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We present an approximate treatment of spin-extended coupled-cluster (ECC) based on the spin-
projection of the broken-symmetry coupled-cluster (CC) ansatz. ECC completely eliminates the
spin-contamination of unrestricted CC and is therefore expected to provide better descriptions of
dynamical and static correlation effects, but introduces two distinct problems. The first issue is the
emergence of non-terminating amplitude equations, which are caused by the de-excitation effects
inherent in symmetry projection operators. In this study, we take a minimalist approach and truncate
the Taylor series of the exponential ansatz at a certain order such that the approximation safely
recovers the traditional CC without spin-projection. The second issue is that the nonlinear equations of
ECC become underdetermined, although consistent, yielding an infinitude of solutions. This problem
arises because of the redundancies in the excitation manifold, as is common in other multi-reference
approaches. We remove the linear dependencies in ECC by employing an orthogonal projection
manifold. We also propose an efficient solver for our method, in which the components are usually
sparse but not diagonal-dominant. It is shown that our approach is rigorously orbital-invariant and
provides more accurate results than its configuration interaction and linearized CC analogues for
chemical systems. Published by AIP Publishing. https://doi.org/10.1063/1.5036542

I. INTRODUCTION

Treating quasi-degeneracies accurately is one of the most
challenging tasks in electronic structure theory, as many
single-reference (SR) methods are not suitable for captur-
ing static correlations in general and thus typically break
down. The failures of SR methods are ascribed to their defi-
cient starting point, Hartree–Fock (HF). Although a num-
ber of approaches have attempted to approximate static
correlation effects in an SR framework,1–9 multi-reference
(MR) methods are usually more reliable and accurate. The
fundamental idea is to handle static correlations at some
multi-configuration level such as the complete active space
self-consistent field (CASSCF)10–12 and add dynamical cor-
relations using perturbation theory, configuration interaction
(CI), or coupled-cluster (CC).13–16

Thus far, there have been various attempts to develop
MRCC approaches. Many Hilbert-space methods are based
on the Jeziorski–Monkhorst ansatz, where each determinant
in the reference space associates with its own cluster oper-
ator.17 In the state-universal coupled-cluster (SUCC) formu-
lation, all the amplitudes and electronic states are simultane-
ously determined by diagonalizing the effective Hamiltonian,
but its application is severely hampered by the intruder state
problem. The state-specific approaches such as the Brillouin–
Wigner (BW) MRCC18–21 and Mukherjee (Mk) MRCC22–27

a)Electronic mail: tsuchimochi@gmail.com
b)Electronic mail: tenno@garnet.kobe-u.ac.jp

avoids the intruder state problem by considering only one
(lowest) state; however, they in turn suffer from the redun-
dancy problem where the number of amplitude equations is
less than the number of amplitudes. In these state-specific
approaches, the redundancy problem is solved by sufficiency
conditions,18–20,22,23 which unfortunately bring about other
undesired consequences such as the improper residuals28 and
the lack of orbital invariance.29,30 Finally, the internally con-
tracted (ic) approaches resolve these issues, by employing
a single cluster operator along with a multi-configuration
vacuum,31–33 although the prefactor is significantly large and
grows rapidly with the size of the active space. The properties
and capabilities of these methods as well as other variants of
MRCC are well documented in the recent review papers.34,35

With these difficulties and complications, it should be fair
to point out that most MRCC methods are not straightfor-
ward to formulate. They are also cost-intensive and require
a priori specification of an active space where electrons are
strongly correlated. Hence, it is important to develop efficient
and black-box MRCC schemes in an orbital-invariant fashion.
In the present work, we aim at formulating such a method
based on symmetry projection.

Symmetry-projected HF (PHF) appears to be a good
compromise between HF and CASSCF.36,37 By writing a
symmetry-projection operator as

P̂ =
∫
w(Ω)R̂(Ω) dΩ, (1)

its wave function comprises a few non-orthogonal broken-
symmetry determinants, which are systematically generated
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by some unitary rotation operator R̂(Ω) specific to the symme-
try that is to be restored. In the orthogonal orbital picture,
a PHF wave function is also expressed as a linear combi-
nation of determinants through all orders of excitations with
respect to some symmetry-adapted determinant.38 Among the
symmetries that Fermionic wave functions can break, spin
symmetry has been of great interest in quantum chemistry
because spontaneous symmetry breaking in spin-unrestricted
HF (UHF) is usually associated with quasi-degeneracies in
the system. As a result, spin-projected UHF (SUHF) brings a
large amount of static correlations as well as physically cor-
rect spin states, all in a black-box manner. Many studies have
shown its improved accuracy over both restricted HF (RHF)
and UHF,37,39–41 suggesting that it is a more suitable starting
point.

We have therefore proposed several post-SUHF methods
to include the residual dynamical correlation effect. These
include spin-extended perturbation theory42 and CI with sin-
gles and doubles (ECISD).43,44 It was shown that these
approaches generically outperform their SR analogues. We
have further explored a generalization to coupled electron-pair
approximation (ECEPA) including spin-extended linearized
CC (ELCC) and averaged quadratic CC (EAQCC).45 This
builds on ECISD to furnish approximate size-consistent com-
ponents in the dynamical correlation by writing the quadratic
P̂T̂2 elements as products of the correlation energy and lin-
ear P̂T̂ terms, where T̂ is the excitation operator. ECEPA
methods were shown to improve both the correlation energy
and molecular properties over ECISD.45 However, as the
exclusion-principle-violating terms are treated in an average
manner, they are plagued by instabilities; for average CEPA
to be a good approximation, the reference state has to be
well separated from the interacting space, but this is often
not the case in SUHF and ECISD. The same problem is
also present in the CAS case, unless the active space is large
enough.46

From this point of view, it is obviously desirable to develop
CC from SUHF, a theory we call spin-extended CC (ECC). The
wave function ansatz for ECC is given by

|Ψ
〉
= P̂eT̂ |Φ0

〉
, (2)

where T̂ is the excitation operator and |Φ0〉 is an underlying
broken-symmetry determinant of SUHF. There have recently
been efforts in similar directions by other research groups.47–51

In particular, the spin-projected unrestricted CC developed by
Scuseria and coworkers uses the same ansatz.51 There are,
however, two main difficulties in formulating the rigorous
ECC. The first obvious problem is that the corresponding
equations do not terminate at finite order because R̂(Ω) is
unitary and P̂ is thus an ne-body operator, where ne is the
number of electrons in the system. In the pioneering work
of Qiu et al., P̂ was written as a polynomial of particle-hole
excitations with respect to some reference RHF-type determi-
nant,52 and then combined with a cluster operator followed
by variational optimization of amplitudes.50 However, such
normal-ordering of P̂ loses the de-excitations from the CC
ansatz, which can play a significant role in describing static
correlations. In addition, the variational CC approach results in
the same complexity as full CI (FCI). Very recently, Qiu et al.

proposed a truncation scheme to incorporate the de-excitation
effects approximately on the basis of the excitation rank
of so-called disentangled cluster operators.51 The method
essentially approximates eV̂1(Ω)eT̂ , where eV̂1(Ω) is the de-
excitation component in R̂(Ω) and thus no longer produces
pure spin-states in general, although the spin-contamination
introduced was shown to be satisfactorily small for a model
Hamiltonian.

The second difficulty, which was not realized in previ-
ous work,47,51 is the redundancy problem inherent to many
other MR methods.31–33,53,54 In essence, the emergence of
nonlinear parametrization in Eq. (2) gives rise to linearly
dependent t-amplitudes and equations because of the non-
orthogonality of the excitation manifold. Such redundancies
are common in ECI and ELCC, but do not pose any prob-
lem in these methods because they are strictly variational
or quasi-variational in the sense that the CI coefficients or
t-amplitudes are optimized with respect to a well-defined
energy functional.44,45 Therefore, these linear methods pro-
vide only one unique (lowest) energy, even though there are
infinitely many sets of amplitudes that satisfy the underly-
ing generalized eigenvalue problem. However, when ECC is
solved in a non-variational, projective manner, its correlation
energy is arbitrary up to linear dependencies. As in various
ic MRCC approaches,32,33 we need to orthogonalize the pro-
jection manifold by performing singular-value-decomposition
(diagonalization) of some metric of the nonlinear ECC
system.

In light of the latter problem, a well-defined metric that is,
ideally, strictly positive-semidefinite is indispensable. While it
is possible to systematically include only the important com-
ponents of high powers of R̂(Ω)eT̂ , such approximations can
make it unclear which metric the nonlinear redundant problem
is to be solved under. In fact, in the course of our study, we have
found several cases in which approximating terms in R̂(Ω)eT̂

causes severe convergence problems. This instability is likely
to be attributable to an inconsistent metric; as a result, the non-
linear ECC equations become unstable or even unsolvable. For
this reason, we wish to avoid introducing approximations to P̂
at all costs.

To this end, we will simply truncate the Taylor expan-
sion while securing the (numerical) exactness of the projection
operator, thus giving a metric with the desirable properties
(symmetric, positive-semidefinite). This permits us to remove
the redundancies in the equations correctly and to study the
improvements that the quadratic and higher-order terms bring
about, especially when the t-amplitudes are optimized in the
presence of P̂. As will be shown, the divergence behavior of
ECEPA can be rectified in the truncated ECCSD method, while
offering improved performance over ECISD, just like in the
SR case.

The resultant residual equations are still non-orthogonal
and non-diagonal-dominant, and cannot be solved by iterative
diagonalization, unlike linearized schemes. In this paper, fol-
lowing our work on ECI,44 we propose a robust converger
for solving the nonlinear ECC equations. The use of our
scheme in conjunction with the direct inversion of iterative
subspace (DIIS)55–57 gives stable and fast convergence of the
t-amplitudes.
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We organize this article as follows. As the appearance
of redundancies is general, regardless of the approximations
introduced to the ECC ansatz (as far as it is nonlinear), we first
address this issue in Sec. II. Then, in Sec. III, we rewrite the
ECCSD wave function as a superposition of non-orthogonal
pseudo-CI wave functions in terms of normal-ordering, where
the effective coefficients are approximated based on the trun-
cation of the cluster expansion. Sec. IV describes how the
truncated ECCSD equations can be solved in practice. Sec. VI
confirms the orbital invariance of the method and reports
the convergence behavior of the residuals. We also demon-
strate the performance of the method for the H4 and H8
models and O3 as pilot examples. Finally, we discuss the size-
consistency problem of the method and the structure of metric
eigenvalues.

