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We study how to compute the operator product expansion coefficients in the exact renormalization group
formalism. After discussing possible strategies, we consider some examples explicitly, within the e
expansions, for the Wilson-Fisher fixed points of the real scalar theory in d = 4 — ¢ dimensions and the
Lee-Yang model in d = 6 — e dimensions. Finally we discuss how our formalism may be extended beyond

perturbation theory.
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I. INTRODUCTION

The exact renormalization group (ERG) provides a
framework to study the fundamental aspects of quantum
field theories (QFT). For instance, it allows one to give a
nonperturbative definition of renormalizable theories [1]
and to discuss the realization of symmetries at the quantum
level [2]. On top of being a conceptual framework, ERG
offers a framework for practical computations. It has been
used as a computational tool for the universal quantities,
such as critical exponents in statistical field theory (see,
e.g., [3,4]), and also as an exploratory tool in a wide range
of subjects including quantum gravity [5].

Besides ERG, the operator product expansion (OPE)
offers important insights into nonperturbative aspects of
QFTs [6]. Let us denote composite operators as [O,] and
the product of two composite operators as [0,0,]. OPE
states the validity of

0,90, = XCanle=n [0 (52)]

inserted into any correlation functions for small |x — y|. The
existence of OPE has been proved perturbatively by
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Zimmermann [7] and plays a fundamental role in the study
of conformal field theories (CFTs). Since both ERG and
OPE offer nonperturbative insights into QFT, it is natural to
study the relation between the two.

ERG was used to provide a perturbative proof of the
existence of OPE [8—13], but little effort had been made to
explore OPE within ERG beyond perturbation theory. In
[14] a nonperturbative definition of operator products was
given, and simple examples of OPE were constructed in the
Wilson action framework. Recently, composite operators
have been constructed explicitly in the ERG formalism to
make contact with various physical observables [2,15-22].

In the present work we construct explicit examples of
OPEs within the effective average action (EAA) framework
[23]. We identify two possible strategies to compute OPEs
via ERG. One is based on the construction of operator
products and their expansions in composite operators, and
the other is based on the computation of three-point
functions for theories with conformal invariance. We study
explicit solutions of the ERG equations perturbatively with
the e expansions and compare our results with those
obtained via the conformal bootstrap [24-28]. We also
comment on how we may extend our strategies to non-
perturbative approximation schemes available within the
ERG formalism.

The paper is organized as follows. In Sec. II we define
composite operators and their products in the ERG for-
malism. We then consider the expansion of an operator
product in composite operators and outline two possible
strategies for the calculation of such an expansion. In
Sec. Il we give technical remarks to explain how to
construct operators at the Wilson-Fisher fixed point.

Published by the American Physical Society
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Discussions of a fixed point require fixing a momentum
cutoff, and we augment the technical outline given in Sec. II
where the momentum cutoff flows. Section IV is a long
technical section, where we construct some composite
operators explicitly and normalize them appropriately.
In Sec. V we apply the results obtained above to extract
OPE coefficients and discuss our findings. We summarize
our results in Sec. VI and discuss the future perspectives.

II. OPERATOR PRODUCT EXPANSION
IN THE ERG FORMALISM

A. Operator products in the ERG

We extend the usual ERG formalism by introducing
external sources that couple to composite operators so that
the correlation functions of composite operators can be
retrieved directly from the Wilson action. In this paper we
actually prefer to discuss the 1-particle irreducible (1PI)
counterpart of the Wilson action, known as the EAA, so
that we only need to deal with the 1PI part of the correlation
functions which are relevant to the short distance singu-
larities. A fully analogous construction applies to the
Wilson action; see [14] for example. For an overview
regarding composite operators in the ERG formalism, we
refer the reader to [2,14,15,29,30].

Let us consider the following modified generating func-
tional of connected correlation functions:

Z[J. €] = eWil/]
EZ/D)(exp {—SM +/dde(x);((x)
—/ddxsi(x)Oi(x) - ASkM},

where S[y| is the bare action and we have introduced the
sources J(x),&;(x) to the elementary field y(x) and the
composite operator ;(x). The momentum k is an
IR cutoff, introduced via the IR cutoff action AS;[y]
defined by

asii = [ dixppRa-0)y

The kernel Ry (—0%) = k*R(—0?/k?) suppresses the inte-
gration over the low momentum modes of y.

