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We study static spherically symmetric black hole solutions with a linearly time-dependent scalar field
and discuss their linear stability in the shift- and reflection-symmetric subclass of quadratic degenerate
higher-order scalar-tensor (DHOST) theories. We present the explicit forms of the reduced system of
background field equations for a generic theory within this subclass. Using the reduced equations of
motion, we show that in several cases the solution is forced to be of the Schwarzschild or Schwarzschild–
(anti-)de Sitter form. We consider odd-parity perturbations around general static spherically symmetric
black hole solutions and derive the concise criteria for the black holes to be stable. Our analysis also covers
the case with a static or constant profile of the scalar field.
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I. INTRODUCTION

Modified gravity is a useful scheme for testing gravitation
on cosmological scales and/or in the strong-field regimes.
There are several ways to relax the assumptions of the
Lovelock’s theorem [1,2], and correspondingly several
kinds of models of modified gravity, e.g., scalar-tensor
theories, massive gravity, and higher-dimensional gravity
[3]. A common feature among them is that they have
additional degree(s) of freedom (DOFs) on top of themetric.
Hence, scalar-tensor theories having only one additional
DOF could help capturing fundamental aspects of such
modified gravity theories with less technical complexity.
In the context of scalar-tensor theories, there have been a

growing interest in a unified framework to incorporate the
existing theories having higher derivatives in their
Lagrangian (see Refs. [4,5] for recent reviews). To this
end, a crucial difficulty is the existence of unstable extra
DOFs (known as “Ostrogradsky ghosts”) [6] associated
with higher-order derivatives in equations of motion
(EOMs). To circumvent this problem, one has to design
a theory so that it allows a sufficient number of constraints
to eliminate the extra DOFs in the Hamiltonian language,
which is equivalent to require its Euler-Lagrange (EL)
equations have degenerate higher-derivative terms [7–12].
The degeneracy allows one to reduce a priori higher-order
EL equations to a system of lower-order differential
equations. A class of scalar-tensor theories that can trivially
satisfy this requirement is the Horndeski theory [13–15],
which possesses the most general second-order EL

equations for single-field scalar-tensor theories. There
are yet broader classes having degenerate higher-order
EL equations, such as Gleyzes-Langlois-Piazza-Vernizzi
(GLPV, also known as “beyond Horndeski”) theories [16]
and degenerate higher-order scalar-tensor (DHOST)
theories [8,17–20]. DHOST theories provide the broadest
class of scalar-tensor theories without Ostrogradsky
ghost among those proposed so far respecting general
covariance.1

The aim of the present paper is to investigate static
spherically symmetric black hole (BH) solutions in
DHOST theories. Analytic BH solutions in quadratic
DHOST theories with a scalar field having a constant
kinetic term were explored in Refs. [24–26]. In Ref. [25],
two of the authors of the present paper derived the
spherically symmetric solutions with a linearly time-de-
pendent scalar field in the shift-symmetric subclass of
quadratic DHOST theories, which could reproduce the
known solutions of the same type in the limit of the
Horndeski [27,28] and GLPV [29] theories. The stability of
such BH solutions has been studied within the Horndeski
theories [30,31], but a similar analysis for DHOST theories
is still lacking. Thus, the stability analysis presented in the
present paper will be an extension and completion of the
former studies. We shall consider the so-called “class Ia”

1Yet, there have been attempts to further extend the framework
by relaxing the requirement so that the degenerate property holds
only in the unitary gauge [21–23].
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(also called “class 2N-I”) of quadratic DHOST theories
[8,17,18,32], especially its shift- and reflection-symmetric
subclass as it admits static BH solutions with a linearly
time-dependent scalar field [27,33]. This subclass allows
“stealth” Schwarzschild metric (i.e., which is independent
of the model parameters of the scalar sector, and thus the
existence of the scalar field is hidden in the background
spacetime geometry) and “self-tuned” Schwarzschild–
(anti-)de Sitter metric (i.e., whose effective cosmological
constant is independent of the bare one) as an exact solution
under certain conditions [25]. These solutions will also
serve as a boundary condition of analytic or numerical
solutions in the presence of a compact object with a
nontrivial matter profile in DHOST theories and thus be
useful for future studies of their spacetime geometry and
possible observational signatures.
It is important to note that one needs a special care for the

stability analysis of BH solutions with a linearly time-
dependent scalar field in the shift-symmetric scalar-tensor
theories, since the quadratic action for the linear perturba-
tions contains a nonvanishing cross term of time and spatial
derivatives. As pointed out in Refs. [29,34], an unbounded
Hamiltonian in a specific coordinate system does not
necessarily mean instability of the system. This is because
a Hamiltonian is not a scalar quantity, and thus there may
exist a coordinate systemwhere the Hamiltonian is bounded
below. Indeed, as we will demonstrate in Sec. III C, a
coordinate transformation that eliminates the cross term
in the quadratic action couldmake theHamiltonian bounded
below, even in the casewhere the Hamiltonian is unbounded
in the original coordinate system.
The rest of this paper is organized as follows. In Sec. II,

we define the model and study its static spherically
symmetric BH solutions with a linearly time-dependent
scalar field. We demonstrate how to reduce a priori higher-
order EL equations to a lower-order system and investigate
several specific cases where it is possible to obtain exact

BH solutions. In Sec. III, we discuss the stability of BHs
under linear odd-parity perturbations to obtain criteria for
the BH solutions to be stable. In Sec. IV, we apply the
stability criteria to several exact BH solutions. Finally, we
draw our conclusions in Sec. V.

II. HAIRY BLACK HOLES IN
SHIFT- AND REFLECTION-SYMMETRIC

QUADRATIC DHOST THEORIES

A. The action

We consider the shift-symmetric subclass of quadratic
DHOST theories [8], whose action has the form,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F0ðXÞ þ F1ðXÞ□ϕ

þ F2ðXÞRþ
X5
I¼1

AIðXÞLð2Þ
I

�
; ð1Þ

where F0, F1, F2, and AI (I ¼ 1;…; 5) are functions of
X ≔ ϕμϕ

μ and

Lð2Þ
1 ≔ ϕμνϕμν; Lð2Þ

2 ≔ ð□ϕÞ2; Lð2Þ
3 ≔ ϕμϕμνϕ

ν
□ϕ;

Lð2Þ
4 ≔ ϕμϕμνϕ

νλϕλ; Lð2Þ
5 ≔ ðϕμϕμνϕ

νÞ2; ð2Þ

with ϕμ ≔ ∇μϕ and ϕμν ≔ ∇μ∇νϕ. Clearly, the action
respects the shift symmetry ϕ → ϕþ const. To avoid the
generic problem of Ostrogradsky ghost associated with
higher derivatives, one has to tune the coupling functions
F2 and AI’s, so that the higher-derivative terms in the EL
equations are degenerate. All such possibilities have been
exhausted in Ref. [8] and further classified in Refs. [17,32].
Among these classes is the “class Ia” [32] (also known as
“class 2N-I” [18]), where A2, A4, and A5 are written as

A2 ¼ −A1 ≠ −
F2

X
;

A4 ¼
1

8ðF2 − XA1Þ2
f4F2½3ðA1 − 2F2XÞ2 − 2A3F2� − A3X2ð16A1F2X þ A3F2Þ

þ 4Xð3A1A3F2 þ 16A2
1F2X − 16A1F2

2X − 4A3
1 þ 2A3F2F2XÞg;

A5 ¼
1

8ðF2 − XA1Þ2
ð2A1 − XA3 − 4F2XÞ½A1ð2A1 þ 3XA3 − 4F2XÞ − 4A3F2�; ð3Þ

while F0, F1, F2, A1, and A3 remain arbitrary functions.
Here, a subscript X denotes a derivative with respect to X.
The condition A1 ≠ F2=X is necessary for the existence of
two tensor modes [35]. This class includes Horndeski and
GLPV theories up to quadratic-order interaction: The
action reduces to that of GLPV theory by taking