II. LINEAR DEPENDENCIES
A. Background

Throughout this work, we will adopt the conventional
notation for orbitals, namely, p, q, r, s, . . . for general, i,
j, k, l, . . . for occupied, and a, b, c, d, . . . for virtual spin-
orbitals. Greek subscripts are used to represent excited deter-
minants, whereas |Φ0〉 denotes the reference broken-symmetry
determinant.

For ECCSD in which T̂ is truncated at doubles, we
have

T̂ = T̂1 + T̂2, (3a)

T̂1 =
∑

ia

ta
i âa

i , (3b)

T̂2 =
1
4

∑
ijab

tab
ij âab

ij , (3c)

where âab...
ij... are the excitation operators written with creation

(âp) and annihilation (âp) operators

âab...
ij... = âaâb . . . âjâi. (4)

In this work, we only consider a UHF-type determinant for
|Φ0〉 and the collinear excitations to preserve the Ŝz quantum
number, e.g., i and a share the same spin in ta

i . For later use,
Eqs. (3) are written in the shorthand notation

T̂ =
MSD∑
µ

tµÊµ, (5)

where µ runs over the singles and doubles spaces and MSD is
the dimension. The excitation operators âa

i and âab
ij are merged

into the row vector Ê, where each component generates excited
(broken-symmetry) determinants from |Φ0〉, i.e.,

|Φµ
〉
= Êµ |Φ0

〉
. (6)

As in regular CC, the correlation energy Ec and
t-amplitudes may fulfill the following equations:〈

Φ0 |ĤN |Ψ
〉
= Ec

〈
Φ0 |Ψ

〉
, (7a)〈

Φ0 |Ê
†
µĤN |Ψ

〉
= Ec

〈
Φ0 |Ê

†
µ |Ψ

〉
, (7b)

where ĤN ≡ Ĥ − ESUHF with

ESUHF =

〈
Φ0 |P̂†ĤP̂ |Φ0

〉〈
Φ0 |P̂†P̂ |Φ0

〉 = 〈
Φ0 |ĤP̂ |Φ0

〉
. (8)

We note that P̂ is idempotent, Hermitian, and commutable
with Ĥ. Henceforth, we always assume the normalization of
an SUHF wave function, but not of |Φ0〉. Note that the Hamil-
tonian is not similarity-transformed in Eqs. (7), and there-
fore, the left hand side includes unlinked terms. These are
mostly expected to cancel out with the right hand side. As we
have already mentioned, the above equation is non-terminating
because P̂ involves ne de-excitations.

Furthermore, the above set of equations does not pro-
vide the proper residuals because of the redundancies. The
redundancy problem in ECC is essential because the excita-
tion manifold of Eq. (6) is non-orthogonal after the projection
operator P̂ is applied, and certain linear combinations will cre-
ate the null basis. In other words, such linear combinations of
excitation operators can create a mixed state that has no com-
ponent of the target symmetry space of P̂. This is shown in
Fig. 1, where |Φ0〉 is set to an RHF determinant for simplic-
ity, but two excited determinants |ΦA〉 and |ΦB〉 generate the
same configuration state function once the singlet projection
operator P̂S is enacted and are therefore redundant. A linear
combination of the two bare excited determinants (without pro-
jection), |ΦA〉 −|ΦB〉, is a pure triplet state, which is destroyed
upon the action of P̂S.

Therefore, although the nonlinear system of ECCSD as
given by Eq. (7b) consists of MSD equations and variables
tµ, it is underdetermined (overparametrized). A consequence
of this is an infinite number of solutions that fulfill both
Eqs. (7a) and (7b), i.e., Ec is arbitrary. This is somewhat
different from the redundancy problem that appears in state-
specific MRCC approaches based on the Jeziorski–Monkhorst
ansatz,17 which can be solved by invoking appropriate suffi-
ciency conditions,18,19,22,23 at the cost of orbital invariance.30

Our redundancy problem arises from the non-orthogonal char-
acter of the excitation manifold, and, in this respect, is rather
similar to the situation in ic MR methods.31–33,53,54

FIG. 1. Redundancy in the singlet-projected excitation manifold. For sim-
plicity, the reference state is RHF, but excited determinants become identical
when spin-projected.
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One possible method of removing the redundancies is to
make use of the property of spin-projection. In previous work,
we numerically found that the number of linear dependen-
cies in ECISD is always associated with the number of single
excitations for tested singlet systems.44 Further mathemati-
cal analyses should make it possible to identify the redundant
excitations analytically for spin-projection, which can then
be explicitly removed from the equations and amplitudes.
Nevertheless, it is questionable whether this approach retains
unitary invariance because there are multiple choices for the
removal of such excitations; namely, either |ΦA〉 or |ΦB〉 can
be removed. Ideally, any procedure should ensure a unique
solution that is orbital-invariant. In the following, we outline
such a protocol.

B. Intermediate normalized ansatz

Before eliminating the redundancies in Eqs. (7), we need
a clear separation between the reference and excitation man-
ifold. As |Φµ〉 overlaps with |Φ0〉 through P̂, the original

ECC ansatz P̂eT̂ |Φ0
〉

is not intermediate normalized. This
is not a desirable characteristic when we wish to solve our
redundancy problem because the dimensions of the redundant
parameters tµ and redundant basis {Φ0, Φµ} are inconsistent.
Accordingly, as previously suggested in ECEPA theory,45 the
projection of the reference SUHF space is first performed,
restricting the linear dependence problem only to the excitation
manifold.

To this end, we prepare the projector Q̂, which eliminates
the SUHF reference P̂ |Φ0

〉
, as

Q̂ = 1 − P̂ |Φ0
〉〈
Φ0 |P̂, (9)

and redefine the ECC wave function as

|Ψ′
〉
=

(
P̂ + Q̂eT̂

)
|Φ0

〉
= |Ψ

〉
+ P̂ |Φ0

〉(
1 −

〈
Φ0 |Ψ

〉)
, (10)

where we have conveniently defined Q̂ = P̂Q̂ = Q̂P̂. One
could certainly put Q̂ in front of T̂ to form eQ̂T̂ , but we do not
choose this option because it would complicate the algebra
with terms like Q̂T̂ Q̂T̂ , which are obviously much more diffi-
cult to deal with (recall that P̂ has de-excitation components).
Rather, it is reasonable to set |Ψ〉 as above by recognizing
Q̂eT̂ |Φ0

〉
as the purely dynamical correlation space orthogonal

to SUHF. Then, |Ψ′〉 is intermediate normalized (again, P̂ |Φ0
〉

itself is normalized), and the corresponding t-amplitude equa-
tions are separated from the energy definition, by choosing〈
Φµ |Q̂

†
as the projection manifold

Ec =
〈
Φ0 |ĤNQ̂eT̂ |Φ0

〉
=

〈
Φ0 |ĤN P̂eT̂ |Φ0

〉
, (11a)

rµ[t] B
〈
Φµ |Q̂

† (
ĤN − Ec

) (
P̂ + Q̂eT̂

)
|Φ0

〉
=

〈
Φµ |

(
ĤN − Ec

)
P̂eT̂ |Φ0

〉
+

〈
Φµ |

(
ĤN − Ec

)
P̂ |Φ0

〉
×

(
1 −

〈
Φ0 |P̂eT̂ |Φ0

〉)
= 0, (11b)

where we have used the fact that
〈
Φ0 |ĤN P̂ |Φ0

〉
= 0. In

the intermediate normalized form, the redundancies in tµ are
directly mapped to those in Q̂|Φµ

〉
, and the metric becomes

Sµν =
〈
Φµ |Q̂

†Q̂|Φν
〉
=

〈
Φµ |P̂ |Φν

〉
−

〈
Φµ |P̂ |Φ0

〉〈
Φ0 |P̂ |Φν

〉
.

(12)

We note that Eq. (12) is not the only choice for the
metric, and this is where the arbitrary nature of the ECC
solution comes in Refs. 32, 33, and 58. The singles space
is also redundantly present in the doubles space (so-called
spectator excitations). The former can be projected out from
the latter in a similar way as that presented above. This
procedure changes the definition of the metric and gives
different orthogonalized excitation operators, vide infra. In
ic-MRCC, such a sequential projection of lower-excited func-
tions removes some disconnected terms in the contraction
between the metric and amplitudes. As a result, it partially
recovers size-extensivity, known as core extensivity, i.e., the
correct scaling of the correlation energy associated with the
growth of inactive orbitals and electrons.33,58 The full size-
extensivity is perfectly retained if excitation operators are
derived based on the generalized normal-ordering.58–60 In our
method, however, the full size-extensivity is particularly dif-
ficult, irrespective of the choice of metric, because of the
symmetry projection operator, which destroys the full size-
extensivity (see Sec. VI E). Hence, in the present work, we
will employ Eq. (12), i.e., a mixture of singles and doubles.
Our choice is therefore similar to that of Evangelista et al.32

and version C of Hanauer and Köhn.33 A comparison between
different metric schemes for ECC will be investigated in future
work.

