

PDF issue: 2025-12-05

控え直杭式矢板岸壁の簡易耐震性能照査法における 控え杭のモデル化方法の改善

宮下,健一朗 長尾,毅

(Citation)

土木学会論文集A1,74(4):686-698

(Issue Date)

2018

(Resource Type)

journal article

(Version)

Version of Record

(Rights)

◎2018 公益社団法人 土木学会

(URL)

https://hdl.handle.net/20.500.14094/90006792

控え直杭式矢板岸壁の簡易耐震性能照査法 における控え杭のモデル化方法の改善

宮下 健一朗1.長尾 毅2

¹正会員 パシフィックコンサルタンツ(〒101-8462 東京都千代田区神田錦町三丁目 22 番地) E-mail: kenichirou.miyashita@os.pacific.co.jp

²正会員 神戸大学教授 工学研究科 市民工学専攻(〒657-8501 兵庫県神戸市灘区六甲台町 1-1) E-mail: nagao@people.kobe-u.ac.jp

本研究は、著者が提案している控え直杭式矢板岸壁のレベル 1 地震動に対する簡易耐震性能照査手法について、精度向上のため控え杭のモデル化方法について検討を行ったものである。本モデルは骨組み解析と 1 次元地震応答解析で構成されており、2 次元地震応答計算解析と比較して計算負荷が少なく、技術基準における従来の震度法による設計法と比較して、実際の破壊メカニズムに即した照査手法となっている。しかしながら、既往の研究モデルは岸壁天端の残留変位量の評価に着目したモデルであり、控え杭の断面力の評価に対応したモデルとはなっていなかった。本研究は、控え杭の断面力の評価を可能にするため、控え杭のモデル化方法について改良の検討を行ったものである。構築したモデルによる結果を 2 次元地震応答解析結果と比較し妥当性を検証した。

Key Words: sheet pile quay wall, earthquake resistant design, lateral ground reaction

1. はじめに

現在の港湾の施設の技術上の基準 1は性能規定型と なっており、要求される性能を適切に評価できる照査法 が求められている. レベル1地震動に対する岸壁の耐震 設計の場合、現行の港湾基準では地震動の周波数特性や 継続時間が岸壁の変形に及ぼす影響を考慮した照査用震 度 2による設計法が標準的な照査法として位置づけられ ており、変位量による性能評価に対応した照査法となっ ている. しかしながら、基本的には設計者の便を考慮し て旧基準の手法に準拠しているため、考慮している変形 メカニズムは実際の岸壁のものと乖離しており、性能評 価の精度には問題が残されている. 精度良く岸壁の耐震 性能を評価できる照査法としては、2次元地震応答解析 が挙げられ、様々な精度向上の工夫が行われた結果 5%, 現在主にレベル2地震動に対する耐震性能照査において 設計実務に広く用いられている. しかしながら, 2次元 地震応答解析では設定した断面が要求性能を満足してい ないか、または過度な性能を有することが分かったとき には断面変更によるメッシュ等の再設定の必要があり、 現時点では計算負荷の問題を無視できない. また,2次 元地震応答解析は構成部材及び周辺地盤の節点変位を未

知数とした連立方程式を解くことによって, 部材の応力 や変位を求める方法であり、設計者は部材に作用する荷 重や想定される荷重の作用状況を直接設定することがな いため、何が原因で変形しているのか正確にわからない まま設計結果を得る可能性がある. この場合, 不適切な 部材諸元の設定もしくは部材の配置設定を行ってしまう 恐れがある. 設計実務の作業負荷低減や適切な施設設計 の観点から、2次元地震応答解析によらない簡易な変形 性能照査方法の確立が求められている. 筆者は、既往の 研究において1次元地震応答解析と骨組みモデルによる 簡易耐震性能照査法の検討を行っている 10,111. このモデ ルは地震応答解析は1次元,断面力の計算は静的な骨組 解析であるために2次元地震応答解析と比較して計算負 荷が少なく、簡易に実行できるという利点を有している. また、荷重やバネ値は設計者が自ら入力することになる ので、何が原因で変形しているのかも理解し易い. しか しながら、既往のモデル^{III}は岸壁天端の残留変位量の評 価に着目したモデルで控え杭の地盤バネを杭頭の集中バ ネとしてモデル化しており, 控え杭の断面力の評価に対 応したモデルとはなっていなかった. 本研究は、著者が 提案している簡易耐震性能照査法において控え杭の断面 力の評価を可能にするため、控え杭のモデル化方法を改

良するための検討を行ったものである。本研究では、まず2次元地震応答解析を実施し、控え杭前面地盤の地盤 反力及び変形要因について考察する。その結果をもとに、 控え杭のモデル化方法を提案する。提案したモデルによ る結果を2次元地震応答解析結果及び港湾基準による方 法の結果と比較し妥当性を検証する。