A1 ¼ 2F2X þ X
2
A3 and further to that of Horndeski theory

by additionally imposing A3 ¼ 0. It should also be noted
that the other classes of quadratic DHOST theories are
phenomenologically undesirable as they exhibit ghost/
gradient instabilities in either of the tensor or scalar
perturbations on a cosmological background, or otherwise
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the tensor DOFs do not propagate [35,36]. Thus, through-
out the present paper, we focus on the class Ia of quadratic
DHOST theories. Moreover, we restrict ourselves to the
theories with F1 ¼ 0, i.e., those invariant under the
reflection of the scalar field ϕ → −ϕ, which significantly
simplifies the analysis.
Note that the shift- and reflection-symmetric subclass of

the class Ia of quadratic DHOST theories is closed under
disformal transformation [37] of the form,

gμν → g̃μν ≔ ΩðXÞgμν þ ΓðXÞϕμϕν; ð4Þ

as long as ΩðΩ − XΩX − X2ΓXÞ ≠ 0, so that the trans-
formation is invertible [38,39]. This is consistent with the
fact that an invertible transformation does not change the
number of DOFs [39,40]. The class Ia of quadratic DHOST
theories is known to be recast into the Horndeski class via
conformal/disformal transformation [17,32]. Even though
the structure of the Lagrangian would be simplified by such
a transformation, in general the metric and scalar field
profile would be modified, while there exists a special case
in which the disformal transformation preserves the form of
solution and merely changes the parameters of the solution
after a certain redefinition of coordinates (see Appendix A).
Before proceeding to the next section, let us comment on

the constraints from the results of gravitational wave
observations. From the almost simultaneous detection of
the gravitational waves GW170817 and the γ-ray burst
170817A emitted from a binary neutron star merger
[41–43], it turned out that the propagation speed of
gravitational waves (cGW) coincides with that of light
(clight ≔ 1) to a precision of 10−15. This can be satisfied
for theories with A1 ¼ 0, where cGW ¼ 1 holds exactly for
any cosmological background [44]. Another requirement is
that the decay rate of gravitational waves into the scalar
field should be small, which is satisfied if A3 ¼ 0 [45].
However, it should be remarked that these constraints apply
only to the low-redshift universe (z≲ 0.01). Furthermore,
the energy scales observed by LIGO/Virgo lie close to the
typical cutoff scale of many dark energy models [46], so
that it might be premature to exclude theories with A1 ≠ 0
and/or A3 ≠ 0. Hence, we leave A1 and A3 arbitrary unless
otherwise stated.

B. Reduction of background equations

Since we are interested in static spherically symmetric
BH solutions, the background metric has the form,

ḡμνdxμdxν ¼ −AðrÞdt2 þ dr2

BðrÞ þ 2CðrÞdtdr

þDðrÞr2γabdxadxb; ð5Þ

where a and b denote angular variables and γab represents
the metric on a two-dimensional sphere. The scalar field is
assumed to have a linearly time-dependent term as well as
the r-dependent term,

ϕðt; rÞ ¼ qtþ ψðrÞ; ð6Þ

where q is a nonvanishing constant and ψ 0 ≠ 0, with a
prime denoting differentiation with respect to r. This is
consistent with the static Ansatz of the metric due to the
shift symmetry of the theory [27,33]. We shall discuss BH
solutions with q ¼ 0 and/or ψ 0 ¼ 0 in Sec. II C. It should
be noted that a rescaling of time coordinate t → αt amounts
to the redefinition,

A → α2A; C → αC; q → αq ð7Þ

in Eqs. (5) and (6), and the structure of the solution itself
remains unchanged.
Substituting the Ansatze (5) and (6), the action is written

in terms of A, B, C, D, and ψ , from which we obtain the
corresponding five EL equations EΦ ¼ 0 (Φ ¼ A, B, C, D,
ψ). After deriving the EL equations, one may impose gauge
fixing conditions C ¼ 0 and D ¼ 1. Note that not all of
these equations are independent: ED ¼ 0 and Eψ ¼ 0 are
automatically satisfied for any configuration that satisfies
EA ¼ 0, EB ¼ 0, and EC ¼ 0. Thus, in what follows, we
study solutions of the EL equations for A, B, and C.
A crucial difference from the case of Horndeski theories

is that each of the EL equations contains higher-derivative
terms A00 and ψ 000. Nevertheless, thanks to the degeneracy of
the theory, it is possible to arrange the system of EOMs into
the one with at most second derivatives. This can be
achieved in a similar manner as in Ref. [47]. In what
follows, we replace the derivatives of ψ by X, X0, and X00 by
use of

X ¼ −
q2

A
þ Bψ 02: ð8Þ

First, by taking a linear combination of EB ¼ 0 and EC ¼ 0,
one can simultaneously remove A00, X00, and B0, which
allows us to express B in terms of ðr; A; A0; X; X0Þ,

B−1 ¼ 8ðF2 − XA1Þ þ rX0ð4F2X − 2A1 þ XA3Þ
32Aðr2F0 þ 2F2ÞðF2 − XA1Þ2

f8ðF2 − XA1Þ½ðrAÞ0ðF2 − XA1Þ − q2A1�

þ rX0½2ð2F2X − A1Þð3AF2 þ ðq2 − 3XAÞA1Þ þ ð4q2 þ 3XAÞA3F2 − 3ðq2 þ XAÞXA1A3�g: ð9Þ
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Next, substituting this into EA ¼ 0 and EC ¼ 0, we obtain
equations of the form,

K1A00 þ K2X00 þ J1 ¼ 0; ð10Þ

K1A00 þ K2X00 þ J2 ¼ 0; ð11Þ

with K1, K2, J1, and J2 being functions of ðr; A; A0; X; X0Þ.
It is notable that, by virtue of the degeneracy, we have the
same coefficients K1 and K2 in front of A00 and X00,
respectively, and thus the terms with A00 and X00 can be
eliminated simultaneously. As a consequence, we obtain a
lower-order equation J1 ¼ J2, which reads

J1 − J2 ¼ k1A0 þ k2X0 þ k3 ¼ 0; ð12Þ

where k1, k2, and k3 are functions of ðr; A; XÞ (see
Appendix B for their explicit forms). This can be solved
for X0 as

X0 ¼ −
k1A0 þ k3

k2
: ð13Þ

Then, this equation can be used to eliminate X0 and X00 from
Eq. (11). This manipulation also removes A00, which is
again due to the degeneracy of the theory. Hence, the
resultant equation is written in terms of r, A, A0, and X,
from which we obtain A0 in the form A0 ¼ Ψ1ðr; A; XÞ.
Combining this with Eqs. (9) and (13), we finally obtain a
reduced system of EOMs written only by lower-order
derivatives,

A0 ¼Ψ1ðr;A;XÞ; B¼Ψ2ðr;XÞA; X0 ¼Ψ3ðr;XÞ: ð14Þ

The expressions of Ψ1, Ψ2, and Ψ3 are presented in
Appendix B. As expected, the EOMs for the Horndeski
theory are reproduced by taking the limit A1 → 2F2X
with A3 → 0 in Eq. (14). For given coupling functions
F0, F2, A1, and A3, one can first solve the differential
equation X0 ¼ Ψ3ðr; XÞ to obtain X ¼ XðrÞ, which com-
pletely determines the ratio between A and B from
B ¼ Ψ2ðr; XðrÞÞA. Then, from A0 ¼ Ψ1ðr; A; XðrÞÞ, one
obtains A as a function of r.
Note in passing that there exist models for which the

above reduction procedure does not apply. As an explicit
example, we consider the case with A3 ¼ −2ðF2A1ÞX=F2,
which includes the model with A1 ¼ A3 ¼ 0 (i.e., those
with cGW ¼ 1 and without decay of gravitons) as a special
case. In this case, Eq. (13) does make sense, but it leads to
B−1 ¼ 0 once substituted into Eq. (9). This explains why
the above procedure fails for this particular class of models.
However, this does not imply this class does not allow
physically sensible solutions. We note that

k1A0 þ k2X0 þ k3 ∝ 2F0XF2ðF2 − XA1Þ
− F0ð4F2F2X − F2A1 − 3XF2XA1 − XF2A1XÞ; ð15Þ

so that Eq. (12) is satisfied if

F0X ¼ 4F2F2X − F2A1 − 3XF2XA1 − XF2A1X

2F2ðF2 − XA1Þ
F0: ð16Þ

This equation can be satisfied algebraically if X ¼ X0 ¼
const, where X0 is a real root of Eq. (16) (if it exists). Then,
Eq. (11) is simplified as

rð2F2þ r2F0ÞA00 þ4F2A0−2rF0A¼−
2q2F0A1

F2−X0A1

r; ð17Þ

where F0, F2, and A1 are evaluated at X ¼ X0. On the other
hand, if there exists a constant Λ such that

F0 ¼ −2ΛF3=2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 − XA1

p
; ð18Þ

then Eq. (16) is identically satisfied. Note that now only F2

and A1 remain arbitrary. It should be remarked that, as we
will see in Sec. III C, a stable BH solution satisfies F2 > 0
and F2 − XA1 > 0. For this specific case, a disformal
transformation,

gμν→ g̃μν¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2ðF2−XA1Þ

p �
gμνþ

A1

F2−XA1

ϕμϕν

�
; ð19Þ

brings the action into the form,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
ðR̃ − 2ΛÞ; ð20Þ

i.e., general relativity with a cosmological constant Λ. The
transformation is invertible unless F3=2

2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 − XA1

p
∝ X.

