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Abstract

The visual photopigment protein rhodopsin (Rh) is a typical G protein-coupled receptor

(GPCR) that initiates the phototransduction cascade in retinal disk membrane of rod-photo-

receptor cells. Rh molecule has a tendency to form dimer, and the dimer tends to form rows,

which is suggested to heighten phototransduction efficiency in single-photon regime. In

addition, the dimerization confers Rh an affinity for lipid raft, i.e. raftophilicity. However, the

mechanism by which Rh-dimer raftophilicity contributes to the organization of the higher

order structure remains unknown. In this study, we performed coarse-grained molecular

dynamics simulations of a disk membrane model containing unsaturated lipids, saturated

lipids with cholesterol, and Rh-dimers. We described the Rh-dimers by two-dimensional par-

ticle populations where the palmitoyl moieties of each Rh exhibits raftophilicity. We simu-

lated the structuring of Rh in a disk for two types of Rh-dimer, i.e., the most and second

most stable Rh dimers, which exposes the raftophilic regions at the dimerization-interface

(H1/H8 dimer) and two edges away from the interface (H4/H5 dimer), respectively. Our sim-

ulations revealed that only the H1/H8 dimer could form a row structure. A small number of

raftophilic lipids recruited to and intercalated in a narrow space between H1/H8 dimers stabi-

lize the side-by-side interaction between dimers in a row. Our results implicate that the

nano-sized lipid raft domains act as a “glue” to organize the long row structures of Rh-

dimers.

Introduction

The visual pigment rhodopsin (Rh) initiates the phototransduction cascade in vertebrate disk

membranes of rod photoreceptor cells. Rh is a prototypical seven-transmembrane G protein-

coupled receptor (GPCR) and is highly concentrated in the disk membrane, occupying

approximately 30% of the total disk membrane area [1,2].
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Similar to many other GPCRs, Rh is doubly palmitoylated (C16:0) at the C-terminus of the

juxta-membrane eighth-helix (H8) [3]. The tandem palmitoyls are known to be a robust raft-

targeting signal for membrane proteins [4–9]. However, despite having two palmitoyls, Rh

prefers polyunsaturated phospholipids because of its rough intramembrane surface, which is

similar to other membrane proteins [10,11]. Thus, rhodopsin is inherently a non-raftophilic

(raftophobic) membrane protein. Nevertheless, dimerization, which is stabilized by the bind-

ing of the cognate G protein transducin, confers a high lipid raft affinity (raftophilicity) for Rh,

i.e., the di-palmitoyl modification at the C-terminus of H8 is prerequisite for the dimerization-

dependent raftophilicity of Rh [12]. Single- and semi-multimolecular observations on rhodop-

sin dynamics in retinal disk have revealed that the oligomerization-induced raftophilicity of

Rh promotes spontaneous formation of raftophilic Rh-clusters [13].

The organization and dynamics of Rh in the disk membrane have long been debated. There

have been contradictory views regarding Rh, i.e., freely diffusing monomeric Rh [11,13,14],

static nanodomains with highly ordered rows of Rh-dimers [15–24], and multi-stage oligomeric

states in dynamic equilibrium [25]. A recent single-molecule and semi-multimolecular study of

Rh dynamics revealed that Rh exists in a dynamic equilibrium between three diffusive states,

presumably ascribable to the monomer, dimer, and 100 nm-order short-lived clusters of Rh

[13]. Accumulating evidence based on biochemical analyses, atomic force microscopy (AFM),

and cryo-electron tomography implies that Rh tends to form rows of dimers (rhodopsin nano-

domains) in the disk membranes [15–24]. Particle-based simulation studies suggest an essential

role of the row structure of Rh for efficient and stable signal amplification [26]. It is hypothe-

sized that the single-photon bleached monomeric Rh can activate a specified number of G pro-

tein transducin pre-associating with the row structure of Rh dimers [17,27,28]. Therefore, we

propose that the short-lived meso-sized cluster of Rh is a paracrystalline array of Rh dimers.

The mechanism by which Rh-dimers form a regular row structure remains unknown.

