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We show that a simple subclass of Horndeski theory can describe a time crystal universe. The time
crystal universe can be regarded as a baby universe nucleated from a flat space, which is mediated by an
extension of Giddings-Strominger instanton in a 2-form theory dual to the Horndeski theory. Remarkably,
when a cosmological constant is included, de Sitter universe can be created by tunneling from the time
crystal universe. It gives rise to a past completion of an inflationary universe.
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I. INTRODUCTION

Inflation has succeeded in explaining current observa-
tions of the large scale structure of the Universe [1,2].
However, inflation has a past boundary [3], which could be
a true initial singularity or just a coordinate singularity
depending on how much the Universe deviates from the
exact de Sitter [4], or depending on the topology of the
Universe [5]. It is also shown that the initial singularity
appears even in other scenarios [6,7]. The incompleteness
of the inflationary universe strongly motivated us to explore
nonsingular scenarios in the very early Universe. The
bouncing universe (see, e.g., [8] for a review) is an
interesting candidate of a nonsingular beginning of the
Universe. We can also consider a completely periodic
universe as a possible beginning. A cyclic universe and
an ekpyrotic universe studied as an alternative to the
inflation [9–12] belong to this category. Since gravitational
theory has a symmetry of a time reparametrization, any
cyclic solution which is completely periodic in time is
called time crystal universe [13–18] by an analogy of a time
crystal in the condensed matter physics.
In this paper, we seek a cyclic universe as a past

completion of an inflationary universe. Notice that, to
construct a bouncing solution, we need to violate the null
energy condition. Since a scalar field minimally coupled
with gravity in a flat universe satisfies the null energy
condition, we need to consider more general situations.
It is Horndeski theory [19–21](see [22] for a recent review)
that is the general class of scalar-tensor theory whose

Euler-Lagrange equations of motion contain up to second
order derivatives. Actually, bouncing cosmology in the
Horndeski theory has been intensively investigated so far
[23–29]. These analyses show the presence of gradient
instability [30,31] and finally no-go theorem for stable
bouncing cosmology in Horndeski theory was found for the
spatially flat universe [32]. However, it was shown that the
no-go theorem does not hold when the spatial curvature is
included [33]. Therefore, we should consider Horndeski
theory in the presence of a spatial curvature in order to have
a bouncing universe [34].
Recently, it was found that a subclass of Horndeski

theory possesses a dual expression described by a 2-form
gauge field [35], as in the case of a free massless scalar
field. In the case of the free massless field, the 2-form dual
theory provides a topology changing tunneling process
from a flat Euclidean space R3 to a direct sum space
S3 ⊕ R3 which is mediated by the Giddings-Strominger
instanton [36]. The nucleated closed universe S3 is called
baby universe. It is known that the baby universe contracts
after nucleation. Hence, it does not represent the realistic
expanding universe. One possibility to circumvent this
conclusion would be to introduce an additional field which
provides a vacuum energy [37]. As an alternative possibil-
ity, in this paper, we regard the contracting baby universe as
a contracting phase of a bouncing/cyclic universe in
Horndeski theory. Since a spatial curvature is naturally
introduced in this set up, there is a chance to realize a
bouncing universe. Indeed, we find a time crystal universe
as a baby universe nucleated from a flat space, which is
mediated by an extension of Giddings-Strominger instan-
ton in a 2-form theory dual to the Horndeski theory.
Interestingly, once a cosmological constant is introduced,
it turns out that de Sitter universe can be created from time
crystal. Thus, we have a completion of inflationary sce-
nario, namely, the past boundary of an inflationary universe
is time crystal.
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The paper is organized as follows. In the next section, we
review the 2-form theory dual to a subclass of the shift
symmetric Horndeski theory [35]. Then in Sec. III, we
construct a time crystal universe in the 2-form dual of
Horndeski theory. In Sec. IV, we solve Euclidean equation
of motion in 2-form theory without a cosmological constant
and construct an extension of Giddings-Strominger instan-
ton. This instanton describes a nucleation of a time crystal
universe from a flat space. Then, in Sec. V, we extend this
analysis in the presence of a cosmological constant and find
an instanton solution which mediates a tunneling process
from a time crystal universe to an inflationary universe.
Thus, a past completion of an inflationary scenario is
obtained. The final section is devoted to summary and
discussion. There we comment on the stability issue.