Therefore, in contrast to generic DHOST theories, this
subclass has only two physical DOFs, and the system of EL
equations is equivalent to those in general relativity [39].
This means that one cannot determine all A, B, and X in this
subclass: Any of them remains an arbitrary function of r.
Similarly, there would also be a subtlety in BH solutions in
the cuscuton theory [48] and its extension [49] having only
two propagating DOFs when ϕμ is timelike. The same
remark may also apply to the cuscuta-Galileon [50] whose
kinetic term can be reduced to a total derivative in flat
spacetime. We leave these issues for future study.

C. Black holes with q= 0 and/or ψ 0 = 0

Although we investigated BH solutions with qψ 0 ≠ 0 in
the previous section, those where the scalar field have a
static profile ϕ ¼ ψðrÞ (i.e., q ¼ 0) or a constant profile
(i.e., q ¼ 0 and ψ 0 ¼ 0) have also been extensively studied
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in the literature. This type of solutions needs a special
attention since EC can be written as

EC ¼ qψ 0ẼCðr; A; A0; A00; B; B0; X; X0; X00Þ; ð21Þ

and thus EC ¼ 0 becomes trivial if qψ 0 ¼ 0. In fact, what
we used in deriving the reduced EOMs (14) is not EC itself
but rather ẼC. Since ED ¼ 0 can always be reproduced from
the other EL equations, we focus on EA ¼ EB ¼ Eψ ¼ 0 in
the present section.

1. The case of ψ 0 = 0

Let us first consider solutions with ψ 0 ¼ 0, which
include ϕ ¼ const as a special case. In this case, X is no
longer an independent variable since X ¼ −q2=A. It should
also be noted that Eψ ¼ 0 becomes trivial, and thus the
independent equations are EA ¼ EB ¼ 0. One can first
solve EB ¼ 0 to obtain B as a function of ðr; A; A0Þ.
Then, substituting this into EA ¼ 0 yields a second-order
differential equation for A. Thus, we obtain A and B as
functions of r.

2. The case of q = 0 and ψ 0 ≠ 0

Next, let us consider solutions with q ¼ 0 and ψ 0 ≠ 0. In
this case, one has to take into account Eψ ¼ 0, which can be
integrated to give

ẼC ¼ c
A
; ð22Þ

where c is an integration constant. Note that ẼC ¼ 0 is
reproduced if c ¼ 0. Thus, one can remove higher deriv-
atives from the system of differential equations EA ¼ EB ¼
Eψ ¼ 0 in a similar manner as in Sec. II B.
To sum up, in either case, one has to consider a different

system of EOMs from the one in the qψ 0 ≠ 0 case.
Therefore, one should treat the solutions with qψ 0 ¼ 0
separately. Nevertheless, at the level of linear odd-parity
perturbations, one can treat all the solutions in a unified
manner (see Sec. III A).

D. Exact black holes with linearly
time-dependent scalar hair

Let us consider exact BH solutions with qψ 0 ≠ 0. In
Ref. [25], Schwarzschild–(anti-)de Sitter metric with lin-
early time-dependent scalar field with a constant kinetic
term was considered in shift-symmetric quadratic DHOST
theories, and specific theories that allow them as exact
solutions were identified. Here, we consider the reduced
background equations (14) without assuming a specific
metric solution and show that in several cases the solution
is forced to be of the Schwarzschild or Schwarzschild–
(anti-)de Sitter form.

1. Exact solutions for the case with F0 = 0

First, in the case of F0 ¼ 0, Eq. (14) is drastically
simplified,

A0 ¼ −
q2 þ XA

rX
; B ¼ −

X
q2

A; X0 ¼ 0: ð23Þ

This can be straightforwardly integrated to give the
Schwarzschild solution with a constant kinetic term,

A ¼ B ¼ 1 −
μ

r
; X ¼ −q2; ð24Þ

where μ is an integration constant and we have rescaled t so
thatA ¼ B. The coupling functions satisfyF0 ¼ F1 ¼ 0 and
A1 þ A2 ¼ 0, which is consistent with the condition for the
“case 1” of Ref. [25], and also the condition for the existence
of general relativity solution in the limit of constant scalar
field [51]. We emphasize that here we derived the
Schwarzschild solution without assuming it a priori.
Namely, for generic shift- and reflection-symmetric class
Ia quadratic DHOST theories with F0 ¼ F1 ¼ 0, the sol-
ution is forced to be the Schwarzschild metric withX being a
fixed constant −q2. This generalizes the result of Ref. [47].

2. Exact solutions with X = const

Next, let us focus on solutions with X ¼ X0 ¼ const. It is
still possible for this case to obtain an exact solution even
without specifying the theory. Since X0 ¼ 0, Ψ3ðr; X0Þ in
Eq. (14) should vanish, which implies

F0X ¼ 8F2X − 2A1 þ 4XA1X þ 3XA3

4ðF2 − XA1Þ
F0 ð25Þ

at X ¼ X0 [see Eq. (B9)]. Note that Eq. (25) reduces to
Eq. (16) by taking A3 ¼ −2ðF2A1ÞX=F2. Generically,
Eq. (25) will fix the value of X0 (as long as it has a real
solution). Yet, for models where Eq. (25) becomes trivial
(e.g., those with F0 ¼ 0), X0 remains an arbitrary constant.
In either case, the remaining two EOMs in Eq. (14)
reduce to

A0 ¼−
q2þX0A

X0r
−

q2rF0ðX0Þ
2X0½F2ðX0Þ−X0A1ðX0Þ�

; B¼−
X0

q2
A;

ð26Þ

which yield

B ¼ 1 −
μ

r
þ F0ðX0Þ
6½F2ðX0Þ − X0A1ðX0Þ�

r2 ¼ −
X0

q2
A; ð27Þ

with μ being an integration constant. Moreover, if X0 < 0,
one can set A ¼ B (and thus X0 ¼ −q2) by rescaling t, so
that we have the Schwarzschild–(anti-)de Sitter solution.
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Taking Eq. (25) into account, this case is consistent with
“case 1 − Λ” of Ref. [25].

3. Exact solutions for the case with A3 = − 2ðF2A1ÞX=F2

Finally, let us consider the case of A3 ¼ −2ðF2A1ÞX=F2.
As mentioned in Sec. II B, in this case the reduced
equations are given by Eqs. (16) and (17) instead of
Eq. (14). Let us focus on solutions with X¼X0¼const,
where X0 is a real root of Eq. (16). We can then integrate
Eq. (17) to obtain

A¼ 1−
μ

r
þF0ðX0Þ½F2ðX0Þ− ðX0 þ q2ÞA1ðX0Þ�

6F2ðX0Þ½F2ðX0Þ−X0A1ðX0Þ�
r2; ð28Þ

with μ being an integration constant. Here, the other
integration constant has been absorbed into a rescaling
of t. Then, substituting this result back into Eq. (9), we have

A ¼ λB; λ ≔
F2ðX0Þ − ðX0 þ q2ÞA1ðX0Þ

F2ðX0Þ
: ð29Þ

Since λ ≠ 1 in general, we have the Schwarzschild–
(anti-)de Sitter solution with a deficit solid angle.
However, if A1 ¼ 0 or X0 ¼ −q2, we have λ ¼ 1, and
thus there is no solid angle deficit. These results are a
natural generalization of the Schwarzschild-type solution
with a deficit solid angle with static scalar field derived in
Ref. [25], whose deficit solid angle also vanishes for
A1¼0 or X0¼−q2. The limiting case A1¼0 or X0¼−q2
of the solution (29) is consistent with “case 2-Λ” of
Ref. [25], whereas the particular case F0ðX0Þ ¼
F0XðX0Þ ¼ 0 with the Schwarzschild solution corresponds
to “case 2” of Ref. [25].
Thus far, we have obtained exact BH solutions with

X ¼ const. By choosing the coupling functions in the
Lagrangian appropriately, one may find an exact solution
with a nonconstant X as in Ref. [52], but this is beyond the
scope of the present paper. Note that stability analysis in
Sec. III applies to any exact solution since we shall use only
the background equations but not an explicit background
solution.