C. Orthogonalization

We are now in a position to deal with the redundancies
present in Eq. (11b). To remove the linear dependencies in tµ,
it is necessary to employ a set of orthogonalized excitation
operators

Êα =
∑
µ

ÊµXµα, (13)

as suggested by other authors.32,33,53,58,61–63 In analogy with
these previous works, we adopt the canonical orthogonaliza-
tion by using the singular-value-decomposition of S. As S is
positive-semidefinite, we have in general that∑

ν

SµνUνα = Uµαλα, (14a)

∑
ν

SµνUνβ = 0, (14b)

where the subscript α is restricted to positive λα and β cor-
responds to zero singular values or those below some thresh-
old η (λβ < η). These spaces are called the range and null
space, characterized as R(S) and N(S), whose dimensions are
respectively MR and MN = MSD −MR. More often than not,
MR � MN > 0. As several authors have pointed out,32,63,64 in
standard ic-MRCC methods, unlike in ic-MRCI,65 the trunca-
tion threshold η must be carefully chosen because small values
cause numerical instability while large values lead to degra-
dation of results. However, we see no such difficulty in our
method, and η can always be very small. We present some
examples in Sec. VI F.
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Using the singular values and vectors, the transformation
matrix X is obtained as

Xµα = Uµαλ
− 1

2
α , (15)

and one can produce an excitation basis

|Ξα
〉
= Êα |Φ0

〉
, (16)

which is orthonormal when Q̂-projected,〈
Ξα′ |Q̂|Ξα

〉
= δαα′ . (17)

Note that Uα may not be defined uniquely because of possi-
ble degeneracies in λα. However, the final result is invariant
with respect to the unitary rotation of degenerate singular
vectors within the range (and the null space), as will be
shown.

The orthonormalized cluster operator is obtained as

τ̂ =

MR∑
α

ταÊα. (18)

Clearly, the number of linearly independent parameters is
only MR, and the same number of independent equations
can be constructed with the orthonormal projection mani-

fold
〈
Ξα |Q̂

†
. The resulting set of ECC equations is rewritten

as

Ec =
〈
Φ0 |ĤQ̂eτ̂ |Φ0

〉
, (19)〈

Ξα |Q̂
† (

Ĥ − Ec

) (
P̂ + Q̂eτ̂

)
|Φ0

〉
= 0 ∀ α ∈ R(S). (20)

Solving Eqs. (19)–(20) gives unique Ec and τ.
In practice, we do not explicitly transform the excitation

operators and amplitudes. Suppose that we have successfully
obtained some τ that satisfies Eq. (20). From Eq. (18), it is
evident that there is the following one-to-one mapping between
τα in the orthonormal basis and some t̃µ in the original non-
orthogonal basis:

t̃µ =
MR∑
α

Uµαs
− 1

2
α τα, (21)

τα = s
1
2
α

MSD∑
µ

U∗µα t̃µ. (22)

Hence, t̃ is also uniquely determined, up to the choice of the
metric S. The chief difference between this particular t̃ and
other general t is that t̃ is orthogonal to N(S), whereas t can
spill into N(S), i.e.,

t̃ ⊥ N(S)⇔ t̃ ∈ R(S), (23)

¬ t ⊥ N(S)⇔ t ∈ R(S) ⊕ N(S). (24)

This means that t̃ is represented as a vector that is projected
on to N(S) using the null-space projector P,

t̃µ =
MSD∑
ν

Pµνtν , (25)

where

Pµν = δµν −
MN∑
β

UµβU∗νβ . (26)

Substituting Eqs. (18) and (22) into Eq. (20), we have the
proper residuals

λ
− 1

2
α

∑
µ

U∗µαrµ[t̃] = 0, (27)

where we remind the reader that r is the residual vector in the
non-orthogonal basis and is defined in Eq. (11b).

As often MR >> MN, it is worth rewriting Eq. (27) in

terms of Uµβ . To do so, we multiply it by SνλUλαλ
− 1

2
α from

the left and sum over α and λ to give

r̃ν[t̃] B
∑
µλ

SνλS+
λµrµ[t̃] =

∑
µ

Pλµrµ[t̃] = 0, (28)

where S+ is the Moore–Penrose pseudoinverse of S. Both t̃
and r̃ are written in the same non-orthogonal basis restricted
in R(S), and therefore, one can directly use the latter to
perturbatively update the former. However, in this basis,
the metric is not diagonal-dominant. In Sec. IV, we over-
come this problem using a robust preconditioning scheme
that is effective for non-diagonal-dominant metrics such
as S.

Finally, note that the scheme is invariant with respect to
a unitary rotation between degenerate vectors in Uµα and in
Uµβ because the null-space projection operator P is uniquely
defined in Eq. (26). Whether the method is unitary-invariant
with respect to orbital rotations of |Φ0〉 is a separate question
and will be discussed in Sec. III.

III. APPROXIMATE CCSD IN SPIN-PROJECTED
MANIFOLD: TRUNCATION OF TAYLOR SERIES

While we have described how to manage the redundancies
in the ECCSD parametrization, it is practically impossible to
construct the exact residuals at polynomial cost when an expo-
nential ansatz is associated with P̂. Here, we consider how to
approximate the ansatz with P̂ intact.

By expanding |Ψ〉 (not intermediate normalized) in the
Taylor series, we obtain

|Ψ
〉
= P̂

(
1 + T̂1 + T̂2 +

1
2

T̂2
1 +

1
6

T̂3
1 + T̂1T̂2 +

1
2

T̂2
2

+
1
2

T̂2
1 T̂2 +

1
24

T̂4
1 + · · ·

)
|Φ0

〉
. (29)

As Ĥ is a two-body operator, at most quadruply excited deter-
minants with respect to |Φ0〉 could interact with the bra pro-
jection

〈
Φab

ij | if P̂ were absent. A similar relation also holds
for the non-orthogonal case when the strings are normal-
ordered.

First, let us write the projection operator as a numerical
interaction,

P̂ ≈
Ngrid∑

g

wgR̂g, (30)

where g is the numerical grid for representing theΩ angle. The
rotated creation and annihilation operators due to R̂g are given
by

b̂p(g) ≡ R̂gâpR̂−1
g . (31)
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For the explicit form of R̂g as well as the simplification one can
exploit for spin-projection, see Ref. 37. Therefore, the rotated
determinant |Φ0(g)

〉
≡ R̂g |Φ0

〉
comprises b̂i(g) instead of âi.

Wick’s theorem then allows us to write the rotated T̂ operators
as43,44

R̂gT̂1R̂−1
g =

∑
kc

tc
k

(
Wc

k + {b̂c
k }g

)
, (32)

R̂gT̂2R̂−1
g =

∑
klcdf

tcd
kl

(1
2
Wc

kW
d
l + Wd

l {b̂
c
k }g +

1
4
{b̂cd

kl }g

)
, (33)

where we have introduced the concept of normal-ordering
〈Φ|{. . .}g|Φ0(g)〉 = 0 and the one-body contraction tensor W,
composed of only nonzero contractions,

W j
i =

〈
Φ0 |â jb̂i |Φ0(g)

〉〈
Φ0 |Φ0(g)

〉 , (34a)

Wi
a =

〈
Φ0 |âiâa |Φ0(g)

〉〈
Φ0 |Φ0(g)

〉 , (34b)

Wa
i =

〈
Φ0 |b̂ab̂i |Φ0(g)

〉〈
Φ0 |Φ0(g)

〉 , (34c)

Wb
a =

〈
Φ0 |âab̂b |Φ0(g)

〉〈
Φ0 |Φ0(g)

〉 , (34d)

besides the trivial Kronecker delta,

δij =

〈
Φ0 |âiâj |Φ0(g)

〉〈
Φ0 |Φ0(g)

〉 =

〈
Φ0 |b̂ib̂j |Φ0(g)

〉〈
Φ0 |Φ0(g)

〉 , (34e)

δab =

〈
Φ0 |âaâb |Φ0(g)

〉〈
Φ0 |Φ0(g)

〉 =

〈
Φ0 |b̂ab̂b |Φ0(g)

〉〈
Φ0 |Φ0(g)

〉 . (34f)

Similar to the orthogonal case, the normal-ordering in
the non-orthogonal Wick theorem also requires connectivity
between the products

(35)

The essential idea is then to write all operators, e.g., T̂ and
Ĥ, in terms of normal-ordered strings. Using the generalized
Wick theorem for normal-ordered products, we write |Ψ〉 as a
pseudo-CI

|Ψ
〉
=

∑
g

wg
*
,
ω0 +

∑
kc

ωc
k {b̂

c
k }g +

1

(2!)2

∑
klcd

ωcd
kl {b̂

cd
kl }g +

1

(3!)2

×
∑
klm
cde

ωcde
klm{b̂

cde
klm}g +

1

(4!)2

∑
klmn
cdef

ω
cdef
klmn{b̂

cdef
klmn}g + · · ·

)
|Φ0(g)

〉
,

(36)

where we have introduced some effective coefficientsω, which
are anti-symmetrized. They depend on both t and g, whose
dependencies are suppressed for the sake of simplicity. As
the Hamiltonian is a two-body operator, we need only up to
normal-ordered doubles for the energy and overlap matrix ele-
ments and normal-ordered quadruples for solving the ECCSD
equation. Quintuple and higher excitations play no role in the
normal-ordered representation. It should be clear that any pro-
jected wave functions can be written in this form. For example,

ECISD is truncated at doubles in Eq. (36), and there are
no higher excitations. Therefore, the previously developed
ECISD code can be directly exploited to compute matrix ele-
ments up to normal-ordered double excitations for ECCSD.44

One can also exactly compute matrix elements such as〈
Φab

ij |Ĥ {b̂
cdef
klmn}g |Φ0(g)

〉
at polynomial cost (see the supplemen-

tary material). We should emphasize that it is the t-amplitudes
(or t̃) that are subject to optimization, but not ω, as we use the
same T̂ for all gauge angles.

So far, we have made no approximation except that T̂ is
truncated at doubles; Eq. (36) is still equivalent to Eq. (29).
However, this does not pave the way to solving Eq. (11) [or
(28)], as all the complexities arising from P̂ are shifted to
the evaluation of the effective coefficients ω. These are rep-
resented as highly complicated tensor contractions of several
orders of t and W, and the computational cost for evaluating
them is formally O(N!), where N is some measure of sys-
tem size. Hence, some approximation is required to arrive at a
tractable method.