II. 2-FORM DUAL OF HORNDESKI THEORY

In this section, we review a 2-form gauge theory dual to a
subclass of Horndeski theory [35]. We refer the reader to
the original paper [35] for a detailed derivation.
We focus on a shift symmetric scalar field coupling to

gravity through the Einstein tensor Gμν as,

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
ðR − 2ΛÞ

−
α

2
gμν∂μϕ∂νϕ −

β

2
Gμν∂μϕ∂νϕ

�
; ð1Þ

where α and β are constants. We assume α > 0 to ensure
that the kinetic term of the scalar field ϕ has a correct sign at
the low energy. Though the Einstein tensor includes the
second derivatives of the metric, equations of motion
include up to the second derivatives. Hence, this interaction
does not have the Ostrogradsky’s ghost. Actually, this is a
subclass of Horndeski theory with G2 ¼ α=2, G4 ¼
M2

pl=2þ βX and G3 ¼ G5 ¼ 0, where X stands for
gμν∂μϕ∂νϕ. This class of theory was, for example, studied
to construct hairy black hole solutions [38]. For conven-
ience, we introduce the effective metric Gμν by

Gμν ¼ αgμν þ βGμν: ð2Þ
Then, the action can be written as

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
ðR − 2ΛÞ − 1

2
Gμν∂μϕ∂νϕ

�
: ð3Þ

As is well known, a free massless scalar field is
equivalent to a free 2-form gauge field through the duality,
dϕ ¼ �dB, where B is a 2-form field and � represents the
Hodge dual. In Ref. [35], it was shown that the similar
duality holds even if the derivative coupling through the
Einstein tensor (1) is included. The resultant action is
given by

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
ðR−2ΛÞ− 1

12
Gμνρ

αβγHμνρHαβγ

�
; ð4Þ

where H ¼ dB is the field strength of the 2-form gauge
field Bμν. The components of H are given by

Hμνρ ¼ 3∂ ½μBνρ� ¼ ∂μBνρ þ ∂νBρμ þ ∂ρBμν: ð5Þ

The tensor Gμνρ
αβγ is defined by

Gμνρ
αβγ ≔

Gμ
αGν

βGρ
γ

detG·
·

; ð6Þ

where detG·
· is the determinant of Gμ

ν. The duality relation
is no longer given by the simple Hodge dual. It now
depends on the curvature of spacetime as

Gμ
ν∂νϕ ¼ 1

3!
ϵμ

νρσHνρσ: ð7Þ

In the next section, we study the above action and obtain
an extension of the Giddings-Strominger instanton, which
is an instanton solution in free 2-form theory with gravity.

III. TIME CRYSTAL UNIVERSE WITH
2-FORM CHARGE

In this section, we construct a cosmological solution of
the 2-form theory (4). Note that, thanks to the duality,
following results can be obtained even if one starts with the
scalar action (1). The essential difference will appear when
we discuss quantum effects in the next section.
We consider homogeneous and isotropic ansatz without

specifying the spatial curvature,

gμνdxμdxν ¼ l2½−NðtÞ2dt2 þ aðtÞ2Ωijdxidxj�; ð8Þ

where Ω is given by

Ωijdxidxj ¼ dχ2 þ fkðχÞ2ðdθ2 þ sin2θdϕ2Þ;

fkðχÞ ¼
8<
:

sin χ ðk ¼ þ1Þ
χ ðk ¼ 0Þ
sinh χ ðk ¼ −1Þ

: ð9Þ

Here k represents the sign of the spatial curvature. We have
introduced a free parameter l with a mass dimension −1 so
that the coordinates ðt; χ; θ;ϕÞ and the dynamical variables
NðtÞ and aðtÞ are dimensionless. We will also use the
(dimensionless) proper time τ, that is defined by dτ ¼ Ndt.
We assume homogeneous and isotropic configuration of

the field strength H;

H ¼ h
ffiffiffiffi
Ω

p
dχ ∧ dθ ∧ dϕ; ð10Þ

where h represents the magnetic flux density of the 2-from
gauge field. The symmetry allows h to depend on time but
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it is actually forbidden from the Bianchi identity dH ¼ 0.
One can check that our ansatz (10) satisfies the equation of
motion as well:

