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Abstract We study the ultralight vector dark matter with
a mass around 10−23 eV. The vector field oscillating coher-
ently on galactic scales induces oscillations of the spacetime
metric with a frequency around nHz, which is detectable by
pulsar timing arrays. We find that the pulsar timing signal due
to the vector dark matter has nontrivial angular dependence
unlike the scalar dark matter and the maximal amplitude is
three times larger than that of the scalar dark matter.

1 Introduction

Observations of the galactic rotation curves [1], structure
formation [2], and gravitational lensing [3] suggest that the
invisible matter, the so-called dark matter (DM) exists in the
Universe. Searching for the DM has been a long-standing
challenge in cosmology and astrophysics. Recent observa-
tional results show that the DM is accounting for 27% of
the energy density in the Universe [4]. The most promising
candidate for the DM has been the weak interacting massive
particles (WIMPs) which are motivated by supersymmetric
theories of particle physics. However, inspite of the efforts of
many researchers, no signal of the WIMPs has been detected.

Recently, as an alternative candidate for the DM, an ultra-
light axion-like scalar with a mass ∼ 10−23 eV, often called
the fuzzy DM, has been intensively studied [5,6]. The fuzzy
DM has a possibility to resolve small-scale problems of the
standard Cold DM model such as the galactic core-cusp prob-
lem [7–9].

Given the success of the ultralight scalar DM, it is natu-
ral to ask if the ultralight vector can be the DM. In fact, the
possibility of the fuzzy DM being a massive vector boson
(sometimes called a dark photon) has been proposed [10,11].
In the case of a vector boson, it is known that it is difficult
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for a free field to condense homogeneously during inflation.
Recently, however, a consistent ultralight vector model has
been proposed [11] where the ultralight vector field is homo-
geneously condensed during inflation when its mass is less
than the Hubble scale, and starts to oscillate coherently at
some epoch after inflation. The coherently oscillating vec-
tor field behaves as a non-relativistic matter and can be a
candidate for the DM as well as the scalar field.

Historically, there have been many works on the vector
DM. Evolution of cosmological perturbations based on the
model of ultralight coherent vector DM field has been stud-
ied in [12]. There, it is demonstrated that perturbations on
the scales smaller than the de Broglie wave length of the
vector field have a specific feature compared to the scalar
case. However, the magnitude of the feature is far below the
sensitivity of present and future detectors. The approaches to
search for the vector DM or to constrain its couplings to parti-
cles in the Standard Model have been proposed, e.g. by using
ground-based gravitational-wave interferometers [13,14] or
taking into account the cosmological plasma effects with a
photon [15]. Some phenomenologies on the vector DM are
discussed together with its production mechanism [11,16–
23]. The effects of gravitational interaction between the vec-
tor DM field and binary pulsar systems on the dynamics of
the system have been considered in [24].

In this paper, we investigate the purely gravitational effects
of the vector DM on the pulsar timing. A coherently oscil-
lating vector field behaves as a non-relativistic pressureless
matter on cosmological scales. Hence it does not induce the
anisotropic expansion of the Universe [25]. Actually, how-
ever, there exists an oscillating anisotropic pressure on time
scales corresponding to the oscillation of the vector field,
which induces nontrivial oscillations of the metric. The fre-
quency is determined by the mass of the DM considered. In
the case of m ∼ 10−23 eV, it is on the order of nHz, which
is in the range where the Pulsar Timing Arrays (PTAs) are
sensitive. PTAs can detect gravitational effects such as grav-
itational waves [26–28]. Furthermore, a method for detect-
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ing the axion-like scalar DM using PTAs has been proposed
in [29], and actually the energy density of the DM is con-
strained by using observational data [30–32]. The detection
method is applicable to the case of the vector DM and it is
expected that a specific signal depending on the vector prop-
erty appears. This is what we will discuss in this paper.

This paper is organized as follows. In Sect. 2, we show the
oscillation of the vector DM field induces time-dependent
spacetime metric perturbations. In Sect. 3, we see the effect
of the vector DM on the pulsar timing. We also discuss the
detectability of the vector DM with PTAs. In Sect. 4, we
summarize the results. Appendix A is devoted to derivation
of the formula for the redshift of photons induced by metric
perturbations.

