LC467496
adult	Kentaro TSUJII	34	II	LC467497