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It is known that a coherently oscillating axion field is a candidate of the dark matter. In the presence of
the oscillating axion, the photon can be resonantly produced through the parametric amplification. In the
universe, there also exist cosmological magnetic fields which are coherent electromagnetic fields. In the
presence of magnetic fields, an axion can be converted into a photon, and vice versa. Thus, it is interesting
to investigate what happens for the axion-photon system in the presence of both the axion dark matter and
the magnetic fields. This system can be regarded as a coupled system of the axion and the photon whose
equations contain the Mathieu type terms. We find that the instability condition is changed in the presence
of magnetic fields in contrast to the conventional Mathieu equation. The positions of bifurcation points
between stable and unstable are shifted and new instability bands appear. This is because the resonantly
amplified axion can be converted to photon, and vice versa.

DOI: 10.1103/PhysRevD.101.043505

I. INTRODUCTION

The cosmological dark matter problem has been studied
in the context of beyond the standard model of particle
physics. One of such dark matter candidates is an axion
which has been originally proposed as a solution for the
strong CP problem [1–4]. This original axion is called a
QCD axion. String theory predicts axionlike particles
(ALPs) with a broad mass range [5,6]. Throughout this
paper, we will simply use a word “axion,” for both QCD
axion and ALPs. The axion has feeble interaction with
standard model particles and could be produced in the early
universe by nonthermal mechanism. This is the reason why
the axion can be the dark matter [7–9]. In particular, it is
known that ultralight axions called fuzzy dark matter [10]
can resolve the issues in ΛCDM, e.g., the core-cusp
problem and the missing satellite problem. We can treat
axion dark matter as a classical field. Then, the axion is
coherently oscillating with a frequency determined by the
mass. There are various experiments to search for the axion
dark matter [11,12].
It is known that, in the presence of the axion dark matter,

the propagation of photons is governed by the Mathieu
equation [13]. The properties of the Mathieu equation are

well studied in mathematics [14–16]. It is known that the
system becomes unstable for specific parameter regions.
In the universe, on top of the axion dark matter which

is a coherent axion field, there exist cosmological mag-
netic fields which is a coherent electromagnetic field.
Remarkably, in the presence of magnetic field, there occurs
the axion-photon conversion [17,18]. The axion-photon
conversion has been investigated in the context of astro-
physics. Indeed, the axion-photon conversion can explain
the fact that high energy photons can reach the Earth
through intergalactic magnetic fields without disappearing.
On the other hand, in the CAST experiment [19], strong
magnetic field is applied to the detector in order to detect
axions produced in the sun by converting axions into
photons. The fact that no signal of axions has been detected
until now has given constraints on the mass of the axion and
the coupling constant between an axion and two photons.
As we explained in the above, it is natural to consider the

axion dark matter and the magnetic fields at the same time.
Hence, in this paper, we investigate what happens for the
axion-photon system in the presence of both the axion dark
matter and the magnetic fields. More precisely, we study
the stability of such system in terms of both numerical and
analytical methods. Although there are related papers
which discuss behavior of axion dark matter and photon
with and without magnetic field [20–31], to the best of our
knowledge, no one did the stability analysis focusing on the
axion-photon conversion.
This paper is organized as follows. In Sec. II, we

introduce basic equations of axion electrodynamics. We
derive basic equations by separating a background and
perturbed quantities. Then, we show numerical results in
Sec. III. They show stability of the solutions for the basic
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equations. In Sec. IV, we give an analytical derivation of the
numerical results. In particular, we will show you how to
determine the boundaries between stable and unstable
region in the parameter space. In Sec. V, we will discuss
an interpretation of our numerical results and a possible
application. The final Sec. VI is devoted to the conclusion.

II. AXION ELECTRODYNAMICS

In this section, we introduce basic equations of axion
electrodynamics. Then, we consider an oscillating axion
field and a static uniform magnetic field as a background.
Given the background, we derive perturbative equations for
describing propagation of axions and photons. With these
equations, we can study mixing between axions and the
photons and the stability of the system.

A. Basic equations of axion electrodynamics

We consider the following system:

S ¼
Z

d4x

�
−
1

2
ð∂μa∂μaþm2

aa2Þ

−
1

4
FμνFμν −

1

4
gaγγaFμνF̃μν

�
; ð1Þ

where a is an axion field with mass ma, and gaγγ is a
coupling constant. The field strength Fμν of the electro-
magnetic field Aμðx⃗; tÞ and its dual F̃μν are given by

Fμν ≡ ∂μAν − ∂νAμ; F̃μν ≡ 1

2
ϵμνρσFρσ: ð2Þ

Using the potential Aμðx⃗; tÞ ¼ ½−ϕðx⃗; tÞ; A⃗ðx⃗; tÞ�, the elec-
tric and magnetic fields are defined by

E⃗ðx⃗; tÞ ¼ −∂tA⃗ðx⃗; tÞ −∇ϕðx⃗; tÞ; ð3Þ

B⃗ðx⃗; tÞ ¼ ∇ × A⃗ðx⃗; tÞ: ð4Þ

We can get the equations for the axion

ð□ −m2
aÞaðx⃗; tÞ ¼ gaγγE⃗ðx⃗; tÞ · B⃗ðx⃗; tÞ; ð5Þ

and for electromagnetic fields

(
□ϕðx⃗; tÞ ¼ −gaγγB⃗ðx⃗; tÞ · ½∇aðx⃗; tÞ�;
□A⃗ðx⃗; tÞ ¼ gaγγ½½∂taðx⃗; tÞ�B⃗ðx⃗; tÞ þ ½∇aðx⃗; tÞ� × E⃗ðx⃗; tÞ�:

ð6Þ

Here, we have chosen the Lorenz gauge:

∇ · A⃗ðx⃗; tÞ þ ∂tϕðx⃗; tÞ ¼ 0: ð7Þ

Equations (5) and (6) are basic equations of axion electro-
dynamics [32]. For the full analysis, we need to resort to
lattice calculations. Here, we use the perturbative analysis.