III. ODD-PARITY PERTURBATIONS

To study perturbations of a spherically symmetric BH, it
is useful to separate the deviation of the metric from its
background value, hμν ≔ gμν − ḡμν, into the odd- and
even-parity perturbations as odd- and even-parity modes
are completely decoupled from each other unless the
Lagrangian contains parity violating terms leading to
analysis of coupled equations [53,54]. Since the analysis
of the even-parity perturbations is technically involved, we
consider only the odd-parity perturbations in the present
paper. The odd-parity perturbations can be decomposed as
follows [55]:

htt ¼ htr ¼ hrr ¼ 0;

hta ¼
X
l;m

h0;lmðt; rÞEa
b∇̄bYlmðθ;φÞ;

hra ¼
X
l;m

h1;lmðt; rÞEa
b∇̄bYlmðθ;φÞ;

hab ¼
X
l;m

h2;lmðt; rÞEðac∇̄jcj∇̄bÞYlmðθ;φÞ; ð30Þ

where Ylm is the spherical harmonics,Eab is the completely
antisymmetric tensor defined on a two-dimensional sphere,
and ∇̄a denotes the covariant derivative with respect to γab.
Since modes with different ðl; mÞ evolve independently,
we focus on a specific mode and omit the indices l and m
unless necessary. Note that the odd-parity perturbations do
not have the monopole (l ¼ 0) mode and h2 is vanishing
for the dipole (l ¼ 1) modes. Note also that we do not take
into account the perturbation of the scalar field as it belongs
to the even-parity perturbations.
The expansion coefficients h0, h1, and h2 are not all

physical DOFs as there exists a gauge DOF corresponding
to the general covariance. A general infinitesimal trans-
formation of coordinates for the odd modes can be
written as

xa → xaþ ϵa; ϵa≔
X
l;m

Ξlmðt;rÞEa
b∇̄bYlmðθ;φÞ: ð31Þ

Correspondingly, the coefficients h0, h1, and h2 trans-
form as

h0→ h0− _Ξ; h1→ h1−Ξ0 þ2

r
Ξ; h2→ h2−2Ξ; ð32Þ

where a dot denotes a derivative with respect to t.
Therefore, in the case of l ≥ 2, one can choose Ξ ¼
h2=2 to redefine h2 ¼ 0, which is a complete gauge fixing
and thus can be imposed at the action level [56]. For the
dipole modes where h2 is absent, this gauge function Ξ is
used to cancel out another unphysical DOF (see Sec. III B).
In what follows, we investigate l ≥ 2 and l ¼ 1 modes

separately and discuss the stability of BH solutions with a
linearly time-dependent scalar field.

A. Odd-parity perturbations with l ≥ 2

First, we consider higher multipoles with l ≥ 2. One can
set m ¼ 0 from the beginning since all the terms with the
same multipole index l contributes equally by virtue of the
spherical symmetry of the background. Hence, it is more
useful to expand the metric perturbations in terms of the
Legendre polynomials instead of the spherical harmonics.
Thus, in the subsequent analysis, h0, h1, and h2 denote the
coefficients of Plðcos θÞ. After performing the integration
over angular variables, the second-order action,
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Sð2Þ ¼
Z

dtdrLð2Þ; ð33Þ

takes the form,

2lþ 1

2π
Lð2Þ ¼ a1h20 þ a2h21

þ a3

�
_h21 − 2h00 _h1 þ h00

2 þ 4h0 _h1
r

�
þ a4h0h1: ð34Þ

The coefficients here can be written as

a1 ¼
lðlþ 1Þ

r2

�
d
dr

�
r

ffiffiffiffi
B
A

r
H
�
þ ðl − 1Þðlþ 2Þ

2
ffiffiffiffiffiffiffi
AB

p F
�
;

a2 ¼ −
ðl − 1Þlðlþ 1Þðlþ 2Þ

2

ffiffiffiffiffiffiffi
AB

p

r2
G;

a3 ¼
lðlþ 1Þ

2

ffiffiffiffi
B
A

r
H;

a4 ¼
ðl − 1Þlðlþ 1Þðlþ 2Þ

r2

ffiffiffiffi
B
A

r
J ; ð35Þ

with F , G, H, and J defined by

F ≔ 2

�
F2 þ

q2

A
A1

�
; G ≔ 2

�
F2 −

�
q2

A
þ X

�
A1

�
;

H ≔ 2ðF2 − XA1Þ; J ≔ −2qψ 0A1: ð36Þ

Note that we have used the background EOMs (14) in
simplifying the quadratic Lagrangian.2 It should also be
noted that the above expressions do not depend on F0 or A3

explicitly. The explicit form of the quadratic Lagrangian
would remain unchanged even if we have a nonvanishing
F1 in our Lagrangian, as is suggested by the result of
Ref. [31]. The result of Ref. [30] for the shift- and
reflection-symmetric Horndeski theory is reproduced by
taking A1 ¼ 2F2X.
Since the structure of the Lagrangian completely coin-

cides with the one studied in Refs. [30,31], the subsequent
analysis proceeds in a parallel manner. Integrating by parts,
one can rewrite Eq. (34) as

2lþ 1

2π
Lð2Þ ¼

�
a1 −

2ðra3Þ0
r2

�
h20 þ a2h21

þ a3

�
_h1 − h00 þ

2

r
h0

�
2

þ a4h0h1: ð37Þ

Then, we introduce an auxiliary variable χ to write [57]

2lþ 1

2π
Lð2Þ ¼

�
a1 −

2ðra3Þ0
r2

�
h20 þ a2h21

þ a3

�
− χ2 þ 2 χ

�
_h1 − h00 þ

2

r
h0

��
þ a4h0h1: ð38Þ

Note that the EOM for χ yields χ ¼ _h1 − h00 þ 2
r h0, and

substituting it back into Eq. (38) recovers the original
Lagrangian (37). Once written in the form (38), h0 and h1
become auxiliary fields, so that their EOMs yield

h0¼−
2r2a3a4 _χþ4ra2½rða3 χÞ0 þ2a3 χ�

4a2½r2a1−2ðra3Þ0�−r2a42
;

h1¼
4a3 _χ½r2a1−2ðra3Þ0�þ2ra4½rða3 χÞ0 þ2a3 χ�

4a2½r2a1−2ðra3Þ0�− r2a42
: ð39Þ

Then, the resubstitution into Eq. (38) yields the following
Lagrangian written in terms of χ:

2lþ 1

2π
Lð2Þ ¼ lðlþ 1Þ

2ðl− 1Þðlþ 2Þ

ffiffiffiffi
B
A

r
fb1 _χ2 − b2 χ02 þ b3 _χ χ0

− ½lðlþ 1Þb4 þ V� χ2g; ð40Þ

where

b1 ¼
r2FH2

AFGþ BJ 2
; b2 ¼

r2ABGH2

AFGþ BJ 2
;

b3 ¼
2r2BH2J

AFGþ BJ 2
; b4 ¼ H; ð41Þ

and V is written as

V ¼ r2H
�
b2

ffiffiffiffi
B
A

r �
1

r2H

ffiffiffiffi
A
B

r �0�0
− 2H: ð42Þ

The cross term b3 _χ χ0 is the crucial difference from the case
with q ¼ 0 and/or ψ 0 ¼ 0. Indeed, b3 ∝ J ∝ qψ 0, and
hence the cross term does not exist if qψ 0 ¼ 0.
Note that one cannot rewrite the Lagrangian (38) in the

form (40) for l ¼ 1 since a2 ¼ a4 ¼ 0 in this case, and
thus the denominators of h0 and h1 in Eq. (39) vanish. We
shall address the dipole perturbation in Sec. III B.