∇μðGμνρ
αβγHαβγÞ ¼ 0: ð11Þ

Now, we fix the free parameter l by

l ≔
�

h2

6αM2
pl

�
1=4

: ð12Þ

Then we introduce a dimensionless ratio of β to l2α, say
γ, by

γ ≔
3

α

β

l2
¼

ffiffiffi
6

α

r
3βMpl

jhj ; ð13Þ

and a dimensionless cosmological constant λ by

λ ≔ l2Λ: ð14Þ

Now, we obtain the minisuperspace action

S ¼ 3l2M2
plV

Z
dtNa3

�∂2
τa
a

þ
�∂τa

a

�
2

þ k
a2

−
λ

3
−

1

a6
1

1 − γ2ðð∂τa=aÞ2 þ k=a2Þ
�
; ð15Þ

where V is the comoving volume of constant time slices,
V ≔

R
d3x

ffiffiffiffi
Ω

p
. Taking the variation of the action with

respect to N, we obtain the modified Friedmann equation,

ð∂τaÞ2 þ k −
λ

3
a2 þ −a2 þ γð3ð∂τaÞ2 þ kÞ

ða3 − aγðð∂τaÞ2 þ kÞÞ2 ¼ 0: ð16Þ

By solving it for ð∂τaÞ2, we derive the convenient form

ð∂τaÞ2 ¼ −Vða; γ; k; λÞ; ð17Þ

where the effective potential V has 3 branches correspond-
ing to 3 roots of the cubic equation;

Vnða; γ; k; λÞ ¼ k −
6þ λγ

9γ
a2 þ e−i

2π
3
ðn−1Þ Ξ

1=3

9aγ2
þ ei

2π
3
ðn−1Þ −81γ þ a6ð−3þ γλÞ2

9aΞ1=3 ; ðn ¼ 1; 2; 3Þ ð18Þ

with

Ξða; γ; k; λÞ=γ3 ¼ −729γ2ka − a9ð−3þ γλÞ3 þ 243

2
γa3ð3þ γλÞ þ 27

2γ
½γ3ð2916γ2 þ 2916γ3k2a2 þ 8γka10ð−3þ γλÞ3

− 972γ2ka4ð3þ γλÞ − 8a12ð−3γλÞ3 − 27γa6ðγ2λ2 − 42γλþ 9ÞÞ�1=2: ð19Þ

Here we define a branch cut of the power function as
zn ≔ jzjneinArgz;Argz ∈ ð−π; π�.
The behavior of the solution can be understood by the

analogy of the dynamics of a point particle: Eq. (17) is
nothing but the energy conservation law of a point particle

with the potential Vn and a total energy E ¼ 0. The typical
potentials Vn for λ ¼ 0 are plotted in Fig. 1 (positive γ) and
Fig. 2 (negative γ). The most interesting solution is that of
k ¼ 1 with small positive γ (the blue plot in the left of
Fig. 1), where the potential has 2 turning points a ¼ amin

0.5 1.0 1.5 2.0 2.5 3.0
a

–1.0

–0.5

0.5

1.0

V

V1(k = 1)

V1(k = 0)

V1(k = –1) 1 2 3 4 5
a

–1.0

–0.5

0.5

1.0

V

V1 (k = 1)

V2 (k = 1)

V3 (k = 1)

V1 (k = 0)

V1 (k = –1)

FIG. 1. Potential for positive γ (left: γ ¼ 1
4
, right: γ ¼ 4) with λ ¼ 0: The blue plot in the left figure provides an oscillating solution

between amin ∼ 0.5 and amax ∼ 1.08. Vn which are not written in the plot are complex value.
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and amax, which are 0.5 and 1.08 in Fig. 1 respectively. The
scale factor will oscillate between amin and amax. Thus the
solution is expected to express a time crystal universe,
where scale factor is exactly periodic. We will investigate
this solution analytically in the next subsection. Note that
any potential other than k ¼ 1 with small positive γ has at
most one terming point and does not have a time crystal
solution.
Once the cosmological constant λ is turned on, the

potential changes as in Fig. 3. For a negative λ (blue), there
is no essential difference from the λ ¼ 0 case. For a large
positive λ (orange), the time crystal solution no longer
exists and universe enters the λ dominant eta. For a small
positive λ (red), the potential has three zero points, a ¼
amin; amax and aΛ, a ∼ 0.5, 1.12 and 2.4 in Fig. 3. The time
crystal universe, which oscillates between amin and amax,
still exist. In addition, there is another solution in a > aΛ.
Since the cosmological constant dominates over any other
term as a grows, this solution asymptotically approaches a
de Sitter spacetime. In Sec. V, we will see that the time
crystal universe can make a transition quantum mechan-
ically into the inflationary universe.