The EAA is then defined by the Legendre transform of
WilJ. e,

HW@+AMﬂ=/Wﬂmwﬂ—%M%

where
5Wk [J, 6']

and no Legendre transform is performed over e. A com-
posite operator [O,](x) is defined by

. " -

FIG. 1. Diagrammatic representation of the full correlation
function [O,0,] in the EAA formalism. The black dots denote
composite operators [O,], [O,], i.e., the terms linear in the

. . 33
sources e. The black square is the quadratic term =21 | _.
Oe,0¢), 1€

10,)(x) = ele-e] @)

580 (x ) e=0 ‘

This is motivated by its correspondence with 5% Z, at fixed
source J. As a functional of ¢, [O,](x) gives the 1PI part of
the correlation functions

<[Oa](x))((x1) o ')((xn»S
in the limit £ — 0.

The product [O,0,](x,y) of two operators [O,](x),
[Op](y) is defined by

__ OTiee STlpe]
[0.0p](x.y) = e, (x)3e, (1) |oo /Z 2 86,(0)50(21) | oo
5T [(p,g]
XGk(ZleQ)m »
SUilp.el|  oklg.é]
e, (x) |,—o 6e0(y) |oso’ (3)

where G(z1, 22)[@] is the field dependent high-momentum
propagator defined by

/dx#nmm
5p(z1)d¢(x)
= 5(21 - Zz)- (4)

Gi(x,22) + Ry (—82)Gi(z21. 22)

The product [O,0,](x,y) can be represented diagrammati-
cally as in Fig. 1 which is motivated by its correspondence

with &Z,‘ at fixed source J." See also [16].

'"The connected part of the product is given by

62

—| W
5517 (xb)‘sea (xa) J

5T @.€ 5T @.€ 5T @.€
L Sred [ oTled g Prled
e, (x4)0ep(xp) iy 0Es(xp)500(x) 3ep(y)dey(xq)
where we have used

B 5T, €] . 1)
, AﬁwmwwG“WMM‘
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Both [O,] and [O,0,] can be constructed from the
associated ERG, as summarized below. The EAA T';[o, €]
satisfies the ERG differential equation [23,31-33]

Ol el =y Tyl + ROTORL, (5

where
0
=—-k—
8[ 6[( ’ (6)
and F,(f) [0, €] = g;g; is the Hessian of the EAA with respect

to the average field. By taking the functional derivative of
|

Eq. (5) we can derive the flow equations for composite
operators and for the IPI contributions to the operator
products (3). More precisely, we obtain [2,29,30]

where [0,]?) = 5{%([, [O,] is the Hessian of the composite

operator. For the products, we obtain

8T, g, €] ! o) o 8T 0,0 o o
_ =—-Tr|( R —* = - (' R O R
Seal0)0800) o 2rkk+k)%mwm%k+k)’k
(2) (2)
2 ~100, " [9,0] (2 100 [9.0] (2 1
Tr| (" R —r - (T R —r - (I R OR,|. 8
aelrp Ry TS Ry LR Ry o R 9

By solving Eqs. (7) and (8), we can construct the operator
product [0,0,] as in (3).

B. Operator product expansion coefficients
in the ERG formalism

The operator product expansion (1) and its connection to
ERG has already been studied in the literature [8—14]. The
ERG framework provides a further perturbative proof
of the existence of the OPE [8-13]. Actually, in the ERG
formalism, the OPE (1) amounts to expressing the operator
product [O,0,](x,y), given by (3), as an expansion in a
basis of composite operators, given by (2). Thanks to the
built-in locality, it has been argued that such an expansion
is natural in the ERG formalism [14].