2 Effects on metric perturbations

In this section, we show that the spacetime metric fluctuates
due to the presence of the vector DM oscillating coherently
on galactic scales.

Since we work on the galactic scales, the cosmic expansion
is negligible. Hence, we consider the metric

ds2 = ημνdx
μdxν

− 2�(t, x)dt2 + 2�(t, x)δi j dx
i dx j + hi j (t, x)dx

i dx j ,

(1)

where ημν is the Minkowski metric ημν = diag(− 1,+ 1,

+ 1,+ 1). The metric perturbations induced by the DM are
described by�,�, andhi j . We shall discuss the perturbations
separately in Eqs. (18) and (25).

The vector DM field Aμ with a mass m is expected to
have little interaction with particles in the Standard Model.
We treat the vector DM field as a free field. Its action is given
by

S =
∫

d4x
√−g

(
−1

4
gμνgρσ FμρFνσ − 1

2
m2gμν AμAν

)
,

(2)

where g is the determinant of the metric gμν and Fμν =
∂μAν − ∂ν Aμ. We also consider the ultralight mass of the
vector DM as m ∼ 10−23 eV, which can arise through the
Higgs or the Stueckelberg mechanisms.

Here, we follow the discussion in [29], where the case
of the scalar DM is considered. Taking into account that the
typical velocity in the galaxy is given by 10−3 times the speed
of light, we can estimate the occupation number of the vector
DM as

ρ

m · (mv)3 � 1095
(

ρ

0.4 GeV/cm3

)(
10−23 eV

m

)4 (
10−3

v

)3

,

(3)

where the energy density of the DM ρ is normalized by the
local value [33–35]. Since the occupation number is so huge,
we can treat the vector field as a classical wave. The de
Broglie wavelength for the ultralight vector DM particles
with a mass m reads

λdB = 2π

mv
� 4 kpc

(
10−23 eV

m

) (
10−3

v

)
. (4)

Due to the wave nature of the DM field, all inhomogeneities
in the DM distribution on the scale smaller than λdB are
smoothed out. So we can express the vector DM field as
a superposition of plane waves with a typical wave num-
ber k = mv = 2π/λdB. In the present case, the energy
reads E � m + mv2/2 � m, because the velocity is non-
relativistic. Thus, the vector DM field is coherently oscillat-
ing with a monotonic frequency determined by the mass m
on the scale given by λdB.

On galactic scales, we can neglect the cosmic expansion.
The equations of motion of the vector field in a flat back-
ground read

∂μF
μν − m2Aν = 0, (5)

which is derived by taking the variation of the action (2)
with respect to Aμ. Using the identity ∂ν∂μFμν = 0, we can
rewrite Eq. ((5)) as a set of Proca equations in the standard
form:

∂μA
μ = 0, (6)

(−∂2
0 + ∇2 − m2)Aμ = 0. (7)

Taking into account that the field typically has a frequency
m and a momentum k, Eq. ((6)) gives

At ∼ k

m
Ai . (8)

Hence, At gets suppressed by the order of k/m = v ∼ 10−3

compared to Ai . Thus, we can neglect At . During inflation,
only the longitudinal mode survives. Hence, the directions of
the vector at different points in a coherent region align. We
take a coordinate system so that the direction of the oscillation
is along z-axis. From Eq. (7), we obtain
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Az(t, x) = A(x) cos(mt + α(x)). (9)

Here we neglected the spatial derivative when we solve the
equation. However, we left spatial dependence of the ampli-
tude and phase. Note that the scale of variation of these quan-
tities is larger than λdB.