A. Analytic solution

We would like to construct the analytic solution for the
case k ¼ 1, λ ¼ 0, and a small positive γ. It is useful to find
the analytic formulas for amin and amax by solving Eq. (17)
with setting ∂τa ¼ 0,

amin ≔
ffiffiffi
γ

p
; amax ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ γ2

p
2

s
; ð20Þ

which corresponds to the minimum and maximal size of the
oscillating universe. Since a time coordinate has not fixed
yet, we can choose it by fixing a functional form of aðtÞ
freely. Our choice of the time coordinate t is as follows:

aðtÞ ≔ ðamin þ amaxÞ − ðamin − amaxÞ cos 2t
2

: ð21Þ

Then the lapse function associated with this time coordinate
is given by plugging (21) into (17):

NðtÞ ¼ ðamax − aminÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin22t

−V1ðaðtÞÞ

s
: ð22Þ

Note that the analytic expression of V1 is given by Eq. (18).
Equations (21) and (22) provide an analytic solution, which
is plotted in Fig. 4:
Note that if the choice of time coordinate (21) were ill

defined at some point, a singular behavior appears in NðtÞ,
which tell us a presence of coordinate singularity. For
example, if one choose a time coordinate t by a ¼ t, a
positive N2 can be obtained only for amin < t < amax and
t ¼ amin and amax correspond to coordinate singularities.

0.5 1.0 1.5 2.0 2.5 3.0
a

–4

–2

2

4

6

8

10
V

V1 (k = 1)

V2 (k = 1)

V3 (k = 1)

V1 (k = 0)

V2 (k = 0)

V3 (k = 0)

V1 (k = –1)

V2 (k = –1)

V3 (k = –1)

0.5 1.0 1.5 2.0 2.5 3.0
a

–4

–2

2

4
V

V1 (k = 1)

V2 (k = 1)

V3 (k = 1)

V1 (k = 0)

V2 (k = 0)

V3 (k = 0)

V1 (k = –1)

V2 (k = –1)

V3 (k = –1)

FIG. 2. Potential for negative γ (left: γ ¼ − 1
4
, right: γ ¼ −4) with λ ¼ 0: No potential has an oscillating solution.

0.5 1.0 1.5 2.0 2.5 3.0
a

–1.0

–0.5

0.5

1.0
V

V1 ( = –1/2)

V1 ( = 0)

V1 ( = 1/2)

V1 ( = 2)

FIG. 3. Potential with cosmological constant: γ ¼ 1
4
: A small

cosmological constant (red plot) provides a new branch of
solution a > aΛ ∼ 2.4 in addition to the oscillating solution
a ∈ ðamin ∼ 0.5; amax ∼ 1.12Þ.

0
2

3

2
2

5

2
3

t

0.2

0.4

0.6

0.8

1.0

1.2

N

a

FIG. 4. Plot of the lapse function N and the scale factor a.
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The numerical plot in Fig. 4 shows that our choice of a time
coordinate (21) has no coordinate singularity.
Since the expression of our solution in Fig. 4 highly

depends on our choice of a time coordinate, it is useful to

express our result by the proper time. The proper time τ can
be obtained by integrating N,

τðtÞ ¼
Z

t

0

dtN: ð23Þ

The scale factor can be written as a function of this proper
time, which is plotted in Fig. 5. Here the period of scale
factor in terms of the proper time is τðt ¼ πÞ ∼ 3.05 when
γ ¼ 1

4
. The proper time τðπÞ depends on the value of γ as

shown in Fig. 6.
As another coordinate independent expression of our

result, it is useful to embed the 4-dimensional time crystal
universe to the 5-dimensional Minkowski spacetime,

l2½−dz2 þ da2 þ a2Ωijdxidxj�; ð24Þ
by the embedding function z ¼ zðtÞ and a ¼ aðtÞ. Here,
aðtÞ is the scale factor of the time crystal universe while the
function z ¼ zðtÞ can be determined by imposing that the
pull back of 5-dimensional Minkowski metric coincides
with our time crystal universe, that is,

l2½−ðð∂tzðtÞÞ2 − ð∂taÞ2Þdt2 þ aðtÞ2Ωijdxidxj�
¼ l2½−N2dt2 þ a2ðtÞΩijdxidxj�: ð25Þ

Then it can be integrated as

zðtÞ ¼
Z

t

0

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ ð∂taÞ2

q
; ð26Þ

where the initial condition at t ¼ 0 is set to the origin of z.
Actually, we can visualize this embedding as a 2-dimen-
sional surface in the 3-dimensional Minkowski spacetime
by considering a subspace χ ¼ θ ¼ π

2
, where χ and θ are the

polar coordinates given by Eq. (9) with k ¼ þ1. The
embedding can be seen in Fig. 7. Embedding the solution
into the flat space will help us to understand the analytic

2 4 6 8

0.2

0.4

0.6

0.8

1.0

a

FIG. 5. The scale factor a as a function of the proper time τ:
scale factor a is a periodic function of τ.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(t= )

FIG. 6. γ dependence of the period of oscillation measured by
the proper time τ.