2One can verify that the quadratic Lagrangian for the case with
A1 ¼ A3 ¼ 0 is reproduced by taking the corresponding limit in
Eqs. (34)–(36), though the reduced background EOMs (14) does
not apply in this case. It is also possible to show that the second-
order action for the solutions with q ¼ 0 and/or ψ 0 ¼ 0 discussed
in Sec. II C takes exactly the same form as (34), but with J ¼ 0.
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B. Dipole perturbation: l= 1

Let us focus on the dipole perturbation with l ¼ 1. As
was shown in Refs. [30,58], the dipole perturbations are
related with the slow rotation of a BH. Since the quadratic
Lagrangian has the same form as the one in Ref. [30], we
can follow the same procedure to clarify the physical
meaning of the dipole perturbations.
We start from the Lagrangian (37) with l ¼ 1. Since the

coefficients ai (i ¼ 1;…; 4) defined by Eq. (35) satisfy

a1 ¼
2ðra3Þ0

r2
; a2 ¼ a4 ¼ 0 ð43Þ

for l ¼ 1, Eq. (37) is simplified as

3

2π
Lð2Þ ¼ a3

�
_h1 − h00 þ

2

r
h0

�
2

: ð44Þ

We eliminate h1 by choosing the gauge function Ξ appro-
priately. Note that, as can be read off fromEq. (32), there still
remains a gaugeDOF such thatΞ ¼ cðtÞr2. Then, the EOMs
derived from Eq. (44) are

h000 þ
a03
a3

h00 −
2ðra3Þ0
r2a3

h0 ¼ 0;

_h00 −
2

r
_h0 ¼ 0: ð45Þ

The general solution to this system of equations is written as

h0¼
3Jr2

4π

Z
r dr0

r04a3ðr0Þ
¼3Jr2

8π

Z
r

ffiffiffiffi
A
B

r
dr0

r04ðF2−XA1Þ
; ð46Þ

where J is an integration constant. Here, the (t-dependent)
integration constant resulting from the integration on r can be
set to zero by use of the residual gauge DOF mentioned
above. The result of Ref. [30] is reproduced by taking the
Horndeski limit where A1 → 2F2X. h0 given by Eq. (46)
represents the slow rotation of a BH, with J corresponding to
the angular momentum of the BH. If X ¼ X0 ¼ const, then
the solution is generically the Schwarzschild–(anti-)de Sitter
metric with X0 ¼ −q2 (see § II D), and thus we obtain

h0 ¼ −
J

8π½F2ð−q2Þ þ q2A1ð−q2Þ�r
: ð47Þ

In the case of F2 ¼ M2
Pl=2 and A1 ¼ 0, Eq. (47) coincides

with the frame-dragging function of the Kerr metric
expanded up to first order in the angular momentum.

C. Stability of l ≥ 2 modes

In this section, we discuss the linear stability of odd-
parity modes with l ≥ 2.

First, let us consider solutions with q ¼ 0 and/or ψ 0 ¼ 0.
As we mentioned above, for such a scalar field profile, the
cross term b3 _χ χ0 in the Lagrangian (40) does not exist,

Lð2Þ ∝ L̃ ≔
1

2

ffiffiffiffi
B
A

r
fb1 _χ2 − b2 χ02 − ½lðlþ 1Þb4 þ V� χ2g;

ð48Þ

where we have omitted the r-independent overall factor.
From this L̃, one can construct the Hamiltonian as

H ¼ 1

2

Z
dr

ffiffiffiffi
B
A

r �
A
b1B

π2 þ b2 χ02 þ ½lðlþ 1Þb4 þV� χ2
�
;

ð49Þ

with π ≔ ∂L̃=∂ _χ being the canonical momentum conju-
gate to χ. RequiringH should be bounded below, we obtain
necessary conditions for the stability,

b1 > 0; b2 > 0; b4 > 0; ð50Þ

namely,

F > 0; G > 0; H > 0; ð51Þ

which is a natural generalization of the result for the
Horndeski theory [58]. By use of Eq. (36), these can further
be translated into the following criteria on F2 and A1

evaluated at the background solution X ¼ XðrÞ:

F2 > 0; F2 − XA1 > 0: ð52Þ

Interestingly, these conditions are consistent with the
stability conditions for linear cosmological perturbations:
Regarding F2 and F2 − XA1 as those evaluated at the
cosmological background, they guarantee that both the
effective gravitational constant and the squared propagation
speed of the tensor modes are positive [36].
Next, let us consider BH solutions with qψ 0 ≠ 0. With

the nonvanishing cross term b3 _χ χ0 in the Lagrangian (40),
one needs a special care. As in the above discussion for
the qψ 0 ¼ 0 case, the (in)stability of a system is conven-
iently judged by the (un)boundedness of the Hamiltonian.
However, one should note that an unbounded Hamiltonian
in a specific coordinate system does not necessarily mean
that the system is unstable. This is because a Hamiltonian is
not a scalar quantity and thus there could be a coordinate
transformation by which the originally unbounded
Hamiltonian is mapped to a bounded one [29,34]. To
circumvent this subtlety, it is useful to perform a coordinate
transformation such that the kinetic part of the quadratic
Lagrangian (40) is diagonalized (i.e., the cross term _χ χ0
vanishes). This can be achieved by the following trans-
formation of time coordinate t → t̃,
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t̃ ¼ tþ
Z

b3
2b2

dr: ð53Þ

In this new coordinate system, the Lagrangian is indeed
diagonalized,

Lð2Þ ∝ L̃≔
1

2

ffiffiffiffi
B
A

r
fb̃1ð∂ t̃ χÞ2−b2 χ02− ½lðlþ1Þb4þV�χ2g;

b̃1 ≔ b1þ
b23
4b2

¼ r2H2

AG
;

ð54Þ

which should be compared with Eq. (48). Similar to
Eq. (49), we obtain the Hamiltonian as

H ¼ 1

2

Z
dr

ffiffiffiffi
B
A

r �
A

b̃1B
π̃2 þ b2 χ02 þ ½lðlþ 1Þb4 þV�χ2

�
;

ð55Þ

where π̃ ≔ ∂L̃=∂ð∂ t̃ χÞ. Requiring H should be bounded
below, we obtain necessary conditions for the stability,

b̃1 > 0; b2 > 0; b4 > 0; ð56Þ

which can be translated into the language of ðF ;G;H;J Þ as

AFGþ BJ 2 > 0; G > 0; H > 0: ð57Þ

Note that with q ¼ 0 or ψ 0 ¼ 0 we recover Eq. (51)
as expected. From Eq. (36), it is immediate to see
AFGþBJ 2¼4AF2ðF2−XA1Þ¼2AF2H. Thus, we obtain
the stability criteria,

F2 > 0; F2−XA1 > 0; F2−
�
q2

A
þX

�
A1 > 0; ð58Þ

where F2, A1, and A are evaluated at the background
solution. Compared with the stability condition (52) for the
static case, we obtain the third condition as a new condition.
Since A ↘ 0 in the vicinity of the event horizon, the third
condition can be satisfied only if A1 ≤ 0.3 Conversely, if
A1 ≤ 0, the third condition is redundant as it follows from
the second one. Therefore, we obtain

F2 > 0; F2 − XA1 > 0; A1 ≤ 0: ð59Þ

While (59) takes a simpler form, it should be regarded as a
sufficient condition. Also, the stability criteria (58) is
disformally invariant (see Appendix A) and hence more
fundamental.

Several remarks should be added here. Unlike the
discussion above, in the original coordinate system
ðt; rÞ, the Hamiltonian constructed from the quadratic
Lagrangian (40) is always unbounded below as long as
A1 ≠ 0 (see Refs. [30,31,59,60] for related arguments).
Nevertheless, for those theories satisfying the conditions
(58), the Hamiltonian calculated in the ðt̃; rÞ coordinate
could be bounded below. Another remark is that the
conditions listed in Eq. (57) ensure the positivity of the
squared propagation speeds along the radial direction, c2r ,
and the angular direction, c2θ, which are respectively
given by

c2r ¼
AG2

AFGþ BJ 2
; c2θ ¼

G
H

: ð60Þ

Note that, for theories with A1¼0, i.e., those with cGW ¼ 1
on a cosmological background, we have F ¼ G ¼ H and
J ¼ 0, so that both cr and cθ are unity.
Having known the necessary conditions for the linear

stability, we further discuss the evolution of the perturba-
tions to derive an additional condition for the stability. We
introduce the tortoise coordinate,

r� ≔
Z

drffiffiffiffiffiffiffi
AB

p ; ð61Þ

and use a new variable

Ψ ¼
ffiffiffiffiffi
b2
A

r
χ: ð62Þ

In the remaining of this section, we regard r as a function of
r�. With these definitions, the EOM for Ψ is written as

∂2Ψ
∂r2� −

1

c2r

∂2Ψ
∂ t̃2 − VeffΨ ¼ 0; ð63Þ

where we have defined the effective potential,

Veff ≔
AB
b2

½lðlþ 1ÞHþ V� þ
ffiffiffiffiffi
A
b2

s
d2

dr2�

� ffiffiffiffiffi
b2
A

r �
: ð64Þ

For the Schwarzschild metric, Veff coincides with the well-
known Regge-Wheeler potential [55]. Focusing on a mode
with frequency ω, Eq. (63) takes the form of an eigenvalue
equation,