Let us see metric perturbations induced by the oscillat-
ing DM. The energy-momentum tensor for matter fields is
defined by

Tμν = −2√−g

δS

δgμν
. (10)

For a free massive vector field (2), we have

Tμν = gμν

(
−1

4
gραgσβFαβFρσ − 1

2
m2gρσ Aρ Aσ

)

+ gρσ FμρFνσ + m2AμAν . (11)

In a flat background, the components of the energy-momentum
tensor (11) read

Ttt = 1

2
m2A2(x), (12)

Txx = Tyy = −1

2
m2A2(x) cos(2mt + 2α(x)), (13)

Tzz = 1

2
m2A2(x) cos(2mt + 2α(x)), (14)

where we have neglected the spatial derivative of the field.
Notice that the energy density of the DM Ttt is time-
independent. On the other hand, the anisotropic pressure is
time-dependent. When we average the pressure over cosmo-
logical time scales which are much longer than the oscillation
period, the pressure vanishes. This tells us that a coherently
oscillating massive vector field behaves as a non-relativistic
matter with zero-pressure on cosmological scales. As we will
see below, however, the oscillating pressure affects the space-
time metric on the time scale relevant to the PTAs.

In general, a symmetric 3×3 tensorTi j can be decomposed
into a trace part and a traceless part as

Ti j = 1

3
δi j T

k
k +

(
Ti j − 1

3
δi j T

k
k

)
. (15)

The first term corresponds the trace part, which behaves as
a scalar under three-dimensional rotations. From Eqs. (13)
and (14), we get

T k
k = −1

2
m2A2(x) cos(2mt + 2α(x)). (16)

The second term in (15), the traceless part, is

Ti j − 1

3
δi j T

k
k

= −1

3
m2A2(x) cos(2mt + 2α(x))

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ . (17)

In the rest of this section, we will consider the trace part and
the traceless part of the energy-momentum tensor separately.

First, let us focus on the trace part. We take the Newtonian
gauge and write the perturbed metric as

ds2 = −(1 + 2�(t, x))dt2 + (1 + 2�(t, x))δi j dxi dx j ,

(18)

where � and � correspond to the gravitational potential. We
can expect that time dependence of the potential is induced
by coherent oscillations of the DM field. For convenience,
we write the potential as the sum of a time-independent part
and an oscillating part with a frequency 2m:

�(t, x) = �0(x) + �osc(x) cos(2mt + 2α(x)), (19)

�(t, x) = �0(x) + �osc(x) cos(2mt + 2α(x)). (20)

Given the energy-momentum tensor, the t t component of
linearized Einstein equations is

∂2
i � = − 4πGTtt . (21)

From the result (12), the right-hand side does not depend on
time, so this relation determines the time-independent part
�0(x). In order to find time dependence of the gravitational
potential, we use the trace of the spatial component of Ein-
stein equations,

−3�̈ + ∂2
i (� + �) = 4πGT k

k . (22)

Now we substitute Eqs. (16), (19) and (20) into this
expression and split terms into time-dependent and time-
independent terms. Focusing on time-independent terms, we
can see ∂2

i (�0 +�0) = 0, which implies �0 = −�0. On the
other hand, as for the time-dependent parts, one can neglect
∂2
i (� + �) term because the spatial gradients on � or �

typically bring out k. Thus these terms are suppressed com-
pared with �̈ term because k2/m2 ∼ v2 is tiny. Assuming the
amplitude of the oscillating part of the gravitational poten-
tial, �osc, is sufficiently homogeneous over the length scale
considered, we have
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�osc(x) = − 1

6
πGA2(x) = −πGρ(x)

3m2

= − 2.2 × 10−16
(

ρ(x)
0.4 GeV/cm3

) (
10−23 eV

m

)2

.

(23)

In the second equality, we used the energy density of the DM
ρ given by the t t component of the energy-momentum tensor
(12). Moreover, the oscillation frequency is given by

f = 2m

2π
= 4.8 × 10−9 Hz

( m

10−23 eV

)
. (24)

Next, we consider the effect of the traceless part of the
energy-momentum tensor. We denote traceless metric per-
turbation as hi j :

ds2 = − dt2 + (δi j + hi j (t, x))dxidx j ,

hi i = 0. (25)

In the linearized Einstein equations, a combination ḧi j −
∂2
k hi j appears. By the same reasoning as the above discussion

for the trace part, the contribution from ∂2
k hi j term can be

neglected compared to ḧi j . Thus we have

ḧi j = 16πG

(
Ti j − 1

3
δi j T

k
k

)
. (26)

By using (17), the traceless part of the metric perturbation
can be obtained:

hi j (t, x) = 4

3
πGA2(x) cos(2mt + 2α(x))

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ .

(27)

For later convenience, we define the amplitude of the oscil-
lation as

hosc(x) ≡ 4

3
πGA2(x) = 8πGρ(x)

3m2

= 1.7 × 10−15
(

ρ(x)
0.4 GeV/cm3

)(
10−23 eV

m

)2

.

(28)

From Eq. (27), we find that anisotropic metric perturbations
appear. This effect comes from the anisotropy of the vector
DM field. In the case of the scalar DM such as axion-like
particles, this kind of anisotropy does not occur. Therefore,
it is possible to distinguish whether the DM is scalar or not
from the presence or absence of anisotropy of the metric
perturbations. Notice that the frequency given by (24) is the

sensitive region of PTAs. In the next section, we will evalu-
ate the pulsar timing signals from the vector DM discussed
above.

3 Effects on pulsar timing arrays

First of all, we would like to clarify the picture we envisage.
During inflation, the vector field was frozen in a coherent
direction, the vector field started oscillating at some point
and acting as a dark matter. It is legitimate to assume that the
coherence of the vector field over the region we are observing
survives even in the present universe as is always assumed
in the axion dark matter. In fact, the de Broglie wavelength
of the vector dark matter is several kpc, within which the
direction of the vector field is coherent. In the Milky Way,
there are many domains of the vector condensations. The
direction of a domain is different from another domain. We
assumed that we are in one of them where there are many
pulsars. The aim of this work is to determine the direction of
the vector field in our vicinity with the pulsar timing arrays.

Let us investigate how time-dependent metric perturba-
tions due to the coherently oscillating vector DM field affect
the observed periodic electromagnetic fields from pulsars.
We choose a coordinate system so that the observation point
is at the spatial origin, and the direction of the vector DM
oscillation is along z-axis as is done in (9). A unit vector
pointing from the observer to a pulsar is written as

n = (sin θ cos φ, sin θ sin φ, cos θ). (29)

Then the pulsar is located at xp(= |xp|n). The rotational
period of the pulsar is T0 = 2π/ω0, where we have intro-
duced the angular frequency ω0. Moreover, the observed
angular frequency of the pulses is denoted by ωobs(t). Then,
the redshift of electromagnetic fields propagating from the
pulsar to the observer is defined by

z(t) ≡ ω0 − ωobs(t)

ω0
. (30)

Since we have a relation z(t) = −(ωobs(t) − ω0)/ω0 �
(Tobs(t) − T0)/T0, where Tobs(t) ≡ 2π/ωobs(t), z(t) stands
for the relative variation of the observed pulsar timing. Then,
conventionally, the timing residual with respect to a reference
time t = 0 is defined as

R(t) =
∫ t

0
dt ′z(t ′). (31)

First, we focus on the effect of scalar perturbations on the
pulsar timing, in particular �, which is induced by the trace
part of the energy-momentum tensor of the DM field. In this
case, the redshift is given by (see Appendix A.1)
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z�(t) = �(t, 0) − �(t − |xp|, xp). (32)

Paying attention only to the oscillating part, which is mea-
surable with PTAs, we have

z�(t)

= �osc
[
cos(2mt + 2α(0)) − cos(2mt − 2m|xp| + 2α(xp))

]
= −2�osc sin(m|xp| + α(0) − α(xp))

× sin(2mt − m|xp| + α(0) + α(xp)), (33)

where we assumed that the oscillation amplitude at the obser-
vation point and that at the pulsar are approximately equal,
and used the same symbol �osc for them. Integrating z(t)
over time according to (31), we can evaluate the timing resid-
ual induced by the trace part of the metric perturbations as

R� = �osc

m
sin(m|xp| + α(0) − α(xp))

× cos(2mt − m|xp| + α(0) + α(xp)). (34)