FIG. 7. 2-dimensional time crystal universe (setting χ ¼ θ ¼ π=2) embedded in 3-dimensional Minkowski spacetime with a time
coordinate z.
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continuation of an Euclidean solution to a Lorentzian
solution as we will see in the following sections.

IV. NUCLEATION OF TIME CRYSTAL UNIVERSE
FROM FLAT SPACE

Since the duality is an on-shell relation, quantum effects
such as the tunneling effect are expected to show
differences. The Euclidean solution with the free 2-form
field is known as a Giddings-Strominger instanton [36],
which provides a topology changing tunneling process
from a flat space R3 to a sum of a flat space R3 and a closed
Friedmann-Lemaître-Robertson-Walker (FLRW) universe
S3 called a baby universe. In the following, we will
investigate how the Giddings-Strominger instanton is
modified in the 2-form dual of Horndeski theory.
To construct an instanton solution, we first need to

perform the Wick rotation, t → −itE, to obtain an
Euclidean action:

SE ¼ −iSjt→−itE

¼
Z
dtEd3x

ffiffiffiffiffi
gE

p �
−
M2

pl

2
ðRE − 2ΛÞ

þ 1

12
GE

μνρ;αβγHμνρHαβγ

�
: ð27Þ

Here gEμν is the Euclidean metric, RE and GE
μν are the Ricci

scalar and the Einstein tensor with respect to gEμν. GE is the
Euclidean version of (6), which is defined by

GE
μνρ;αβγ ≔

GE
μαGE

νβGE
ργ

detGE·
· ; GE

μν¼αgμνE þβGE
μν: ð28Þ

Let us consider the Euclidean version of the FLRW
ansatz,

gEμνdxμdxν ¼ l2½NðtEÞ2dt2E þ aðtEÞ2Ωijdxidxj�; ð29Þ

with a constant magnetic flux of 2-form field,

H ¼ h
ffiffiffiffi
Ω

p
dχ ∧ dθ ∧ dϕ: ð30Þ

As similar to the Lorentzian case, H satisfies the field
equation

∇μðGE
μνρ

αβγHαβγÞ ¼ 0; ð31Þ

as well as the Bianchi identity dH ¼ 0. Here we again set a
length scale l by Eq. (12). The above field equation was
derived by taking a variation of the Euclidean action with
respect to Bμν as

0 ¼ δBSE

¼
Z

dtEd3x
ffiffiffiffiffi
gE

p �
−
1

2
∇μðGE

μνρ
αβγHαβγÞδBνρ

þ 1

2
∇μðGE

μνρ
αβγHαβγδBνρÞ

�
: ð32Þ

Note that the second term automatically vanishes under our
ansatz (29) and (30). That ensures that we do not need to
introduce an additional boundary term with respect to the
2-form field even for a boundary condition δBμν ≠ 0.
Now the Euclidean action for the minisuperspace can be

obtained as

SE ¼ 3l2M2
plV

Z
dtENa3

�∂2
τEa

a
þ
�∂τEa

a

�
2

−
k
a2

þ λ

3
þ 1

a6
1

1þ γ2ðð∂τa=aÞ2 − k=a2Þ
�
: ð33Þ

Note that our new interaction term does not include the
second derivative of the scale factor. That means we only
need the Gibbons-Hawking term of the Einstein-Hilbert
term for gravitational variation in minisuper space. By
taking the variation of the Euclidean action SE with respect
to N, we can deduce the modified Euclidean Friedmann
equation as

0¼−ð∂τEaÞ2þk−
λ

3
a2þ −a2þγð−3ð∂τEaÞ2þkÞ

ða3−γað−ð∂τEaÞ2þkÞÞ2 : ð34Þ

From this expression, we see that the Euclidean Friedmann
equation can be obtained from the Lorentzian Friedmann
equation simply by replacing ð∂τaÞ2 → −ð∂τEaÞ2. Thus by
defining the potential for the scale factor by

ð∂τEaÞ2 ¼ −VE
n ða; γ; λ; kÞ; n ¼ 1; 2; 3 ð35Þ

we find that the Euclidean potential is nothing but the
negative signed Lorentzian potential,

0.5 1.0 1.5 2.0 2.5 3.0
a

–1.0

–0.5

0.5

1.0

V

V1
E

V1
E+O( 2)

V1

FIG. 8. Euclidean potential VE in 2-form theory without
cosmological constant (γ ¼ 1

4
, k ¼ 1, λ ¼ 0): The gray plot is

the Lorentzian potential for time crystal a ∈ ðamin ∼ 0.5;
amax ∼ 1.08Þ. The red, dashed plot is a Taylor expansion of
VE
1 given by (37).
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VE
n ða; γ; λ; kÞ ¼ −Vnða; γ; λ; kÞ: ð36Þ