MARTINI force field is a coarse-grain force field used for molecular dynamics simulations of

biomolecular systems. Recent free energy estimations using MARTINI force field suggest two

types of Rh-dimer structures are stable, the H1/H8 dimer and the H4/H5 dimer [29]. The H1/

H8 dimer is formed when the first alpha-helix of one Rh molecule and the eighth helix of

another come in contact with each other (Fig 1A). The H4/H5 dimer is formed between trans-

membrane helices 4 and 5. While both Rh-dimers appear to be stable, it is unclear which

dimer is typical in disk membranes. Thus, in this study, we proposed a coarse-grained molecu-

lar dynamics model of disk membranes described by two-dimensional (2-D) particle popula-

tions consisted of unsaturated lipids, raftophilic saturated lipids, and one of the two types of

Rh-dimers.

We compared the simulation results among the disk membrane models of only H1/H8

dimers and H4/H5 dimers. The raftophilic acyl chains of the eighth alpha helix were located at

the center of each H1/H8 dimer [12] while the acyl chains of the H4/H5 dimer were located at

the two outer edges. Our simulation suggested the shapes of Rh-oligomers differed among the

models with only the model of H1/H8 dimers predicting that appropriate raftophilicity was

able to form ordered row structures of Rh-dimers. Each pair of Rh dimers was connected due

to raftophilic saturated lipid domains that existed within their raftophilic regions.

Model and methods

Model concept: Coarse-grained model of Rh and lipids in retinal disk

membranes

We constructed a coarse-grained molecular dynamics model of retinal disk membrane to

investigate the mechanism of row structure formation by Rh-dimers. Recent studies have

Coarse-grained molecular dynamics simulation of rhodopsin aligned oligomer formation
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suggested that approximately 70–80% of Rh molecules form dimers in the disk membrane

[13,18,25]. Furthermore, Rh-dimers are known to locate in the disk membranes where satu-

rated and unsaturated lipids are essential components [13,18]. Therefore, for simplicity we

focused on the dynamics of these two types of lipids and Rh-dimers in the current model in

order to advance our insight into the mechanisms of row structure formation by Rh-dimers.

The disk membrane is a closed lipid bilayer membrane incorporating a tremendous

amount of Rh. The dominant movement of Rh and lipids is 2-D diffusion along the membrane

plane. The lipid-lipid and lipid-Rh positional exchanges along the membrane plane are the

predominant limiting processes. Again for simplicity, we constructed the disk membrane

Fig 1. Models of rhodopsin (Rh)-dimers and unsaturated and saturated lipids. (a) Illustration of the three-dimensional structure of Rh based on X-ray crystal

structure analysis of the activated form of the H1/H8 dimer (PDB ID:3CAP) [30]. The ribbon model of H1/H8 dimer viewed from the eighth helix (H8) side. The yellow

alpha-helix indicates H8 in each Rh-monomer, which was assumed to be palmitoylated. The red alpha-helices indicate H4 and H5. (b–c) Basic two-dimensional (2-D)

structure models. (b) H1/H8 dimer 2-D structure constructed based on the Rh-dimer contour profile in (a). (c) H4/H5 dimer 2-D structure. The yellow particles

indicate regions of H8 assumed to be raftophilic. The red particles are assumed to be parts of H4 and H5. The other particles (blue or green) represent other regions of

the Rh dimer. (d) Schematic illustrations of unsaturated and saturated lipids (lower figures) and their representative 2-D particle models (upper figures). The affinity

between particles of saturated lipids and the yellow particles in the Rh-dimer 2-D model was assumed (see panels b and c). The tails of each saturated lipid and

cholesterol were assumed to frequently associate with each other, making the saturated lipids rigid compared to the unsaturated lipids.

https://doi.org/10.1371/journal.pone.0226123.g001
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model using a complete 2-D particles system that described the structures and dynamics of lip-

ids in one monolayer and Rh-dimers on the plane using circular particles (Fig 1). The influ-

ences of water and lipids in the opposing disk membrane monolayer were modeled as drag

forces and noise.

