

PDF issue: 2025-12-05

Clinical and genetic variability of PAX2related disorder in the Japanese population

Rossanti, Rini ; Morisada, Naoya ; Nozu, Kandai ; Kamei, Koichi ; Horinouchi, Tomoko ; Yamamura, Tomohiko ; Minamikawa, Shogo ; Fujimura...

```
(Citation)
Journal of Human Genetics, 65:541-549

(Issue Date)
2020-06
(Resource Type)
```

journal article
(Version)
Accepted Manuscript

(Rights)
© 2020 Springer Nature

(URL)

https://hdl.handle.net/20.500.14094/90007069

- 1 [Article]
- 2 Clinical and genetic variability of *PAX2*-related disorder in the Japanese
- 3 population

4

5

- 6 Rini Rossanti¹, Naoya Morisada^{1,2}, Kandai Nozu¹, Koichi Kamei³, Tomoko
- 7 Horinouchi¹, Tomohiko Yamamura¹, Shogo Minamikawa^{1,4}, Junya Fujimura^{1,5},
- 8 China Nagano¹, Nana Sakakibara¹, Takeshi Ninchoji¹, Hiroshi Kaito^{1,6}, Shuichi Ito^{3,7},
- 9 Ryojiro Tanaka^{4,6}, Kazumoto Iijima¹

- 11 Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1
- 12 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- ² Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe,
- 14 Japan, 1-6-7, Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- ³ Division of Nephrology and Rheumatology, National Center for Child Health and
- 16 Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- ⁴ Department of Emergency and General Medicine, Hyogo Prefectural Kobe Children's
- Hospital, Kobe, Japan, 1-6-7, Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-
- 19 0047, Japan
- ⁵ Department of Pediatrics, Kakogawa City Hospital, Kakogawa, Japan, 439,
- 21 Honmachi, Kakogawa, Hyogo, 675-8611, Japan
- ⁶ Department of Nephrology, Hyogo Prefectural Kobe Children's Hospital, Kobe,
- Japan, 1-6-7, Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan

24 ⁷ Department of Pediatrics, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, 25 Yokohama, 236-0004, Japan 26 Corresponding author: Naoya Morisada, M.D., Ph.D., 27 28 Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 29 Kusunoki-cho, Chuo, Kobe, Hyogo 6500017, Japan. Fax: +81-78-382-6099; Tel.:+81-78-382-6090 30 31 E-mail: morisada@med.kobe-u.ac.jp 32 Conflict of interest K.I. has received grant support from Daiichi Sankyo Co., Ltd. and 33 34 Zenyaku Kogyo Co., Ltd. 35

Abstract

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Pathogenic variants of paired box gene 2 (PAX2) cause autosomal dominant PAX2related disorder, which includes renal coloboma syndrome (RCS). Patients with PAX2related disorder present with renal and ophthalmological pathologies, as well as with other abnormalities, including developmental problems and hearing loss. We sequenced PAX2 in 457 patients with congenital anomalies of the kidney and urinary tract or with renal dysfunction of unknown cause and identified 19 different pathogenic variants in 38 patients from 30 families (6.5%). Thirty-four patients had renal hypodysplasia or chronic kidney disease of unknown cause, and three had focal segmental glomerulosclerosis. Although no obvious genotype–phenotype correlation was observed, six of the seven patients who developed end-stage renal disease in childhood had truncating variants. Twenty-three patients had ocular disabilities, mostly optic disc coloboma. Non-renal and non-ophthalmological manifestations included developmental disorder, electrolyte abnormality, and gonadal abnormalities. Two unrelated patients had congenital cystic adenomatoid malformations in their lungs. Six of ten probands with PAX2 mutation identified by next-generation sequencing did not show typical RCS manifestations. We conclude that PAX2-related disorder has a variable clinical presentation and can be diagnosed by next-generation sequencing even in the absence of typical RCS manifestations. **Keywords**: *PAX2*-related disorder, renal coloboma syndrome, next-generation sequencing, congenital cystic adenomatoid malformation

Introduction

59

Autosomal dominant PAX2-related disorder is caused by the pathogenic variants of 60 paired box gene 2 (PAX2). These variants were first identified in 1995 in a family with 61 62 an autosomal-dominant syndrome characterized by optic nerve abnormalities, renal hypoplasia, mild proteinuria, and vesicoureteral reflux.^{2,3} PAX2-related disorder is 63 often referred to as renal coloboma syndrome (RCS) or papillorenal syndrome (OMIM 64 #120330). PAX genes derive their name from the paired box DNA sequence motif, a 65 conserved 128 amino acid domain in the amino-terminal portion of the protein.⁴ Nine 66 67 members of the PAX gene family have been described in humans, and they have been divided into four groups, depending upon the presence or absence of the following four 68 69 domains: paired domain, octapeptide domain, homeodomain, and transactivation 70 domain. Sequencing and restriction mapping of these clones showed that human PAX2, which 71 is located on 10q24.31, is composed of 11 exons, spanning approximately 70 kb. PAX2 72 has a crucial role in kidney development^{6,7} and is also expressed in the optic vesicle 73 and, later, in the retina. More than 90% of patients with PAX2-related disorder show 74 various renal problems, including renal hypodysplasia (RHD), focal segmental 75 glomerulosclerosis (FSGS), and vesicoureteral reflux (VUR). Ophthalmological 76 77 abnormalities, mainly optic disc coloboma, are often present in patients with PAX2related disorder. PAX2 encodes a transcription factor that mediates the development of 78 the kidneys, eyes, ears, and genital tract; 10 thus, PAX2-related disorder may have non-79 80 renal and non-ophthalmological symptoms, such as sensorineural hearing loss, neurodevelopmental disorders, soft skin, and joint laxity. Recently, skeletal deformity, 81 82 congenital heart defect, bone anomalies, including metatarsal macrosomia, have also

been reported. 11 However, the details of clinical phenotypes and their relationship to genotypes in *PAX2*-related disorder are still unknown. In this study, we analyzed PAX2 pathogenic variants in patients clinically diagnosed with congenital anomalies of the kidney and urinary tract (CAKUT), cystic kidneys, or renal dysfunction of unknown cause with or without any ocular abnormalities. We used direct sequencing, next-generation sequencing (NGS), and array comparative genomic hybridization to correlate the symptoms of PAX2-related disorder with clinical manifestations in the Japanese population. Methods **Subjects** We analyzed the PAX2 sequence for patients at Japanese hospitals with clinically diagnosed renal disorders with few abnormalities on urinalysis; CAKUT, polycystic kidney disease, or renal dysfunction of unknown cause in the period from September 2010 to May 2019. Patients with nephrotic syndrome or massive hematuria were excluded. The definition of CAKUT includes RHD, multicystic dysplastic kidney (MCDK), hydronephrosis, VUR, or renal agenesis. Details regarding the renal disease and other clinical features were obtained from the referring clinician or from the hospital records of patients. **Ethical considerations** All procedures involving human participants performed in this study were in accordance with the ethical standards of the Institutional Review Board of the Kobe University Graduate School of Medicine (IRB approvals No. 65 and No. 301) and with the 1964