B. Background equations

Now, we assume both the axion dark matter and the
magnetic fields as a background. The background magnetic
field is static and uniform,

B⃗0 ¼ ½B0; 0; 0�: ð8Þ
We introduce here coordinate basis so that the propagation
is in the direction e⃗z ¼ ½0; 0; 1�, one of the rests is parallel
to the magnetic field: e⃗k ¼ ½1; 0; 0�, and the other is e⃗⊥ ¼
½0; 1; 0�. The background equation for axion is

∂2
t a0ðtÞ þm2

aa0ðtÞ ¼ −gaγγB0E0kðtÞ; ð9Þ
and for photon

∂tE0kðtÞ ¼ gaγγB0½∂ta0ðtÞ�: ð10Þ
Note that we have chosen the radiation gauge

ϕðtÞ ¼ 0; ∇ · A⃗ðx⃗Þ ¼ 0: ð11Þ
This is because the source term of the scalar potential ϕðtÞ
equation vanish

□ϕðtÞ ¼ 0: ð12Þ
Solving the Eq. (10), we see that the electric field is induced
by the axion oscillation:

E0kðtÞ ¼ gaγγB0a0ðtÞ: ð13Þ
Substituting (13) into (9), we can get

ä0ðτÞ þ Ω2
βa0ðτÞ ¼ 0; ð14Þ

where we replace time variable t with τ≡mat, and express
a derivative with respect to τ by dot. Here we also
introduced new dimensionless parameters β and Ωβ as

β≡ gaγγB0

ma
¼ 1.95 × 10−9

�
10−22 eV

ma

��
gaγγ

10−11 GeV−1

�

×

�
B0

10−9 G

�
; ð15Þ

Ωβ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
: ð16Þ

Note that conservatively we have a constraint gaγγ ≤
10−11 GeV−1. Recall the relation 1G ¼ 1.95 × 10−2 eV2,
for the cosmological magnetic fields ∼nG and the axion
massma > 10−22 eV, we can neglect the effect of magnetic
fields β ≪ 1. However, for more strong magnetic fields, we
need to consider the effect of β.
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In the end, there are uniform static magnetic field,
oscillating axion field and oscillating electric field in the
background:

a0ðτÞ ¼ ā cos ðΩβτÞ; ð17Þ

E0kðτÞ ¼ maβā cos ðΩβτÞ: ð18Þ

We introduce energy density ρ as follows:

ρ≡ 1

2
ð∂ta0Þ2 þ

1

2
m2

aa20

����
present

þ 1

2
E2
0kðτÞ ¼

1

2
ā2m2

aΩ2
β;

ð19Þ
then background energy density ρBG is given by

ρBG ≡ ρþ 1

2
B2
0: ð20Þ

We determine axion amplitude ā by the energy density ρ,

ā ¼
ffiffiffiffiffi
2ρ

p
maΩβ

: ð21Þ

Thus, we found the following expressions

a0ðτÞ ¼
ffiffiffiffiffi
2ρ

p
maΩβ

cos ðΩβτÞ; ð22Þ

E0kðτÞ ¼
β
ffiffiffiffiffi
2ρ

p
Ωβ

cos ðΩβτÞ: ð23Þ

C. Perturbative equations

Now, let us divide the fields into background and
perturbation as follows:8>><

>>:
aðz; tÞ ¼ a0ðtÞ þδaðz; tÞ;
B⃗ðz; tÞ ¼ B⃗0ðconst:Þ þδB⃗ðz; tÞ;
E⃗ðz; tÞ ¼ E⃗0ðtÞ þδE⃗ðz; tÞ:

ð24Þ

The first order equations of (5) and (6) are given by

ð□ −m2
aÞδaðz; tÞ ¼ gaγγ½δE⃗ðz; tÞ · B⃗0 þ E⃗0ðtÞ · δB⃗ðz; tÞ�;

ð25Þ
and

(
□δϕðz; tÞ ¼ −gaγγB⃗0 · ½∇δaðz; tÞ�;
□δA⃗ðz; tÞ ¼ gaγγ½½∂tδaðz; tÞ�B⃗0 þ ½∂ta0ðtÞ�δB⃗ðz; tÞ þ ½∇δaðz; tÞ� × E⃗0ðtÞ�:

ð26Þ

In our set up, the background magnetic field has only
k-component, and the propagating direction of axion is
z-axis. Hence, the source term of the scalar potential
δϕðz; tÞ equation vanishes

□δϕðz; tÞ ¼ 0: ð27Þ

Thus, we can choose the radiation gauge

δϕðz; tÞ ¼ 0; ∇δA⃗ðz; tÞ ¼ 0: ð28Þ

In terms of components, we can write the equations as
follows:

ð□ −m2
aÞδaðz; tÞ ¼ gaγγ

�
δEkðz; tÞB0 − E0kðtÞ

∂δA⊥ðz; tÞ
∂z

�
;

ð29Þ

□δAkðz; tÞ ¼ gaγγ

�
½∂tδaðz; tÞ�B0 − ½∂ta0ðtÞ�

∂δA⊥ðz; tÞ
∂z

�
;

ð30Þ

□δA⊥ðz; tÞ ¼ gaγγ

�
½∂ta0ðtÞ�

∂δAkðz; tÞ
∂z þ ∂δaðz; tÞ

∂z E0kðtÞ
�
;

ð31Þ

□δAzðz; tÞ ¼ −gaγγ
∂δaðz; tÞ

∂y E0kðtÞ: ð32Þ

Although the time translational symmetry is broken by
the time dependent coherent oscillation of the axion field,
the system has the spatial translation invariance. Hence, it is
useful to use Fourier transformation

δaðz; tÞ ¼
Z

dk
2π

δaðk; tÞeikz; ð33Þ

δAαðz; tÞ ¼
Z

dk
2π

δAαðk; tÞeikz; ð34Þ

δEαðz; tÞ ¼ −
Z

dk
2π

½∂tδAαðk; tÞ�eikz; ð35Þ

where α denotes k or ⊥. Using this transformation, we can
write the equations as follows:
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∂2
t δaðk; tÞ þ ðk2 þm2

aÞδaðk; tÞ ¼ gaγγB0½∂tδAkðk; tÞ� þ igaγγkE0kðtÞδA⊥ðk; tÞ; ð36Þ

∂2
t δAkðk; tÞ þ k2δAkðk; tÞ ¼ −gaγγB0½∂tδaðk; tÞ� þ igaγγk½∂ta0ðtÞ�δA⊥ðk; tÞ; ð37Þ

∂2
t δA⊥ðk; tÞ þ k2δA⊥ðk; tÞ ¼ −igaγγk½∂ta0ðtÞ�δAkðk; tÞ − igaγγkE0kðtÞδaðk; tÞ: ð38Þ