It depends on the distance to the pulsar.
Next, we consider the effect of the traceless part of metric

perturbations hi j on the pulsar timing, which is induced by
the traceless part of the energy-momentum tensor of the DM
field. For this part, the redshift is expressed as (see Appendix.
A.2)

zh(t) = 1

2
nin j [hi j (t, 0) − hi j (t − |xp|, xp)

]
. (35)

Substituting the result (27) in the previous section and the
definition (29) into this expression, we obtain

zh(t) = −1

4
(1 + 3 cos 2θ)hosc

× [
cos(2mt + 2α(0)) − cos(2mt − 2m|xp| + 2α(xp))

]

= 1

2
(1 + 3 cos 2θ)hosc sin(m|xp| + α(0) − α(xp))

× sin(2mt − m|xp| + α(0) + α(xp)). (36)

Correspondingly, the timing residual reads

Rh = −1

4
(1 + 3 cos 2θ)

hosc
m

sin(m|xp| + α(0) − α(xp))

× cos(2mt − m|xp| + α(0) + α(xp)). (37)

Thus, the timing residual depends on the distance to the pulsar
and its angular position with respect to the direction of the
vector DM oscillation.

Fig. 1 Angular dependence of
the redshift due to the oscillation
of the vector DM is shown. The
blue line and red line represent
the contribution of the trace part
z� (33) and the traceless part zh
(36), respectively. Actually, we
only observe the summation of
z� and zh , which is depected by
the green line. The angle θ is
measured from the direction of
the oscillation chosen as the z
axis. A gray dashed line shows
the magnitude of the redshift
when the DM is a scalar field

Recall that the timing residual due to the coherent oscil-
lation of an ultralight scalar DM is [29],

Rscalar = πGρ

m3 sin(m|xp| + α(0) − α(xp))

× cos(2mt − m|xp| + α(0) + α(xp)). (38)

The main difference is that the timing residual of the vector
DM has a nontrivial direction dependence as shown in Fig.
1, in contrast to that of the scalar DM. Thus, it is possible to
discriminate the vector DM from the scalar DM. Moreover,
from Eqs. (23), (28), (34) and (37), we can see that the mag-
nitude of the maximal timing residual of the vector DM is
three times larger than that of the scalar DM.

Finally, we assess the detectability of the vector DM by
means of PTAs. The maximal amplitude of the timing resid-
ual due to the vector DM oscillation is given by

max|R� + Rh |
= max

∣∣∣∣�osc

m
− 1

4
(1 + 3 cos 2θ)

hosc
m

∣∣∣∣
= max

∣∣∣∣−πGρ

3m3 − 1

4
(1 + 3 cos 2θ)

8πGρ

3m3

∣∣∣∣
= 3πGρ

m3

= 1.3 × 10−7 sec

(
ρ

0.4 GeV/cm3

) (
10−23 eV

m

)3

.

(39)

In Fig. 2, the amplitudes of the timing residual estimated
above are shown together with observational thresholds. The
threshold line at 100 ns comes from the best timing precision
on the existing PTAs. For example, PSR J0437-4715 has a
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Fig. 2 The maximum value of the amplitude of the pulsar timing resid-
ual due to the vector DM is indicated by the red line. The gray line
corresponds to that of the scalar DM. Here we took the energy density
of the DM as ρ = 0.4 GeV/cm3

weighted root-mean-square of the timing residual 0.11 μs
[36]. In the near future, the Square Kilometre Array (SKA)
project with suitable 250 pulsars may be able to measure with
an accuracy of the order of 10 ns [37].