The 2-D structure model of each Rh-dimer was constructed as a 2-D elastic network using

16 circular particles. For the H1/H8 dimer model, the particles occupied positions to imitate

the contour profile of the basic Rh-dimer structure viewed from the H8 side based on X-ray

crystal structure analysis of the activated form of Rh-dimers (PDB ID: 3CAP) [30] (Fig 1A and

1B and S1A Fig). The radii of the particles were assumed to be similar to those of alpha helices

and the nearby particles were connected by springs where the natural length of each spring

connecting two particles was equal to the distance between them according to the basic 2-D

Rh-dimer structure model (S1B Fig and S1 Table). As there are no reference structures based

on experiments such as X-ray crystal structure analysis, the H4/H5-dimer model was con-

structed by exchanging the positions of the particles on the left half side of the H1/H8 dimer

model corresponding to one Rh-monomer with those on the opposite side (Fig 1C, S1C Fig,

S1D Fig and S2 Table). We note that the results presented in this paper were independent of

the detailed shape of the 2-D model of Rh-dimers and were qualitatively unchanged.

The structures and physical properties of the unsaturated and saturated lipids in the 2-D

model were as described. Both types of lipids were assumed as circular particles. The radii of

the circular particles were assumed as those when lipids are approximated as cylinders (Fig

1D) = 0.43 nm, which is comparable to the scale of the section of the phospholipid glycerol-

head estimated by recent studies [31,32]. No specific attractive interactions were assumed

among the lipids. Notably, disk membranes have been known to contain sufficient concentra-

tion of cholesterol compared to that of saturated lipids; the frequent interactions of cholester-

ols with saturated lipids are expected to make the saturated lipids rigid and raftophilic

compared to that of unsaturated lipids, where the stoichiometric ratio between total lipids and

saturated lipids is ~ 100 : 8, while that between total lipids and cholesterol is ~ 100 : 11, in disk

membrane [1]. Therefore, we assumed the cholesterols were always associated with saturated

lipids and the lipids were always more rigid than unsaturated lipids. These assumptions

resulted in the saturated lipid membranes being more rigid and less elastic than that of unsatu-

rated lipid membranes, which is consistent with experimental findings [33]. Furthermore, as

mentioned below, the simulations under these assumptions demonstrated the following

results, i) the diffusion of saturated lipids was slower than that of unsaturated lipids and ii) the

saturated lipid domains that may correspond to the ordered lipid raft domains appeared

through the phase separation between saturated and unsaturated lipids (see the “Parameters

for simulations” section in the Results). These results were consistent with previously reported

experimental findings [29,34,35].

Additionally, two H8 helices located near the center of the H1/H8 dimer and near the edges

of the H4/H5 dimer were expected to be partially raftophilic since acyl chains in H8 are known

to be palmitoylated [4,12,36]. Therefore, in the models of these dimers, we assumed an affinity

between saturated lipids and the tip of H8 (yellow particles in Fig 1C), except for some modi-

fied models as detailed below.

Model implementation

In the model used in this study, we described the central region of the disk membrane to con-

sist of Rh and two types of lipids using 2-D particles moving on a 2-D plane. Since the lipids

and Rh would be subjected to water and lipids in the opposing monolayer of the membrane,

we assumed that the motion of each particle, the lipids, or parts of Rh obeyed overdamped

Coarse-grained molecular dynamics simulation of rhodopsin aligned oligomer formation
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Langevin equation, as follows:

gi
@xi
@t
¼ �

@V
@xi
þ Ri tð Þ ð1Þ

where xi = (xi,yi) was the position of the i-th particle and V indicated potential of forces work-

ing on particles. The γi and Ri(t) indicated the coefficient of drag force and the random force

working on i-th particle by water and lipids in the opposite monolayer, respectively. The term

Ri(t) was given as Gaussian white noise and satisfied hRi(t)i = 0, and hRi(t)Rj(s)i = 2γikBTδijδ(t
−s) where kB was the Boltzmann constant, T was the temperature, δij indicated the Kronecker

delta, and δ() indicated the Dirac delta function.

The first term of the right-hand side of Eq (1) indicated interactions among particles pro-

vided by the potential of the system V according to the following equation:

V ¼ Vcollision þ Vbond þ Vraft ð2Þ

where Vcollision was the potential of the excluded volume effects among the particles, Vbond was

the interaction potential among the particles forming Rh-dimers to sustain the shape of each

dimer, and Vraft was the affinity for the interactions between Rh dimers and saturated lipids.