Now, we need to substitute the background solutions (22) and (23) into Eqs. (36)–(38). Then, we get following equations:

δäðk; τÞ þ ½1þ κ2�δaðk; τÞ ¼ βδ _Akðk; τÞ þ i
βϵ

Ωβ
cos ðΩβτÞδA⊥ðk; tÞ; ð39Þ

δÄkðk; τÞ þ κ2δAkðk; τÞ ¼ −βδ _aðk; τÞ − iϵ sin ðΩβτÞδA⊥ðk; tÞ; ð40Þ

δÄ⊥ðk; τÞ þ κ2δA⊥ðk; τÞ ¼ iϵ sin ðΩβτÞδAkðk; τÞ − i
βϵ

Ωβ
cos ðΩβτÞδaðk; τÞ; ð41Þ

where we introduced dimensionless parameters κ and ϵ as
follows:

κ ≡ k
ma

; ϵ≡ gaγγ
ffiffiffiffiffi
2ρ

p
k

m2
a

¼ gaγγ
ffiffiffiffiffi
2ρ

p
ma

κ: ð42Þ

From now on, for simplicity, we use an approximation
neglecting higher order terms in β and ϵ, namely, we take
into account up to the first order in β and ϵ. Thus, we obtain

δäðk; τÞ þ ½1þ κ2�δaðk; τÞ ¼ βδ _Akðk; τÞ; ð43Þ

δÄkðk; τÞ þ κ2δAkðk; τÞ ¼ −βδ _aðk; τÞ − iϵ sinðτÞδA⊥ðk; τÞ;
ð44Þ

δÄ⊥ðk; τÞ þ κ2δA⊥ðk; τÞ ¼ iϵ sinðτÞδAkðk; τÞ: ð45Þ

We can see that when ϵ ¼ 0, Eqs. (43)–(45) describe the
axion-photon conversion [17,18]. For β ¼ 0, they describe
photon propagation in the presence of only axion dark
matter [13].
Taking the circular polarization basis

e⃗L=R ¼ 1ffiffiffi
2

p ½e⃗k ∓ ie⃗⊥�; ð46Þ

we see original Eqs. (39)–(41) are rewritten as follows:

δäðk; τÞ þ ½1þ κ2�δaðk; τÞ ¼ βffiffiffi
2

p ½δ _ALðk; τÞ þ δ _ARðk; τÞ�

−
βϵffiffiffi
2

p
Ωβ

cos ðΩβτÞ½−δ _ALðk; τÞ þ δ _ARðk; τÞ�; ð47Þ

δÄL=Rðk; τÞ þ ½κ2 � ϵ sinðτÞ�δAL=Rðk; τÞ

¼ −
βffiffiffi
2

p δ _aðk; τÞ � βϵffiffiffi
2

p
Ωβ

cos ðΩβτÞδaðk; τÞ; ð48Þ

Under the approximation we are considering, Eqs. (43)–
(45) are rewritten as follows:

δäðk; τÞ þ ½1þ κ2�δaðk; τÞ ¼ βffiffiffi
2

p ½δ _ALðk; τÞ þ δ _ARðk; τÞ�;

ð49Þ

δÄL=Rðk; τÞ þ ½κ2 � ϵ sinðτÞ�δAL=Rðk; τÞ ¼ −
βffiffiffi
2

p δ _aðk; τÞ:

ð50Þ

Here, we should mention the previous work [27]. They
investigated the similar system, but they neglected the
parametric resonance. In this paper, we consider Mathieu
type terms and focus on the resonance instability.

III. STABILITY ANALYSIS—
INCE–STRUTT CHART

In this section, we numerically investigate the behavior
of solutions for the basic equations Eqs. (43)–(45). First,
we give a short review of the Mathieu equation for
comparison. Next, we show numerical results for axion
dark matter-photon conversion which have both similarities
and differences with the Mathieu equation’s. In the next
Sec. IV, we will provide analytical derivation of the
numerical results.

A. Without background magnetic field

A photon propagating in the axion dark matter obeys
following equations [13].

δÄL=Rðk; τÞ þ ½κ2 � ϵ sinðτÞ�δAL=Rðk; τÞ ¼ 0: ð51Þ

This can be obtained by putting β ¼ 0 in Eq. (50). The
equation (51) represents harmonic oscillator whose fre-
quency also oscillates, and this type of equation is called
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the Mathieu equation [14–16]. The solutions can be stable
or unstable, depending on dimensionless parameters, κ
and ϵ. The Floquet theorem [33] divide the (κ − ϵ) plane
into two regions (Fig. 1), stable and unstable, and this chart
is called Ince–Strutt chart [34,35]. Please refer the reader to
[16] for the Floquet theorem and the Ince–Strutt chart.
The bifurcation points on the κ axis appear at

κ̄≡ n
2

ðn ¼ 1; 2; 3;…Þ; ð52Þ

and the boundaries between the stable and unstable region
are called transition curves. On the transition curves, the

equation (51) has periodic solutions. Here, we introduce
dimension less parameter χ:

κ ¼ κ̄ þ χ; ð53Þ

where κ̄ is given by Eq. (52). For nonzero ϵ ≠ 0, a wave
number κ deviates from κ̄ in order for the solution of
Eq. (51) to still have a period T ¼ 2π=κ̄, and the deviation
is represented by χ.
For example, on the transition curves originated at

κ̄ ¼ 1=2, there is a periodic solution with T ¼ 4π. For
small jϵj, the transition curves are approximately given by

χ ¼ � ϵ

2
: ð54Þ

In the case of κ̄ ¼ 1, the transition curves are given by

χ− ≡ −
ϵ2

24
; χþ ≡ 5ϵ2

24
: ð55Þ

On these curves, (51) has a periodic solution with T ¼ 2π.
In the following two sections, we will investigate how

these results are changed when the background magnetic
field is taken into account by solving Eqs. (43)–(45)
numerically. At the same time, we show some transition
curves, and its analytical derivation is given in Sec. IV.

B. Shift of bifurcation points

The Fig. 2 shows that bifurcation points of transition
curves appear again around κ̄ ¼ n=2ðn ¼ 1; 2; 3;…Þ. To be

FIG. 2. The Ince–Strutt chart for axion DM-photon conversion. The shaded area represents parameter set which make solution of
Eqs. (43)–(45) unstable.