We note that this is because the 2-from field contribute to
the Friedmann equation through a gradient energy, not a
kinetic energy. In the case of scalar theory, the contribution
of the scalar field to the Friedmann equation is from the
kinetic term and the last term in Eq. (34) receives an
additional minus sign.
The Euclidean potential for λ ¼ 0 case is plotted in

Fig. 8. There are 2 possible solutions, a ∈ ð0; aminÞ and
a ∈ ðamax;∞Þ, where amin and amax are minimum and
maximum size of the Lorentzian time crystal universe
defined by (20). We are interested in the outer solution
a ∈ ðamax;∞Þ because it corresponds to the Giddings-
Strominger instanton.

As seen from Fig. 8, in the a > amax region, the potential
can be approximately expressed by the Taylor expansion
with respect to γ,

VE
1 ða;γ;λ¼0;k¼1Þ¼−1þ 1

a4
−

1

a6

�
−2þ 1

a4

�
γþOðγ2Þ:

ð37Þ

As in the Lorentzian case, we can choose a time coordinate
by fixing the functional form of aðtEÞ. Our choice of the
time coordinate is the following

aðtEÞ ≔ amax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh tE

p
: ð38Þ

Then the Friedmann equation provides the expression
for N as

NðtEÞ2 ¼
1

4
cosh tE þ 1

8

�
cosh tE −

2

1þ cosh tE
þ 2

1

cosh2tE

�
γ þOðγ2Þ: ð39Þ

Thus we obtain the solution,

gEμνdxμdxν ¼ l2 coshðtEÞ
��

1

4
þ γ

8

�
1 −

2

coshðtEÞð1þ cosh tEÞ
þ 2

cosh3tE

��
dt2E þ

�
1þ 1

2
γ

�
Ωijdxidxj

�
þOðγ2Þ: ð40Þ

Note that the leading term (γ ¼ 0) is nothing but the Giddings-Strominger solution. In the asymptotic region tE → �∞, our
metric reduces that of the flat space

gEμνdxμdxν → l2
�
1þ γ

2
þOðγ2Þ

��
1

4
etEdt2E þ etEΩijdxidxj

�
¼ l2½dτ2E þ τ2EΩijdxidxj�; ð41Þ

where the proper time τE is given as

τE ¼
�
1þ γ

2
þOðγ2Þ

�
1=2

etE=2: ð42Þ

The metric (40) represents a wormhole space which
connects two distinct asymptotic flat spaces tE → �∞.

Concretely, by embedding this space to a higher dimen-
sional Euclidean space as Fig. 9, one can visually under-
stand the structure. Here embedding function is given as in
the Lorentzian case, except for the sign of 5-dimensional
metric:

l2ðdz2 þ da2 þ a2ΩijdxidxjÞ → l2ððz0ðtEÞ2 þ a0ðtEÞ2Þdt2E þ aðtEÞ2ΩijdxidxjÞ ¼ l2ðN2dt2E þ aðtEÞ2ΩijdxidxjÞ; ð43Þ
where the embedding function can be obtained as

zðtEÞ ¼
Z

tE

0

dtE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − ð∂tEaÞ2

q
: ð44Þ

Based on the standard prescription of Wentzel-Kramers-Brillouin analysis, the tunneling probability from the flat space to
the time crystal universe can be estimated by the on-shell value of Euclidean action. We find that the probability is finite:

SE ¼ 6l2M2
plπ

2

Z
∞

−∞
dtE

�
1

cosh tE
þ γ

4

�
−

1

cosh2ðtE
2
Þ þ

6

cosh2tE
−

4

cosh4tE

�
þOðγ2Þ

�

¼ 6l2M2
plπ

3

�
1þ 2

3π
γ þOðγ2Þ

�
; ð45Þ
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and hence our time crystal universe can be nucleated from
the flat space. This scenario is visualized as in Fig. 10.
Since two sides of the asymptotically flat region can be
connected to Minkowski spacetimes, this instanton de-
scribes a tunneling process from R3 to R3 ⊕ S3, where S3 is
our time crystal universe. The tunneling probability of
Giddings-Strominger is recovered by setting γ ¼ 0. Since
the correction γ is positive, nucleation probability of the
time crystal universe is slightly smaller than standard
Giddings-Strominger’s baby universe.

V. TUNNELING FROM THE TIME CRYSTAL TO
DE SITTER UNIVERSE

In this section, we show, once the cosmological constant
is tuned on, a time crystal universe will transit to an
inflationary universe by tunneling.