In passing, we should note that, as in unitary CC and most
MRCC methods, the non-terminating equation may be trun-
cated at the second-order of the Baker–Campbell–Hausdorff
expansion of the projected Hamiltonian, i.e., e−T̂ P̂ĤP̂eT̂

= P̂ĤP̂ + [P̂ĤP̂, T̂ ] + 1
2 [[P̂ĤP̂, T̂ ], T̂ ] + · · · . However, the

resulting equations comprise a mixture of symmetry-projected
and symmetry-broken components, and so the t-amplitudes
rarely converge. Therefore, this truncation scheme will not be
discussed any further.

Instead, we consider truncating the Taylor expansion in
Eq. (29) to include excitations up to quadruples. The size-
extensivity is obviously lost by this approximation, but we
should emphasize that this is not an important issue, as it
cannot be retained anyway because of the introduction of the
spin-projection operator. The wave function ansatz is given
by

|ΨEACCSD
〉
= P̂

(
1 + T̂1 + T̂2 +

1
2

T̂2
1 +

1
6

T̂3
1 + T̂1T̂2

+
1
2

T̂2
2 +

1
2

T̂2
1 T̂2 +

1
24

T̂4
1

)
|Φ0

〉
, (37)

and hereinafter, we call this method spin-extended approx-
imate CCSD (EACCSD). This specific choice of truncation
is made based on several observations. First, |ΨEACCSD〉 is
guaranteed to reduce to SRCCSD when P̂ = 1. Second, the
first-order interacting space (FOIS) of projected doubles for
ket states (

〈
Φab

ij |) is completely spanned by the SUHF refer-
ence, projected singles, · · · , quadruples, and thus the EACCSD
problem covers the Hilbert space essential for exact ECCSD
(see Appendix A). Higher excitations such as T̂n

2 compo-
nents with n > 2 can play a role in re-optimizing the cluster
amplitudes; while it is possible to treat these terms explic-
itly, the inclusion of T̂3

2 increases the computational cost
from O(N6) to O(N8). Additionally, provided that SUHF is
a good reference, the cluster amplitudes are expected to be
sufficiently small, and it is plausible that the effect of T̂3

2
will be insignificant. Hence, it is advisable to neglect these
terms for our approximation to be feasible. Finally, the size-
extensive component of the exact ECCSD correlation energy
will eventually become that of UCCSD, and therefore, the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-017828
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-017828
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role of T3
2 and higher terms should diminish with system

size.
With the EACCSD ansatz, in the normal-ordered pseudo-

CI form [i.e., Eq. (36)], the triples and quadruples amplitudes
take the following forms:

1

(3!)2
ωcde

klm =
1
4

tcd
kl te

m +
1
6

tc
k td

l te
m +

∑
nf

(1
4

tcd
kl te

mt f
n +

1
6

tc
k td

l te
mt f

n

+
1
4

tcd
kl tef

mn +
1
4

tcd
kn tef

lm +
1
2

tc
k td

l tef
mn −

1
2

tcd
kn t f

l te
m

−
1
2

tcf
kl td

n te
m −

1
4

tcd
kl te

nt f
m −

1
2

tc
k td

l t f
mte

n

)
W f

n , (38)

1

(4!)2
ω

cdef
klmn =

1
32

tcd
kl tef

mn +
1
8

tcd
kl te

mt f
n +

1
24

tc
k td

l te
mt f

n . (39)

Other ω coefficients, as well as the matrix elements required
to implement the EACCSD methods, are summarized in the
supplementary material.

Finally, we briefly mention the orbital invariance char-
acteristic of EACCSD. It is well known that most MRCC
approaches, including those based on the SR formalism66–69

and all state-specific MRCC methods based on the Jeziorski–
Monkhorst ansatz,17–27 are not orbital-invariant with respect
to active space rotations, which is considered a serious draw-
back.30 Achieving invariance requires an unbiased treatment of
orbitals in each subspace as well as the use of a single vacuum.
On the other hand, as in traditional CC, EACCSD is strictly
orbital-invariant because all the tensor contractions appear in
the energy and residuals run over all the orbitals in the given
subspace, either occupied or virtual spaces of |Φ0〉. A proof is
given in Appendix C.

IV. SOLVER FOR THE APPROXIMATE
ECCSD EQUATIONS

Having outlined our approach, we now describe how to
solve the EACCSD equation in practice. For linearized meth-
ods such as ECISD and ELCCSD, one can resort to the
Davidson diagonalization approach,70 as the resulting prob-
lems are cast as a generalized eigenvalue problem (with a
dressed Hamiltonian).44,45 However, the EACCSD equation
becomes a non-Hermitian and nonlinear problem, which is
symbolically written as

r̃µ[t̃] ≡
∑
νλ

Pµν
(
Hνλ[t̃] − EcSνλ[t̃]

)
t̃λ = 0, (40)

where H and S are the effective Hamiltonian and overlap
of ECCSD, both of which depend on t̃. This equation must
be solved iteratively. To do so, in Eq. (40), we separate H

and S into their dominant parts H0 and S0 and the remaining
parts. They do not have to be diagonal, but it may be assumed
that H0

− EcS
0 is relatively easy to invert. For simplicity, we

assumeH0 andS0 contain only the linear ECISD components,
which are considered dominant, because the contributions of
the quadratic and higher-order terms are of size-consistent cor-
rection and are expected to be several orders of magnitude
smaller than the linear part.

First-order perturbation theory suggests

r̃[t̃ + ∆t̃] ≈ P(H − EcS)t̃ + P
(
H0
− EcS

0
)
∆t̃

≈ Pr[t̃] +
(
H0
− EcS

0
)
P∆t̃

= 0, (41)

where we have assumed
[
H0
− EcS

0,P
]
≈ 0. This is a rea-

sonable assumption because we have set H0
≈ HECISD, where

HECISD is the ECISD Hamiltonian, and the variational nature
of ECISD necessarily insists that

[
HECISD,P

]
= 0. In other

words, HECISD naturally shares the same null-space as S; oth-
erwise, the ECISD correlation energy would become negative
infinity, which is unphysical. The same reasoning applies toS0

(indeed, in what follows, we choose it to be S, which certainly
satisfies the commutativity). Then, noting that P2 = P, we
obtain

∆t̃ =
(
H0
− EcS

0
)−1

Pr[t̃] ≈ P
(
H0
− EcS

0
)−1

r[t̃]. (42)

This allows us to use r instead of r̃. Our numerical tests suggest
that the use of r̃ in place of r makes no difference; both become
zero at convergence.

In practice, the (k + 1)th amplitudes t̃(k+1)
µ = t̃(k)

µ + ∆t̃(k)
µ

are extrapolated to minimize the norm of the residual vector
| |r̃(k+1) | | by DIIS (assuming that r̃ is approximately a lin-
ear function of t̃). Then, it is just a matter of an appropriate
choice for H0 and S0 to carry out the inversion that appears in
Eq. (42).

The simplest approach is diagonal preconditioning,
whereby one takes H0

µν = δµνHECISD
µν and S0

µν = δµνSµν .
This approach is usually stable and easy to implement but suf-
fers from slow convergence because the off-diagonal couplings
can make a significant contribution in ECISD and ECCSD.
This is a considerable drawback because the computational
cost of constructing r(k ) at each cycle scales as O(N6), and
we need to reduce the number of these steps as much as
possible.

As is well known, appropriate preconditioning is impor-
tant for fast convergence in iterative methods. In this paper, we
follow our previous method with some further modification.44

Let us write the Hamiltonian as

ĤN = (Eg − ESUHF) + F̂N ,g + V̂N ,g, (43)

where Eg, F̂N ,g, and V̂N ,g are the normal-ordered zero-, one-,
and two-body operators at each projection-grid point,

Eg =

〈
Φ0 |Ĥ |Φ0(g)

〉〈
Φ0 |Φ0(g)

〉 , (44)

F̂N ,g =
∑
pq

fpq(g){âp
q}g, (45)

V̂N ,g =
1
4

∑
pqrs

〈
pq| |rs

〉
{âpq

rs }g, (46)

with the transition Fock matrix f(g) defined as

fpq(g) = hpq +
∑

rs

〈
pr | |qs

〉 〈
Φ0 |âr

s |Φ0(g)
〉〈

Φ0 |Φ0(g)
〉 . (47)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-017828
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As the contribution of V̂N ,g to the ECISD Hamiltonian ele-
ments is generally weak, we ignore this part forH0. Integrating
over grid points, we define the effective Fock-like matrix as
follows:

Fµν =

Ngrid∑
g

wg
〈
Φµ |

((
Eg − ESUHF

)
+ F̂N ,g

)
|Φν(g)

〉
. (48)

Although F may not be spin-adapted, it holds a one-particle
picture and is a good approximation to the ECISD Hamiltonian
matrix, which is all we need for our purpose. The zeroth order
H0 then has the following form:

H0
µν = Fµν − Fµ0S0ν − Sµ0F0ν , (49)

where the last two terms come from the Q̂ projection (the
subscript 0 indicates the reference determinant). For S0, it is
natural to take the whole S because of its structural resem-
blance to H0. These definitions exactly parallel the adop-
tion of the orbital energy differences for preconditioning in
SRCC with the canonical orbitals. Unfortunately, there is no
orbital basis in which H0 is diagonal for symmetry-projected
methods, and hence the inversion in Eq. (42) requires some
attention.

By writing

∆t̃(k)
µ =

∑
ν

Pµν∆t(k)
µ , (50)

we solve the linear equation

ρ(k)
µ B

∑
ν

(
H0
µν − E(k)

c Sµν
)
∆t(k)
ν + r(k)

µ = 0, (51)

at each macro iteration k. Eq. (51) is solved with the diago-
nal preconditioning scheme (and with DIIS). For the sake of
clarity, the mth micro-iteration is performed as

∆t(k[m+1])
ν = ∆t(k[m])

ν −
ρ(k[m])
ν

H0
νν − E(k)

c Sνν
. (52)

The superscript (k[m]) denotes the mth micro-cycle of the kth
macro-cycle. Once∆t(k ) is obtained, we perform the null-space
projection given by Eq. (50).