4 Discussion and conclusion

We have studied the pulsar timing signal of the ultralight vec-
tor DM. The vector DM in a galactic halo oscillates coher-
ently and monochromatically with a specific frequency deter-
mined by its mass (24). The oscillation induces the time-
dependent metric perturbations. The metric perturbations
yield a redshift of propagating electromagnetic fields. Since
the frequency of perturbations is typically in the nHz range,
the redshift due to the DM is detectable by PTA experiments.
The signal is monochromatic unlike the stochastic gravita-
tional wave background e.g. generated from the very early
universe [38–42], the population of massive black hole bina-
ries [43–46] and the cosmic string network [47]. Remark-
ably, we have shown that the pulsar timing residual due to
the vector DM has a nontrivial angular dependence. Espe-
cially, when the direction of the vector oscillation and the
line of sight to the pulsar are parallel, the magnitude of the
signal becomes maximum. If the direction dependence of
the pulsar timing residual is found, it would be an evidence
that the dominant component of the galactic DM is a vector
field. Figure 2 suggests that when the DM halo is dominated
by the vector DM, that is, ρ = 0.4 GeV/cm3, and its mass
m � 2 × 10−23 eV, the amplitude of the timing residual
reaches 10 ns at the maximum, which is the expected preci-
sion of the SKA project. It is intriguing to observe the cor-
relation between the statistical anisotropy [48–51] of isocur-

vature perturbations induced by the vector [11] and the pre-
ferred direction detected by the PTAs.

We assumed the vector DM has no couplings to the Stan-
dard Model. Then, the constraints on the mass of the vec-
tor DM come from the superradiance of astrophysical black
holes and the structure formation. Since the superradiance
reduces the rotation of a black hole when the Compton
length of the vector DM has the same order of the grav-
itational radius of the black hole, the existence of rotat-
ing stellar-mass black holes excludes vector particles with
masses, 5 × 10−14–2 × 10−11 eV. Also, vectors with lighter
masses, 6 × 10−20–2 × 10−17 eV, have been excluded from
measurements of supermassive black holes, although they
have less reliability [52]. We should also keep in mind that
the superradiance constraints are given under the assumption
that the self-interaction is sufficiently weak [18]. Next, since
the ultralight DM would suppress the structure formation on
small scales, CMB data constrained masses of the axion-like
ultralight scalar DM in the range 10−33 ≤ m ≤ 10−24 eV
[53]. Recently, the Lyman-α power spectrum in the ultra-
light scalar DM model was calculated using hydrodynamical
simulations and compared with the observed data. It gave a
lower limit on the mass of the scalar DM as m � 10−21 eV
[54,55]. Thus, the masses detectable by future PTAs are in
tension with the above constraints at least in the case of the
scalar DM. Whether those can be directly applicable to the
vector DM is an issue to be considered. In any case, it is true
that the PTA experiments can independently constrain the
energy density of the ultralight DMs and determine whether
the dominant DM is vector or not.

As a future work, it is interesting to consider the detectabil-
ity of the vector DM with gravitational wave interferome-
ters [56]. Our discussion would be applicable to the astromet-
ric effects in a similar manner [57]. Moreover, it is important
to evaluate gravitational waves from the vector DM during
cosmological evolution [58,59]. We have extended the analy-
sis of the scalar DM to the vector DM. In this line of thought,
it is intriguing to study ultralight higher spin fields as the
DM [60–62].
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Appendix A: Photon redshift due to perturbations on a
flat spacetime

In this appendix, we calculate the photon redshift due to met-
ric perturbations on a flat spacetime. This section is based
on [57], where the effect of gravitational waves on a photon
trajectory is focused on.

Let the spatial origin 0 be the position of the observer.
The photon is observed by the observer at the time t0. We
write the unperturbed world line of a photon traveling from
a source to an observer as

xμ
0 (λ) = ω0(λ,−λn) + (t0, 0), (A1)

where ω0 is a frequency, λ is an affine parameter, and n is a
unit vector from the observer to the source (so that −n is the
propagation direction of the photon). The trajectory (A1) is
chosen so that the photon reaches xμ

0 = (t0, 0) at λ = λobs =
0. The unperturbed four-momentum of the photon is

kμ
0 = dxμ

0 (λ)

dλ
= ω0(1,−n). (A2)

If the distance between the source and the observer is |xs | ,
the affine parameter value λs at which the photon is emitted
by the source is given by

λs = −|xs |
ω0

. (A3)

Let us find the expression for the photon redshift up to
the first order of perturbations. We write the world line of a
photon as a sum of an unperturbed part and a perturbed part
as

xμ(λ) = xμ
0 (λ) + xμ

1 (λ). (A4)

Similarly, the four-momentum is written as

kμ(λ) = kμ
0 (λ) + kμ

1 (λ). (A5)

We will consider the contributions from the scalar perturba-
tions and the traceless part of the metric, separately.