2. 既往の研究モデルの概要と問題点

既往の研究 10,11)モデルは控え杭前面地盤バネを図-1 に 示すようなタイ材取付高での集中バネとしたモデルとし ている. 集中バネを採用した理由は以下の通りである. 既往の研究のにおいて矢板天端の残留変位を適切に表現 できる分布バネの検討が行われた. その結果, 矢板天端 の残留変位を適切に表現できる分布バネは、控え杭前面 地盤のせん断剛性から算出されるバネ値とは傾向や値が 大きく異なり、控え杭前面地盤のせん断剛性から算出さ れるバネ値では地盤の横抵抗を過大評価してしまうこと が分った. ここで、せん断剛性は地盤の非線形性による 剛性低下を考慮し割線剛性を使用している. 地盤の横抵 抗の過大評価は特に杭の下部で顕著で、2次元地震応答 解析結果の控え杭の変位が杭下端から回転するように変 位しているのに対し、分布バネによるモデルの控え杭は 杭下部でほんとんど変位せず、杭下端から回転するよう には変位しなかった. 分布バネによるモデルで杭下部の 変位量がゼロになるのは地盤反力がゼロとなるためであ り、地盤反力がゼロでも変位が生じるモデルが必要と考 えられた. 一方, 地盤反力が大きい杭上部でバネ値を過 大評価した原因の一つとして地盤反力上限値の過大評価 が考えられた. 例えば水平成層地盤では地盤反力の上限 値は地盤の受働崩壊によって決定すると考えられ、受働 崩壊時には地盤は大きく圧縮する。しかしながら、地震 時の控え杭前面地盤は矢板が控え杭よりも大きく海側へ 変位するため、水平成層地盤と異なり地震後の水平ひず みは多くの範囲で地震前に比べて引張側に増加し、大き な地盤反力上限値が発生しにくい地盤の変形モードと なっていた. 控え杭前面地盤において水平ひずみが地震 前に比べて圧縮側へ増加するのはタイ材取付高より上の 杭頭部のみであり、杭頭部の地盤反力が杭頭部以外の地 盤反力と比べて卓越して大きくなっていることが分った. よって、控え杭前面地盤のバネは地盤反力上限値が大き くならない現象を取り入れ、更に杭頭部の地盤反力が大 きくなるようなモデルとする必要があるが、既往の研 究 10,11)は岸壁天端の残留変位量を対象としていたため、 控え杭前面地盤バネを杭頭部の簡易な集中バネとしてモ デル化することにした、このモデル化により、杭下部の 地盤による横抵抗はなくなるため、杭の下端から変位す

るような変位モードも再現することができた、バネ値は 控え杭前面地盤を想定した地盤に対する1次元地震応答 解析結果の割線剛性から求めることとした. また, 矢板 前面の地盤バネについては分布バネとし、集中バネ同様 に矢板前面地盤を想定した1次元地震応答解析結果によ る割線剛性からバネ値を評価したが、矢板前面地盤は水 平成層地盤と異なり、地震前から大きなせん断応力が発 生している. このため、地震動によって発生するせん断 ひずみは水平成層地盤に比べて大きく, 地盤の非線形化 による剛性の低下も大きい. 既往の研究 11)ではこれを表 現するため、矢板前面地盤の地震前の応力状態をモデル 化し、これを初期せん断応力として与えた1次元地震応 答解析により割線剛性を求めることとした. また, 技術 基準において固定点として設計される矢板下端も2次元 地震応答解析結果をみると変位が発生している 10. 既往 の研究 10,11)ではこれを考慮するため、矢板前面地盤を想 定した1次元地震応答解析結果から矢板下端における変 位量を算出した. そしてこの変位量と骨組み解析により 得られた変位量を足したものを、岸壁全体の変位量とし て評価した. 既往の研究では、控え杭下端の変位量も矢 板下端変位量と同値としている。なお、骨組みモデルに おいて控え杭下端は固定点としてモデル化している. こ れは、既往の研究 10,11)においてピン支点では控え杭の矢 板に対する横抵抗を過小評価することが分かったためで

以上が既往のモデルの概要であり、既往の研究モデルが目的としていた岸壁天端の残留変位量の評価はこのモデルにより概ね満足することが出来ていた.しかしながら、このモデルは控え杭に対する地盤バネを杭頭の一つで表現しているため、地盤反力は杭頭にしか作用せず、控え杭の曲げモーメントが地盤反力によって深度方向へ変化することを表現することができなかった.本研究では控え杭の曲げモーメントの評価を可能にするため、分布バネの適用方法を改めて検討する.

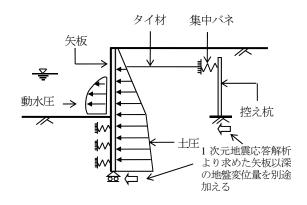


図-1 既往の研究のモデルのイメージ

3. 控え杭の変形要因と地盤反力上限値の特徴

(1) 検討内容

ここでは控え杭のモデル化方法について検討する前段として,2次元地震応答解析により控え杭に対する地盤反力上限値の特徴と控え杭の変形要因について整理する.2次元地震応答解析には解析コード FLIP⁹を使用する.

(2) 検討条件

2次元地震応答解析を行う検討断面は図-2に示す-5.5m, -7.5m, -11m, -14.5mの4水深の断面でそれぞれ基盤から地表面までの地盤の固有周期が1.2s程度の地盤Case1と0.8s程度の地盤Case2の2地盤条件を設定する.

地盤条件は矢板式が採用され易い比較的軟弱な地盤条 件としている. 各水深の構造諸元及び照査用震度は表-1 に示すとおりであり、港湾基準における標準的な方法に より設計されている. 地盤条件は表2に示す. また, 本 研究はレベル1地震動を対象としているため、液状化の 可能性がある場合、液状化対策が行われるとして、地盤 は液状化しないことを前提としている.表-2に示したパ ラメータは現在標準的に用いられている設定方法 12に 従って設定している. FLIP における解析手法は、控え 直杭式矢板岸壁の FLIP による解析で一般的に使われて いる4段階解析法7を使用した. 4段階解析法とは、地盤 各部の初期応力状態が実際に近い状態を再現するように、 岸壁の施工過程を踏まえ自重解析を3段階に分けて行っ た後で動的解析を実施する手法である. また, 矢板とそ の前面地盤の間には JOINT 要素 (摩擦角 15 度) を設置 し、背後地盤と矢板の間は FLIP における標準的なモデ ル化 "に従い鉛直ローラー扱いとする. 控え杭とその前 面地盤間は相互作用バネ13でつなぎ、杭間隔や杭径の影 響を考慮できるようモデル化する。なお、矢板、控え工 の上部工は剛域扱いとする. 検討に用いる地震波形は周 波数特性の異なる 2 波形で、再現期間 75 年相当の地震 動として設定されたものを利用する。図-3に地震波形、 図-4にフーリエスペクトルを示す.