Note that the computational scaling for solving Eq. (51) is
O(o2v3), which comes from the contraction of some guess vec-
tor ∆t(k [m]) against H0. While solving Eq. (51) significantly
improves the convergence performance of the macro-iterations
in Eq. (40), a large number of micro-iterations are needed to
converge Eq. (52) because H0 has essentially the same struc-
ture as the ECISD Hamiltonian (i.e., not diagonal-dominant).
Hence, we previously concluded that the two-step scheme is
not likely to be efficient in terms of the overall computational
performance. However, it is noteworthy that the accuracy of∆t
is relatively unimportant in the first few macro-cycles because
| |r̃(k) | | itself is large. We can therefore approximate ∆t in such
a way that Eq. (51) is only solved accurately enough to qual-
itatively “scan” the structure of H0

− E(k)
c S, which is all that

is needed for preconditioning. By contrast, when we are close
to convergence, | |r̃(k) | | is small and so is ||∆t(k )||, thus neces-
sitating an accurate solution for Eq. (51). These requirements
can be simultaneously satisfied by proposing the following
adaptive criterion for ρ(k ):

FIG. 2. Pseudo code of t with adaptive preconditioning.

| |ρ(k[m]) | | < δPert | |r̃(k) | |, (53)

where δPert is some loose threshold. We call this the adaptive
Fock preconditioning scheme. The pseudo-code of our solver
is summarized in Fig. 2.

V. COMPUTATIONAL SCALING

The proposed method retains the formal scaling order of
CCSD, O(N6), at each grid point. By factoring the contraction
terms, for the macro-steps, the computational cost of EACCSD
formally scales asO( 15

2 o3v3 + 9
8 o2v4) in our current implemen-

tation (where o and v are the numbers of occupied and virtual
orbitals), whereas that of ECISD scales as O(o3v3 + 1

8 o2v4).
The additional O(o2v4) burden comes from the 6th term of
Eq. (38), which describes the entanglement between two T2

amplitudes through W f
n , and this is likely to be the limiting

step for large basis calculations. We note that, if the projection
operator is absent, Wq

p → δpq and there is no entanglement
between t-amplitudes.

For the micro-steps of the adaptive Fock preconditioning
scheme, the necessary contraction H0

∆t has a computational
cost that scales as O(3o3v2 + 3o2v3), whereas the diagonal
preconditioning requires only O(o2v2).
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VI. RESULTS AND DISCUSSION

In the following, we report several EACCSD calcula-
tions. All of these calculations used the SUHF orbitals, and
the t-amplitudes were determined by solving Eq. (40) pertur-
batively with DIIS, as outlined in Sec. IV. For spin-extended
methods, frozen orbitals were spin-adapted and doubly occu-
pied to ensure the spin-symmetry of a wave function in post-
SUHF calculations. Finally, we set η = 10−12 and Ngrid = 4
throughout.

A. Unitary invariance and uniqueness
in correlation energy

It is important for a method to fulfill orbital invariance
because otherwise energy and other properties depend on the
choice of orbitals. Here, orbital invariance is characterized as
the nature whereby the computed energy is unchanged when
orbitals are unitarily transformed within each orbital subspace.
A mathematical proof for the orbital invariance of EACCSD
is given in Appendix C. In this section, we present numeri-
cal examples. Furthermore, it is also our purpose to present a
numerical proof that the removal of the linear dependencies
(N(S)) is essential for a unique solution. We deem it important
to provide these results before discussing the performance of
EACCSD in more detail.

The orbital invariance of EACCSD can be most easily
checked by employing two different orbital sets, namely (a)
semi-canonical71,72 and (b) corresponding-pair orbitals73,74 of
|Φ〉. In addition to the standard initial guess t̃(1)

= t(1) = 0,
UCCSD amplitudes were also tested as an initial guess, in
which case the null-space projection was first performed as
necessary. The diagonal preconditioning scheme was used
with the maximum DIIS subspace size set to 10 and a very
tight convergence criterion, | |r̃| | < 10−8 (||r|| < 10−8 for the
results without the null-space projection) to ensure high pre-
cision in the evaluated energy. We use the H2O molecule at
equilibrium (RO−H = 0.9929 Å and ∠HOH = 109.57◦) with a
6-31G basis as our showcase example.

Table I presents the computed energies under these dif-
ferent conditions. As expected, if the null-space projection
is not carried out, i.e., if we allow the t-amplitudes to spill
into N(S), the arbitrariness of the EACCSD energy is mani-
fest. While all such energies are close to each other under a
unitary transformation, using different guess amplitudes can
yield significant fluctuations in energy and clearly illustrates
the problem of linear dependencies. This arbitrariness makes
the method completely useless because molecular properties

TABLE I. Computed energies of H2O + 76Hartree using two different orbital
sets: (a) semi-canonical and (b) corresponding-pair orbitals.

Amplitude space

Orb. Initial guess R(S) ⊕ N(S) R(S)

(a) Zero �0.120 872 594 0 �0.120 870 965 7
(b) Zero �0.120 875 918 1 �0.120 870 965 7
(a) UCCSD �0.120 122 363 0 �0.120 870 965 7
(b) UCCSD �0.120 122 454 4 �0.120 870 965 7

such as vibrational frequencies are much more sensitive. We
note that the orbital invariance of the EACCSD energy guar-
antees the definitive energy when evaluated with the UCCSD
amplitudes in one shot, even if the null-space projection is not
performed. It is the linearly dependent residual equations (7)
that are improper and violate the uniqueness.

When the null-space of S is projected out of t, the orbital
invariance and uniqueness of energy are rigorously achieved,
as is clear from Table I.

B. Convergence behavior

In this section, we demonstrate the validity of our iterative
solver and the consequence of approximating P̂ by neglect-
ing some grid-dependent terms. These tests should identify
an optimal adaptive criterion for micro-iterations. We use the
same water molecule and basis set as in Sec. VI A, but sim-
ilar behaviors are observed in other systems. The maximum
size of the DIIS subspace was set to 10. All calculations used
the corresponding-pair orbitals and gave the same energy at
convergence.

Figure 3 illustrates the norm of the EACCSD residual vec-
tor r̃µ at the kth iteration. The diagonal preconditioning scheme
(plotted as “Diag”) is stable, although it converges slowly. This
behavior is similar to the Davidson diagonalization of ECISD
with the same preconditioning scheme.44

If we iterate Eq. (52) for a few cycles at each
macro-iteration, the convergence performance is substantially
improved. The results are plotted as “Fock” in Fig. 3 for differ-
ent adaptive criteria δPert. While there is almost no gain with
δPert = 1, the number of cycles to achieve | |r̃| | < 10−6 decreases
to 17, 11, and 10 for δPert = 0.5, 0.1, and 0.01, respectively.
In spite of a slight increase in the computational cost due to
the micro-iterations, the total CPU time required to complete
a calculation typically decreases by a factor of about 3–6 for
δPert = 0.1 compared to the diagonal preconditioning scheme.
Table II summarizes the total number of micro- and macro-
iterations required to reach the final convergence | |r̃| | < 10−6.
The average number of micro-iterations required at each
macro-step is 1.1, 4.3, 7.6, and 13.4 for δPert = 1.0, 0.5, 0.1, and
0.01, respectively. These numbers do not significantly change

FIG. 3. Convergence behaviors of residual vector for N2 at equilibrium.
“Diag” and “Fock” denote diagonal preconditioning (practically equivalent to
δPert > 1.0) and adaptive micro-iteration schemes. “no tcd

kn tef
lmW

f
n ” indicates

that computationally expensive terms in Eq. (54) have been neglected.
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TABLE II. Total number of micro- and macro-cycles required to reach the
final convergence for the diagonal and adaptive Fock preconditioning schemes,
with different thresholds δPert.

Diag Fock

δPert >1.0 1.0 0.5 0.1 0.01

Micro cycles (O(N5)) 0 80 73 84 134
Macro cycles (O(N6)) 72 70 17 11 10

for different molecules and basis sets. Based on these results,
it is recommended that the adaptive Fock preconditioning
scheme for perturbative updates uses δPert = 10−1. We addition-
ally set the maximum number of micro-steps (mmax in Fig. 2)
to 10.

In addition, the adaptive preconditioning is much more
compatible with DIIS than is the diagonal preconditioning.
DIIS is an extrapolation technique in which the new trial
vector is expanded as a linear combination of the current
and previous vectors t̃(k). Therefore, the greater the differ-
ences between the t̃(k), the more effective the DIIS technique,
because it can explore a large space efficiently with a rel-
atively small DIIS dimension. By contrast, if the previous
vectors are all similar to one another, as in the diagonal pre-
conditioning scheme, then the extrapolated vectors will be also
similar, thus requiring a large subspace size to achieve good
performance. This is demonstrated in Fig. 4, which shows the
convergence behavior of both preconditioning schemes with
DIIS dimensions of 10, 5, and 3 (δPert = 0.1 for the adaptive
Fock preconditioning scheme). Clearly, the performance of the
adaptive preconditioning does not depend on the subspace size,
whereas that of the diagonal preconditioning is prominently
size-dependent.

As EACCSD is computationally more intensive than
ECISD for each cycle, we wish to decrease its cost. The chief
difference in cost between the two arises from the presence of
the 6th term of ω3 [Eq. (38)] in EACCSD. The Hamiltonian
contraction with this term is

1
4

〈
Φab

ij |Ĥ {b̂
cde
klm}g |Φ0(g)

〉〈
Φ0 |Φ0(g)

〉 tcd
kn tef

lmW
f
n

= P(ab)Wi
lW

j
mWd

bV̄
ec
ak tcd

kn tef
mlW

f
n + · · · , (54)

FIG. 4. Dependence of convergence behavior on the DIIS subspace size
(numbers in parentheses).

where P(pq) is the antisymmetrizer that permutes p and q,
and V̄pq

rs are the transformed two-electron integrals through
W, which thus depend on g (see the supplementary material).
This term evidently requires O(o2v4) operations to calculate
the intermediate Xad

en =
∑ V̄ec

ak tcd
kn . It is tempting to avoid com-

puting this term in order to reduce the computational cost.
However, neglecting the term essentially amounts to approx-
imating ωcde

klm(g) in R̂gT̂2 at each grid point, which would
cause numerical instability by losing the exactness of P̂. To
demonstrate this, we plot | |r̃| | without Eq. (54) in Fig. 3.
Convergence is not achieved after hundreds of macro-cycles,
strongly indicating the equations are ill-conditioned or incon-
sistent. While stable (but slow) convergence is occasionally
observed in some other molecules, the H2O result in Fig. 3
clearly implies that the approximation can introduce numerical
difficulties.