FIG. 1. The Ince–Strutt chart for the Mathieu equation
ðκ̄ ¼ n=2Þ. The shaded area represents parameter set which make
solution of the Eq. (51) unstable.
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more precise, bifurcation points are shifted even on the κ
axis (ϵ ¼ 0) due to the background magnetic field.
As can be seen from Fig. 2(a), the starting point of

transition curves κ̄ ∼ 1=2 is shifted by magnetic field as

χ1=2;− ≡ −
ϵ

2
þ β2

8
; ð56Þ

χ1=2;þ ≡ ϵ

2
þ β2

8
: ð57Þ

In the case of κ̄ ∼ 1 [Fig. 2(b)], the unstable region splits
into two regions.

χ− ≡ −
ϵ2

24
; ð58Þ

χþ ≡ 5ϵ2

24
; ð59Þ

χ1;− ≡ −
ϵ2

24
þ β2

2
; ð60Þ

χ1;þ ≡ 5ϵ2

24
þ β2

2
: ð61Þ

The first two curves are exactly the same as the conven-
tional one (55). On the other hand, the other two curves are
shifted by magnetic field β. The region which intervene
between χ1;− and χ1;þ represents the instability of parallel
photon component which does interact with axion through
magnetic field.
We verified that transition curves (56)–(57) and (58)–(61)

are still valid for full equations (39)–(41). However, in the
case of (39)–(41), a new bifurcation point appears between
κ ¼ 1 and κ ¼ 1þ β2=2 due to higher order contributions.

C. New bifurcation points

It seems that the axion dark matter-photon conversion has
other bifurcation points. From our numerical calculations,
we empirically found the condition for the bifurcation points

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ̄2

p
þ κ̄ ¼ nðn ¼ 2; 3; 4;…Þ: ð62Þ

Solving this with respect to κ̄, we get the following relation:

κ̄≡ n2 − 1

2n
ðn ¼ 2; 3; 4;…Þ: ð63Þ

In the case of n ¼ 2, we depicted the unstable region in
Fig. 3. We will see that transition curves can be derived in an
analytical way in the next section as follows:

χ3=4;leading ≡ −
5

32
β2 þ ϵ2

6
; ð64Þ

χ3=4;− ≡ χ3=4;leading −
5

48

ffiffiffiffiffi
15

p
βϵ2; ð65Þ

χ3=4;þ ≡ χ3=4;leading þ
5

48

ffiffiffiffiffi
15

p
βϵ2: ð66Þ

We checked that the Eq. (64) is still valid for full
equations (39)–(41). However, in the case of (39)–(41),
the width of unstable band is more broader due to more
higher order contributions. Moreover, a new bifurcation
point appears on the left side of κ ¼ 3=4 − 5β2=32. In this
paper, we shall restrict ourselves to the instability of the
leading order equations (43)–(45).

IV. ANALYTIC EXPRESSIONS OF
TRANSITION CURVES

As we have seen in the previous section, there are
differences between the conventional Mathieu equation
and axion dark matter-photon conversion. However, the
results are obtained numerically. In this section, we would
like to give an analytical support to our findings. We show
how the boundaries between stable and unstable regions are
determined by treating parameters χ, β, ϵ as small
quantities.
The basic equations (43)–(45) can be written as follows:

̈x⃗þ B_x⃗þ ½K þ E sinðτÞ�x⃗ ¼ 0; ð67Þ

FIG. 3. Axion DM–photon conversion in the case of κ̄ ¼ 3=4.
The shaded area represents parameter set which make solution
of the equation (43)–(45) unstable. D in this figure means
Dup to next leading in Sec. IV C.
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by using vector and matrices,

x⃗ ¼

2
64

δaðk; τÞ
δAkðk; τÞ
δA⊥ðk; τÞ

3
75; B ¼

2
64
0 −β 0

β 0 0

0 0 0

3
75; K ¼

2
64
1þ κ2 0 0

0 κ2 0

0 0 κ2

3
75; E ¼

2
64
0 0 0

0 0 iϵ

0 −iϵ 0

3
75: ð68Þ

Let us put an ansatz

x⃗ðτÞ ¼ eλτ½The superpositions of many photon’s overtones:�;

and substitute it into the Eq. (67). In order for (67) to have a
nontrivial solution, i.e., x⃗ ≠ 0, the determinant of the
coefficient matrix obtained in this way must vanish. Here,
we introduce growth rate λ ∈ C under the condition,
jχj ∼ jλj ≪ 1. It is the real part ℜ½λ� that determines the
stability of the solutions to the Eq. (67), and the imaginary
part ℑ½λ� detune the frequency of the solutions. The criteria
of the stable and unstable is given as follows:

ℜ½λ� ≤ 0∶ stable; ℜ½λ� > 0∶ unstable: ð69Þ

In the case ofℜ½λ� > 0, the growth rate after one period T is
given by roughly eTℜ½λ�,

x⃗ðτ þ TÞ ≃ eTℜ½λ�x⃗ðτÞ: ð70Þ

From the explicit calculations, it turns out that the deter-
minant of the coefficient matrix depends only on q≡ λ2.
Therefore, the criteria (69) can be replaced by following
ones:

ℑ½q≡ λ2� ¼ 0 and ℜ½q≡ λ2� ≤ 0∶ stable;

all other condition∶ unstable: ð71Þ

Note that small parameters χ, β, ϵ, λ may have different
relative magnitude relationship depending on bifurcation
points.
Before moving on to the concrete analysis, we define the

3 × 3 matrices which compose coefficient matrix:

DiagðnÞ≡ λ2I3 þ λBþ K − ðκnÞ2I3; ð72Þ

MixðnÞ≡ 4κn

�
λ

2
I3 þ

B
4

�
; ð73Þ

where I3 denotes the identity matrix, and n is non-negative
integer, n ¼ 0; 1; 2;…. The matrices K, B, E have been
already defined in (68).

A. Shift of bifurcation point at κ̄= 1=2

Substituting the ansatz

x⃗ðτÞ ¼ eλτ
�
a⃗1 cos

�
τ

2

�
þ b⃗1 sin

�
τ

2

��
; ð74Þ

into the Eq. (67), we obtain 6 × 6 coefficient matrix
R1=2ðq; χ; β; ϵÞ.