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

107 Helsinki Declaration and its later amendments or comparable ethical standards. 108 Informed consent was obtained from the patients or their parents. 109 110 **Genetic analysis** 111 DNA was isolated from a peripheral blood sample using a QuickGene Mini 80 system 112 (Wako Pure Chemical Industries, Ltd., Tokyo, Japan) in accordance with the 113 manufacturer's instructions. Direct sequencing or targeted sequencing using NGS of 114 genes responsible for the inherited disease was performed. For NGS, we used a 115 HaloPlex (Agilent Technologies, Santa Clara, CA) or a TruSight One target enrichment 116 system kit (Illumina, San Diego, CA) in accordance with the manufacturer's 117 instructions and sequencing was performed using MiSeq platform (Illumina). HaloPlex 118 was used for targeted sequencing of 91 (version 1, Supplementary Table 1), 172 119 (version 3, Supplementary Table 2), 159 (version 5, Supplementary Table 3), and 181 120 genes (version 7, Supplementary Table 4) associated with CAKUT or cystic kidneys as 121 cataloged in OMIM (http://www.omim.org/) or PubMed 122 (http://www.ncbi.nlm.nih.gov/pubmed) databases. Data were analyzed by SureCall 4.0 (Agilent Technologies), a software for end-to-123 124 end NGS data analysis. cDNA reference number of *PAX2* in this study was 125 NM 003987.4. Pathogenicity predictions were performed in accordance with the 126 American College of Medical Genetics (ACMG) guidelines. ¹² Several websites, including CADD (https://cadd.gs.washington.edu/), PROVEAN 127 128 (http://provean.jcvi.org/index.php), SIFT (https://sift.bii.a-star.edu.sg/), PolyPhen-2 129 (http://genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://www.pathogenic 130 varianttaster.org/) were used to predict variant pathogenicity (Supplementary Table 5).

131 Pair analysis by SureCall was used to ascertain changes in copy number relative to a reference. The changes in copy number were confirmed by aCGH.¹³ 132 133 134 Statistical analysis 135 JMP version 10 for Windows (SAS Institute, Cary, NC) was used for statistical 136 analysis. Data are represented as the median and confidence interval. Statistical analyses 137 were performed using the Kruskal–Wallis test and by calculating Pearson's correlation 138 coefficient (r). All statistical analyses were conducted with a significance level of α = 139 0.05 (P < 0.05). 140 Results 141 142 **Characteristics of patients** 143 We analyzed 457 probands and their relatives (Supplementary Table 6). Twenty-five probands were analyzed only by direct sequencing, and 432 were analyzed by NGS. We 144 identified the causative genes for CAKUT (such as HNF1B, ¹⁴ EYA1, ¹⁵ and SALL1), 145 nephronophthisis (such as WDR19¹⁶ and OFD1¹⁷), and polycystic kidney disease, in 146 161 probands. PAX2 pathogenic variants were identified in 38 patients from 30 families 147 (18 familial cases from 10 families and 20 sporadic cases) in 457 probands (6.5%). 148 Nineteen probands were identified only by direct sequencing, and 11 were identified by 149 NGS. The 19 patients identified by direct sequencing showed the typical RCS 150 151 phenotype except for two patients (SC149, SC549). None of the patients with 152 pathogenic PAX2 variant had any other renal disease related to the causative gene mutations. The age at which the patients were diagnosed ranged between 1 month and 153

154	54 years, with the male/female ratio being 10:9 (Table 1). The detailed phenotypes and
155	genotypes of the patients are shown in Table 2.
156	
157	Functional abnormalities and underlying renal disease
158	Most cases, except for the patient's family member (mother of SC472) identified by the
159	segregation analysis, had chronic kidney disease of unknown cause with renal
160	insufficiency (Tables 1, 2). Eleven patients were considered to have RHD and 23
161	patients presented with renal insufficiency of unknown cause. Five patients had cystic
162	kidneys, and one (SC30) had MCDK. VUR was found in two cases (SC15 sister and
163	SC149). Bilateral hydronephrosis with renal dysfunction was confirmed in one case
164	(SC274). Three cases (SC56 father, SC111, and SC521) presented with FSGS as a
165	pathological finding. Seven patients (SC30, SC56 and his brother, SC287, SC315,
166	SC415, and SC573) developed end-stage renal disease (ESRD) in childhood (13.2%).
167	
168	Ophthalmological findings
169	In this cohort, 23/38 (60.5%) patients had ophthalmological abnormalities. Of the
170	remaining 15 patients, 12 had a normal ophthalmological exam, whereas
171	ophthalmological examination was not performed in three patients, most often due to
172	the lack of clinical complaints about visual problems. Optic nerve abnormalities, for
173	example, optic disc coloboma, were noted in 21 cases. Additional findings were
174	amblyopia, exotropia, retinopathy of prematurity, and nystagmus (Tables 1, 2).
175	
176	Extrarenal manifestations

177 A wide range of non-renal, non-ophthalmological manifestations of PAX2-related 178 disorder was revealed by our study. Developmental abnormalities including autism or language delay were found in four patients (SC30, SC274, SC472, and SC573). Growth 179 180 abnormality (short stature) was found in three patients (SC274, SC300, and SC468). 181 There were three patients with facial malformation including micrognathia (SC274 and 182 SC622) or low-set ears (SC590). Congenital heart or vascular abnormalities were 183 revealed in two patients (pulmonary stenosis in SC239 and small ventricular septal 184 defect in SC415). We also found electrolyte imbalance (hypocalcemia in SC239 and 185 hyponatremia in SC351), scoliosis (SC10), gonadal abnormalities (retractile testis in SC274, polycystic ovarian disease in SC287), unilateral kidney teratoma (SC287), and 186 187 median cervical cyst (SC573). Congenital pulmonary abnormality (congenital cystic 188 adenomatoid malformation, CCAM) was observed in two unrelated patients (SC30, 189 SC315). To the best of our knowledge, this is the first observation of CCAM as a 190 complication in PAX2-related disorder. In seven cases (18.4%), no extrarenal symptoms, including ophthalmological findings, were observed (Tables 1, 2). 191 192 193 PAX2 pathogenic variant incidence We identified 19 distinct *PAX2* pathogenic variants in 38 individuals from 30 families. 194 Among them, the 10g24 deletion, including whole *PAX2* gene, ¹³ was found in two 195 196 patients from one family, whereas other *PAX2* variants were revealed in 37 patients. The majority of pathogenic variants in this gene are expected to result in a significant 197 198 truncation of PAX2 protein through a shift in the reading frame (17 families), missense 199 variants (6), nonsense variants (5), or disruption of a conserved splice site (1). Among 200 the 19 different heterozygous pathogenic variants, seven (36.8%) have not been