A.1 Scalar perturbations

In the Newtonian gauge, the line element with scalar pertur-
bations is written as

ds2 = −(1 + 2�)dt2 + (1 + 2�)δi j dx
i dx j . (A6)

The scalar perturbations � and � are induced by the trace
part of the energy-momentum tensor. Linearized Christoffel
symbols are calculated as

�0
00 = �̇, �0

i0 = �0
0i = ∂i�, �0

i j = δi j �̇. (A7)

We use the photon geodesic equation

dkμ

dλ
= −�μ

νρk
νkρ. (A8)

From (A2), kμ
0 is independent of λ, so the left-hand side

reduces to dkμ
1 /dλ. On the other hand, since Christoffel sym-

bols are already the first order of the perturbations, only kμ
0

appears in the right-hand side. Considering μ = 0 compo-
nent, we have

dk0
1

dλ
= −�0

νρk
ν
0k

ρ
0

= −�0
00k

0
0k

0
0 − 2�0

0i k
0
0k

i
0 − �0

i j k
i
0k

j
0

= − �̇ω2
0 − 2 ∂i�ω2

0(−ni ) − �̇δi jω
2
0n

in j

= − �̇ω2
0 + 2 ∂i�ω2

0n
i − �̇ω2

0. (A9)

In the last line, we used δi j ni n j = 1. We integrate (A9) to
obtain a four-momentum:

k0
1(λ) = ω2

0

∫ λ

0
dλ′ (2∂i� ni − �̇ − �̇) + C, (A10)

whereC is a constant of integration. We determineC by con-
sidering the initial condition that the source emits a photon of
the frequency ω0 at the affine parameter value λs . In terms of
the four-velocity of the source uμ

s , the condition is expressed
as

ω0 = − gμν(xs)k
μ(λs)u

ν
s (λs). (A11)

Note that in the rest frame of the source, we obtain

u0
s = (1 + 2�)−1/2 � 1 − �, (A12)

to the first order of perturbations. Thus, from Eq. (A11), we
have
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ω0 = − g00(xs)k
0(λs)u

0
s (λs)

= ω0 + ω2
0

∫ λs

0
dλ′ (2∂i� ni − �̇ − �̇) + C + ω0�(xs).

(A13)

As a result, the constant C must be

C = −ω2
0

∫ λs

0
dλ′ (2∂i� ni − �̇ − �̇) − ω0�(xs). (A14)

The photon frequency measured by the observer with the
four-velocity uμ

obs can be found as ωobs = −gμν(xobs)kμ

(λobs)uν
obs(λobs), where xμ

obs = xμ(λobs). Using the expres-
sion uμ

obs = (1 − �(xobs), 0, 0, 0) in the rest frame of the
observer, we obtain

ωobs = − g00(xobs)k
0(λobs)u

0
obs(λobs)

= ω0 + ω2
0

∫ 0

λs

dλ′ (2∂i� ni − �̇ − �̇)

− ω0�(xs) + ω0�(xobs). (A15)

We can use the relation t = ω0λ + t0 along the unperturbed
photon geodesic, t = t0 at λ = 0, and t = t0 − |xs | at λ =
λs to rewrite this equation. In addition, the total derivative
with respect to λ is given by d/dλ = ω0∂t − ω0ni∂i . Then,
eq. (A15) can be rewritten as

ωobs = ω0 + ω0

∫ t0

t0−|xs |
dt ′ [∂i�(t ′) ni − ∂i�(t ′) ni ]

− ω0�(xobs) + ω0�(xs). (A16)