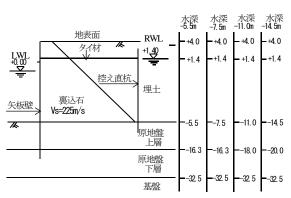


図-2 控え直杭式矢板岸壁 断面図

表-1 構造諸元

(a)地盤Case1

		矢板			タイ材	
水深 (m)	照査用震 度	種別	根入長	断面2次 モーメント	種別	断面積
			(m)	(m ⁴ /m)		(m ² /m)
-5.5	0.10	II_{vv}	5.9	0.000104	HT690	0.00066
-7.5	0.15	IV_{vv}	8.7	0.000510	HT690	0.00106
-11	0.15	φ900t10	12.7	0.002483	HT690	0.00176
-14.5	0.20	φ1300t15	18.7	0.008314	HT690	0.00264

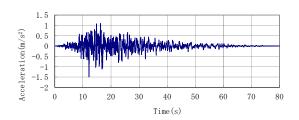
		控え杭	矢板控え	控え杭	
水深 (m)	種別	杭長	断面2次 モーメント	間距離	間隔
		(m)	(m ⁴ /m)	(m)	(m)
-5.5	φ700t9	16.25	0.000430	15.10	2.40
-7.5	φ800t9	17.75	0.000645	19.50	2.40
-11	φ900t10	19.95	0.001242	24.50	2.00
-14.5	φ1100t13	24.25	0.003018	36.00	2.00

(b)地盤Case2

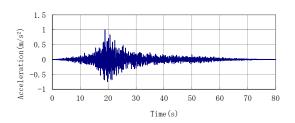
		矢板			タイ材	
水深 (m)	照査用震 度	種別	根入長	断面2次 モーメント	種別	断面積
			(m)	(m ⁴ /m)		(m ² /m)
-5.5	0.10	II_{vv}	6.3	0.000104	HT690	0.00063
-7.5	0.10	IV_{vv}	7.6	0.000279	HT690	0.00072
-11	0.15	VIL	9.1	0.000791	HT690	0.00128
-14.5	0.20	φ1100t16	15.1	0.003198	HT690	0.00254

		控え杭	矢板控え	控え杭	
水深 (m)	種別	杭長	断面2次 モーメント	間距離	間隔
		(m)	(m ⁴ /m)	(m)	(m)
-5.5	φ600t9	14.2	0.000304	13.50	2.40
-7.5	φ700t9	12	0.000430	13.80	2.40
-11	φ700t9	12.5	0.000516	18.90	2.00
-14.5	φ1100t11	16	0.002162	28.40	2.34

表-2 地盤条件


(a)地盤Case1

土層区分	ρ	G_{ma}	K_{ma}	$\sigma_{\it ma}$	φ
	(t/m^3)	(kN/m^2)	(kN/m^2)	(kN/m^2)	(deg)
埋土	1.8	25920	67595	89.8	37
生上	2.0	23720	01373	07.0	37
原地盤上層	2.0	45000	117353	240	38
原地盤下層	2.0	45000	117353	240	38
裏込め石	2.0	101250	264000	98	40
共通物性	$h_{max} = 0.24, m_g = 0.5, K_w = 2200000 \text{kN/m}^2, v = 0.33$				


(b)地盤Case2

土層区分	ρ	G_{ma}	K_{ma}	$\sigma_{\it ma}$	φ
	(t/m^3)	(kN/m^2)	(kN/m^2)	(kN/m^2)	(deg)
埋十	1.8	58300	152037	89.8	38
生工	2.0				30
原地盤上層	2.0	72200	188286	198.5	39
原地盤下層	2.0	125000	325980	279.2	39
裏込め石	2.0	101250	264000	98	40
共通物性	$h_{max} = 0.24, m_g = 0.5, K_w = 2200000 \text{kN/m}^2, v = 0.33$				

(注) G_{ma} : 基準せん断剛性 , σ_{ma} : 基準拘束圧 , ρ : 質量密度 , h_{max} : 最大減衰定数 , K_w : 間隙水の体積剛性 , m_g : せん断剛性 の拘束圧依存性を制御するパラメータ

(a)八戸波

(b)岩国波 図-3 入力地震動地震波形

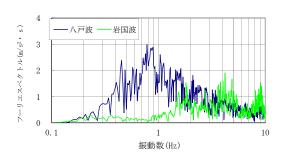


図-4 入力地震動フーリエ振幅スペクトル

(3) 控え杭の変形要因

まず、控え杭の変形要因について調べる. 図-5に水深 -11m 地盤 Case2 の断面に八戸波を作用させたケースの控 え杭の残留変位量を示す. 図には控え杭に発生している 地震後の残留曲率を杭の高さ方向に2回数値積分して求 めた曲げ変位量と,残留変位量と曲げ変位量の差として 求めた剛体変位量を合わせて示している. 剛体としての 変位量は、杭下端が移動し、杭下端を中心として回転す ることによる変位量であるが、杭の下端付近は曲率がほ ぼゼロで地盤反力は発生しておらず、この剛体変位量は 地盤反力による変位量ではないと考えられる. 本研究で は、この変位量を地震動による地盤変形の影響による変 位量と考える、地震動によって地盤が変形する影響で杭 が変位しているとすれば、地盤反力が作用しなくとも杭 は変位することになる. この剛体変位量は残留変位量の 40%程度を占めており、残留変位量評価には無視できな い量となっていることが分る.

(4) 控え杭の地盤反力上限値の特徴

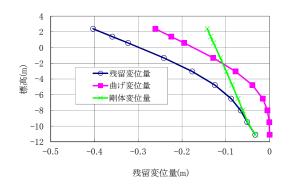


図-5 控え杭の変位量

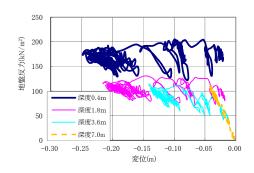


図-6 控え杭に作用する地盤反力-変位履歴曲線

次に、控え杭に対する地盤反力上限値の特徴について整理する。図-6に2次元地震応答解析による水深-11m地盤 Case2の断面に八戸波を作用させた時の控え杭に対する地盤反力と控え杭の変位の履歴曲線を示す。変位は地盤反力による変位に着目しているため曲げ変位量で整理している。着目点はタイ材取付高からの深度0.4m,1.8m,3.6m,7.0mである。ここでの地盤反力は控え杭要素間のせん断力差から求めており、杭前面と背面からの地盤反力の差としての値である。