The potential of the excluded volume effects among particles (Vcollision) was denoted by the

following:

Vcollision ¼
P
fj6¼i & not same Rhgyððri þ rjÞ � jxi � xjjÞ

kcij
2
ðjxi � xjj � ðri þ rjÞÞ

� �2

ð3Þ

where kcij ¼ kqiqj was the elastic constant when the i-th and j-th particles contacted each other,

qi indicated the nondimensional parameter of rigidity of the i-th particle, ri indicated the

radius of the i-th particle, and θ was the Heaviside step function defined by the following:

yðyÞ ¼
1 ðy � 0Þ

0 ðy < 0Þ
ð4Þ

(

We assumed qi depended on the type of particles, where qi of saturated lipids was assumed

to be appropriately larger than those of unsaturated lipids. In this case, the lipid type-depen-

dent diffusion constant and the saturated-unsaturated lipid phase separations were consis-

tently obtained based on recent experiments as described below in the Results section and as

previously described [29,34,35]. The variables rh and rl were the radii of cylinders, which

approximated an alpha-helix of Rh and the lipids in the disk membrane, respectively. We

assumed ri = rh when the i-th particle was a component of Rh and ri = rl when the i-th particle

was a lipid. The term ∑ indicated the sum of the i-th and j-th particles that did not belong to

the same Rh-dimer.

The interaction potential among the particles forming Rh-dimers was defined as Vbond, and

was calculated as follows:

Vbond ¼
P
fi;j:near in the same Rhg

kb

2
ðjxi � xjj � d

Rh
ij Þ

2
ð5Þ

Where dRhij was the distance between the i-th and j-th particles of the basic 2-D Rh-dimer struc-

ture (S1 Fig and S1 and S2 Tables) and kb was the elastic constant for sustaining the shape of

the basic structure of each Rh-dimer. The ∑ in this equation indicated the sum of the i-th and

j-th particles that belonged to the same Rh-dimer and that were in close proximity to each

other (S1 Fig).

Coarse-grained molecular dynamics simulation of rhodopsin aligned oligomer formation
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The interaction potential among the palmitoylated H8s of the Rh dimers and the saturated

lipids was indicated as VRaft and was calculated as follows:

Vraft ¼
P
fij:H8 & Saturatedgε

raft jxi � xjj
rh þ rl

� �� 12

�
jxi � xjj
rh þ rl

� �� 6
 !

ð6Þ

where εraft indicated the affinity between a palmitoylated H8 and a saturated lipid. The S indi-

cated the sum of particles pairs of a particle occupied in H8 of Rh and a saturated lipid (Fig 1).

Simulation parameters

As far as possible, the parameters of the model employed in the simulations of the current study

were based on experimental findings. The parameters included radii of lipids (rl) and alpha

helix (rh) of Rh and were assumed to be 0.43 nm and 0.88 nm, respectively. To simulate molecu-

lar dynamics similar to the situation at the central region of the disk membrane, we used a 40

nm × 40 nm square box with periodic boundary conditions, which included 14 Rh-dimers

(14 × 2 × 8 = 224 helices), 156 saturated lipids, and 1,704 unsaturated lipids as entire the simula-

tion space. The area occupancy rates of the Rh-dimer, saturated lipids, and unsaturated lipids in

the present model were given as approximately 27%, 5%, and 58%, respectively, which matched

the rates for the entire disk membrane obtained from previous experiments [1,2].

The parameters for the excluded volume effect of each particle (k and qi) were assumed ac-

cording to k/kBT = 7.5 (nm−2), qi = 1.5 for unsaturated lipids, qi = 4 for saturated lipids, and qi = 9

for particles in Rh. To sufficiently sustain the Rh-dimer structure, we assigned kb/kBT~18870

(nm−2). The drag coefficient γi was assumed at γi = 6πηri. In the current model, ηwas expected to

be relatively large compared to cytoplasm as we did not know the precise value from previous

experiments because of the influences of the lipids at the opposing lipid bilayer. Thus, we

assumed η/kBT = 6×10−6(mm−3s) in the current arguments, while η/kBT~1.55×10−7(mm−3s) is

estimated in cytoplasm [37]. In this case, the additional simulation of the model using these val-

ues for the parameters without any affinity among the lipids and Rh-dimer (such a dimer was

termed a raftophobic H1/H8 dimer and is defined in the next section), we obtained diffusion

coefficients for unsaturated lipids (in an unsaturated lipid domain), saturated lipids (in a satu-

rated lipid domain), and Rh-dimer (in an unsaturated lipid domain) of approximately 27 (μm2/

s), 3.0 (μm2/s), and 0.5 (μm2/s), respectively. These values were estimated by mean square dis-

placement of the particles (S2 Fig and S3 Table). The diffusion coefficients were consistent with

those observed in recent in vitro experiments using artificial model membranes [11,13,38,39].