A potential with a positive small λ is shown in
Fig. 11. The tunneling from a time crystal universe to an
inflationary one will be described a bounce solution
between amax and aΛ. As seen from Fig. 11, the Taylor
expansion of the potential is good approximation and that is
given by

VEða; γ; λ; k ¼ 1Þ ¼ −1þ 1

a4
þ 1

3
a2λ

−
1

a6

�
−2þ 1

a4
þ 1

3
λa2

�
γ þOðγ2Þ:

ð46Þ

As in the analysis of λ ¼ 0 case, one can freely choose a
time coordinate tE by fixing a functional form of aðtEÞ.
However, we can not introduce the global time coordinate
analytically, simply because it is difficult to derive the
analytic expression for the points amax and aΛ. Instead, we
will introduce a time coordinate with coordinate singularity.
The simplest choice is

aðtEÞ ¼ tE tE ∈ ðamax; aΛÞ; ð47Þ

and the lapse function N can be obtained from the
Friedmann equation as

NðtEÞ2 ¼
1

−VðtEÞ
¼ −

t4E
1 − t4E þ ðλ=3Þt6E

−
1 − 2t4E þ ðλ=3Þt6E

t2Eð1 − t2E þ ðλ=3Þt6EÞ2
γ þOðγ2Þ: ð48Þ

There are coordinate singularities at a ¼ amax and aΛ
where NðtEÞ → ∞ (VðtEÞ ¼ 0) and our time coordinate
spans only a finite part of the whole space. By integrating
N, we can obtain the proper time τ,

FIG. 9. 2-dimensional wormhole space embedded in 3-dimen-
sional Euclid space: Each circles corresponds to tE constant
curve. There are two asymptotic flat region (upper and lower
planes).

FIG. 10. Analytic continuation of a Lorentzian time crystal
universe (orange) from a wormhole space (blue): Here z > 0 is
Minkowski space and z < 0 is Euclid space. The two sides of
asymptotic flat regions (e.g., T ≔ a cosϕ → �∞) can also be
connected to the Lorentzian Minkowski spacetimes by the
analytical continuation based on Cartesian coordinates T → iT.

0.5 1.0 1.5 2.0 2.5 3.0
a

–1.0

–0.5

0.5

1.0

V

V1
E

V1
E+O( 2)

V

FIG. 11. Euclidean potential VE in 2-form theory with a small
cosmological constant (γ ¼ 1

4
, k ¼ 1, λ ¼ 1

2
): The gray plot is the

Lorentzian potential and the red, dashed one is a Taylor
expansion of Euclidean potential given by (46). Here the points
of VE ¼ 0 are given as amin ¼ 0.5, amax ¼ 1; 12, aΛ ¼ 2.41.
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τðtEÞ ¼
Z

tE

aΛ

NðsÞds; tE ∈ ðamax; aΛÞ; ð49Þ

where we set τ ¼ 0 at the bounce point a ¼ aΛ.
Numerically scalar factor can be plotted as a function of
the proper time τE as the solid curve in Fig. 12. Similarly,
the solution for tE > aΛ can be obtained by assuming

aðtEÞ ¼ 2aΛ − tE; tE ∈ ðaΛ; 2aΛ − amaxÞ: ð50Þ

By repeating same procedure, we can plot the scale factor a
as a function of τE for ðaΛ; 2aΛ − amaxÞ, which is the
dashed curve in Fig. 12.
The embedding to the 5 dimensional Euclidean space

can be obtained as in the λ ¼ 0 case. Now the embedding
function z is given by

zðtEÞ ¼
Z

tE

aΛ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðtEÞ2 − 1

q
: ð51Þ

The embedding of the instanton solution is plotted
in Fig. 13.
Finally we need to confirm that the transition probability

is finite. Since we know the exact solution (47) and (48), it
is easy to estimate the value of the on-shell Euclidean action
SE at least numerically. The results of numerical calcu-
lations in the parameter region γ ∈ ð0.2; 0.8Þ and λ ∈
ð0.1; 0.8Þ can be fitted as

SE ∼ 6π2l2M2
pl

�
−
4.0
λ

þ 3.4þ 1.1γ

�
: ð52Þ

For example, we obtain SE ¼ −4.4 for the parameter γ ¼ 1
4

and λ ¼ 1
2
. Since the value of SE is finite, we can conclude

that our time crystal universe can make a transition into an
inflationary universe through tunneling. The whole history
of the tunneling process is described in Fig. 14. There our

instanton solution mediates a time crystal universe and de
Sitter universe. Note that our result implies that our time
crystal universe is a false vacuum because it decays into de
Sitter universe, which has a time translation symmetry.