また、この条件における水平変位量コンター図を図-7 に示す. ただし、変位は地震前からの増分である. 矢板 背後に海底面よりやや下がった深度から 10cm 程度の等 水平線が発生し、控え杭のタイ材取付高から 6.0m 程度 の深度の位置と交差しており、控え杭は矢板の変位の影 響を受けていることが分かる. 図-6において、この等水 平変位線より浅い着目点である深度 0.4m, 1.8m, 3.6m に 着目すると、地盤反力は変位 0.05m 程度で上限値に達し ており、地震前と比べて地盤反力が大きく増加しないこ とが分る. この範囲の地盤反力上限値と水平成層地盤で の地盤反力上限値の比較を行う. 水平成層地盤における 地盤反力上限値として、現行の港湾基準に採用されてい る地盤の受動崩壊を想定した物部岡部による受働土圧を 使用する. 水平成層地盤における地盤反力上限値は深 度 0.4m, 1.8m, 3.6m でそれぞれ 358kN/m², 450kN/m², 570kN/m²であり、地盤反力上限値として水平成層地盤に

おける値を使用する場合、地盤反力を過大評価してしまうことが分る.

一方で図-6 の深度 7.0m に着目すると、その他の着目点と異なり、地盤反力は上限値に達せず、概ね地盤反力と変位の関係が概ね線形関係となっている。深度 7.0m は矢板の変位の影響を大きく受けなかったため、地盤反力は上限値に達しなかったと考えられる。このことから地盤反力上限値設定に当っては矢板の変位の影響を大きく受ける杭上部とそれ以外の杭下部で分けて設定し、更に杭上部は水平成層地盤とは異なる地盤反力上限値を設定する必要があることが分る.

(5) 杭上部の地盤反力上限値の決定要因

杭上部の地盤反力上限値の決定要因について検討する。 図-8に2次元地震応答解析によって得られた杭前面及び背面の地盤の水平直応力の地震前からの変化量 $\Delta\sigma_x$ とタイ材張力の変化量の時刻歴を示す。検討ケースは図-6が得られたケースと同ケースであり、着目した深度はタイ材取付高から3.6mの深度である。

水平直応力は圧縮増が負、圧縮減が正であり、タイ材 張力は引張増が正である。もし仮に、杭が矢板の控え杭 ではなく水平成層地盤に設置された杭であれば、タイ材 張力の増加に伴って杭が前面に変位し、杭前面の σ_{α} は 圧縮力が増加し杭背面の σ_{α} は圧縮力が減少する。しか しながら、図-8を見るとタイ材の引張力増加時に $\Delta \sigma_{\alpha}$ は 杭前面背面ともに正側へ推移しており、杭前面の σ_{α} も 圧縮力が減少していることが分かる。これは、矢板が

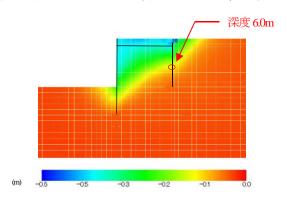


図-7 水平変位量コンター図

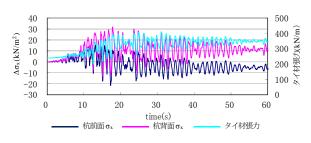


図-8 $\Delta\sigma_{\mathbf{x}}$ とタイ材張力の変化分

海側へ変位することにより杭前面地盤が水平方向に引張するためである。地震動の進行に伴い、杭前面 $\Delta\sigma_x$ は徐々に圧縮側に増加していくものの僅かである。杭に作用する地盤反力は杭前面地盤反力の増加よるものと杭背面地盤反力減少によるもので構成されるが、このように杭前面地盤は圧縮力が減少するため、前者は水平成層地盤に設置された杭に比べてかなり小さいと考えられる。控え杭に作用する杭上部の地盤反力上限値は、杭背面の σ_x の減少によってほぼ決定していると考えられる。

4. 控え杭のモデル化方法

(1) 控え杭のモデル化方法のイメージ

上述の検討を踏まえ、本研究では控え杭を以下のようにモデル化することとする。分布バネは上限値に達することを考慮してバイリニア型モデルとし、矢板の変位の影響を大きく受ける杭上部とそれ以外の杭下部の2つの区分に分けてモデル化する。区分境については後述する。また、杭下端は杭下端からの変位を考慮できるようピン固定とする。次に、控え杭は地盤反力によらない変位量を有するが、これは図-9に示すように分布バネのバネ先を変位させることにより表現する。以下、バネ先に与える変位量及び地盤バネのモデル化方法の検討を行う。

(2) バネ先変位量のモデル化方法

バネ先に与える変位量は、地震動による地盤変形の影響による変位量であるため、控え杭前面地盤を想定した 1 次元の地震応答解析により求めることとする。 1 次元の地震応答解析は、既往の研究 いにおける矢板前面地盤同様、地震前の初期せん断応力を考慮したものとする。ここで、せん断応力は単純せん断なである。以下、初期せん断応力のモデル化方法について検討する。まず、モデル化の目標とする 2 次元自重解析での矢板控え杭間地盤におけるせん断応力について整理する。図-10 に 2 次元自重解析でのせん断応力は向かるで表現さればいる。 大田 11m 地盤 Case2である。凡例の X は矢板からの水平距離で、X の値によ

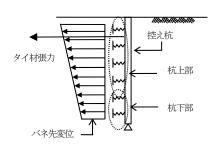


図-9 控え杭のモデル化イメージ

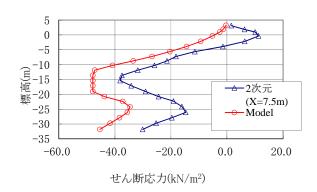


図-10 矢板控え間地盤のせん断応力分布

ってせん断応力分布は異なるが、本研究では海底面付近でのせん断応力が最も大きくなる X=7.5m に着目している. 図より、せん断応力は天端(標高 4.0m) から海底面(標高-11m) 付近までは徐々に増加して、その後一定または減少し、矢板根入れ位置(標高-20.1m) よりやや深い位置から再び増加に転じるような分布形状となっていることが分る.