The parameter used to estimate the affinity between the particle at H8 of the Rh-dimer and

the saturated lipid was assumed according to εraft/kBT = 62.5, which was based on the results of

the following additional simulation of a model membrane containing only one Rh-dimer and an

equal number of saturated and unsaturated lipids with the abovementioned parameters (S3 Fig).

Using this simulation, we obtained the probability of contact between the Rh-dimer and satu-

rated lipids as approximately 0.627. This result seemed consistent with our in vitro study using

artificial lipid bilayers containing saturated and unsaturated lipid domain where approximately

62% of the Rh-dimers with H8 palmitoylation were found to have saturated lipid domains at

equilibrium (Tanimoto, et al., submitted). However, we note that the detailed values εraft/kBT
were not essential and similar contact probability values could be obtained when εraft/kBT�1.

Analysis methodology

To simulate the present model, the time integral of Langevin Eq (1) was calculated numerically

using the Eular-Maruyama method with unit MD step = 0.1ps [40] (S1 File). To estimate the

Coarse-grained molecular dynamics simulation of rhodopsin aligned oligomer formation
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degree of order of the spatial distribution of Rh-dimers, we defined the degree of row structure

S(t) as follows:

S tð Þ ¼
P
fm6¼n & not same Rh� dimergð2 cos2ðymnÞ � 1Þ � 1 �

1

1þ exp � jRm � Rnj� 5:5

2dh

� �

0

@

1

A ð7Þ

where the position of the center of mass of them-th Rh-dimer (Rm and θmn) and the angle

between the orientation of them-th and n-th Rh dimers as shown in S4 Fig. The contribution

ofm-th and n-th Rh-dimers to S(t) was large when the centers of masses were close to each

other and when they were facing the same direction. The value of cos(θmn) was determined

from the inner product between the vector from one Rh-Rh interface particle to another of the

m-th Rh-dimer and that of the n-th Rh-dimer (S4 Fig), where 2(cos2(θmn)−1) was used as the

degree of plane orientation in liquid crystal [41]. Since the distance between Rh-dimers

observed in cryo-electron tomography is approximately 5.5 nm (Gunkel), we assumed S(t)
drastically decreased when the distance between two Rh-dimers was greater than 5.5 nm. Ide-

ally, S(t) = 0 when Rh-dimers were distributed randomly.

Results

H1/H8 dimers could form row structures of Rh-dimers by their

raftophilicities

The model simulations of disk membrane containing H1/H8 dimers were performed in the

current study. We assumed all molecules were randomly distributed under the initial condi-

tions (Fig 2A). Results of the simulations after extended periods of time from the initial condi-

tion revealed that the model with H1/H8 dimers exhibited some row structures of Rh-dimers

(Fig 2A, S1 Movie), consistent with findings observed in AFM and cryo-electron tomography

[15–18]. On the other hand, no Rh-dimer row structures were observed in models using rafto-

phobic dimers (Fig 2B), where raftophobic H1/H8 dimers indicates H1/H8 dimers but

assumed εraft = 0. According to the measurement of S(t) and their averages over 10 simulations

(hS(t)i), the model using H1/H8 dimers exhibited larger S(t) and hS(t)i values and greater aver-

ages after extended time from the initial conditions compared to those using raftophobic

dimers (Figs 2D and 3).

H4/H5 dimers accumulated but failed to form row structures of rhodopsin

(Rh)-dimers

The simulation of the model containing H4/H5 dimers showed Rh-dimer accumulation with

some branching structures, but no row structures were observed (Figs 2C, 2D and 3).

In models using either dimers, H1/H8 or H4/H5, associations among the Rh-dimers

occurred through the small regions of saturated lipid accumulation near the areas correspond-

ing to raftophilic H8s of each Rh-dimer. Notably, for H1/H8 dimers, two dimers associated

with each other when the saturated lipid domains formed at the regions between two the cen-

tral portions of these dimers. Each domain connected only to the central regions of two Rh

dimers that corresponded to their raftophilic H8s. This fact enabled the H1/H8 dimers to form

long rows of Rh-dimer structures (Figs 2B and 4A); the lengths of the rows were dependent

determined using the number of lipid rafts formed in the membrane. In contrast, H4/H5

dimers could associate with more than two dimers through the domain of saturated lipids that

formed at the edges of each dimer. This made it difficult for H4/H5 dimers to form row

structures.