We now estimate the magnitude of the signal in PTA measure-
ments. The distance to a pulsar is typically |xs | � 100 pc [36],
which is much longer than m−1 = 0.6 pc × (10−23 eV/m).
Therefore, the integrand of the second term in (A16) is
rapidly oscillating, and hence becomes small after the inte-
gration. Moreover, since the spatial derivative gives k =
2π/λdB and m−1 is factored out from the integral, the second
term in (A16) is suppressed by a factor k/m = v ∼ 10−3

compared to the last two terms (see the discussion in Sect.
2). Thus, we can neglect the second term. As a result, the
redshift of the photon is given by

z = ω0 − ωobs

ω0
= �(xobs) − �(xs)

= �(t0, 0) − �(t0 − |xs |, xs). (A17)

A.2 Traceless part of metric perturbations

We apply the above discussion to the traceless part of metric
perturbations. We write the line element as

ds2 = − dt2 + (δi j + hi j )dx
idx j , (A18)

where hi j corresponds to the traceless perturbations. From
this metric, linearized Christoffel symbols are calculated as

�0
i j = 1

2
ḣi j ,

�i
0 j = �i

j0 = 1

2
ḣi j ,

�i
jk = 1

2
(∂kh

i
j + ∂ j h

i
k − ∂ i h jk). (A19)

In this case, the timelike component of the four-momentum
of the photon obeys

dk0
1

dλ
= −�0

i j k
i
0k

j
0 = −1

2
ḣi jω

2
0n

in j . (A20)

Integrating this expression yields

k0
1(λ) = − 1

2
ω2

0n
in j

∫ λ

0
dλ′ ḣi j (λ′) + C ′, (A21)

where C ′ is a constant of integration. We use the condition
(A11) to determine C ′. In the rest frame of the source, its
four-velocity is uν

s = (1, 0, 0, 0). So we have

ω0 = − gμν(xs)k
μ(λs)u

ν
s (λs)

= ω0 − 1

2
ω2

0n
in j

∫ λs

0
dλ′ ḣi j (λ′) + C ′. (A22)

Thus,

C ′ = 1

2
ω2

0n
in j

∫ λs

0
dλ′ ḣi j (λ′). (A23)

The frequency of a photon measured by an observer is cal-
culated as ωobs = − gμν(xobs)kμ(λobs)uν

obs(λobs). Since
uμ
obs = (1, 0, 0, 0) in the rest frame of the observer, we find

ωobs = − gμν(xobs)k
μ(λobs)u

ν
obs(λobs)

= ω0 + 1

2
ω2

0n
in j

∫ λs

0
dλ′ ḣi j (λ′). (A24)

To the first order of perturbations, hi j (λ) means hi j (x0(λ)) =
hi j (ω0λ + t0,−ω0λn). Hence, we obtain

dhi j (λ)

dλ
= ḣi j

d

dλ
(ω0λ + t0) + ∂khi j

d

dλ
(−ω0λn

k)

= ω0ḣi j − ω0n
k∂khi j . (A25)

Using this relation, we can rewrite (A24) as
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ωobs = ω0 + 1

2
ω2

0n
in j

∫ λs

0
dλ′ ḣi j (λ′)

= ω0 + 1

2
ω0n

in j
∫ λs

0
dλ′

(
dhi j (λ′)
dλ′ + ω0n

k∂khi j (λ
′)
)

= ω0 + 1

2
ω0n

in j [hi j (t0 − |xs |, xs) − hi j (t0, 0)
]

+ 1

2
ω0n

in j
∫ t0−|xs |

t0
dt ′ nk∂khi j (t ′, x(t ′)). (A26)

The third term is again negligible with the same argument
as the case for the scalar perturbations. Thus, we have the
expression for the redshift as

z = ω0 − ωobs

ω0
= 1

2
nin j [hi j (t0, 0) − hi j (t0 − |xs |, xs)

]

= 1

2
nin j [hi j (xobs) − hi j (xs)

]
. (A27)

In contrast to (A17), the redshift depends on the direction to
the source n.

Finally, we note that our discussion can be applied to peri-
odic pulses radiated from a pulsar and then ω0 and ωobs in
Eqs. (A17) and (A27) are identified as the angular frequen-
cies of the pulses at the pulsar and the observer, respectively.
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