次に、地表面から矢板下端深度までのせん断応力のモデル化方法について検討する。地表面から矢板下端までの矢板控え杭間地盤間のせん断応力は、図-11に示すように、矢板前面地盤と控え杭背後の土圧によって矢板控え杭間地盤がせん断変形することによって発生すると考え、式(1)にてモデル化する。

$$\tau_{xy}(y) = \frac{P_b(y) - P_f(y)}{X_h}$$
(1)

ここに、 τ_{sy} : せん断応力、 X_h : 矢板控え間距離(m)、 P_b : 杭背後から作用する土圧合力(kN/m)、 P_f : 矢板前面から作用する土圧合力(kN/m)である.

式(1)での矢板前面土圧は海底面高さを地表面とした 水平地盤の静止土圧に矢板背後地盤の地表面から海底面 までの有効重量による静止土圧増加分を加えたものとす る. ただし、矢板前面土圧が受働土圧を超える場合は受 働土圧とする. 控え杭背後土圧は静止土圧としてモデル 化する. 最後に、矢板下端より下のせん断応力のモデル 化について検討する. 矢板下端より下のせん断応力は図 -12 に示すように、地表面から海底面までの有効重量及 び矢板下端位置のせん断応力が無限に拡がる地盤に作用 する場合のせん断応力として式(2)でモデル化する. 矢 板下端におけるせん断応力は式(1)で求めることとする. 式(2)の右辺第1項が地表面から海底面までの有効重量に よるせん断応力, 第2項が矢板下端におけるせん断応力 によるせん断応力で、それぞれ Bussinesq、Cerruti の弾性 応力解^{例えば14}よりモデル化している. Bussinesg, Cerrutiの 弾性応力解ともに、元来は集中力を載荷したモ

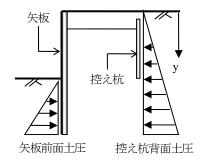


図-11 矢板控え杭間地盤のせん断応力

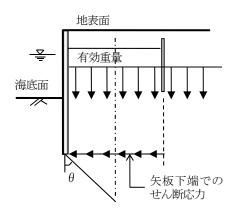


図-12 地盤内応力

デルであるが、これをもとにして分布荷重を載荷した場 合の解が示されている.

$$\tau_{xy}(\theta) = -\frac{\omega_b}{\pi} \cos^2 \theta - \frac{s_b}{\pi} (2\theta - \sin 2\theta)$$
 (2)

ここに、 s_b : 矢板控え杭間地盤の矢板下端におけるせん断応力、 ω_b : 矢板控え杭間地盤の海底面における有効上載圧(kN/m^2)、 θ : 矢板下端から矢板控え間地盤中心への角度である.

2次元自重解析のせん断応力と本研究モデルのせん断応力の比較を図-10に示す. 2次元自重解析のせん断応力に比べて本モデルのせん断応力は、やや大きめな値となっているが、天端から海底面付近まで増加し、その後一定もしくは減少して矢板下端付近から増加に転じるといった分布形状は良く再現できている.

(3) 地盤バネの上限値及び初期勾配モデル化方法

上述のように、杭上部における控え杭に作用する地盤 反力上限値は、杭背面 &の減少によってほぼ決定している。よって、杭上部の地盤反力上限値は、図-13 に示すように地震前は概ね静止土圧状態であった控え杭背後地盤が主働側へ塑性化することによる反力増分を地震前に控え杭に作用している地盤反力に足した値であるとして式(3)によりモデル化する。

$$p_{p}(y) = q_{h}(y) + \alpha_{s}(K_{0} - K_{a})\sigma_{v}(y)$$
 (3)

ここで, p_p :地盤反力の上限値(kN/m^2), q_h :地震前に杭に作用している地盤反力(kN/m^2), K_0 :静止土圧係数, K_a :物部岡部の主働土圧係数, α_s :3次元効果の補正係数(杭の場合3.0,壁の場合1.0とする $^{15)}$.) σ_v :地盤の鉛直応力度(kN/m^2)である.

一方, 杭下部の地盤反力上限値は水平成層地盤と大きく変わらないと仮定し, 地震時は非排水状態であることから非排水強度を用いたランキンの受働土圧式を基にした式(4)により与える. また, 非排水せん断強度は地震前の拘束圧により求めることとし式(5)により求める.

$$p_n(y) = \sigma_v(y) + 2c_u(y) \tag{4}$$

$$c_{\mu}(y) = 0.5(\sigma_{\nu}(y) + \sigma_{h}(y))\sin\phi \tag{5}$$

ここで、 σ_n : 地盤の水平応力度(kN/m^2)であり、地震前の矢板もしくは杭の地盤反力を利用する、 c_u : 非排水せん断強度(kN/m^2)である.

杭上部と下部の境は杭が大きく変位し始める位置としてタイ材取付点から $1/\beta$ 深い位置とするがこの設定の妥当性は今後の課題である。ここで, β : 杭と地盤の特性値(1/m)である。また,地盤バネの初期勾配は道路橋示方書 15で採用されている式(6)を用いる。

$$k_h = 2(1/0.3)\alpha_s(1+v)G(y)(B_H/0.3)^{-3/4}$$
 (6)

ここで、 k_n :水平地盤反力係数、v:ポアソン比、 B_H :換算載荷幅(m)、G:地盤のせん断剛性(kN/m^2)である。

なお、既往の研究においては地震動によって地盤が変 形する影響を地盤バネの初期勾配の低減で表現していた ため、初期勾配を求めるせん断剛性に割線剛性を使用していたが、本研究モデルでは地震動により地盤が変形する影響をバネ先の変位で表現するため、バネ値の初期勾配を求めるせん断剛性には初期せん断剛性を使用する.