R1=2ðq; χ; β; ϵÞ≡
�

Diagð1Þ Mixð1Þ þ E=2

−Mixð1Þ þ E=2 Diagð1Þ

�
:

ð75Þ

The determinant of R1=2ðq; χ; β; ϵÞ must vanish.

det½R1=2ðq; χ; β; ϵÞ� ¼ 0: ð76Þ

From numerical results, we see the hierarchy of the
order λ ∼ χ ∼ ϵ ∼ β2. The leading order contribution to
the determinant is given by

det½R1=2ðq; χ; β; ϵÞ�leading

¼
"
q −

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
χ −

β2

8

�
2

þ ϵ2

4

s
þ i

β2

8

!2#

×

"
q −

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
χ −

β2

8

�
2

þ ϵ2

4

s
− i

β2

8

!2#
: ð77Þ

The next leading order is not relevant here, however, you
will soon see that it should be taken into account when you
consider the new bifurcation points. In the present case, we
have the following next order contribution:

det½R1=2ðq; χ; β; ϵÞ�next leading
¼ ð2β2 þ 6χÞq2 þ

�
12χ3 −

1

2
ϵ2β2 − 2χϵ2 þ 1

8
β4χ

�
q

þ 1

8
ϵ4χ − 2β2χ4 − 2χ3ϵ2 þ 1

8
β4χ3 þ 6χ5 þ 1

4
ϵ2β2χ2:

ð78Þ
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Evaluating the determinant at the leading order

det½R1=2ðq; χ; β; ϵÞ�leading ¼ 0; ð79Þ

we get four λ:

λ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
χ −

β2

8

�
2

þ ϵ2

4

s
� i

β2

8
;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
χ −

β2

8

�
2

þ ϵ2

4

s
∓ i

β2

8
: ð80Þ

Therefore, the range where the criterion for stability (69) is
broken is as follows:

−
ϵ

2
< χ −

β2

8
<

ϵ

2
; ð81Þ

and the transition curves are derived from the condition
ℜ½λ� ¼ 0,

χ −
β2

8
¼ � ϵ

2
: ð82Þ

Here, we would like to comment on the growth rate (80). If
you consider the situation where there is only coherent
oscillating axion in the background like [13,30,31], then
the growth rate does not depend on axion mass ma. In fact,
if you choose β ¼ 0 in (80), then you can confirm this fact.
However, in our case β ≠ 0, note that growth rate maℜ½λ�
become to depend on axion mass due to the presence of
background magnetic field β.

B. Shift of bifurcation point at κ̄ = 1

Substituting the ansatz

x⃗ðτÞ ¼ eλτ½a⃗1 cosðτÞ þ b⃗1 sinðτÞ þ a⃗2 cos ð2τÞ þ b⃗2 sin ð2τÞ þ c⃗�; ð83Þ

into the Eq. (67), we obtain 15 × 15 coefficient matrix R1ðq; χ; β; ϵÞ.

R1ðq; χ; β; ϵÞ≡

2
6666664

Diagð0Þ 0 E=2 0 0

0 Diagð1Þ Mixð1Þ 0 E=2

E −Mixð1Þ Diagð1Þ −E=2 0

0 0 −E=2 Diagð2Þ Mixð2Þ
0 E=2 0 −Mixð2Þ Diagð2Þ

3
7777775
: ð84Þ

The determinant of R1ðq; χ; β; ϵÞ must vanish.

det½R1ðq; χ; β; ϵÞ� ¼ 0: ð85Þ

From numerical results, we see the hierarchy of the order
λ ∼ χ ∼ ϵ2 ∼ β2. Evaluating the determinant at the leading
order

det½R1ðq; χ; β; ϵÞ�leading ¼ 0; ð86Þ

we get a quadratic equation with respect to q≡ λ2,

�
qþ

�
χ þ ϵ2

24

��
χ −

5ϵ2

24

��

×

�
qþ

�
χ −

β2

2
þ ϵ2

24

��
χ −

β2

2
−
5ϵ2

24

��
¼ 0: ð87Þ

Therefore, the range where the criterion for stability (71) is
broken is as follows:

−
ϵ2

24
< χ <

5ϵ2

24
; −

ϵ2

24
< χ −

β2

2
<

5ϵ2

24
; ð88Þ

and the transition curves are derived from the condition
q ¼ 0, i.e., ℜ½λ� ¼ 0,

χ ¼ −
ϵ2

24
;
5ϵ2

24
;
β2

2
−
ϵ2

24
;
β2

2
þ 5ϵ2

24
: ð89Þ

C. A new bifurcation point at κ̄ = 3=4

This is a new unstable region around κ̄ ¼ 3=4 where the
conventional Mathieu equation does not have the insta-
bility. Substituting the ansatz

x⃗ðτÞ ¼ eλτ
�

a⃗1 cos ðτ=4Þ þ b⃗1 sin ðτ=4Þ þ a⃗2 cos ð3τ=4Þ þ b⃗2 sin ð3τ=4Þ
þa⃗3 cos ð5τ=4Þ þ b⃗3 sin ð5τ=4Þ þ a⃗4 cos ð7τ=4Þ þ b⃗4 sin ð7τ=4Þ

�
; ð90Þ
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into Eq. (67), we obtain 24 × 24 coefficient matrix R3=4ðq; χ; β; ϵÞ.

R3=4ðq; χ; β; ϵÞ

≡

2
66666666666666664

Diag3=4ð0Þ Mix3=4ð0Þ 0 E=2 0 E=2 0 0

−Mix3=4ð0Þ Diag3=4ð0Þ E=2 0 −E=2 0 0 0

0 E=2 Diag3=4ð1Þ Mix3=4ð1Þ 0 0 0 E=2

E=2 0 −Mix3=4ð1Þ Diag3=4ð1Þ 0 0 −E=2 0

0 −E=2 0 0 Diag3=4ð2Þ Mix3=4ð2Þ 0 0

E=2 0 0 0 −Mix3=4ð2Þ Diag3=4ð2Þ 0 0

0 0 0 −E=2 0 0 Diag3=4ð3Þ Mix3=4ð3Þ
0 0 E=2 0 0 0 −Mix3=4ð3Þ Diag3=4ð3Þ

3
77777777777777775

:

ð91Þ

Note that in this case the definition of matrices are different
from (72) and (73),

Diag3=4ðnÞ≡ λ2I3 þ λBþ K −
�
2nþ 1

4

�
2

I3; ð92Þ

Mix3=4ðnÞ≡ ð2nþ 1Þ
�
λ

2
I3 þ

B
4

�
: ð93Þ

The determinant of R3=4ðq; χ; β; ϵÞ must vanish.