FIG. 14. Tunneling process from time a crystal universe to de
Sitter universe mediated by our instanton solution: The orange
surfaces are embedded in Minkowski spacetime as well as the
blue one is in Euclid space.

–3 –2 –1 1 2 3
E

0.5

1.0

1.5

2.0

2.5

a

FIG. 12. The scale factor a as a function of the proper time τE:
Here only a period is plotted.

FIG. 13. The instanton solution embedded in the flat Euclidean
space.
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VI. SUMMARY AND DISCUSSION

We found that a 2-form gauge theory (4), as well as a
dual Horndeski theory (1), has a solution describing a time
crystal universe, which is exactly periodic in time as shown
in Fig. 5. By considering the semiclassical effect of
quantum gravity, we found that (i) the time crystal universe
can be nucleated from the flat space when Λ ¼ 0 and
(ii) the time crystal universe decays into a de Sitter universe
when Λ > 0. The history of the transitions are visualized in
Fig. 10 and Fig. 14. The last result suggest a new picture
that the inflationary universe is created from a time crystal
by tunneling. Thus, our finding gives rise to a past
completion of inflationary scenario.
Though our Euclidean solution provides a new interest-

ing scenarios of the early Universe, there are problems
which need to be solved. The first problem would be the
stability of the time crystal universe. Not only the time
crystal universe but any bouncing universe in Horndeski
theory tends to suffer from the stability issue [32]. In case
of the universe with a spatial curvature, the stability is
studied [33] and found that the tensor perturbation is stable
if and only if the following inequalities are satisfied:

F T ≔ M2
pl − βX > 0; GT ≔ M2

pl þ βX > 0; ð53Þ

where positivity of F T and GT ensures the absence of
gradient and ghost instability respectively. Thus the abso-
lute value of the kinetic energy of scalar field jXj must be
finite. However one can check that X goes to −∞ as the
scale factor a approaches to its minimum amin. Thus near
the lower turning point amin, tensor modes become ghosts.
Since our action includes a negative mass dimension
operator, it is natural to regard our theory as a low energy
effective theory with a cut off scale Λcut < Mpl. Then, it is
an interesting question that we can stabilize the cosmo-
logical perturbations by adding the higher dimensional
operator like KijKij without affecting the background
dynamics as in the case of other time crystal solutions [16].
Another problem is the Euclidean solution connecting to

a ¼ 0. From the plot of potential in Fig. 11, one can find
that the potential can be expanded as

VEðaÞ ¼ −
1

3
þOða2Þ: ð54Þ

Then we obtain the expression for the scale factor,

aðτÞ ¼ τffiffiffi
3

p þOðτ3Þ; ð55Þ

and this leads to the curvature singularity at τ ¼ 0 because
RE ¼ 12=τ2 þOðτ0Þ. Though this does not lead to the
divergence of the Einstein Hilbert term because
Na3RE ∝ −τ, the contribution from the 2-form kinetic term
becomes negative infinity;

1

12

ffiffiffiffiffi
gE

p
GE

μνρ
αβγHμνρHαβγ ¼ −

9
ffiffiffi
3

p
lM2

pl

2γτ
þOðτÞ → −∞:

ð56Þ

Thus if we assume that the tunneling probability is given by
e−SE it diverges and dominates over the other processes
such as creation of the time crystal universe. However it
might be a matter of the prescription of quantum gravity.
For example, it is well known that the sign in front of SE is
flipped depending on the boundary condition of the wave
function of the universe (See, e.g., Ref. [39] for a review of
quantum cosmology). Apart from this, we can simply say
that solution near a ¼ 0 is unreliable because a validity of
effective field theory of our action should be broken near
the curvature singularity.
A possibility of the presence of the time crystal universe

before the inflationary phase provides interesting questions.
For example, how can we know the signal of time crystal
before tunneling process? We expect that the signal should
be encoded by cosmological perturbations, if the problem
of ghost instability is resolved. As a virtue of time crystal
universe fields on the time crystal universe must be
gradually amplified because of Floquet’s theorem, which
is the time periodic version of Bloch’s theorem of usual
crystals. Thus the cosmological perturbations are also
expected to be amplified as the universe oscillates. In
our scenario, the time crystal universe enters inflationary
phase through a tunneling effect. Then it is interesting to
investigate how the perturbations around a tunneling back-
ground evolve. Are there remnants of amplified perturba-
tions or is every perturbation washed out by the tunneling
process? We will address this issue in future work.
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