5. 控え杭モデル化方法の妥当性についての検証

提案した控え杭のモデル化方法の妥当性を検証するた め、本研究で提案する控え杭のモデル化方法を組み込ん だ骨組みモデルを構築し、骨組みモデルと2次元地震応 答解析による結果の控え杭の最大曲げモーメントと残留 変位量の比較を行う. 骨組みモデルは、図-14 に示すよ うに地盤を分布バネでモデル化しバネ先を変位させるモ デルとする. バネ先変位量は矢板前面地盤及び控え杭前 面地盤を想定した地盤の1次元地震応答解析によって求 める. 荷重としては土圧と動水圧を作用させるが、控え 杭のモデル化方法の検証のため、海底面より上の土圧及 び動水圧は2次元地震応答解析により得られた値を使用 する. 海底面下の土圧は静止土圧とした. また、矢板に 作用する土圧は、土圧合力は変わらないものの、タイ材 取付高付近が矢板の変位によって大きくなりタイ材取付 高の下が小さくなるといった土圧の再配分が起きること が知られている 16. 骨組み解析において矢板に作用する 土圧分布が矢板の変位に応じて再分配したものになる様、 土圧は図-14 に示すように剛梁を介して与えることとす る. 剛梁と矢板間のバネは線形バネとし、式(6)により 与える. この土圧再分配の考慮方法の妥当性は今後の課 題である. また、控え杭前面バネのモデル化方法になら い、矢板前面バネについてもバネ先変位量により地震動 による地盤変形による影響を考慮することとする.

矢板及び控え杭の残留変位量及び最大モーメントの比較結果を図-17~図-24に示す. 控え杭のモデル化方法の妥当性についての検証であるが,参考として矢板の最大モーメント及び残留変位量の比較も示している. 控え杭の変位モードは杭下端から変位するモードであるが 10.

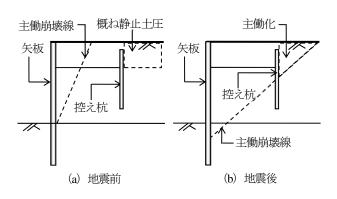


図-13 塑性化の変化のイメージ

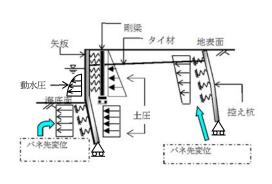


図-14 骨組みモデルのイメージ

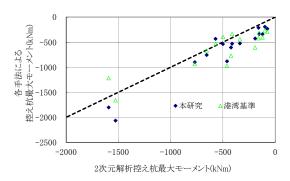


図-15 控え杭曲げモーメントの比較

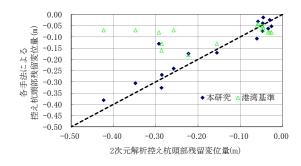
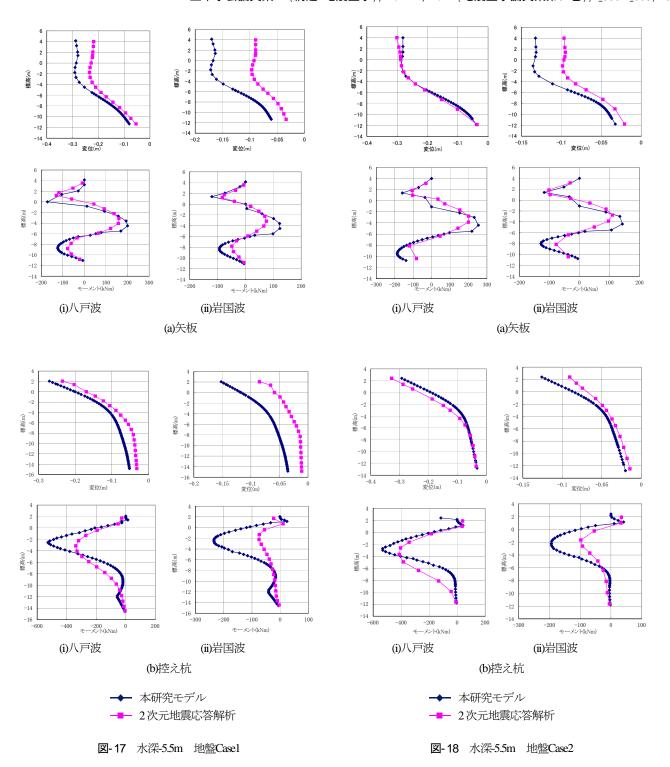