det½R3=4ðq; χ; β; ϵÞ� ¼ 0: ð94Þ

From numerical results, we see the hierarchy of the order
λ ∼ χ ∼ ϵ2 ∼ β2. Evaluating the determinant at the leading
order

det½R3=4ðq; χ; β; ϵÞ�leading ¼ 0; ð95Þ

we get a cubic equation for q≡ λ2,�
qþ 9

25

�
χ þ 25

24
β2
�

2
��

qþ
�
χ −

3

8
β2 −

4

15
ϵ2
�

2
�

×

�
qþ

�
χ −

4

15
ϵ2
�

2
�
¼ 0: ð96Þ

We obtained solutions as follows:

q1 ≡ −
9

25

�
χ þ 25

24
β2
�

2

; ð97Þ

q2 ≡ −
�
χ −

3

8
β2 −

4

15
ϵ2
�

2

; ð98Þ

q3 ≡ −
�
χ −

4

15
ϵ2
�

2

: ð99Þ

Equation (96) has three negative real solution q1, q2, q3, so
λ must be pure imaginary. Hence, no instability occurs.
Unlike κ ¼ 1=2 and 1, all the relations among the param-
eters derived from the condition q ¼ 0,

χ ¼ −
25

24
β2;

3

8
β2 þ 4

15
ϵ2;

4

15
ϵ2; ð100Þ

do not give transition curves on the (κ − ϵ) plane.
Now, let us go into the cubic equation with respect to

q ¼ λ2 (96) in more detail. We refer to the discriminant of
the cubic equation (96) as Dleading. Equation (96) says
Dleading ≥ 0 as long as the determinant of coefficient matrix
is evaluated at leading order. In the case of Dleading > 0,
even if higher order contributions are considered, it still
remain Dhigher > 0. However, if Dleading ¼ 0, the sign of
discriminant Dhigher can be minus due to higher order
contributions. This means that two q out of three are
complex, and that the solution (90) is always unstable.
Before considering higher order contributions, we derive

the condition that the equation (96) has multiple roots, i.e.,
Dleading ¼ 0. There are three possibilities:

q1 ¼ q2; or q2 ¼ q3; or q3 ¼ q1:

It is expected that instability around κ̄ ¼ 3=4 is caused by
the coupling of the axion and the photon (k) through the
magnetic field, so q1 ¼ q2 may be meaningful. Solving the
equation

−
9

25

�
χ þ 25

24
β2
�

2

¼ −
�
χ −

3

8
β2 −

4

15
ϵ2
�

2

; ð101Þ

we obtain the relation among parameters,

χ ¼ −
5

32
β2 þ ϵ2

6
: ð102Þ

STABILITY OF AXION DARK MATTER-PHOTON CONVERSION PHYS. REV. D 101, 043505 (2020)

043505-9



On the curve that satisfies this relationship (102), the cubic
equation (95) can be rewritten,

½qþ f1ðβ; ϵÞ�½qþ f2ðβ; ϵÞ�2 ¼ 0; ð103Þ

and it has multiple root q ¼ −f2ðβ; ϵÞ, where f1ðβ; ϵÞ and
f2ðβ; ϵÞ are positive real functions. The cubic equation (95)
does not have complex solutions at the leading order.
In order to clarify the origin of instability, we need to

proceed to the next order. Please refer the reader to the
Appendix for concrete expressions. The determinant at next
leading order det½R3=4ðq; χ; β; ϵÞ�next leading is also cubic
equation. Up to the next leading order, we have

det½R3=4ðq; χ; β; ϵÞ�up to next leading

≡ det½R3=4ðq; χ; β; ϵÞ�leading þ det½R3=4ðq; χ; β; ϵÞ�next leading
≡ C3ðχ; β; ϵÞq3 þ C2ðχ; β; ϵÞq2 þ C1ðχ; β; ϵÞq
þ C0ðχ; β; ϵÞ ¼ 0; ð104Þ

where we labeled the coefficients of each orders of q as C3,
C2, C1, C0. The discriminant of cubic equation (104) is
given by

Dup to next leadingðχ; β; ϵÞ
≡ −4C3ðχ; β; ϵÞ½C1ðχ; β; ϵÞ�3
− 27½C3ðχ; β; ϵÞ�2½C0ðχ; β; ϵÞ�2
þ ½C2ðχ; β; ϵÞ�2½C1ðχ; β; ϵÞ�2 − 4½C2ðχ; β; ϵÞ�3C0ðχ; β; ϵÞ
þ 18C3ðχ; β; ϵÞC2ðχ; β; ϵÞC1ðχ; β; ϵÞC0ðχ; β; ϵÞ: ð105Þ

Let us find a correction term X to the relation among
parameters,

χ ¼ −
5

32
β2 þ ϵ2

6
þ X: ð106Þ

On the curve that satisfies this relationship (106), we expect
that the cubic equation (104) will have multiple roots,

½qþ g1ðβ; ϵÞ�½qþ g2ðβ; ϵÞ�2 ¼ 0: ð107Þ

In the Eq. (106), a higher order contribution X is incorpo-
rated into the leading order relation (102). The correction X
is chosen so that the leading order of Dup to next leading

vanish:

Dup to next leading

�
−

5

32
β2þ ϵ2

6
þX;β;ϵ

�����
leading

¼ 0: ð108Þ

Thus, we can get correction terms,

X ¼ � 5

48

ffiffiffiffiffi
15

p
βϵ2: ð109Þ

Up to the next leading order, the particular relationships
among parameters are given by

χ ¼ −
5

32
β2 þ ϵ2

6
� 5

48

ffiffiffiffiffi
15

p
βϵ2: ð110Þ

Remarkably, the original curve (102) splits into two curves
(110). In the region which intervene between (110), the all
order of discriminant Dup to next leading is negative, i.e.,
Dup to next leading < 0. Hence, in the region between the
two curves (110), the cubic equation (104) can be rewritten
as follows:

½qþ g1ðβ; ϵÞ�½qþ h1ðβ; ϵÞ þ ih2ðβ; ϵÞ�
× ½qþ h1ðβ; ϵÞ − ih2ðβ; ϵÞ� ¼ 0; ð111Þ

and the criterion for stability (71) is not satisfied. Thus, we
have found that two curves (110) is nothing but the
transition curves for κ̄ ¼ 3=4.