ĤΨ ¼ ω2

c2r
Ψ; Ĥ ≔ −

d2

dr2�
þ Veff : ð65Þ

If all the eigenvalues of Ĥ are positive, the solution is stable
for the fixed mode. Note that c2r > 0 as remarked above.
The positivity of the eigenvalues of Ĥ is equivalent to

3A possible loophole is that A1 ↘ 0 and/or F2 − XA1 → þ∞
near the horizon.
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hξ; Ĥξi ≔
Z
E
dr�

�				 dξdr�
				2 þ Veff jξj2

�
> 0; ð66Þ

where the integration runs over all the range of r�
corresponding to the possible range of r and ξðr�Þ is an
arbitrary square-integrable complex-valued function satis-
fying appropriate conditions at the boundary ∂E. Since the
form of the effective potential Veff given by Eq. (64) is
involved and thus its positivity is far from trivial, we
employ the “S-deformation” method [61–63] to deform the
differential operator and the effective potential as

D̃ ≔
d
dr�

þ S; Ṽ ≔ Veff þ
dS
dr�

− S2; ð67Þ

with S being an arbitrary real function of r�. Then, Eq. (66)
can be recast as

hξ; Ĥξi ¼ −Sjξj2j∂E þ
Z
E
dr�ðjD̃ξj2 þ Ṽjξj2Þ > 0: ð68Þ

Hence, to complete the proof of the mode stability, it is
enough to find a specific form of S such that Ṽ > 0 for all
r, as long as S has a finite limit at the boundary. This is
indeed possible in the present case: By choosing

S ¼ d
dr�

�
ln

�
r2H

ffiffiffiffiffi
B
b2

s ��
¼ d

dr�

�
ln

�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AFGþ BJ 2

AG

s ��
;

ð69Þ

we have

Ṽ ¼ ðl − 1Þðlþ 2ÞABH
b2

> 0: ð70Þ

Thus, provided that the conditions in Eq. (58) are satisfied,
the odd-parity perturbations of BHs are fully stable for
fixed modes as long as S is finite at the boundary.

IV. APPLICATIONS

A. Constant-scalar solution

Let us apply the above criteria to solutions with
ϕ ¼ ϕ0 ¼ const. In this case, the stability condition (52)
reads

F2ð0Þ > 0; ð71Þ

and the function S defined by Eq. (69) is simplified as

S ¼
ffiffiffiffiffiffiffi
AB

p

r
: ð72Þ

Now let us study the stability of the solutions found in
Ref. [25]. If the condition

F0 þ 2ΛF2 ¼ 0 ð73Þ

is satisfied at ϕ ¼ ϕ0, the theory (1) allows vacuum
solutions in general relativity with a cosmological
constant Λ as the exact solution [51]. Specific examples
are the Schwarzschild–(anti-)de Sitter solutions for the two
models [25],

F0 ¼ −ΛM2
Pl þM4aðXÞ; F2 ¼

M2
Pl

2
þM2bðXÞ; ð74Þ

where a and b are regular functions of X satisfying
að0Þ ¼ bð0Þ ¼ 0, and

F0¼−Λ½M2
PlþM2hðXÞ�; F2¼

M2
Pl

2
þM2

2
hðXÞ; ð75Þ

where h is a regular function of X and hð0Þ ≠ 0 is allowed.
In either case, Λ and M are constant model parameters.
Note that A1 and A3 can be chosen freely so long as they are
regular at X ¼ 0. The first model (74) identically satisfies
the stability condition, whereas in the second model (75),
the condition M2

Pl þM2hð0Þ > 0 is required for the sta-
bility of the solution with respect to the odd-parity
perturbations.

B. Constant-X solution

Let us proceed to solutions with X ¼ X0 ¼ const, for
which the stability conditions (58) read

F2>0; F2−X0A1>0; F2−
�
q2

A
þX0

�
A1>0; ð76Þ

where F2 and A1 are evaluated at X ¼ X0, and the function
S defined by Eq. (69) is simplified as

S ¼
ffiffiffiffiffiffiffi
AB

p

r
þ q2A1A0 ffiffiffiffiffiffiffi

AB
p

2A½q2A1 − AðF2 − X0A1Þ�
: ð77Þ

With the assumption X ¼ X0, as we saw in Sec. II D,
we obtain the Schwarzschild–(anti-)de Sitter metric with
X0 ¼ −q2 without specifying the theory [as long as
Eq. (25) has a negative solution for X]. Therefore, the
conditions (58) read

F2 > 0; F2þq2A1 > 0; F2−
1−A
A

q2A1 > 0; ð78Þ

where F2 and A1 are evaluated at X ¼ −q2. Moreover, the
function S in Eq. (77) is further simplified as

S ¼ A
r
þ q2A1A0

2½q2A1 − AðF2 þ q2A1Þ�
: ð79Þ
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Thus, if A1ð−q2Þ ≠ 0, then S → A0=2 in the vicinity of the
event and cosmological (in the case of the Schwarzschild-
de Sitter solutions) horizons where A → 0. On the other
hand, if A1ð−q2Þ ¼ 0, then S ¼ 0 at both the horizons. In
either case, S is finite at the event and cosmological
horizons. Moreover, for the Schwarzschild solution (24),

S ¼ q2ð3r − 2μÞμA1 − 2ðr − μÞ2F2

2r2½q2μA1 − ðr − μÞF2�
; ð80Þ

which decreases as 1=r and finite in the limit of r → ∞.
Thus, the Schwarzschild and Schwarzschild-de Sitter
solutions with a constant X are stable at the level of linear
odd-parity perturbations if the conditions (78) are satisfied.
As specific examples, we consider the stealth

Schwarzschild solution and Schwarzschild–(anti-)de Sitter
solutions for the class Ia quadratic DHOST theories where
A1 ¼ 0 (i.e., cGW ¼ 1) found in Ref. [25]. First, let us
consider the model,

F0¼M4aðXÞ; F2¼
M2

Pl

2
þM2bðXÞ; A3¼

cðXÞ
M6

; ð81Þ

where a, b, and c are regular functions of X and M is a
constant. When aðXÞ and cðXÞ satisfy a certain set of
conditions, this model allows the stealth Schwarzschild
solution at X ¼ X0 ¼ const [25]. At this moment bðXÞ
remains a free function. By requiring the odd-mode stability,
we obtain an additional condition M2

Pl þ 2M2bðX0Þ > 0.
Second, we consider the model,

F0 ¼ −M2
PlΛb þM4hðXÞ; F2 ¼

M2
Pl

2
þ α

2
M2hðXÞ;

A3 ¼ −8βM2
hXðXÞ
X

; ð82Þ

where h is a regular function of X and Λb, M, α, and β are
constant model parameters. The model allows various
branches of self-tuned or untuned Schwarzschild–
(anti-)de Sitter solutions with X ¼ X0 ¼ const depending
on the form of the function hðXÞ and the values of
dimensionless model parameters α and β [25]. Again, by
virtue of A1 ¼ 0, the odd-mode stability condition is simple:
M2

Pl þ αM2hðX0Þ > 0, which applies to all the branches of
solutions.

V. CONCLUSIONS

We studied static spherically symmetric BH solutions
with a linearly time-dependent scalar field in the class Ia of
shift- and reflection-symmetric quadratic DHOST theories.
Although the background equations originally have higher-
order derivatives, they can be reduced to a lower-order
differential equation system (14) by taking their linear
combinations, which was demonstrated in Sec. II B. There

are several specific situations where one can obtain exact
BH solutions, e.g., if F0 ¼ 0 and/or A1 ¼ A3 ¼ 0, or if we
assume X is constant.
We also analyzed the linear stability of the BH solutions

under linear odd-parity perturbations in Sec. III. In order for
the BHs to be stable, it is necessary that the conditions
listed in Eq. (58) are satisfied. Furthermore, if these
necessary conditions are satisfied and the function S
defined by Eq. (69) is finite at the boundaries (i.e., the
event/cosmological horizons and the spatial infinity), then
the BHs are fully stable at the level of linear odd-parity
perturbations. In Sec. IV, we demonstrated an application
of the stability criteria and the construction of S to several
exact BH solutions either with ϕ ¼ const or X ¼ const, but
we stress that the stability criteria and the construction of S
also apply to any solution where ϕ and/or X is a nontrivial
function of r. To complete the discussion on the linear
stability, one has to study even-parity perturbations as well,
which will be left for future study.
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APPENDIX A: BH SOLUTIONS
AND THEIR STABILITY CONDITIONS