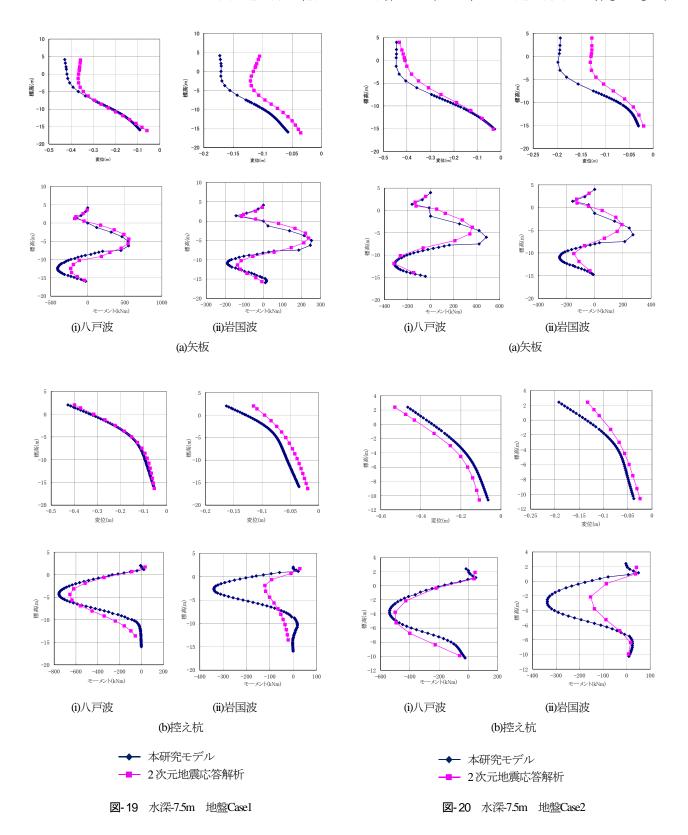
図-16 控え杭頭部残留変位量の比較

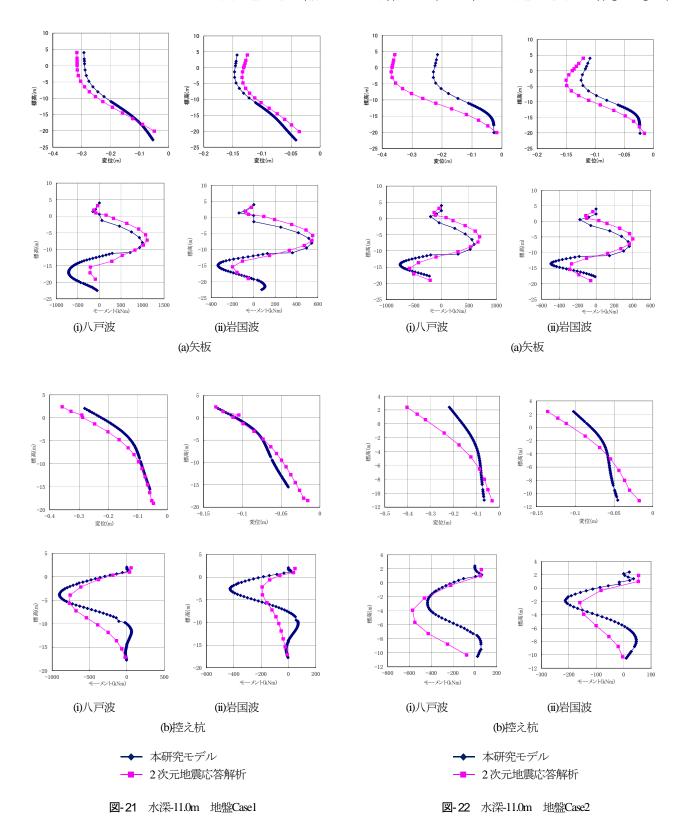
本研究モデルは、変位量をやや過大・過小評価してい るケースがあるものの、概ねこのような変位モードを表 現することができている. 控え杭の最大モーメントに着 目すると,変位量の小さい岩国波で過大評価となる傾向 にあった. これは、変位量が小さいために矢板の変位が 地盤反力上限値に与える影響が小さく、本研究モデルが 地盤反力を過小評価用していたためと考えられる. この ように、地盤反力上限値は変位量に依存すると考えられ、 その設定方法は今後の課題である. 本研究モデルと現行 の港湾基準に採用されている港研式「つによる控え杭の曲 げモーメントと頭部変位量を比較した結果を**図-15**, 図 -16に示す. 図-16の変位量は地震前からの増分を整理し ている. 港研式は杭を弾性床上の梁とし、更にバネ反力 がバネ変位の 0.5 乗に比例するとして解析的に曲げモー メント及び変位量を求める方法である. バネ反力をバネ 変位の 0.5 乗に比例させることにより、地盤の非線形性 を考慮できる方法とされている 1. 港研式において外力 として作用させるタイ材張力は2次元地震応答解析結果 の張力を利用し、地盤の横抵抗定数は表-2の各地盤条件 に合わせて設定した. また, 各手法の2次元地震応答解 析結果との比の平均、標準偏差、最大最小を表-3に示す。 図-15 及び表-3 より、控え杭の曲げモーメントについて は本研究モデルと港湾基準による方法で平均的には同程 度の結果となっているが、標準偏差は本研究の方が小さ く、本研究モデルは港湾基準による方法に比べて2次元 地震応答解析結果に近い結果となっている. 図-16 より,

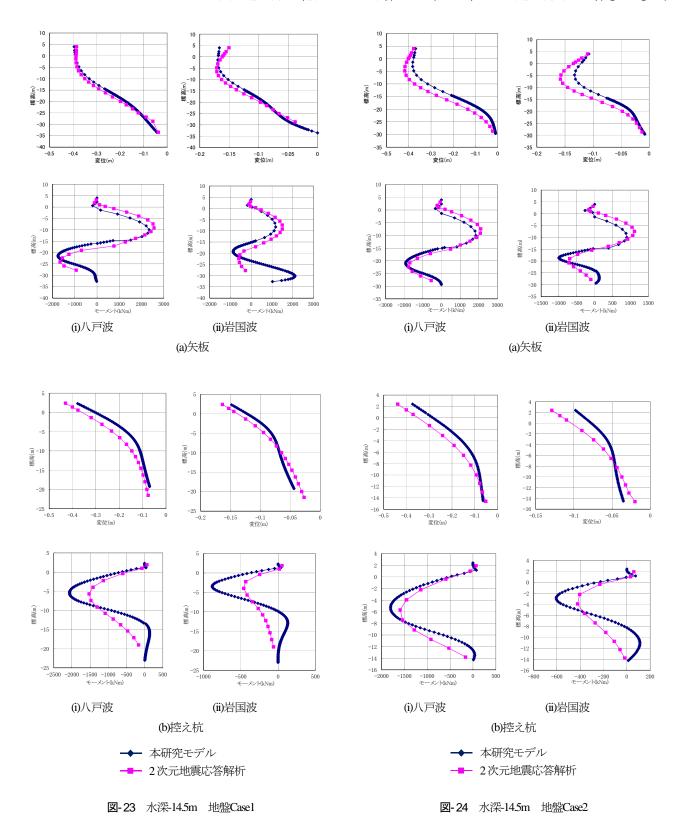
表-3 2次元地震応答解析との比

		平均	標準偏差	最大	最小
控え杭頭部変	港湾基準	1.07	0.87	3.07	0.17
位量	本研究	1.05	0.49	2.02	0.30
最大控え杭曲	港湾基準	1.85	0.99	3.87	0.76
げモーメント	本研究	1.65	0.64	3.12	0.76
最大矢板曲げ	港湾基準	1.89	0.40	3.07	1.35
モーメント	本研究	1.11	0.24	1.65	0.81


控え杭頭部の残留変位量も本研究モデルは港湾基準による方法に比べて 2 次元地震応答解析結果に近い結果になっている. 図-16 を見ると,港湾基準による方法の控え杭頭部の残留変位量は 2 次元地震応答解析結果に比べてかなり小さくなる結果が多いが,これは,港湾基準による方法は控え杭前面地盤の地震動による地盤変形を考慮できないためと考えられる.また,表-3より矢板の最大曲げモーメントについても港湾基準に比べて 2 次元地震応答解析結果に近い結果となっていることが分る.