C. H4 and H8 systems

The H4 and H8 systems are MR models that have previ-
ously been studied with several MRCC schemes, including the
state-specific approaches such as BWCC18–21 and MkCC22–27

and the state-universal approach of Jeziorski and Monkhorst.17

These systems illustrate the transition states of chemical reac-
tions, as can be seen in the structures depicted in Fig. 5. In
the H4 model, the bond distances between the nearest hydro-
gen atoms are fixed to 2 bohrs, and its structure changes
from square to linear as the angle απ varies with α ranging
from 0 to 1

2 . In the H8 model, four hydrogen molecules with
RH−−H = 2 bohrs are placed on a plane to form an octago-
nal configuration, and two of these molecules are horizontally
deviated by α, reducing the spatial symmetry from D8h to D2h.
In both cases, the high spatial symmetry atα = 0 requires a two-
configuration wave function for a proper description. Hence,
all the genuine MRCC methods in previous studies employed
a (2e, 2o) CAS.75 In this study, we conducted EACCSD calcu-
lations starting from SUHF, with the same basis sets employed
in Ref. 75 (DZP and DZ for H4 and H8) to enable direct
comparisons.

Figures 6 and 7 present the energy errors from FCI in
mHartree as a function of α for the H4 and H8 systems, respec-
tively. Table III lists the non-parallelity errors (NPE) as the
difference between the maximum and minimum errors. In both
systems, the SRCCSD energy largely deviates from the exact
energy around α = 0, as it fails to capture the strong static cor-
relation accurately. All the MRCCSD methods improve the
description of both the static and dynamic correlation effects
reasonably well, except for SUCCSD in the H4 case, which
tends to overestimate the correlation energy (by ∼3 mHartree)
asα increases. When triples are included, MRCCSDT methods
generically reduce the errors of MRCCSD. However, Evange-
lista et al.75 showed that they are much less accurate than
SRCCSDT methods when a system has little MR character
(i.e., large α region), although this is not shown in the present
figures.

For these small systems, ECISD turns out to be more accu-
rate than MRCCSD, but comparing the two systems shows that
its accuracy deteriorates as the number of electrons increases
from H4 to H8 because of the lack of size-consistency and

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-017828
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FIG. 5. Structures of (a) H4 and (b) H8 systems. The
bond distance of each hydrogen molecule is RH−−H = 2
bohrs.

size-extensivity. Although ECISD with Davidson’s size-
consistent correction76,77 (we used the variant proposed by
Pople78), i.e., ECISD + Q, and ELCCSD are designed to
fix this issue, they are both significantly less accurate than
ECISD. However, a substantial improvement over these meth-
ods can be attained with EACCSD, with NPEs of only 66
and 76 µHartree for H4 and H8, respectively. As shown in
Table III, the NPEs of BWCCSD (644 and 1906 µHartree)
and MkCCSD (677 and 2019 µHartree) are one order of mag-
nitude larger than those of EACCSD. It is also intriguing
that EACCSD is much more accurate than MRCCSDT. How-
ever, we should point out that the reference wave functions
are different for MRCC and EACCSD; while the former uses
CASSCF (2e, 2o), the latter uses SUHF, which is more flex-
ible. To faithfully evaluate the dynamical correlation effect
that EACCSD captures, we also performed EACCSD calcu-
lations with a CASSCF (2e, 2o) reference, which is a subset
of SUHF. In this case, the NPEs of EACCSD for H4 and H8
drastically increase to 666 and 1513 µHartree, which seem
more reasonable when compared with the values of genuine
MRCCSD. This result indicates that these systems are inher-
ently more MR than a two-configuration description, and an
active space of (2e, 2o) may not be appropriate. We should
stress that the choice of orbitals, i.e., whether they are obtained
by SUHF or CASSCF (2e, 2o), does not influence the com-
putational effort in EACCSD. Occasionally, the former may
require slightly more rotational grid points Ngrid to carry out
the numerical integration of spin-projection accurately, but this
results in the increase in the computational cost that scales only

FIG. 6. Comparison of MR methods for the H4 system.

linearly with Ngrid. Therefore, there is no exponential increase
in the cost when enlarging the “active” space of SUHF, a
superiority of our method to other MRCC approaches tested
here.

D. Ozone

The ozone is a challenging system for many SR meth-
ods. Its MR character requires descriptions of both dynam-
ical and static correlation effects for accurate geometry and
vibrational frequencies. Recently, we carried out calculations
on this molecule to evaluate the performance of SUHF and
ECISD analytical gradients.79 This work revealed the ques-
tionable applicability of SUHF; while the bond length is
drastically improved over RHF, some of the vibrational fre-
quencies are severely underestimated. ECISD, on the other
hand, yielded very similar results to MRCISD. However,
compared to both traditional CCSD and MR-CCSD, ECISD
and MRCISD slightly overestimated the vibrational frequen-
cies. We therefore concluded that the overestimation can be
attributed to the size-inconsistent error associated with these
methods. However, the basis set used in the previous work was
of double zeta quality, which is usually insufficient to compare
results with experiments. Moreover, ECEPA methods tend
to produce significant overcorrelation compared with ECISD
+Q for this system.

It is therefore interesting to revisit the ozone molecule
and learn the potential that EACCSD has to offer for
molecular properties. For this purpose, we used cc-pVTZ.

FIG. 7. Comparison of MR methods for the H8 system.
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TABLE III. Non-parallelity errors with respect to FCI energy.

NPE (µHartree)

Method H4 H8

SUHF 10 308 16 738
ECISD 138 982
ECISD+Q 392 1 622
ELCCSD 1 148 3 698
EACCSD 66 76
EACCSDa 666 1 513
BWCCSD 643 1 906
MkCCSD 677 2 019
SUCCSD 2 998 2 768
BWCCSDT 139 716
MkCCSDT 107 330
SUCCSDT 2 759 226

aCASSCF (2e, 2o) as the reference.

Although the size of the basis set may still not be large
enough to allow a direct comparison against the experimen-
tal values, this moderate-size basis set has been extensively
employed in many MRCC ozone studies and therefore should
point out the relative accuracy of EACCSD in comparison
with other methods.29,33,80 As no analytical derivatives are
yet available in EACCSD, we computed the gradients and
Hessian using a finite difference scheme. The geometry opti-
mization was considered to have converged when all the gra-
dients in the Cartesian coordinates are less than 10−5 a.u.,
and the Hessian was computed with a step size of 10−3 Å.
All electrons were correlated except for MRCCSD. The
results of MkCCSD and BWCCSD were taken from Ref. 80,
whereas those of ic-MRCCSD were obtained from Ref. 33.
We summarize the computed geometries and frequencies in
Table IV.

At the equilibrium geometry, an appropriate zeroth-order
wave function of ozone is composed of two configurations,
with either HOMO or LUMO of closed-shell HF being doubly
occupied. As such, in MkCCSD and BWCCSD, a CASSCF
(2e, 2o) model space was used. However, care must be

TABLE IV. Optimized geometries and frequencies of ozone.

Freq. (cm�1)

RO−−O (Å) ∠OOO (◦) 1a1 2a1 1b2

CCSD 1.246 117.6 1287 770 1279
CCSD(T) 1.271 117.0 1163 723 1073
MkCCSDa,b 1.266 116.3 1180 739 1289
BWCCSDa,b 1.260 116.6 1218 748 1331
ic-MRCCSDa,c 1.266 116.6 1184 738 1243
SUHF 1.265 115.1 751 987 423
ECISD 1.246 116.8 1256 778 1478
EAQCC 1.349 115.0 1027 560 930
EACCSD 1.259 116.6 1214 751 1356

Exp. 1.272 116.8 1135 716 1089

aCASSCF(2e, 2o) reference, and 1s orbitals are frozen.
bThe natural orbitals of CASSCF(2e, 2o) are used for the active orbitals. Taken from
Ref. 80.
cScheme “A”. Taken from Ref. 33.

taken in many MRCC approaches, because the open-shell
singlet configuration (HOMO)1(LUMO),1 whose contribu-
tion is zero with a C2v geometry, is also indispensable for
correctly describing the antisymmetric stretching frequency,
ω(1b2).80,81 Furthermore, it was pointed out that, for MkCCSD
and BWCCSD, which are not unitary-invariant, their values
of ω(1b2) depend rather sensitively on a small orbital rotation
between these active orbitals; changes can be on the order of
hundreds of wavenumbers.80 Hence, while the reported val-
ues obtained with the natural orbitals of CASSCF (2e, 2o) are
quite reasonable, they can deteriorate substantially when the
active orbitals employed are prepared in a different manner.
This clearly exposes the problems inherent in these methods.
By contrast, ic-MRCCSD and EACCSD are free from this kind
of problem, as they are orbital-invariant.

As in our previous study, SUHF was unable to predict
reasonable frequencies and ECISD overestimated the 1b2 fre-
quency. For this system, the instability of ELCCSD became
manifest. In the vicinity of the equilibrium geometry, the cor-
relation energy is considerably overestimated and does not
converge in most cases. EAQCC, one of the ECEPA methods,
mitigates this problem by appropriately treating the exclusion-
principle-violating terms and thereby reducing the energy
shift in the dressed Hamiltonian (see Ref. 45 for details),
but the computed geometry is notably worse. This is most
likely because the approximation to the quadratic T̂2 effect is
inaccurate.