Let us emphasize that Eq. (1) is expected to hold along
the entire RG trajectory. When the theory is at criticality,
however, we expect

(OO0 = o 9)

Cx—y

to be valid at large distances if the operators are normalized
properly. Then, the OPE coefficients in (1) are given by

Cabe
L (10)

Cabc (x =y )
where A, is the scale dimension of the operator [O,] and
Cape 18 a numerical factor. We refer to this numerical factor
Cape @ an OPE coefficient. Theories with conformal
symmetry are the IR limit of such critical theories, and
the OPE coefficient c,,. appears as the overall coefficient
of the three-point function

([Oa](x1)[Op] (x2)[Oc](x3))

Cabe
= — - —, (11)
()42 ve (x35) 2 va (x, )42

where x7; = |x; = x;|?, ¢ is fully symmetric in its indices,
Vg =%(d+A,— A, —A), etc.

The main aim of this paper is to lay down a possible
strategy for computing the OPE coefficients c¢;; within
the ERG framework. We can consider the following two
possibilities:

(A) Construct the full operator product [O,0,] first, and

expand it in a basis of composite operators [O.].

(B) Assuming conformal symmetry, extract the coeffi-

cient c,p. directly from the three-point function

given by (11).
The strategy (A) has been followed in [14] to provide
simple examples around the Gaussian fixed point.
Although available in principle, this strategy is cumber-
some in practice. Since one usually works in momentum
space, it is easier to construct the most singular (i.e.,
nonintegrable) part of the OPE rather than the full (i.e.,
including the finite part) OPE.

In this paper we will consider the approach (B) in
detail within the ERG formalism. We will extract OPE
coefficients from the associated three-point functions. We
calculate in momentum space rather than in coordinate
space. In Sec. II C below we recall a few basic features of
conformal invariance in momentum space and explain the
main points of our recipe. As a side note, we point out that
ERG is a very efficient framework to discuss the presence
of conformal invariance [34—40].

105007-3
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We apply the strategy outlined above to compute some
examples of the OPE coefficients. We solve the ERG
differential equations perturbatively and express the results
via the ¢ expansion. This allows us to compare our results
with others that have been obtained in the literature
by means of the analytic conformal bootstrap approach
[24-28]. In particular, we will compute the coefficients
“c112” and “cq14” to the first order in e for the critical Ising
model in d = 4 — ¢ dimensions, and the coefficient “c;;”
to the first order in /e for the critical Lee-Yang model in
d =6 —¢ dimensions. Our results agree with those
obtained by other approaches.

C. Operator product expansion coefficients in
momentum space

Calculations in quantum field theory often rely on
momentum space, where the loop corrections are most
easily expressed and computed. On the other hand, for-
mulas regarding OPE are often most naturally expressed in
real (coordinate) space, especially in the case of CFTs. In
this subsection we briefly describe the connection between
expressions in real space and those in momentum space.

Conformal symmetry in momentum space has been
analyzed in the literature in some detail; see [41-48] and
references therein. We only need a few very basic formulas,
which we review below (a few more technical details are
|

provided in Appendix A). We refer the interested reader to
the literature given above for more details regarding the
constraint imposed by conformal symmetry in momen-
tum space.

Let us consider a set of primary operators ¢;, normalized
by the two-point functions

($i(5(0)) = 55555 (12)

X

In momentum space this normalization gives

d_ A. A
BP0 = @ryolp+q)-wn TE S ()T

where we have used (A2) given in Appendix A.
The Fourier transform of the three-point function

(1 (x1)Pa(x2)p3(x3)) = C123

(a3, 47274 (a3 ) 1270 (x, ) /20

(14)

[the same as (11)] is given by a somewhat complicated
expression either as a momentum integral or via special
functions. To avoid such complications, we consider the
limit p; > p,, where we find

p1>p C
(D1(p1)d2(p2)g3(=p)) — (2”)d5(171 +p2=p)- pd‘f‘Az—All—zZzpd—ZAz
1 2

% (4ﬂ)d4—%(A,+A2+A3

To extract the coefficient c|,3, it is enough to know this
asymptotic behavior. We provide a few more details of this
formula in Appendix A.