6. まとめ


本研究で得られた主要な結論は以下のとおりである.


- (1) 分布バネとバネ先変位量によって控え杭をモデル化する方法を提案した.このモデル化により,控え杭が地盤反力がほとんど発生していない控え杭下端から変位する現象を表現することができる.杭下端から控え杭が変位するのは,地震動による地盤変形の影響と考えられる.
- (2) バネ先変位量は控え杭前面地盤のせん断応力をモデル化し、それを初期せん断応力として与えた1次元地震応答解析により評価した.
- (3) 控え杭上部の地盤反力上限値は杭背後の水平直応力の減少によってほぼ決定する.
- (4) 提案した方法を簡易耐震性能照査法に取り込むことにより、簡易耐震性能照査法は残留変位量に加えて控え杭の曲げモーメントを評価できるようになった.
- (5) 改良した簡易耐震性能照査法は、現行の港湾基準による方法より控え杭の曲げモーメント及び変位量を 精度高く評価することができた.

ただし、控え杭杭上部の地盤反力上限値は変位量に依存すると考えられ、その設定方法は今後の課題である。特に変位量が小さいケースで提案法は控え杭の曲げモーメントを過大評価する傾向にある。矢板に作用する土圧の再配分設定方法の妥当性も今後の課題である。

参考文献

- 国土交通省港湾局監修,(社)日本港湾協会:港湾の施設の技術上の基準・同解説,2007.
- 2) 長尾 毅,岩田直樹:重力式及び矢板式岸壁のレベル1地震動に対する耐震性能照査用震度の設定方法,構造工学論文集,Vol.53A,pp.339-350,2007.
- 北島昭一,上部達生:矢板岸壁地震時被災の分析, 港湾技術研究所報告, Vol.18, No.1, pp.67-127, 1979.
- 4) 長尾 毅,尾崎竜三:控え直杭式矢板岸壁のレベル1地震動に対する性能規定化に関する研究,地震工学論文集,CD-ROM,2005.
- Iai, S., Matsunaga, Y. and Kameoka, T.: Strain space plasticity model for cyclic mobility, *Report of The Port and Harbour Research Institute*, Vol.29, No.4, pp.27-56, 1990.
- 6) 小堤 治,塩崎禎郎,一井康二,井合 進,森 玄:二次元有効応力解析法の解析精度向上に関する 検討,海洋開発論文集,第20巻,pp.443-448,2004.
- 7) 井合 進,龍田昌毅,小堤 治,溜 幸生,山本裕司,森 浩章:地盤の初期応力条件が矢板式岸壁の 地震時挙動に与える影響の解析的検討,第 26 回地 震工学研究発表会講演論文集,pp.809-812, 2001.
- 8) 岡 由剛,三輪 滋,石倉克真,平岡慎司,松田英一,吉田 晃:鋼矢板岸壁の被災事例による有効応力解析における初期応力状態のモデル化手法の検証,第26回地震工学研究発表会,pp.813-816,2001.
- 9) 三輪 滋,小堤 治,池田隆明,岡 由剛,井合 進:初期応力状態を考慮した有効応力解析による鋼 矢板岸壁の地震被害の評価,構造工学論文集,

- Vol.49A, pp.369-380, 2003.
- 10) 宮下健一朗,長尾 毅:控え直杭式矢板岸壁のレベル1地震動に対する簡易耐震照査法に関する基礎的研究,応用力学論文集, Vol.10, pp.601-611, 2007.
- 11) 長尾 毅,宮下健一朗:骨組みモデルを用いた控え 直杭式矢板岸壁のレベル1地震動に対する変位性能 評価の高度化に関する研究,第 55 回構造工学論文 集,Vol.55A,pp.421-434,2009.
- 12) 森田年一, 井合 進, H. Liu, 一井康二, 佐藤幸博: 液状化による構造物被害予測プログラム FLIP において必要な各種パラメタの簡易設定法, 港湾技研資料, No.869, 1997.
- 13) 小堤治,溜幸生,岡由剛,一井康二,井合進,梅木 康之:2次元地震有効応力解析における杭と液状化 地盤の相互作用のモデル化,第38回地盤工学研究発 表会,pp.1899-1900,2003.
- 14) (社)地盤工学会: 土質工学ハンドブック, 1982.
- 15) 日本道路協会:道路橋示方書・同解説-IV 下部工編, 2002.
- 16) 菊池喜昭,水谷崇亮:二次元模型地盤における矢板壁の挙動,港湾空港技術研究所資料, No.1064, 2003.
- 17) 久保浩一: 杭の横抵抗の新しい計算法, 港湾空港技 術研究所報告, Vol.2, No.3, p.2, 1964.

(2017.11.19 受付, 2018.2.10 修正, 2018.2.17 受理)

MODEL OF LATERAL SOIL RESISTANCE FOR SIMPLIFIED EARTHQUAKE RESISTANT DESIGN METHOD OF SHEET PILE QUAY WALL WITH VERTICAL PILE ANCHORAGE

Kenichiro MIYASHITA and Takashi NAGAO

In the technical standards for port and harbours, static force-based method that does not take the effect of deformation of quay walls by earthquake into consideration is applied as a general earthquake resistant design method against the Level-one earthquake ground motion for sheet pile quay walls. It is difficult to evaluate the performance of the quay walls by earthquake precisely by the method. Previous study was undertaken in order to establish the simplified earthquake resistant design method based on the frame analysis for the quay walls. Although the method fairly reproduced the performance of the quay walls, section forces of anchor pile could not be evaluated. This study aims at improving the simplified design method by modifying the lateral soil resistance in front of the anchor pile. Two-dimensional earthquake response analyses were conducted in order to discuss the applicability of the modified simple design method.