201 previously registered in HGMD (http://www.hgmd.cf.ac.uk), dbSNP 202 (https://www.ncbi.nlm.nih.gov/snp/), or ClinVar 203 (https://www.ncbi.nlm.nih.gov/clinvar/) (Fig. 1, Table 2). 204 205 **Genotype-phenotype correlations** 206 Individuals with normal kidney structure tended to have a pathogenic variant in the 207 paired domain region (P < 0.05). Although no clear genotype-phenotype correlation in 208 terms of type and site of pathogenic variant emerged from this study, six of the seven 209 patients who developed ESRD in their early period of life had truncating variants 210 (nonsense or frameshift variants), and another one had a splice site mutation. 211 **Discussion** 212 213 We studied 38 patients from 30 families with PAX2-related disorder who were 214 identified by direct sequencing or NGS. The latter comprehensive method is useful for 215 determining the gene responsible when patients do not exhibit the typical phenotype of 216 the target disorder. The use of NGS in our study enabled the characterization of a wide 217 variety of clinical phenotypes in individuals with bona fide *PAX2*-related disorder. 218 Okumura et al. reported that approximately half of the patients clinically diagnosed with RCS had PAX2 mutations. 18 To the best of our knowledge, we are the first to report on 219 220 the various phenotypes in Japanese patients with PAX2 mutation; some of the patients 221 had no ophthalmologic abnormalities. 222 PAX2 expression is crucial for the formation of kidneys. ^{6,7} PAX2 dysregulation 223 correlates with a multitude of various congenital abnormalities and pathological 224 conditions. RHD is characterized by the reduced number and hypertrophy of nephrons.

In similarity with the most common findings of another study of patients with PAX2related disorder, ⁹ renal insufficiency with RHD, including renal dysfunction of unknown cause (34 patients, 89.4%), was the most frequent renal disease in the present study. Other renal disorders, including MCDK, VUR, and FSGS, were observed in our cohort as in previous reports.9 PAX2 expression is first observed in the optic sulcus during normal eye development, followed by the expression throughout the optic vesicle. ¹⁹ The incidence of optic disc coloboma varied between each eye of the individuals in a family, although patients had the same PAX2 pathogenic variant, such as in the family of patient SC47 in the present study. Dysplasia of the optic nerve was the main ophthalmological finding of PAX2-related disorder. In a previous study, 9 72% of the patients showed optic nerve abnormalities, and we have identified 23 patients with some ocular abnormalities (60.5%) in the present study. Eighteen patients had bilateral optic disc coloboma and three had unilateral coloboma. No cases with iris coloboma were observed in our study. which was in accordance with the findings of a previous report. Ophthalmological abnormalities did not consistently correlate with the genotype. In individuals with PAX2-related disorder, a broad variety of non-renal and nonophthalmological manifestations has been recorded. The PAX2 gene is expressed in many tissues besides the kidney and eye, including the otic vesicle, genitourinary tract, pancreas, cerebellum, hypothalamus, and midbrain/hindbrain boundaries. Some nonrenal and non-ophthalmological findings in our cohort are concordant with the pattern of PAX2 expression, e.g., in patient SC274 with retractile testis. Four patients had mild developmental disorders. This is a known manifestation of PAX2-related disorder. We believe that the causal association between developmental disorders and PAX2 variants

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

249 is unlikely. In the present study, two unrelated patients, both of whom had developed 250 ESRD at an early age, had CCAM, a rare congenital lung malformation characterized by cysts of various sizes as a result of abnormal fetal bronchial development.²⁰ CCAM 251 has never been reported to be associated with PAX2-related disorder. Although the 252 activity of several genes, including FGF10 or DICER1, may affect CCAM 253 pathogenesis, ²¹ the precise mechanism of CCAM development is still unknown. Further 254 255 investigations will be needed to clarify the association between PAX2 and CCAM. Hearing loss is a frequent complication in PAX2-related disorder. Although not all the 256 257 patients received a hearing test, none among them reported that hearing loss interfered 258 with their daily lives. 259 Seven novel variants out of 19 different pathogenic variants were identified in this study. Four novel variants (c.51del, c.89G>T, c.212G>T, and c.432del) were identified 260 261 in cases with typical phenotypes of PAX2 pathogenic variants. Two variants (c.143del 262 and c.89del) were identified in individuals with non-renal and non-ophthalmological 263 findings, such as short stature and low set ear, respectively. The c.497-2A>G variant was identified in one individual with MCDK, autism, and CCAM without any abnormal 264 ophthalmological findings. 265 266 There were three recurring pathogenic variants in this cohort: c.76dup, c.76del, and 267 c.310C>T. Furthermore, the frequently described recurring pathogenic variant, c.76dup, 268 was identified in 14 cases from 10 families (33.3%). Clinical symptoms of the patients with c.76dup were variable (Tables 2, 3). Other recurring pathogenic variants were 269 270 c.310C>T, which was identified in one family and one individual case, and c.76del, 271 which was identified in two individual cases. To date, analyses of all reports do not 272 show a consistent genotype–phenotype correlation in *PAX2* related disorder. There is

currently no definite evidence that the location of a pathogenic variant (paired domain,
octapeptide domain, partial homeodomain, or transactivation domain) or its type
(missense variant, nonsense variant, or gene deletion) consistently predicts the clinical
phenotype. 9
In the present study, we identified PAX2 pathogenic variants using NGS in 10
patients (SC30, SC62, SC239, SC287, SC351, SC390, SC468, SC553, SC590, and
SC607). Six of these patients had no ophthalmological anomalies, and one patient
(SC62) was diagnosed with optic disc coloboma after genetic diagnosis. As we
previously reported, patient SC390 displayed a typical RCS phenotype; however, direct
sequencing did not identify PAX2 mutations. Using NGS, we identified whole gene
deletions of PAX2. ¹³ Patient SC607 was diagnosed with nephronophthisis-complicated
retinopathy by the primary physician. We were able to identify <i>PAX2</i> mutations in this
patient using NGS. Previously, we reported about a patient with chronic renal
insufficiency and bilateral optic disc edema diagnosed with RCS. PAX2 mutations were
not identified in this patient. Using NGS, the patient was diagnosed with
nephronophthisis related ciliopathy owing to compound heterozygous WDR35
mutations. ²² Nephronophthisis is an autosomal recessive disorder, whereas <i>PAX2</i> -
related disorder is autosomal dominant. Precise diagnoses affect the prognoses of
patients and the ability to prescribe appropriate genetic counseling.
PAX2 mutations are a major contributor to CAKUT; however, other contributing
pathogenic gene variants include HNF1B, EYA1, and SALL1. Patients with these gene
mutations occasionally have pathognomonic extra-renal symptoms. 14,15,23 Therefore,
CAKUT patients may be distinguished by the presence of an extra-renal phenotype.
However, if they do not possess the extra-renal phenotype, NGS could be useful for