IN THE DISFORMAL FRAME

In this appendix, we discuss BH solutions in another
frame where the metric g̃μν is related to gμν in the original
frame by the disformal transformation (4). First, we
summarize the transformation of the metric and scalar
field, and show that their Ansatze are unchanged after an
appropriate redefinition of coordinates. As it should be, the
background solution in the disformal frame is given by
substituting the solution ðgμν;ϕÞ in the original frame into
Eq. (4). The resultant metric is of the form,

g̃μνdxμdxν ¼ −ðΩA − q2ΓÞdt2 þ AΩþ ðq2 þ AXÞΓ
AB

dr2

þ 2qψ 0Γdtdrþ r2Ωγabdxadxb: ðA1Þ

Performing a coordinate transformation t → τ ¼ t − TðrÞ
and r → ρ ¼ r

ffiffiffiffi
Ω

p
, where

T 0ðrÞ ¼ qψ 0Γ
ΩA − q2Γ

; ðA2Þ

the disformal metric becomes
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g̃μνdxμdxν ¼ −Ãdτ2 þ dρ2

B̃
þ ρ2γabdxadxb; ðA3Þ

with

Ã ≔ ΩA − q2Γ; B̃ ≔
BðΩA − q2ΓÞρ0ðrÞ2

AΩðΩþ XΓÞ : ðA4Þ

Note that r ¼ rðρÞ is now a function of ρ satisfying
r

ffiffiffiffi
Ω

p ¼ ρ, and we require ΩA − q2Γ > 0 so that Ã > 0.
In this new coordinate system, the scalar field is written as

ϕ ¼ qτ þ ψ̃ðρÞ; ψ̃ðρÞ ≔ ψðrðρÞÞ þ qTðrðρÞÞ; ðA5Þ

and thus linearly depends on τ with the same coefficient as
in the original frame. Furthermore, we have

X̃ ≔ g̃μν∇̃μϕ∇̃νϕ ¼ X
Ωþ XΓ

: ðA6Þ

Next, let us show the disformal invariance of the stability
condition (58). As remarked in Sec. II A, the shift- and
reflection-symmetric subclass of the class Ia of quadratic
DHOST theories is closed under the disformal transforma-
tion (4), so the disformal-frame Lagrangian is characterized
by four functions F̃0, F̃2, Ã1, and Ã3 of X̃. Following the
same arguments as in the original frame, we obtain similar
stability conditions for BHs as those in Eq. (58),

F̃2> 0; F̃2− X̃Ã1> 0; F̃2−
�
q2

Ã
þ X̃

�
Ã1> 0: ðA7Þ

One would expect that the stability conditions in the
disformal frame is equivalent to those in the original frame
because of the invertibility of the disformal transformation
(4). This can be verified by rewriting the left-hand sides of
the inequalities (A7) in terms of the original-frame quan-
tities. According to the results of Ref. [32] together with
Eqs. (A4) and (A6), we have

F̃2 ¼
F2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩðΩþ XΓÞp ;

F̃2 − X̃Ã1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωþ XΓ

p

Ω3=2 ðF2 − XA1Þ;

F̃2 −
�
q2

Ã
þ X̃

�
Ã1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωþ XΓ

Ω

r
A

ΩA − q2Γ

×

�
F2 −

�
q2

A
þ X

�
A1

�
: ðA8Þ

Hence, Eq. (A7) is reproduced from Eq. (58), and vice
versa.
Finally, let us consider a specific solution and see how it

(un)changes under the disformal transformation. As we
saw in Sec. II D, once we impose X ¼ X0 ¼ const, the

background solution is of the Schwarzschild–
(anti-)de Sitter form,

A ¼ 1 −
μ

r
−
Λ
3
r2 ¼ λB: ðA9Þ

Here, for generality, we have introduced a parameter λ,
whose deviation from unity measures the solid angle
deficit. Note that X0 ≠ −q2 in general. By rescaling τ as

τ →
τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω − q2Γ
p ; ðA10Þ

the disformal metric in Eq. (A3) is transformed into the
form,

g̃μνdxμdxν → −
�
1 −

μ̃

ρ
−
Λ̃
3
ρ2
�
dτ2 þ λ̃

1 − μ̃
ρ −

Λ̃
3
ρ2

dρ2

þ ρ2γabdxadxb; ðA11Þ

where we have defined μ̃, Λ̃, and λ̃ as

μ̃≔
Ω3=2μ

Ω−q2Γ
; Λ̃≔

Λ
Ω−q2Γ

; λ̃≔
ΩþX0Γ
Ω−q2Γ

λ: ðA12Þ

This is nothing but the Schwarzschild–(anti-)de Sitter
metric with a deficit solid angle. Note that ϕ also gets
transformed as

ϕ ¼ Qτ þ ψ̃ðρÞ; Q ≔
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω − q2Γ
p : ðA13Þ

This means that the disformal transformation amounts to
the redefinition of the parameters μ, Λ, λ, and q.
Interestingly, even though the original-frame metric has
no deficit solid angle (i.e., λ ¼ 1), the disformal-frame
metric generically has a deficit solid angle if X0 ≠ −q2 and
Γ ≠ 0. However, if λ ¼ 1 and X0 ¼ −q2, we have λ̃ ¼ 1

and X̃ ¼ −Q2. An explicit Schwarzschild–(anti-)de Sitter-
type solution with a deficit solid angle was given in
Eqs. (28) and (29) under the condition,

λ ¼ F2ðX0Þ − ðX0 þ q2ÞA1ðX0Þ
F2ðX0Þ

: ðA14Þ

By use of Eqs. (A8), (A12), and (A13), it is straightforward
to confirm

λ̃ ¼ F̃2ðX̃0Þ − ðX̃0 þQ2ÞÃ1ðX̃0Þ
F̃2ðX̃0Þ

; ðA15Þ

where X̃0 ≔ X0=½ΩðX0Þ þ X0ΓðX0Þ�. Hence, the condition
for the existence of the solution with a deficit solid angle
remains the same.
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APPENDIX B: EXPLICIT FORMS OF THE REDUCED BACKGROUND EOMS

In this appendix, we present the explicit forms of functions which appeared in reducing the background EOMs (for their
definitions, see Sec. II B). k1, k2, and k3 in Eq. (12) are written as

k1 ¼ 8rðF2 − XA1Þ2½−4r2F0XF2 þ 8r2F0F2X þ 8XA1XF2 þ 4XA3F2 þ 4r2XA1XF0 þ 3r2XA3F0

þ A1ð−2r2F0 þ 8XF2X þ 4r2XF0XÞ�; ðB1Þ

k2 ¼ rf4A3
1ðq2 − 3XAÞ½r2F0 − 2Xð2F2X þ r2F0XÞ�

þ F2½48r2AF2Xð−F0XF2 þ 2F0F2XÞ þ 4A3ð4F2F2Xðq2 þ 3XAÞ þ 5r2F0F2Xð2q2 þ 3XAÞ − r2F0XF2ð4q2 þ 3XAÞÞ
þ 4A1Xð2F2 þ r2F0Þð4F2Xðq2 þ 3XAÞ þ XA3ð5q2 þ 3XAÞÞ þ XA2

3ð4F2ð5q2 þ 3XAÞ þ r2F0ð14q2 þ 9XAÞÞ�
þ 4A2

1½q2ð−2r2F0ð4F2X þ XA1XÞ þ Xð2F2X þ r2F0XÞð4F2X − 3XA3Þ − 2F2ð2F2X − r2F0X þ 2XA1X þ XA3ÞÞ
þ 3Aðr2F0ðF2 þ 2Xð3F2X þ ðA1X þ A3ÞXÞÞ
− XðXð2F2X þ r2F0XÞð4F2X þ XA3Þ þ F2ð4F2X þ 4r2F0X − 2ð2A1X þ A3ÞXÞÞÞ�
− A1½3X2A2

3ð4F2 þ 3r2F0Þðq2 þ XAÞ
þ 4A1Xð2F2 þ r2F0Þð2F2ðq2 þ 3XAÞ þ Xð−4F2Xðq2 − 3XAÞ þ 3XA3ðq2 þ XAÞÞÞ
þ 4A3ðF2ð2XF2Xð−7q2 þ 3XAÞ þ 2F2ðq2 þ 3XAÞ − r2XF0Xð7q2 þ 6XAÞÞ
þ r2F0ð3F2ðq2 þ 2XAÞ þ XF2Xð2q2 þ 15XAÞÞÞ
− 8ð2q2F2Xð2F2F2X − r2F0XF2 þ 3r2F0F2XÞ
þ 3Aðr2F0XF2ðF2 þ 4XF2XÞ þ F2Xð4XF2F2X − r2F0ð3F2 þ 4XF2XÞÞÞÞ�g; ðB2Þ

k3 ¼ 8ðF2 − XA1Þf4A1Xð2F2 þ r2F0Þðq2 þ XAÞðF2 − XA1Þ
þ A3½4F2

2ðq2 þ XAÞ − 4XA1F2ðq2 þ XAÞ − 3r2XA1F0ðq2 þ XAÞ þ r2F0F2ð2q2 þ 3XAÞ�
þ 2½−2r2AF2ðF0XF2 − 2F0F2XÞ þ A2