Coarse-grained molecular dynamics simulation of rhodopsin aligned oligomer formation
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Saturated lipid domains stabilized the row structure of Rh-dimers

Saturated lipid domains were formed due to the affinity of the saturated lipids to raftophilic H8

regions of dimers and the phase separation of saturated and unsaturated lipids (S5 Fig). The stabil-

ity of the row structures of H1/H8 dimers was influenced by the size of the saturated lipids

domains (i.e., the number of saturated lipids in each domain) between two H8 regions of neigh-

boring dimer pairs. The contact between the two Rh-dimers became unstable with decreases in

domain size. We determined that hS(t)i of the model system containing only two H1/H8 dimers

decreased with the decrease in the number of saturated lipids (Ns) between the two dimers when

Ns was less than 5 (Fig 4 and S6 Fig). However, hS(t)it for all simulation results (results of ten sim-

ulations) exhibited values near the mean whenNs�6, even though hS(t)it was often near 0 when

Ns�5. This finding indicated that lipid domains containing more than 5 or 6 saturated lipids were

essential forming and stabilizing Rh-dimer row structures, not single saturated lipid molecules.

Discussion

In this study, we developed a coarse-grained model of retinal disk membrane consisting of sat-

urated lipids, unsaturated lipids, and Rh-dimers used to simulated row structure formation of

Fig 2. Typical snapshots of rhodopsin (Rh) and lipid distribution obtained from simulations using four models of retinal disk membrane containing Rh H1/H8

dimers and H4/H5 dimers, and time courses of S(t). (a) Snapshots of Rh and lipid configurations for models with H1/H8 dimers at time (t) = 0 s (initial state),

t = 50 μs, t = 150 μs, and t = 200 μs. Large magenta particle populations indicate Rh proteins. The blue and cyan particles indicate saturated and unsaturated lipids,

respectively. (b) Snapshots of Rh and lipid configurations at t = 200 μs for models with raftophobic H1/H8 dimers. Raftophobic H1/H8 dimers indicate H1/H8 dimers

with assumed εraft = 0. (c) Snapshots of Rh and lipid configurations at t = 200 μs for models with H4/H5 dimers. (d) Typical profiles of S(t) for models with H1/H8

dimers (blue), for models with raftophobic H1/H8 dimers (red), and for models with H4/H5 dimers (blue). Snapshots in (a) and red curves in (d) were obtained using

the same simulation result.

https://doi.org/10.1371/journal.pone.0226123.g002
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Rh-dimers observed in recent experiments. Using this model, we clarified that H1/H8 dimer is

the primary element constructing the row structures of Rh dimers. As far as we know, the pres-

ent study was the first to provide a scenario to explain the mechanism of formation and stabili-

zation of row structure by Rh-dimers in the disk membrane.

Recent experimental evidence have suggested that more than 70% of Rh is in dimeric or

higher oligomeric state(s) existing in a dynamic equilibrium [13,18,25]. Based on these find-

ings and our current results, the H1/H8 dimer forms transient row structure through lipid

raft-based interaction between the dimers, which appears consistent with results from recent

studies [13,42,43]. In addition, we found that the nano-sized domains of saturated lipids with

cholesterols (raftophilic lipids, i.e., lipid rafts) were also key factors in forming Rh-dimer row

Fig 3. Evaluation of degrees of order of spatial distribution of rhodopsin (Rh) dimers. Averages of hS(t)it over ten simulations, hS(t)i, for each model with a different

Rh dimer as indicated. Error bars indicate standard deviations. The “Initial” values were obtained for ten initial conditions, for which the configurations of H1/H8

dimers and lipids were random. The hS(t)it for each model of dimer indicates the time for the average degree of row structure by the Rh-dimers, S(t), ranging between

180 and 200 μs.

https://doi.org/10.1371/journal.pone.0226123.g003
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structures with H1/H8 dimers. Such domains acted as “glue” to connect two raftophilic H8

regions of two Rh-dimers to construct the row structures.