identifying the responsible genes. In our study, the patients with PAX2 mutations, analyzed using NGS, did not have other pathogenic gene variants contributing to their renal disorders. Our study had some limitations: 14 individual cases did not undergo segregation analysis. We could not completely follow up with all patients regarding their clinical courses after genetic analysis. In conclusion, we found that our patients showed considerable variation in clinical manifestations of the PAX2-related disorder. Our findings may help in identifying more individuals with pathogenic variants of PAX2. An accurate genetic diagnosis at an early stage of the disorder is crucial for the preservation of kidney function, optimization of genetic counseling, and improvement of the quality of life of patients. Acknowledgments The authors wish to thank all the patients, their social guardians, and primary doctors. We are profoundly grateful to Ms. Akemi Shono, Mrs. Tetsuko Yamanouchi, Mrs. Yoshimi Nozu, and Mrs. Ming Juan Ye (Kobe University) for their excellent technical assistance. Data for patients SC10, SC56, SC111, SC390, and SC456 were published elsewhere. 14, 24-27 Data for patients SC239, SC274, and SC468 have been reported in Japanese journals. 28-30 The following doctors provided patient samples for this study: Takeshi Futatani (Toyama Prefectural Central Hospital), Yoshimitsu Gotoh (Japanese Red Cross Nagoya Daini hospital), Yuko Hamasaki (Toho University), Ken Hatae (Japanese Red Cross Fukuoka Hospital), Atsuko Iida (Tokyo Women's Medical University Medical Center

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

321	East), Yoichi Iwafuchi (Niigata Koseiren Sanjo General Hospital), Yuko Kajiho (The
322	University of Tokyo), Chieko Matsumura (National Chiba Higashi Hospital), Koji
323	Nagatani (Uwajima City Hospital), Tomoka Hase (Wakayama Medical University),
324	Masashi Nishida (Kyoto Prefectural University of Medicine), Shunsuke Noda (Nagano
325	Red Cross Hospital), Akifumi Ohtsuka (Saga University), Shin-ichi Okada (Tottori
326	University), Mika Okutsu (National Center for Child and Development), Koji Sakuraya,
327	Shuichiro Fujinaga (Saitama Children's Medical Center), Noriko Sugawara (Tohoku
328	University), Hironori Takahashi (Asahikawa Medical University), Masaki Yamamoto
329	(Seirei Hamamatsu Hospital), and Masato Yasui (Fukuyama City Hospital).
330	This work was supported by the Health Labor Sciences Research Grant for the Research
331	on Measures for Intractable Diseases (H24-nanchi-ippan-041 to K.I.; H29-nanchi-
332	ippan-039 to N.M.) and Japan Society for the Promotion of Science (KAKENHI Grant
333	Number JP15K09261 and 18K08243 to N.M.).
334	
335	Conflict of interest
336	K.I. has received grant support from Daiichi Sankyo Co., Ltd. and Zenyaku Kogyo Co.,
337	Ltd.
338	
339	

340 References

- 1. Bower MA, Schimmenti LA, Eccles MR. PAX2-Related Disorder. In: Adam MP,
- Ardinger HH, Pagon RA, et al., editors. GeneReviews[®] [Internet]. Seattle (WA):
- 343 University of Washington, Seattle; 1993–2019. Available from:
- https://www.ncbi.nlm.nih.gov/books/NBK1451/ (accessed on Oct. 20/2019)
- 345 2. Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan
- MJ, et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal
- anomalies and vesicoureteral reflux. Nat Genet. 1995;9:358–64.
- 3. Nishimoto K, Iijima K, Shirakawa T, Kitagawa K, Satomura K, Nakamura H, et al.
- PAX2 gene mutation in a family with isolated renal hypoplasia. J Am Soc Nephrol.
- 350 2001;12:1769–72.
- 4. Treisman J, Harris E, Desplan C. The paired box encodes a second DNA-binding
- domain in the paired homeo domain protein. Genes Devel. 1991;5:594–604.
- 5. Sanyanusin P, Norrish JH, Ward TA, Nebel A, McNoe LA, Eccles MR. Genomic
- 354 structure of the human PAX2 gene. Genomics. 1996;35:258–61.
- 355 6. Torres M, Gomez-Pardo E, Dressler G, Gruss P. Pax-2 controls multiple steps of
- urogenital development. Development. 1995;121:4057–65.
- 7. Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chatterjee B, Senft E, et al.
- The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a
- family with renal-coloboma syndrome and results in developmental defects of the
- brain, ear, eye, and kidney. Proc Natl Acad Sci. 1996;93:13870–5.
- 361 8. Tellier A-L, Ameil J, Salomon R, Jolly D, Delezoide A-L, Auge J, et al. PAX2
- expression during early human development and its mutation in renal hypoplasia
- with or without coloboma. Am J Hum Genet. 1998; Suppl 63, A7.

- 9. Bower M, Salomon R, Allanson J, Antignac C, Benedicenti F, Benetti E, et al.
- Update of PAX2 mutations in renal coloboma syndrome and establishment of a
- locus specific database. Hum Mutat. 2012;33:457–66.
- 10. Dziarmaga A, Quinlan J, Goodyer P. Renal hypoplasia: lessons from Pax2. Pediatr
- 368 Nephrol. 2006;21:26–31.
- 369 11. Deng H, Zhang Y, Xiao H, Yao Y, Liu X, Su B, et al. Diverse phenotypes in
- children with PAX2-related disorder. Mol Genet Genomic Med. 2019;7:e701.
- 371 12. Sue Richards, Nazneen Aziz, Sherri Bale, David Bick, Soma Das, Julie Gastier-
- Foster, et al. On behalf of the ACMG Laboratory Quality Assurance Committee.
- 373 Standards and Guidelines for the Interpretation of Sequence Variants: A Joint
- Consensus Recommendation of the American College of Medical Genetics and
- Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–
- 376 24.
- 13. Nagano C, Nozu K, Morisada N, Yazawa M, Ichikawa D, Numasawa K, et al.
- Detection of copy number variations by pair analysis using next-generation
- sequencing data in inherited kidney diseases. Clin Exp Nephrol. 2018;22:881–8.
- 380 14. Nagano C, Morisada N, Nozu K, Kamei K, Tanaka R, Kanda S, et al. Clinical
- 381 Characteristics of *HNF1B*-related disorders in a Japanese population. Clin Exp
- 382 Nephrol. 2019;23:1119–29.
- 383 15. Unzaki A, Morisada N, Nozu K, Ye MJ, Ito S, Matsunaga T, et al. Clinically
- diverse phenotypes and genotypes of patients with branchio-oto-renal syndrome. J
- 385 Hum Genet. 2018;63:647–56.