Including the quadratic term explicitly, EACCSD is
immune to such instabilities. We obtain systematic improve-
ments with EACCSD over both EAQCC and ECISD in most
aspects. The bond length of EACCSD (1.259 Å) is in better
agreement with the experimental value (1.272 Å), although
slightly worse than other genuine MRCC methods. We note
that, while the results of EACCSD and BWCCSD are very sim-
ilar, this resemblance may be simply coincidental, given the
orbital invariance issue in the latter method. That EACCSD
does not correctly predict the ordering of ω(1a1) and ω(1b2)
is consistent with other MRCC results. Hanauer and Köhn33

showed that triple excitations are needed for ic-MRCC to be
able to reproduce the correct ordering. Evangelista et al.29 sug-
gested that the inclusion of perturbative triples in MkCCSD
could improve the description of ω(1b2), although the possi-
ble sensitivity of their results to active orbital rotations was
not addressed. Similarly, we expect that EACCSD(T) and
EACCSDT should be able to give more accurate results than
EACCSD.

E. Size-consistency

Size-consistency is a very difficult requirement to satisfy
with SUHF-based methods. This is simply because a spin-
projection operator does not generally allow for the separation
of an SUHF wave function,

P̂ |Φ
〉
= P̂

(
|ΦX

〉
⊗ |ΦY

〉)
, P̂ |ΦX

〉
⊗ P̂ |ΦY

〉
, (55)

for subsystems X and Y. However, if X is symmetry-adapted
and the symmetry-breaking occurs locally in Y, only the latter
is subject to the spin projection. In such a case, SUHF is written
as
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P̂ |Φ
〉
= P̂ |ΦX

〉
⊗ P̂ |ΦY

〉
= |ΦX

〉
⊗ P̂ |ΦY

〉
(56)

and is separable. ECC formally satisfies size-consistency,

P̂eT̂ |Φ
〉
= eT̂X |ΦX

〉
⊗ P̂eT̂Y |ΦY

〉
, (57)

as T̂X is symmetry-adapted. Here, we assume the intermedi-
ate normalization without loss of generality. This separability
holds for EACCSD energy, but not for its residuals. The exact
separability of residuals is only retained with the exponential
ansatz. Furthermore, even if this problem was circumvented
with the rigorous ECC theory, the current orthogonalization
procedure might not guarantee Eq. (57), because St con-
tains disconnected terms. Nonetheless, we expect the error
due to size-inconsistency to be smaller in EACCSD than
in ECISD and ECEPA because of the presence of the T̂2

2
term.

To numerically assess the non-separability of the
EACCSD wave function, we computed the size-consistency
errors of the non-interacting Be2 and Be3 molecules with a
6-31G basis, where each atom is either symmetry-adapted (A)
or symmetry-broken (B). Here, the size-consistency error is
defined as the difference between the energy of the super-
molecule and the sum of energies of individual atoms, and all
combinations of A and B are considered (except for AAA,
which results in SR calculations). The results are presented
in Table V. Although SUHF and ELCCSD give large errors
for the BB and BBB systems, they are strictly size-consistent
for AB and AAB. Furthermore, partial size-consistency is
achieved for ABB in the sense that their energies are the
sum of the energies of fragments A and BB. Unsurprisingly,
ECISD, ECISD+Q, and EAQCC do not possess these proper-
ties. EACCSD is not exactly size-consistent for AB and AAB,
either. In particular, the increase in error from BB to ABB
is rather large, unlike the behavior of most other methods.
Nevertheless, overall, the size-consistency error of EACCSD
is small for these test cases. As expected, EACCSD drasti-
cally reduces the error in the ill-behaved ECISD energy. We
expect this improvement to be further facilitated by elimi-
nating unlinked terms via truncation schemes based on the
Baker–Campbell–Hausdorff expansion.

F. Analysis of singular values

In ic approaches, one typically sets a numerical thresh-
old η to truncate small singular values of the metric. The
energy obtained noticeably depends on η. A tight threshold
is therefore desired so that only those energies relevant to
redundancies are discarded and a reliable energy is obtained,

TABLE V. Size-consistency errors in mHartree for Be2 and Be3 super-
molecules. Each atom in the system is labeled as A or B, indicating the use
of symmetry-adapted or symmetry-broken orbitals.

System SUHF ECISD ECISD+Q ELCCSD EAQCC EACCSD

AB 0.000 5.178 �0.120 0.000 0.325 0.001
BB 8.255 3.523 �3.044 �5.551 �1.663 0.146
AAB 0.000 16.057 0.165 0.000 0.979 0.003
ABB 8.255 14.086 �2.442 �5.551 �0.973 0.862
BBB 19.606 12.476 �6.713 �14.376 �4.105 1.175

but such a threshold often causes convergence difficulties,
because small singular values trigger large amplitudes. A
loose threshold yields discontinuous potential curves, because
the magnitudes of singular values change rather significantly
across the reaction coordinates, and hence a fixed threshold
changes the number of variables included in the cluster oper-
ator. In particular, many singular values that are larger than a
reasonable threshold at equilibrium smoothly become numer-
ical noise as a bond is stretched, and eventually vanish to
zero. This makes it hard to choose an appropriate value for
η in ic methods such as canonical transformation theory64 and
ic-MRCC.32,65

In EACCSD, one also takes the singular-value-
decomposition of S to remove linear dependencies. However,
the singular values are always well-behaved and the above
problem never occurs. In other words, singular values do not
turn to numerical noise and vice versa. In Fig. 8, we show the
distribution of singular values of S for the double dissociation
of H2O. We have used the same geometry as in Sec. VI A for
equilibrium and symmetrically stretched the two OH bonds
from 1Re to 3Re with Re = 0.9929 Å. Across the internuclear
distance, there is always the same number of zero singular val-
ues, a feature common in ic-MRCC.32,65 However, the singular
values of S in EACCSD evidently lie in a certain narrow range
and the distinction between nonzeros and zeros becomes even
clearer as the bonds are stretched. This is a completely opposite
characteristic to that seen in ic-MRCC32,65 and can perhaps be
ascribed to the physical simplicity of the spin-projection opera-
tor. In all the applications presented in this paper, we have seen
the same behavior of S and have experienced no difficulties in
choosing η and obtaining convergence.

However, we should note that EACCSD faces a different
difficulty due to the black-box nature of SUHF active space.
Namely, it will become increasingly difficult to diagonalize
S to find Uµβ as the system size grows because S has the
same dimension as the singles and doubles spaces. One could
resort to an iterative diagonalizer70 by finding the zero eigen-
values of S, but this will eventually fail as MN increases. In

FIG. 8. Distribution of singular values for the symmetric dissociation of H2O
with Re = 0.9929 Å. Each bar indicates the percentage of singular values λα
with 10N ≤ λα < 10N +1.
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particular, in our approach, MN almost certainly scales as
O(ov) for singlet systems, as discussed in our previous work.44

This is clearly manifested in the computational cost of con-
structing the null-space projector P, which scales as O(o3v4),
and the storage, which scales as O(o3v3). The size issue of
N(S) therefore needs to be overcome before EACCSD can be
used for larger applications. Dealing with this problem is not
trivial and will be addressed in a forthcoming paper.

VII. CONCLUSIONS

In this paper, we have attempted to merge CC and spin-
projected HF. Despite the simplicity of the ECC ansatz, the
residual equations present two difficulties. First, they do not
terminate naturally and require excitations of all electrons in
the system. Second, the set of nonlinear equations is linearly
dependent and possesses an infinitude of solutions. In the
present work, we have avoided introducing approximations to
a spin-projection operator P̂ but rather truncated the exponen-
tial series of the wave operator at quadruples with respect to
the underlying broken-symmetry determinant. This particular
choice ensures that the method recovers the traditional CCSD
when P̂ is absent and that the computational scaling remains
at O(N6). To address the second issue, we have introduced
an orthogonal excitation basis through the singular-value-
decomposition of the metric S and the projection of its null
space from the equations. This scheme was shown to correctly
remove redundancies in the parametrization (t-amplitudes) in
an orbital-invariant fashion. Furthermore, we have proposed
an adaptive preconditioning scheme for updating t-amplitudes
that introduces micro-iterations with anO(N5) scaling but dra-
matically reduces the total number of macro-iterations with an
O(N6) scaling.

The current work focused on the performance of EACCSD
for systems where genuine MRCCSD results are available. In
all these systems, we have shown that EACCSD is more accu-
rate (the H4 and H8 systems) or comparable (O3) to MRCCSD.
Moreover, unlike MRCC based on the Jeziorski–Monkhorst
ansatz, our method was proven to be orbital-invariant, which is
an important property. Although size-consistency is not strictly
satisfied, EACCSD achieves remarkable improvements, in
terms of correcting the size-inconsistency issue of SUHF, over
previous CI-based models such as ECISD and ELCCSD.

Despite these initial encouraging results, the applicability
of our method to larger systems is presently hampered by the
need to diagonalize prohibitively large S to remove its null
space. In principle, the same issue is shared by ic MR methods
employing large active spaces (especially in combination with
density matrix renormalization groups),64 where approximat-
ing S usually causes significant errors in energy. We therefore
need a robust and computationally efficient scheme to project
out the null space. We will discuss this issue in a forthcoming
paper.

SUPPLEMENTARY MATERIAL

See supplementary material describes the effective coef-
ficients ω, matrix elements, and the total energies of H4 and
H8.
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APPENDIX A: FIRST-ORDER INTERACTING
SPACE OF SPIN-PROJECTED MANIFOLD

In principle, a spin-projected determinant interacts with
essentially any projected n-tuply excited determinant P̂ |Φ(n)

µ
〉

through the Hamiltonian〈
Φ

(n)
µ |ĤP̂ |Φ0

〉
, 0, (A1)

because the projected configuration space that each excitation
level spans overlaps with that of other excitation levels. How-
ever, it can easily be shown that the first-order interacting space
with respect to P̂ |Φ(n)

µ
〉

is completely spanned by the projected
configuration spaces that consist of determinants with n − 2
∼ n + 2 excitations (not necessarily different by two electron
substitutions). For example, the FOIS of SUHF is composed
of the projected singles and doubles, and likewise that of the
projected doubles is composed of SUHF and the projected
singles to quadruples, with all possible spin combinations that
maintain the same 〈Sz〉.