V. DISCUSSION

In the case of the conventional Mathieu equation,
bifurcation points are located at κ̄ ¼ n=2. This bifurcation
point can be also rewritten as follows:

nma ¼ 2k ðn ¼ 1; 2; 3;…Þ; ð112Þ

where ma is axion mass, and k is the wave number.
Diagrammatically, Eq. (112) for n ¼ 1 can be interpreted
as in Fig. 4. Namely, the parametric resonance is nothing
but a coherent decay of axions into photons.
As described in the Sec. III C and Sec. IV C, in the

situation where axion and magnetic field coexist in the
background, a new bifurcation point

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ̄2

p
þ κ̄ ¼ n

arises. This bifurcation point can be also rewritten as
follows:

nma ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þ k2
q

þ k ðn ≥ 2; n ¼ 2; 3; 4;…Þ: ð113Þ

The case for n ¼ 2 is illustrated in Fig. 5. In this case, an
axion and a photon are generated through the coherent
decay of axions and photons in the background.

FIG. 4. (112) in the case of n ¼ 1.
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Finally, let us consider what system needs to be arranged
to give rise to instability seen in Sec. III C and Sec. IV C.
Appropriate numerical values depend on the wavelength L,

L≡ 2π

k
: ð114Þ

The dimensionless parameter κ determine a relation
between the axion mass and the wavelength of electro-
magnetic waves as follows:

κ ¼ 0.75

�
1.65 × 10−6 eV

ma

��
102 cm

L

�
: ð115Þ

The parameter β characterize the strength of magnetic
fields. In the case of a neutron star, and trying to detect the
signal with microwaves (L ¼ 102 cm), the value of β is
given by

β ¼ 0.12

�
1.65 × 10−6 eV

ma

��
gaγγ

10−11 GeV−1

��
B0

1015 G

�
:

ð116Þ
The axion dark matter-photon conversion could be effec-
tive. On the other hand, ϵ has a extremely small value in the
case of (115) and (116). If you assume ultralight axions, ϵ
has a suitable value:

ϵ ¼ 0.097

�
κ

0.75

��
gaγγ

10−11 GeV−1

��
1.65 × 10−22 eV

ma

�

×

�
ρ

0.3 GeV=cm3

�
: ð117Þ

The de Broglie wavelength LdB where spatial variation of
axion can be neglected is as follows:

LdB ¼ 2π

mav
∼ 0.4 kpc

�
10−22 eV

ma

�
; ð118Þ

where we took a typical velocity in the galaxy v ∼ 10−3.
Since the coherence length is sufficiently long, we can
expect parametric amplification of electromagnetic waves
with the wavelength 1018 cm ∼ 1 pc. Here, we would like
to comment on the coherence of the axion dark matter. We

assumed coherence of the axion dark matter, and use the
values 0.3 GeV=cm3 and v ∼ 10−3 as a rough parameter
estimate. However, for the more precise analysis, we need
to compare the bandwidth of instability with velocity
dispersion as discussed in [31].
Now, the question is whether both the conversion and the

resonance can be important at the same time. In the case of
radio waves, three parameters included in basic equa-
tions (43)–(45) are given as follows:

κ ¼ 0.75

�
1.65 × 10−14 eV

ma

��
1010 cm

L

�
; ð119Þ

β ¼ 0.12

�
1.65 × 10−14 eV

ma

��
gaγγ

10−11 GeV−1

��
B0

107 G

�
;

ð120Þ

ϵ ¼ 0.097

�
κ

0.75

��
gaγγ

10−11 GeV−1

��
1.65 × 10−14 eV

ma

�

×

�
ρ

0.3 × 108 GeV=cm3

�
: ð121Þ

A strong magnetic field B0 ∼ 107 G can be realized with a
white dwarf. However, energy density ρ needs 108 times as
much as the average density of dark matter near the solar
system.
Next, in the case of an ultralight axion, three para-

meters included in basic equations (43)–(45) are given as
follows:

κ ¼ 0.75

�
1.65 × 10−22 eV

ma

��
1018 cm

L

�
; ð122Þ

β ¼ 0.12

�
1.65 × 10−22 eV

ma

��
gaγγ

10−11 GeV−1

��
B0

10−1 G

�
;

ð123Þ

ϵ ¼ 0.097

�
κ

0.75

��
gaγγ

10−11 GeV−1

��
1.65 × 10−22 eV

ma

�

×

�
ρ

0.3 GeV=cm3

�
: ð124Þ

It might be difficult to find the astrophysical situation with
the strength of magnetic fields, B0 ¼ 10−1 G and to detect
electromagnetic waves L ¼ 1018 cm ∼ 1 pc.
Devising a smart way, we may be able to realize the

situation where both the axion dark matter-photon con-
version and the resonance are relevant in the laboratory.

VI. CONCLUSION

We studied the stability of axion dark matter-photon
conversion numerically and analytically. Since the axion

FIG. 5. (113) in the case of n ¼ 2.

STABILITY OF AXION DARK MATTER-PHOTON CONVERSION PHYS. REV. D 101, 043505 (2020)

043505-11



field is coupled with the electromagnetic field, axions can
be converted into photons and vice versa. On the other
hand, axion is one of the candidates for dark matter, and
photon propagating in axion dark matter obeys the Mathieu
equations. Therefore, it is important to understand the
behavior of the system where the axion dark matter and the
magnetic field coexist. First, we derived basic equations
describing axion dark matter-photon conversion. Then, we
found the instability band by numerical calculations.
Remarkably, we found the bands different from those in
the conventional Mathieu equation. Moreover, we found
the shift of bifurcation point due to the magnetic fields.
More importantly, we confirmed numerical findings by
using the analytical method. In the course of the analysis,
we found that the condition for the new boundary curves
between the stability and the instability requires different
method from that of the conventional instability condition.
Finally, we gave graphical interpretation to the instability
condition, and comment on a possible physical application.
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APPENDIX: CONCRETE FORMULAS FOR
ANALYZING TRANSITION CURVES AT κ̄= 3=4