- 386 16. Yoshikawa T, Kamei K, Nagata H, Saida K, Sato M, Ogura M, et al. Diversity of
- renal phenotypes in patients with WDR19 mutations: Two case reports. Nephrology
- 388 (Carlton). 2017;22:566–71.
- 389 17. Sakakibara N, Morisada N, Nozu K, Nagatani K, Ohta T, Shimizu J, et al. Clinical
- spectrum of male patients with OFD1 mutations. J Hum Genet. 2019;64:3–9.
- 391 18. Okumura T, Furuichi K, Higashide T, Sakurai M, Hashimoto S, Shinozaki Y, et al.
- Association of PAX2 and other gene mutations with the clinical manifestations of
- renal coloboma syndrome. PLoS One. 2015;10:e0142843.
- 394 19. Nornes HO, Dressler GR, Knapik EW, Deutsch U, Gruss P. Spatially and
- temporally restricted expression of Pax2 during murine neurogenesis.
- 396 Development. 1990;109:797–809.
- 397 20. Boucherat O, Jeannotte L, Hadchouel A, Delacourt C, Benachi A.
- 398 Pathomechanisms of congenital cystic lung diseases: focus on congenital cystic
- adenomatoid malformation and pleuropulmonary blastoma. Paediatr Respir Rev.
- 400 2016;19:62–8.
- 401 21. Annunziata F, Bush A, Borgia F, Raimondi F, Montella S, Poeta M, et al.
- 402 Congenital lung malformations: unresolved issues and unanswered questions. Front
- 403 Pediatr. 2019;7:239.
- 404 22. Yamamura T, Morisada N, Nozu K, Minamikawa S, Ishimori S, Toyoshima D, et al.
- Rare renal ciliopathies in non-consanguineous families that were identified by
- targeted resequencing. Clin Exp Nephrol. 2017;21:136–42.
- 407 23. Kohlhase J. Townes-Brocks Syndrome. 2007 Jan 24 [Updated 2016 Jan 14]. In:
- Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews[®] [Internet].

- Seattle (WA): University of Washington, Seattle; 1993-2020. Available from:
- 410 https://www.ncbi.nlm.nih.gov/books/NBK1445/
- 411 24. Ishiwa S, Sato M, Morisada N, Nishi K, Kanamori T, Okutsu M, et al. Association
- between the clinical presentation of congenital anomalies of the kidney and urinary
- tract (CAKUT) and gene mutations: an analysis of 66 patients at a single institution.
- 414 Pediatr Nephrol. 2019;34:1457–64.
- 415 25. Ohtsubo H, Morisada N, Kaito H, Nagatani K, Nakanishi K, Iijima K. Alport-like
- glomerular basement membrane changes with renal-coloboma syndrome. Pediatr
- 417 Nephrol. 2012;27:1189–92.
- 418 26. Iwafuchi Y, Morioka T, Morita T, Yanagihara T, Oyama Y, Morisada N, et al.
- Diverse renal phenotypes observed in a single family with a genetic mutation in
- Paired Box Protein 2. Case Rep Nephrol Dial. 2016;6:61–9.
- 421 27. Saida K, Kamei K, Morisada N, Ogura M, Ogata K, Matsuoka K, et al. A novel
- truncating PAX2 mutation in a boy with renal coloboma syndrome with focal
- 423 segmental glomerulosclerosis causing rapid progression to end-stage kidney disease.
- 424 CEN Case Rep. 2020;9:19–23.
- 425 28. Hatae K, Keida Y, Hinokiyama M, Kuroki R, Kurokawa M, Morisada N, et al.
- 426 Pseudo-Bartter syndrome in an infant with renal hypo/dysplasia: PAX2 mutation
- 427 identified by next-generation sequencing led to the diagnosis, renal coloboma
- 428 syndrome. Jpn J Pediatr Nephrol. 2017;30:54–9 (in Japanese).
- 429 29. Iida A, Hoshika S, Kaneko K, Kato F, Sugihara S. An infant case of renal
- coloboma syndrome with novel PAX2 gene mutation. J Tokyo Wom Med Univ.
- 431 2017;87:E98–E101 (in Japanese).

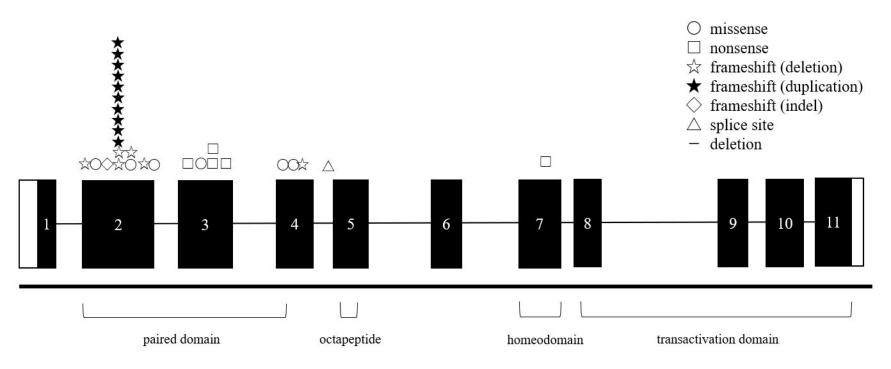
30. Sakuraya K, Fujinaga S, Nozu K, Morisada N, Iijima K. A girl of non-syndromic
 CAKUT with a novel PAX2 mutation. J Jpn Soc Pediatr Ren Fail. 2019;39:108–10
 (in Japanese).

436	Figure legend
437	Figure 1. The gene structure of <i>PAX2</i> (NM_003987.4) and locations of the various
438	mutations identified in this study.
439	

Table 1 Characteristics of patients

		Patients $(n = 38)$
Age at diagnosis		
Median (months)		66
Range		1 month-54 years
Gender		
Male		20
Female		18
	Kidney disease	Patients
Renal hypodysplasia or ren	nal insufficiency of unknown cause	34
Cystic kidney disease (incl	luding multicystic dysplastic kidney)	5
Focal segmental glomerulo	osclerosis	3
Vesicoureteral reflux		2
Hydronephrosis		1
Urinary lithiasis		1
	Ocular disease	Patients
Optic disc coloboma		21
bilateral		18
unilateral		3
Others (amblyopia, exotro-	pia, retinopathy of prematurity, nystagmus)	1 case of each
No ocular abnormality		12
Non-renal	and non-ophthalmological diseases	Patients
	Autism	2
Developmental disorder	Mild intellectual disability	1
_	Speech delay	1
Pulmonary	Congenital cystic adenomatoid malformation	2
	Hypocalcemia	1
Electrolyte	Hyponatremia	1
G 111 1 122	Retractile testis	1
Gonadal abnormalities	Polycystic ovarian disease	1
Growth	Short stature	3
F 1 16 2	Micrognathia	2
Facial malformation	Low set ears	1
Congenital heart or	Small ventricular septal defect	1
vascular anomalies	Pulmonary stenosis	1
	•	1
	Scoliosis	1
Others	Scoliosis Teratoma	1 1