1ðq2 þ XAÞðr2F0 − 2ð2F2X þ r2F0XÞXÞ
þ A1ð4F2F2Xðq2 þ XAÞ − 2r2F0F2Xðq2 þ 2XAÞ þ r2F2ð−AF0 þ 2q2F0X þ 4XAF0XÞÞ�g: ðB3Þ

It is useful to introduce several auxiliary functions to write down the expressions for Ψ1, Ψ2, and Ψ3 in Eq. (14). We write
Ψ1 as

k1
8ðF2 − XA1Þ

Ψ1 ¼
U
V
−W; ðB4Þ

where U, V, and W are defined as follows:
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U ¼ r2ð2A1XF2 þ A3F2 þ 2A1F2XÞð−2A1F0 − 4F0XF2 þ 8F0F2X þ 4XA1XF0 þ 3XA3F0 þ 4XA1F0XÞ
× f4A3

1ðq2 − 3XAÞ½r2F0 − 2ð2F2X þ r2F0XÞX�
þ F2½48r2AF2Xð−F0XF2 þ 2F0F2XÞ þ 4A3ð4F2F2Xðq2 þ 3XAÞ þ 5r2F0F2Xð2q2 þ 3XAÞ
− r2F0XF2ð4q2 þ 3XAÞÞ þ 4A1Xð2F2 þ r2F0Þð4F2Xðq2 þ 3XAÞ þ XA3ð5q2 þ 3XAÞÞ
þ XA2

3ð4F2ð5q2 þ 3XAÞ þ r2F0ð14q2 þ 9XAÞÞ�
þ 4A2

1½q2ð−2r2F0ð4F2X þ XA1XÞ þ Xð2F2X þ r2F0XÞð4F2X − 3XA3Þ − 2F2ð2F2X − r2F0X þ 2XA1X þ XA3ÞÞ
þ 3Aðr2F0ðF2 þ 2Xð3F2X þ ðA1X þ A3ÞXÞÞ − XðXð2F2X þ r2F0XÞð4F2X þ XA3Þ
þ F2ð4F2X þ 4r2F0X − 2ð2A1X þ A3ÞXÞÞÞ�
− A1½4A1Xð2F2 þ r2F0Þð2F2ðq2 þ 3XAÞ þ Xð−4F2Xðq2 − 3XAÞ þ 3XA3ðq2 þ XAÞÞÞ
þ 3X2A2

3ð4F2 þ 3r2F0Þðq2 þ XAÞ þ 4A3ðF2ð2XF2Xð−7q2 þ 3XAÞ þ 2F2ðq2 þ 3XAÞ − r2XF0Xð7q2 þ 6XAÞÞ
þ r2F0ð3F2ðq2 þ 2XAÞ þ XF2Xð2q2 þ 15XAÞÞÞ − 8ð2q2F2Xð2F2F2X − r2F0XF2 þ 3r2F0F2XÞ
þ 3Aðr2F0XF2ðF2 þ 4XF2XÞ þ F2Xð4XF2F2X − r2F0ð3F2 þ 4XF2XÞÞÞÞ�g; ðB5Þ

V ¼ 8A3
1fr2F0ðF2X − 2XF2XXÞ − 4X½3F2

2X − r2XF0XF2XX þ r2F2XðF0X þ XF0XXÞ�g
þ 4A2

1f16F2F2
2X þ 8F2F2X½r2F0X þ ð−6A1X − 3A3 þ 2r2F0XXÞX�

− 4XF2X½4F2
2X þ 2r2XF0Xð2A1X þ A3Þ þ F2Xð4r2F0X þ 8XA1X þ 3XA3Þ�

− 2r2F0½2F2
2X − X2F2XXð4A1X þ 3A3Þ þ XF2Xð4A1X þ 4A3 þ 4XA1XX þ 3XA3XÞ�

þ r2F2½4F0F2XX − 4XA1XXF0 − 2XA3XF0 − 16XF0XF2XX þ 8X2A1XXF0X þ 4X2A3XF0X

þ 2A1XðF0 − 4XðF0X þ XF0XXÞÞ þ A3ðF0 − 4XðF0X þ XF0XXÞÞ�g
− F2f−16r2F2ð2A1XX þ A3XÞðF0XF2 − 2F0F2XÞ þ 64X2A3

1Xð2F2 þ r2F0Þ þ 3X2A3
3ð4F2 þ 3r2F0Þ

þ 8r2A3½2F0XXF2
2 − 6F0XF2F2X þ F0ð8F2

2X − 4F2F2XX þ XA1XXF2Þ�
− 4A2

3½3r2F0ðF2 − 4XF2XÞ þ 2F2ð2F2 − 2XF2X þ 3r2XF0XÞ�
− 8A2

1X½2F2ð4F2 þ Xð−4F2X þ 8r2F0X − 11XA3ÞÞ þ r2F0ð2F2 − Xð28F2X þ 13XA3ÞÞ�
þ 2A1X½X2A2

3ð40F2 þ 27r2F0Þ − 4r2ð−4F0XXF2
2 þ 16F0XF2F2X þ F0ð−24F2

2X þ 8F2F2XX þ XA3XF2ÞÞ
− 4A3ðr2F0ð4F2 − 27XF2XÞ þ 2F2ð4F2 − 4XF2X þ 7r2XF0XÞÞ�g
þ 2A1f−16XA2

1XF2ð3F2 þ 8XF2X þ 4r2XF0XÞ − 3XA2
3½4F2

2 þ r2XF0F2X þ 2F2ðr2F0 þ 4XF2X þ 2r2XF0XÞ�
þ 4A1X½−r2XF0F2Xð4F2X þ XA3Þ − 2XF2ð2F2X þ r2F0XÞð4F2X þ 7XA3Þ
þ 4F2

2ð4F2X þ r2F0X − 3XA3 þ 2r2XF0XXÞ þ r2F0F2ð4F2X − Xð3A3 þ 12F2XX þ XA3XÞÞ�
þ 4r2½−4F0XXF2

2F2X þ 8F0XF2F2
2X − 8F0F3

2X þ 4F0XF2
2F2XX þ A3XF2ðF0F2 − 4XF0XF2 þ 7XF0F2XÞ

þ 2A1XXF2ð−4XF0XF2 þ F0ðF2 þ 6XF2XÞÞ�
þ 4A3½−5r2XF0F2

2X þ 2F2
2ð4F2X þ r2ðF0X þ 2XF0XXÞÞ

þ F2ð−2XF2Xð4F2X þ r2F0XÞ þ r2F0ð3F2X − 7XF2XX þ X2A1XXÞÞ�g; ðB6Þ

W ¼ 4A1Xð2F2 þ r2F0Þðq2 þ XAÞðF2 − XA1Þ
þ A3½4F2ðq2 þ XAÞðF2 − XA1Þ − 3r2XA1F0ðq2 þ XAÞ þ r2F0F2ð2q2 þ 3XAÞ�
þ 2f−2r2AF2ðF0XF2 − 2F0F2XÞ þ A2

1ðq2 þ XAÞ½r2F0 − 2Xð2F2X þ r2F0XÞ�
þ A1½4F2F2Xðq2 þ XAÞ − 2r2F0F2Xðq2 þ 2XAÞ þ r2F2ð−AF0 þ 2q2F0X þ 4XAF0XÞ�g: ðB7Þ
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With the above definitions, Ψ2 and Ψ3 are written as

Ψ2 ¼ −
2k1

q2rð2F2A1X þ F2A3 þ 2F2XA1Þ½rð2A1 − XA3 − 4F2XÞΨ3 − 8ðF2 − XA1Þ�2
; ðB8Þ

Ψ3 ¼
8r
V
ðF2 − XA1Þð2F2A1X þ F2A3 þ 2F2XA1Þ½F0ð2A1 − 4XA1X − 3XA3 − 8F2XÞ þ 4F0XðF2 − XA1Þ�: ðB9Þ
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