In this Appendix, we give concrete formulas which could
not be shown in Sec. IV C. Evaluating the determinant of
R3=4ðq; χ; β; ϵÞ at the leading order, we can get the
following formula,

det½R3=4ðq; χ; β; ϵÞ�leading ¼
102515625

262144

�
qþ 9

25

�
χ þ 25

24
β2
�

2
��

qþ
�
χ −

3

8
β2 −

4

15
ϵ2
�

2
��

qþ
�
χ −

4

15
ϵ2
�

2
�
: ðA1Þ

The determinant of R3=4ðq; χ; β; ϵÞ at the next leading order is given by

det½R3=4ðq; χ; β; ϵÞ�next leading
¼
�
16858125ϵ2

131072
þ 999185625χ

262144
þ 1004653125β2

1048576

�
q3

þ
�
−
875255625β4ϵ2

16777216
−
157773825ϵ2χ2

131072
−
1278574875β2ϵ2χ

2097152
−
25022925ϵ4χ

131072
þ 4829625β2ϵ4

262144

þ 20676718125β4χ

8388608
þ 7811690625β6

67108864
þ 2239761375β2χ2

1048576
þ 2389570875χ3

262144
−
155925ϵ6

32768

�
q2

þ
�
−
55255921875β8ϵ2

1073741824
−
256480425ϵ2χ4

131072
−
41518828125β10

1073741824
−
1899828675β4ϵ2χ2

2097152

−
1549325475β2ϵ2χ3

1048576
þ 324707990625β8χ

1073741824
þ 22505596875β6ϵ2χ

134217728
þ 885060675β4ϵ4χ

16777216

þ 86667165β2ϵ4χ2

262144
−
154456875β6ϵ4

16777216
−
34266645ϵ4χ3

65536
−
5557987125β6χ2

8388608

þ 2187820125β4χ3

1048576
þ 3551961375β2χ4

1048576
þ 1781584875χ5

262144
−
20585745β2ϵ6χ

524288

−
19207125β4ϵ6

2097152
þ 1971783ϵ6χ2

8192
−
382725β2ϵ8

65536
−
168399ϵ8χ

8192
−
2025ϵ10

2048

�
q

−
157181056875β8ϵ2χ2

1073741824
þ 52579471275β6χ3ϵ2

134217728
−
2718276975β4χ4ϵ2

16777216
−
2757861675β2ϵ2χ5

2097152

−
81848475ϵ2χ6

131072
þ 324707990625β8χ3

1073741824
−
15516765ϵ4χ5

131072
−
131274675β6ϵ4χ2

4194304

−
557685β2ϵ4χ4

32768
þ 763069815β4χ3ϵ4

16777216
−
52275587625β6χ4

67108864
−
3174157125β4χ5

8388608
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þ 2316853125χ6β2

1048576
þ 391199625χ7

262144
−
41518828125β10χ2

1073741824
þ 2560977ϵ6χ4

32768

−
55647ϵ8χ3

8192
þ 5843390625β10ϵ2χ

268435456
þ 37858336875β8ϵ4χ

1073741824
þ 86993595β4ϵ6χ2

2097152

þ 51850125β6ϵ6χ

16777216
þ 59875443β2ϵ6χ3

524288
−
877797β2ϵ8χ2

65536
−
4501575β4ϵ8χ

524288

−
50625β4ϵ10

262144
−
729ϵ10χ2

2048
−
1268915625β8ϵ6

268435456
−
8758125ϵ8β6

4194304

−
102515625β10ϵ4

33554432
−
18225β2ϵ10χ

32768
: ðA2Þ

A concrete expression for the leading order of discriminant Dup to next leading (108) is given by

Dup to next leading

�
−

5

32
β2 þ ϵ2

6
þ X; β; ϵ

�����
leading

¼ 72874359645335178370006084442138671875

158456325028528675187087900672
X2β18ϵ2

þ 5803968607760384615992641448974609375

19807040628566084398385987584
X2β16ϵ4

þ 30577865593094780185718536376953125

309485009821345068724781056
X2β14ϵ6

þ 1437712208674487277339935302734375

77371252455336267181195264
X2β12ϵ8

þ 4466011639849064421844482421875

2417851639229258349412352
X2β10ϵ10

þ 22902623794097766265869140625

302231454903657293676544
X2β8ϵ12

þ 1514167250408630928354570865631103515625

5070602400912917605986812821504
X2β20

−
63090302100359622014773786067962646484375

1298074214633706907132624082305024
β22ϵ4

−
3036431651888965765416920185089111328125

40564819207303340847894502572032
β20ϵ6

−
241832025323349358999693393707275390625

5070602400912917605986812821504
β18ϵ8

−
1274077733045615841071605682373046875

79228162514264337593543950336
β16ϵ10

−
59904675361436969889163970947265625

19807040628566084398385987584
β14ϵ12

−
186083818327044350910186767578125

618970019642690137449562112
β12ϵ14

−
954275991420740261077880859375

77371252455336267181195264
β10ϵ16: ðA3Þ

STABILITY OF AXION DARK MATTER-PHOTON CONVERSION PHYS. REV. D 101, 043505 (2020)

043505-13



[1] R. D. Peccei and H. R. Quinn, CP Conservation in the
Presence of Pseudoparticles, Phys. Rev. Lett. 38, 1440
(1977).

[2] R. D. Peccei and H. R. Quinn, Constraints imposed by CP
conservation in the presence of pseudoparticles, Phys. Rev.
D 16, 1791 (1977).

[3] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40, 223
(1978).

[4] F. Wilczek, Problem of Strong P and T Invariance in
the Presence of Instantons, Phys. Rev. Lett. 40, 279
(1978).

[5] P. Svrcek and E. Witten, Axions in string theory, J. High
Energy Phys. 06 (2006) 051.

[6] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,
and J. March-Russell, String axiverse, Phys. Rev. D 81,
123530 (2010).

[7] J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the
invisible axion, Phys. Lett. 120B, 127 (1983).

[8] L. F. Abbott and P. Sikivie, A cosmological bound on the
invisible axion, Phys. Lett. 120B, 133 (1983).

[9] M. Dine and W. Fischler, The not-so-harmless axion, Phys.
Lett. 120B, 137 (1983).

[10] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Ultralight
scalars as cosmological dark matter, Phys. Rev. D 95,
043541 (2017).

[11] C. Boutan et al. (ADMX Collaboration), Piezoelectrically
Tuned Multimode Cavity Search for Axion Dark Matter,
Phys. Rev. Lett. 121, 261302 (2018).

[12] J. L. Ouellet et al., First Results from Abracadabra-10 cm: A
Search for Sub-μeV Axion Dark Matter, Phys. Rev. Lett.
122, 121802 (2019).

[13] D. Yoshida and J. Soda, Electromagnetic waves propagating
in the string axiverse, Prog. Theor. Exp. Phys. 2018, 041E01
(2018).
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