Table 2 Clinical manifestations and genotypes of the patients in the study


															ACMG interpretati	on				
Family	Patient	Age at diagnosis	Gender	FH	Kidney disease	eGFR	RRT (years)	Ocular symptoms	Other symptoms	cDNA	Amino acids	Mutation	HGMD	dbSNP or ClinVar	Category	Evidence of pathogenicity	Classification	Method	HPx Inheritance	Ref
1	SC10	13	F	+	CKD	59.1	-	b. optic disc coloboma	scoliosis	c.76dup	p.Val26GlyfsTer28	frameshift	CI951965	rs75462234	PVS1 PP1, PP4,	Very strong	Pathogenic	DS	Father ¹	25
	Sister	15	F	'	CKD, VUR	NA	-	b. optic disc coloboma	-	c.rodup	p. v ai 2001 y 131 c 120	Trancsiirt	C1331703	1373402234	PP5	3 Supporting	Tamogeme	DS	Tutter	23
2	SC30	2	M	-	r. MCDK, l. RHD	NA	7, RT	-	autism, CCAM	c.497-2A>G	-	splice site	-	-	PVS1 PM2 PP4	Very strong 1 Moderate 1 Supporting	Likely pathogenic	TS1	unknown	
3	SC32	5m	F	-	b. RHD	22.4	-	b. optic disc	-	c.432del	p.Gln144HisfsTer15	frameshift	-		PVS1 PM2, PM4	Very strong 2 Moderate	Pathogenic	DS	unknown	
4	SC47	2m	М		b. RHD	19.4	-	b. optic disc coloboma	-	c.310C>T	A 104T-11		CM076374		PVS1 PM2	Very strong 1 Moderate	Pathogenic	DS	Mother	
4	Mother	NA	F	+	b. RHD	NA	-	-	-	C.510C>1	p.Arg104Ter	nonsense	CM070374	-	PP1, PP4,	3 Supporting	Pathogenic	DS	unknown	
	Brother	2m	M		b. RHD	NA	-	NA	-						PP5	3 Supporting		DS	Mother	
	SC56	25	M		CKD	7.1	7, HD	-	-						PVS1	Very strong		TS1	Father	
5	Father	51	M	+	FSGS	NA	-	-	-	c.76dup	p.Val26GlyfsTer28	frameshift	CI951965	rs75462234	PP1, PP4,	3 Supporting	Pathogenic	DS	unknown	26
	Brother	26	M		CKD	NA	8, RT	-	-						PP5			DS	Father	
6	SC62	1	M	-	CKD	NA	-	b. optic disc coloboma	-	c.89G>T	p.Gly30Val	missense	-	-	PM1, PM2 PP3, PP4	2 Moderate 2 Supporting	Likely pathogenic	TS1	unknown	
7	SC111	6	М	-	FSGS	29.4	-	b. optic disc coloboma	-	c.70-72delinsA	p.Gly24ArgfsTer29	frameshift	CX194156	-	PVS1 PM2 PP4, PP5	Very strong 1 Moderate 2 Supporting	Pathogenic	DS	unknown	24, 27
8	SC114	3	M	-	CKD	NA	-	b. optic disc coloboma	1	c.76dup	p.Val26GlyfsTer28	frameshift	CI951965	rs75462234	PVS1 PS2 PP4, PP5	Very strong 1 Strong 2 Supporting	Pathogenic	DS	de novo	
9	SC149	9	M	-	CKD, b. VUR	32.8	-	-	-	c.76dup	p.Val26GlyfsTer28	frameshift	CI951965	rs75462234	PVS1 PS2 PP4, PP5	Very strong 1 Strong 2 Supporting	Pathogenic	DS	de novo	
10	SC183	14	М	-	CKD	65.4	-	b. optic disc coloboma	-	c.239C>T	p.Pro80Leu	missense	CM148848	RCV000549890.2	PM1, PM2 PP1, PP3, PP4, PP5	2 Moderate 4 Supporting	Likely pathogenic	DS	uniparental ²	
11	SC184	2	F	-	CKD	38	-	r. optic disc coloboma	-	c.51del	p.His17QGlnfsTer4	frameshift	-	-	PVS1 PS2 PM2 PP4	Very strong 1 Strong 1 Moderate 1 Supporting	Pathogenic	DS	de novo	

12	SC239	2m	F	- CKD	NA	-	-	hypocalcemia, pulmonary artery stenosis	c.76dup	p.Val26GlyfsTer28	frameshift	CI951965	rs75462234	PVS1 PP4, PP5	Very strong 2 Supporting	Pathogenic	HPx	1 unknown	28
13	SC252	9	F	- CKD	46.7	-	b. optic disc	-	c.76del	p.Val26CysfsTer3	frameshift	CD992538	rs75462234	PVS1 PP4, PP5	Vary strong 2 Supporting	Pathogenic	DS	unknown	
14	SC274	4	M	CKD, b - hydronephrosis	52.8	-	b. optic disc coloboma	retractile testis, mild ID, micrognathia, short stature	c.220G>T	p.Glu74Ter	nonsense	-	RSV000681874.1	PVS1 PM2 PP3, PP4, PP5	Very strong 1 Moderate 3 Supportive	Pathogenic	DS	unknown	29
15	SC287	1	F	r. RHD, l.	21	3, PD	retinopathy of prematurity	polycystic ovarian disease	c.76del	p.Val26CysfsTer3	frameshift	CD992538	rs75462234	PVS1 PS2 PP4, PP5	Very strong 1 Strong 2 Supportive	Pathogenic	HPx	3 de novo	
16	SC300	5	М	+ CKD	72	-	b. optic disc coloboma	short stature	c.143del	p.Gly48ValfsTer35	frameshift	-	-	PVS1 PM2 PP1, PP4	Very strong 1 Moderate 2 Supportive	Pathogenic	DS	Father	
17	SC315	6m	М	- CKD	NA	2, RT	b. optic disc coloboma	I. CCAM	c.310C>T	p.Arg104Ter	nonsense	CM076374	-	PVS1 PM2 PP4	Very strong 1 Moderate 1 Supporting	Pathogenic	DS	unknown	
18	SC351	1	М	- CKD	47.6	-	-	hyponatremia	c.418C>T	p.Arg140Trp	missense	CM1815853	rs1217241110	PS2 PM1, PM2 PP3, PP4, PP5	1 strong 2 Moderate 1 Supporting	Pathogenic	НРх	3 de novo	
19	SC390	30	F	CKD, cystic kidney	34.4	-	r. amblyopia	-	arr[GRCh37] 10q24.2q2	4.32(100315515_103049862)x1	deletion	CG122659		PVS1	Very strong	Pathogenic	HPx, aCGH	3 Mother	14
	Mother	54	F	CKD, cystic kidney	62.8	-	NA	NA						PP1, PP5	2 Supporting	g		unknown	
20	SC415	26	F	- CKD	40.2	7, RT	b. optic disc coloboma, exotropia	small ventricular septal defect	c.76dup	p.Val26GlyfsTer28	frameshift	CI951965	rs75462234	PVS1 PP4, PP5	Very strong 2 Supporting	Pathogenic	DS	unknown	
21	SC456	14	F	- b. RHD	17.1	-	1. optic disc coloboma	-	c.832C>T	p.Gln278Ter	nonsense	CM194157	-	PVS1 PM2 PP3, PP4, PP5	Very strong 1 Moderate 3 Supporting	Pathogenic	DS	unknown	24
22	SC468	3	F	CKD, small + cystic kidney	65.2	-	-	short stature	c.70G>C	p.Gly24Arg	missense	CM194583	-	PM1, PM2 PP1, PP3,	2 Moderate 4 Supporting	Likely pathogenic	HPx	5 Mother	30
	Mother	32	F	CKD	NA	-	NA	-						PP4, PP5		r	DS	unknown	
23	SC472	2	M	CKD	56.3	-	b. optic disc coloboma	mild delay in language development	c.76dup	p.Val26GlyfsTer28	frameshift	CI951965	rs75462234	PVS1	Very strong	- Pathogenic	DS	Mother	
	Mother	NA	F	NA	NA	-	b. optic disc coloboma	urinary lithiasis	ouup	p. , m200131510120	Tumesinit	C1/31/03	1010702207	PP1, PP4, PP5	3 Supporting	1 unogeme	DS	Mother ¹	
24	SC521	14	F	- FSGS	40	-	-	-	c.76dup	p.Val26GlyfsTer28	frameshift	CI951965	rs75462234	PVS1 PP4, PP5	Very strong 2 Supporting	Pathogenic	DS	unknown	