To see this, we first note that, while |Φ0〉 is a determinant
in a broken-symmetry orbital basis φαi and φβi ,

|Φ0
〉
= |φ1α · · · φNα

〉
|φ1β · · · φNβ

〉
, (A2)

the orbital transformation to some spin-adapted orbitals ϕP

(capital letters indicate spatial orbitals of this basis) can be
achieved by

ϕp =

all∑
qα

UP
qαφqα =

all∑
qβ

UP
qβφqβ , (A3)

where U is a unitary matrix. The unitary group generator ÊP
Q

in the orbital basis of {ϕP} (represented as the creation and
annihilation operators {ĉPσ , ĉPσ }) can be back-transformed to
the broken-symmetry orbitals φP,

ÊP
Q = ĉPα ĉQα + ĉPβ ĉQβ

=
∑
tαuα

UP
tαU

Q∗
uα âtα âuα +

∑
tβuβ

UP
tβU

Q∗
uβ âtβ âuβ . (A4)

As
[
Ê

p
q, P̂

]
= 0 for spin-projection, the FOIS of an SUHF wave

function P̂ |Φ0
〉

is then found to be

ÊP
QÊ

R
S P̂ |Φ0

〉
= P̂ÊP

QÊ
R
S |Φ0

〉
∈ P̂ |Φ0

〉
⊕ P̂ |Φa

i
〉
⊕ P̂ |Φab

ij
〉
, (A5)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-017828
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where both α and β spins are implicit in a, b, i, j. Similarly,
the FOIS of projected doubles P̂ |Φab

ij

〉
is shown to be spanned

by the SUHF reference, projected singles, . . ., quadruples.
Finally, we mention that the nonorthogonality between

different excitation ranks makes it impossible to distinguish
them unless they are properly orthogonalized. This means,
for example, that the importance of triples excitations in
EACCSDT compared to that of singles and doubles excitations
in EACCSD may not be clear. To avoid such ambiguous defini-
tions of excitations in spin-extended methods, the sequential
orthogonalization technique should be invoked, as proposed
by the pioneering work of Hanauer and Kohn for ic-MRCC
(version D).33

APPENDIX B: SINGULARITIES IN LINEARIZED
COUPLED CLUSTER

Standard linearized CC methods have a tendency to
diverge as the system size increases unless the active space
is large enough. ELCCSD is usually solved as the dressed
ECISD eigenvalue problem

*
,

0 H0ν

Hµ0 Hµν + EcSµν

+
-
*
,

c0

cν
+
-
= Ec*

,

1 00ν

0µ0 Sµν

+
-
*
,

c0

cν
+
-
, (B1)

in the intermediate normalization, i.e., with the basis
{P̂ |Φ0

〉
, Q̂|Φµ

〉
}. The equations for SRLCC and MRLCC can

be written similarly. The correlation energy Ec is therefore for-
mally determined by iteratively solving Eq. (B1). If the first
excited state of ECISD is well separated from the ground state,
to a good approximation, using the dressed Hamiltonian cor-
responds to shifting down all the CI excitation energies εi (i.e.,
the interacting space) by Ec [see Fig. 9(a)]. This procedure is,
however, not stable if the interacting space is close to the ref-
erence space and, therefore, the low-lying excitation energies
are small compared to the CI correlation energy. In this case, as
shown in Fig. 9(b), these excited states (red) become intruders
and go below the energy of the true ground state (green). Evi-
dently, as the iteration proceeds, Ec will eventually overcorrect
or diverge.

It is noteworthy that the excitation energies are size-
intensive quantities, whereas the correlation energy of LCC
is designed to be size-extensive. Therefore, the larger the sys-
tem size, the more severely LCC is likely to overestimate the
correlation energy. This issue is also common in MRLCC, and
therefore a large (complete) active space is required to avoid
instabilities.

APPENDIX C: ORBITAL INVARIANCE
PROPERTY OF ECC

A method is said to be orbital-invariant if the energy does
not change on a unitary rotation in a certain orbital space P,
which is given by

ˆ̄ap̄
=

P∑
q

âqUp̄
q, (C1)

ˆ̄ap̄ =

P∑
q

âqUp̄∗
q , (C2)

where Up̄
q is again a unitary matrix and a bar indicates the

transformed spin-orbitals.
To show the orbital invariance of SUHF and ECC, we

first assume that the SUHF and ECC energies have converged
and the residual equations have been solved. We then per-
form a unitary rotation within each orbital space to verify that
the energy and residuals are unchanged.30 In these methods,
the orbital space can be naturally separated into occupied and
virtual subspaces of the underlying broken-symmetry determi-
nant |Φ0

〉
= âi1i2 · · ·ine |

〉
. Therefore, P spans either an occupied

(Uocc) or virtual (Uvir) space.
As occupied orbital rotations in |Φ0〉 simply change the

phase,
|Φ̄0

〉
= |Φ0

〉
det(Uocc), (C3)

the unitary invariance of the SUHF energy is immediately
obvious:

ĒSUHF =

〈
Φ̄0 |ĤP̂ |Φ̄0

〉〈
Φ̄0 |P̂ |Φ̄0

〉 = 〈
Φ0 |ĤP̂ |Φ0

〉〈
Φ0 |P̂ |Φ0

〉 = ESUHF. (C4)

It then follows that the residuals of SUHF, defined as

Ri1i2i3 · · ·ine
a1i2i3 · · ·ine

=
〈
|âa1i2i3 · · ·ine

ĤN P̂âi1i2i3 · · ·ine |
〉

=
〈
Φ0 |â

i1 âa1 ĤN P̂ |Φ0
〉
, (C5)

are also invariant at convergence (Ri1i2i3 · · ·ine
a1i2i3 · · ·ine

= 0), because

Rī1 ī2 ī3 · · ·īne

ā1 ī2 ī3 · · ·īne
=

〈
Φ̄0 | ˆ̄a

ī1 ˆ̄aā1 ĤN P̂ |Φ̄0
〉
,

= |det(Uocc)|2
∑
i1a1

Uī1
i1
Uā1∗

a1

〈
Φ0 |â

i1 âa1 ĤN P̂ |Φ0
〉

=
∑
i1a1

Uī1
i1
Uā1∗

a1
Ri1i2i3 · · ·ine

a1i2i3 · · ·ine

= 0. (C6)

FIG. 9. Iterative procedure of lin-
earized coupled cluster. (a) If the ref-
erence space (green) is sufficiently
separated from the interacting space
(surrounded by a dashed box), the
excited states still appear well above the
ground state after the energy shift. (b)
If, however, the reference space is too
close to the interacting space, the energy
shift Ec overcorrects the spectrum and
low-lying states (red) go below the true
ground state.
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Furthermore, Eq. (C6) clearly indicates that only i1 and a1 are
relevant to the orbital rotation for Ri1i2i3 · · ·ine

a1i2i3 · · ·ine
, and all the inner

indices can be excluded from the discussion; this is of course
what is known as the Fock matrix

F i1
a1
≡ Ri1i2i3 · · ·ine

a1i2i3 · · ·ine
. (C7)

The ECC energy is also orbital-invariant because T̂ is; for
example,

ˆ̄T2 =
1
4

∑
īj̄āb̄

t̄āb̄
īj̄

ˆ̄aāb̄
īj̄

=
1
4

∑
īj̄āb̄

*.
,

∑
ijab

tab
ij U

ā∗
a Ub̄∗

b Uī
iU

j̄
j
+/
-
*
,

∑
klcd

âcd
kl U

ā
cUb̄

dU
ī∗
k U

j̄∗
l
+
-

=
1
4

∑
ijab
klcd

tab
ij âcd

kl δacδbdδikδjl

= T̂2, (C8)

where we have used U†occUocc = 1 and similarly for the virtual
block. Obviously,

Ēc =
〈
Φ̄0 |ĤN P̂e

ˆ̄T |Φ̄0
〉
=

〈
Φ0 |ĤN P̂eT̂ |Φ0

〉
= Ec. (C9)

For the residuals, we first consider the property of the metric
under a unitary rotation. For the doubles space, for example,
this can be transformed as

S̄µ̄ν̄ =
〈
Φ̄0 | ˆ̄a

īj̄
āb̄

ˆ̄Q ˆ̄ac̄d̄
k̄l̄ |Φ̄0

〉
=

∑
ijab
klcd

〈
Φ0 |â

ij
ab Q̂ âcd

kl |Φ0
〉
Uī

iU
j̄
jU

ā∗
a Ub̄∗

b Uc̄
cUd̄

dU
k̄∗
k Ul̄∗

l

=
∑
ijab
klcd

Sij,cd
ab,klU

ī
iU

j̄
jU

ā∗
a Ub̄∗

b Uc̄
cUd̄

dU
k̄∗
k Ul̄∗

l . (C10)

A similar relation holds for the singles space. As the singular-
value-decomposition of S can be written as

Sij,cd
ab,kl =

R⊕N∑
γ

U ij
ab(γ) λγ Ukl

cd(γ)∗, (C11)

the singular vectors accordingly become

Ū īj̄
āb̄

(γ) =
∑
ijab

U ij
ab(γ) Uī

iU
j̄
jU

ā∗
a Ub̄∗

b , (C12)

noting that the singular values remain unchanged, λ̄γ = λγ.
Likewise, the unprojected residuals rµ can be transformed as

r̄āb̄
īj̄
=

∑
ijab

rab
ij Uī

iU
j̄
jU

ā∗
a Ub̄∗

b , (C13)

where the inner indices have been suppressed, as in earlier
equations. Hence, it is evident that, when the null-space is
projected, ˜̄rāb̄

īj̄
can also be written as a unitary transforma-

tion of r̃ab
ij , and therefore remains at zero. This completes the

proof of the unitary invariance of ECCSD (and EACCSD). In
Sec. VI A, we have provided numerical evidence.
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