Due to the hybridization in the presented results and the recent idea of a dynamic scaffold-

ing mechanism for the Rh–Gt (G protein transducin) interaction [27], the dynamics of Gt on

the disk membrane were predicted as follows. Our in vitro experiments suggested that Gt was

basically raftophobic (Tanimoto et al., submitted). However, the volume fraction of the raft

forming saturated lipids on disk membrane is only ~ 5%, and our simulation results suggested

almost all raft lipids were confined between each pair of dimers, stabilizing the structure of the

rows of Rh-dimers. Therefore, we expected Gt to diffuse freely on the inter-Rh-dimers rows

region with a few saturated lipids, or to prebind to Rh-dimers and hop on the regions of stable

Rh-dimers rows, similar to the previously proposed model [17, 20, 27], without any limitations

caused by lipid raft domains (Fig 5).

In our model, the saturated lipids were assumed to always associate with cholesterols,

which allowed the saturated lipids to take rigid structures compared to that of unsaturated lip-

ids. As a result of this assumption, the lipid raft could form by phase separation between satu-

rated and unsaturated lipids. It should be noted that our simulation strongly suggested that

lipid raft formation was essential for the formation of the row of Rh dimers, but did not suggest

much about the molecular mechanism of lipid raft formation. In order to reveal the detailed

mechanism of lipid raft domain formations, we need to consider various other physicochemi-

cal properties of lipids, such as the electrostatic properties of the polar head [44,45], as well as,

the effects of cholesterols by the considering molecular models with microscopic details; this is

one of our future challenges. On the other hand, we expect to obtain results that are similar to

Fig 4. Evaluation of rhodopsin (Rh) H1/H8 dimer row structure stability dependence on saturated lipid domain size. (a) Averages of hS(t)it over ten simulations,

hS(t)i where the system consisted of only two H1/H8 dimers and various numbers of saturated and unsaturated lipids (S5 Fig). Error bars indicate standard deviations.

hS(t)it was the average time of S(t) between 50 to 100 μs and was evaluated according to the change in number of saturated lipids between two Rh-dimers. (b) Typical

simulation snapshots at time (t) = 50 μs for several different numbers of saturated lipids (Ns = 0–7), where the saturated lipids were placed between parallel two Rh-

dimers at t = 0 s (S5 Fig). At time (t) = 50 μs, two Rh dimers are disassembled mostly in the case of Ns = 0 and 1.

https://doi.org/10.1371/journal.pone.0226123.g004

Fig 5. Illustration of expected configurations of Rh-dimers rows and Gt dynamics on disk membrane. Rh-dimers (magenta) formed the row structures stabilized by

association with lipid raft domains consisting of saturated raftophilic lipids (blue) on the disk membrane. Gt (red cylinder) were expected to diffuse almost freely on the

inter-Rh-dimers rows regions with non-raft lipids (sky blue) or prebind to Rh-dimers and hop randomly on Rh-dimer rows on the disk membrane.

https://doi.org/10.1371/journal.pone.0226123.g005
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the ones presented, if such physicochemical properties of lipids play weak or positive roles in

raft formation.

In this study, we carefully chose the parameters of the model. However, we found that Rh-

dimers could form the row structures if the ratio of rigidity (qi) of saturated and unsaturated

lipids and the raftophilicity of Rh-dimers were sufficiently large. This fact provides additional

evidence confirming the abovementioned fact that only the H1/H8 dimers and saturated lipid

domain formations were essential for Rh-dimer row formation.

In our model, the model of H1/H8 dimer was constructed based on the crystal structure of

the activated form of the Rh-dimer [30]. Recently, photoactivation of Rh was known to induce

a structural rearrangement, for example, an increase in the distance between specific helices of

Rh [43,46,47]. However, such local deformations did not affect the global geometric shape of

Rh-dimer, and the structures around H1/H8 interface were highly conserved. Therefore, we

can construct the model of the deactivated form of the Rh-dimer using the present model with

a few modifications and obtain almost the same results.

The current model was unable to reproduce the repetitions of formation and collapse of

row structures of Rh-dimers that have 100 ms range of life time [13,48–50] because of difficul-

ties such as simulation costs for example. The limitation and difficulties will be addressed in

future studies by modifying the model to allow for accelerated calculation.
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