25	:	SC553	12	М	-	b. RHD	18	-	b. optic disc coloboma	-	c.419G>A	p.Arg140Gln	missense	CM068671	rs865906227	PM1, PM2 PP3, PP4, PP5	2 Moderate 3 Supporting	Likely pathogenic	DS		Mother	
26	;	SC573	10	M	-	b. RHD, RTA	24.9	11, RT	-	autism, median cervical	c.76dup	p.Val26GlyfsTer28	frameshift	CI951965	rs75462234	PVS1 PP4, PP5	Very strong 2 Supporting	Pathogenic	HPx	7	unknown	
27	,	SC590	1	F	-	b. RHD	43	-	-	low set ears	c.89del	p.Gly30AlafsTer8	frameshift	-	-	PVS1 PS2 PP4	Very strong 1 Strong 1 Supporting	Pathogenic	НРх	7	de novo	
28	:	SC605	2m	F	-	b. RHD	21.2	-	b. optic disc coloboma	pulmonary hypertension, cerebellar hemorrhage	c.212G>T	p.Arg71Met	missense	-	-	PM1, PM2, PM3 PP3, PP4	3 Strong 2 Moderate	Likely pathogenic	DS		unknown	
29	, ;	SC607	13	M	-	CKD, cystic	66.9	1	l. optic disc coloboma, nystagmus	hyperuricemia	c.76dup	p.Val26GlyfsTer28	frameshift	CI951965	rs75462234	PVS1 PP4, PP5	Very strong 2 Supporting	Pathogenic	НРх	7	Mother ¹	
30		SC622	1m	M	-	CKD	23.7	-	b. optic disc coloboma, r. orbital cyst	micrognathia	c.343C>T	p.Arg115Ter	nonsense	CM034444	-	PVS1 PM2 PP3, PP4, PP5	Very strong 1 moderate 3 Supporting	Pathogenic	DS		unknown	

¹ the patient's parent was affected with the same disorder; however, genetic analyses were not performed. ²"uniparental" indicates that the variant was inherited from father or mother.

ACMG, American College of Medical Genetics; b. bilateral; CCAM, congenital cystic adenomatoid malformation; CKD, chronic kidney disease (means renal dysfunction of unknown cause); DS, direct sequencing; eGFR, estimated glomerular filtration rate; F, female; FH, family history; FSGS, focal segmental glomerulosclerosis; HD, hemodialysis; HGMD, Human Genome Mutation Database; HPx, HaloPlex; ID, intellectual disability; l., left; M, male; MCDK, multicystic dysplastic kidney; NA, not available; PD, peritoneal dialysis; PM, moderate evidence of pathogenicity; PP, Supportive evidence of pathogenicity; PS, Strong evidence of pathogenicity; Pt, patient; Ref, references; PVS, very strong evidence of pathogenicity; RHD, renal hypodysplasia; RRT, renal replacement therapy; RT, renal transplantation; RTA, renal tubular acidosis; TS1, TruSight One Sequencing Panel; VUR, vesicoureteral reflux.

Supplementary Table 1: The gene list constructed using HaloPlex (91 genes).

ACE	CITED1	GATA3	NPHP4	PAX2	SPRY1	ZEB2
ACTN4	CTDNEP1	GDNF	IQCB1	PAX8	TNXB	
AGT	CXCL12	HOXA13	CEP290	PKD1	TP53	
AGTR1	CXCR4	HNF1B	GLIS2	PKD2	TRAP1	
AHI1	DSTYK	HOXD11	RPGLIP1L	PKHD1	TRPC6	
ANLN	EP300	IFN2	NEK8	REN	UMOD	
APOL1	EYA1	KAL1	SDCCAG8	RET	UPK3A	
BMP2	FAT3	LMX1B	TMEM67	ROBO2	VANGL2	
BMP4	FAT4	MDM2	TTC21B	ROR1	WNT4	
BMP7	FOXD1	MI2B (CHD4)	WDR19	ROR2	WNT5A	
CC2D2A	FGF2	MUC1	XNF423	SALL1	WNT7A	
CD2AP	FGF9	MYO1E	CEP164	SIX1	WNT7B	
CDC5L	FGF20	NPHP1	ANKS6	SIX2	WNT9B	
CHD1L	FZD4	INVS	IFT172	SIX5	WNT11	
CHRM3	FZD8	NPHP3	OFD1	SOX17	WT1	

Supplementary Table 2: The gene list constructed using HaloPlex (172 genes).

ACE	B9D1	CD2AP	CTDNEP1	FOXD1	IFN2	LMNA	NUP107	RET	TBX1	TSC1	WNT7B
ACTN4	B9D2	CDC5L	CXCL12	FRAS1	IFT27	LMX1B	NUP133	ROBO2	TBX18	TSC2	WNT9B
ADCK4	BBIP1	CENPF	CXCR4	FREM1	IFT43	LZTFL1	NXF5	ROR1	TCTN2	TTC8	WNT11
AGT	BBS1	CEP41	DCDC2	FREM2	IFT81	MDM2	OFD1	ROR2	TCTN3	TTC21B	WT1
AGTR1	BBS2	CEP83	DDX59	FZD4	IFT122	MKKS	OSR1	RPGLIP1L	TMEM67	UMOD	XPNPEP3
AGTR2	BBS4	CEP104	DSTYK	FZD8	IFT140	MKS1	PAX2	SALL1	<i>TMEM138</i>	UPK3A	ZEB2
AHI1	BBS5	CEP120	DYNC2H1	GANAB	IFT172	MUC1	PAX8	SDCCAG8	ТМЕМ216	VANGL2	ZNF423
ALG13	BBS7	CEP164	EP300	GATA3	INPP5E	MYO1E	PDE6D	SIX1	ТМЕМ231	WDPCP	
ALMS1	BBS10	CEP290	EYA1	GDNF	INVS	NEK1	PKD1	SIX2	TMEM237	WDR19	
ANKS3	BBS12	CHD1L	FAT3	GLIS2	IQCB1	NEK8	PKD2	SIX5	TNXB	WDR34	
ANKS6	BMP2	CHD4	FAT4	GREM1	ITGA8	NODAL	PKHD1	SLIT2	TP53	WDR35	
ANLN	BMP4	CHRM3	FGF2	GRIP1	KAL1	NPHP1	PLCE1	SOX17	TRAF3IP1	WDR60	
APOL1	BMP7	CITED1	FGF9	HOXA13	KIAA0586	NPHP3	PODXL	SPRY1	TRAP1	WNT4	
ARL6	C5orf42	COQ6	FGF20	HOXD11	KIF14	NPHP4	PTHB1	SRGAP1	TRIM32	WNT5A	
ARL13B	CC2D2A	CSPP1	FGFR2	HNF1B	LAMB2	NPHS2	REN	TBC1D1	TRPC6	WNT7A	

Supplementary Table 3: The gene list constructed using HaloPlex (159 genes).

					ı		ı			1
ACE	BBS1	CEP41	DYNC2H1	GANAB	IFT80	LMNA	PDE6D	SIX1	TMEM107	WDPCP
AGT	BBS2	CEP83	DZIP1L	GATA3	IFT81	LMX1B	PIBF1	SIX2	TMEM138	WDR19
AGTR1	BBS4	CEP104	EP300	GDNF	IFT122	LZTFL1	PKD1	SIX5	TMEM216	WDR34
AGTR2	BBS5	CEP120	EVC	GLIS2	IFT140	MKKS	PKD2	SLIT2	TMEM231	WDR35
AHI1	BBS7	CEP164	EVC2	GLIS3	IFT172	MKS1	PKHD1	SOX17	TMEM237	WDR60
ALG9	BBS10	CEP290	EXOC4	GRIP1	INPP5E	MUC1	PTHB1	SPRY1	TNXB	WNT4
ALMS1	BBS12	CHD1L	EXOC8	GRLF1	INVS	NEK1	REN	SRGAP1	TRAF3IP1	WT1
ANKS3	C2CD3	CHD4	EYA1	HNF1B	IQCB1	NEK8	RET	TBC1D1	TRIM32	XPNPEP3
ANKS6	C5orf42	CHRM3	FAN1	HOXA13	ITGA8	NPHP1	ROBO2	TBC1D32	TSC1	ZNF423
ARL6	C21orf2	CITED1	FGF9	HPRT1	JAG1	NPHP3	RPGLIP1L	TBX1	TSC2	
ARL13B	CC2D2A	CSPP1	FGF20	HYLS1	KAL1	NPHP4	SALL1	TBX18	TTBK2	
ATXN10	CCDC28B	CTDNEP1	FGFR2	ICK	KIAA0586	OFD1	SARS2	TCTN1	TTC8	
B9D1	CDC5L	DCDC2	FRAS1	IFN2	KIF7	PAX2	SCLT1	TCTN2	TTC21B	
B9D2	CENPF	DDX59	FREM1	IFT27	KIF14	PAX8	SDCCAG8	TCTN3	UMOD	
BBIP1	CEP19	DSTYK	FREM2	IFT43	LIFR	PBX1	SEC61A1	TMEM67	VANGL2	

Supplementary Table 4: The gene list constructed using HaloPlex (181 genes).

ACE	BBS1	CEP83	EP300	GFRA1	IFT80	LRIG2	PIBF1	SOX11	TNXB	ZNF423
ACTG2	BBS2	CEP104	EVC	GLIS2	IFT81	LRP5	PKD1	SOX17	TRAF3IP1	
AGT	BBS4	CEP120	EVC2	GLIS3	IFT122	LZTFL1	PKD2	SPRY1	TRIM32	
AGTR1	BBS5	CEP164	EXOC4	GPC3	IFT140	MAPKBP1	PKHD1	SRGAP1	TSC1	
AGTR2	BBS7	CEP290	EXOC8	GREB1L	IFT172	MKKS	REN	SUFU	TSC2	
AHI1	BBS9	CHD1L	EYA1	GREM1	INPP5E	MKS1	RET	TBC1D32	TTC8	
ALG8	BBS10	CHD4	FAN1	GRIP1	INTU	MUC1	ROBO2	TBX1	TTC21B	
ALG9	BBS12	CHD7	FGF20	HNF1B	INVS	NEK1	RPGRIP1L	TBX18	UMOD	
ALMS1	BICC1	CHRM3	FGFR1	HOXA13	IQCB1	NEK8	SALL1	TCTEX1D2	UPK3A	
ANKS6	C2CD3	CITED1	FGFR2	HPRT1	ITGA8	NOTCH2	SARS2	TCTN1	VANGL2	
ARL3	C5orf42	CRB2	FRAS1	HPSE2	JAG1	NPHP1	SCLT1	TCTN2	WDPCP	
ARL6	C8orf37	CSPP1	FREM1	HYLS1	KAL1	NPHP3	SDCCAG8	TCTN3	WDR19	
ARL13B	CC2D2A	DCDC2	FREM2	INF2	KIAA0556	NPHP4	SEC61A1	TMEM67	WDR34	
ARMC9	CCDC28B	DDX59	GANAB	IFT27	KIAA0586	OFD1	SIX1	TMEM107	WDR35	
ATXN10	CDC5L	DNAJB11	GATA3	IFT43	KIAA0753	PAX2	SIX2	TMEM138	WDR60	
B9D1	CDKN1C	DSTYK	GDF11	IFT52	KIF7	PAX8	SIX5	TMEM216	WNT4	
B9D2	CENPF	DYNC2H1	GDNF	IFT57	KIF14	PBX1	SLIT2	TMEM231	WT1	
BBIP1	CEP41	DZIP1L	GEN1	IFT74	LMX1B	PDE6D	SOX9	TMEM237	XPNPEP3	

Supplementary Table 5: The *in-silico* evaluations for missense variants in the study

Family	Patient	CADD	PROVEAN	SIFT	Polyphen2	Mutation Taster
6	SC62	28.5	D	D	D	D
10	SC183	34	D	D	P	D
18	SC351	35	D	D	D	D
22	SC468	32	D	D	D	D
	Mother					
25	SC553	35	D	D	D	D
28	SC605	29	D	D	D	D

Abbreviations: CADD, Combined Annotation Dependent Depletion; D, damaging or deleterious. PROVEAN, Protein Variation Effect Analyzer.

Supplementary Table 6: Profiles (gender, age, and type of renal disorder) of the probands in this study.

Gender	Age	Disease	No. of Patients	Total
	al.:14 (10 account)	CAKUT	131	263
Male	child (-18 years)	Others	79	
Maie	adult (+18 years)	CAKUT	17	
		Others	36	
	child (-18 years)	CAKUT	62	189
Female		Others	88	
remaie	adult (+18 years)	CAKUT	10	
		Others	29	
	.1.11 (10)	CAKUT	1	5
I I1	child (-18 years)	Others	4	
Unknown	adult (+18 years)	CAKUT	0	
		Others	0	
Total				457