III. WILSON-FISHER FIXED POINT

In this section we wish to discuss technicalities that are
quite important for our calculations. In the main part of this
paper we consider a real scalar theory at its criticality in
d = 4 — e dimensions. In doing so with ERG, we have two
alternatives:

(C) We start from a bare theory Sg[y] with a large but
finite cutoff k,. We tune the bare parameters to make
the theory critical. We then construct the EAA
I'i[p,e] whose k dependence is determined by
ERG. In the limit k — 0, I'; becomes the I1PI
generating functional of the correlation functions.
A conformal field theory is obtained as the IR limit
of the critical theory; i.e., we must look at the
correlation functions for the momenta much smaller
than the bare cutoff k.

)F(% (d+ 8, —A)—Ay))T(4 - Ay)
LG(A+A3-4,))  T(4Ay)

(15)

(D) We adopt the dimensionless convention by meas-
uring all dimensionful quantities in appropriate
powers of the cutoff k. The resulting 1PI EAA
[,[@, € has a fixed cutoff of order 1 and satisfies
an ERG differential equation with the Gaussian
and Wilson-Fisher fixed-point solutions. T, [, £]
at the Wilson-Fisher fixed point gives the corre-
lation functions of a conformal field theory, but
only for the momenta much larger than the fixed
cutoff [49].

We prefer (D) because it is easier to construct a
fixed point than to tune a bare theory for criticality. For
completeness and the convenience of the reader, let us
rewrite the relevant ERG differential equations in the
dimensionless convention.

We first introduce dimensionless fields by

?(p) = K% p(pk), (16a)

[Oi](p) = k*=4[O})(pk), (16b)

105007-4
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&(p) = k%e;(pk). (16¢)

where d; is the scale dimension of [O f er*[O
in the coordinate space at the Gaussmn ﬁxed pomt It 1s
sometimes called the engineering dimension.

s (50 o0 B

where G,., _,[(. €| is defined by

__( &T.p. . _,
| Genalol (i + Rla) ol )
= (r)io(p 1) (19)

The cutoff function R(q) is a fixed function.

We are interested in the ERG flow from the Gaussian
fixed point to the Wilson-Fisher fixed point. We para-
metrize the flow by ¢ so that the Gaussian fixed point is at
g = 0, and the Wilson-Fisher fixed point is at g = g,. We
can then replace 0, by

(69 + ﬂ(g))ag’

where € is the scale dimension of g at g = 0. Accordingly,
['(g)[@] = T,[@, 0] satisfies the ERG equation

{{eq +P9))3, + B} ()7
- [ @=p-0)R()-36(), 10 (20

where we define A and G(g), _,[@] by

+ / (di+p-0,)2(p):

We then define

(9.8 = Tifo. ], (17)

where we have traded the momentum cutoff k for the
logarithmic flow time ¢, given by (6). The ERG differential
equation for T',[@, ] is given by

51:}[@,5‘] 1 L
5g;(p) _/,,(2_p’ap)R(P)'EGt;p,—p[fﬂ,f]v (18)

|

Actually, for the Wilson-Fisher fixed point to exist at
g = g. = O(¢), we need to introduce an anomalous dimen-
sion1n(g) = O(g?) of . Since we are only interested in the
corrections of order € to the OPE coefficients, we can
ignore it. In Appendix B we obtain f(g) to order ¢* to
determine the fixed-point value

B (4r)?
g = 3

e +0(e). (23)

Similarly, differentiating (18) with respect to €;, we
obtain the ERG equation for [O,] as

{(eg +P(9)0, +d —d; + p -9, + A}l (p)
=2 _r(@[0]l(p)
- [e-a-0)r@); [ 6(0), 10

X T)G(Q)—s,—q [(,_0] (24)

The mixing matrix y;;(g) results from appropriate boundary
conditions imposed at p = 0. Differentiating (18) once
more, we obtain the ERG equation for

&T(9)[9. &
68;(—p1)0&;(—=P2) =0

Qij(plvPZ) =- (25)

as

{(eg+p(g ))8 +2d—d;—d;+py-0), +pr-0,, +8;12i(P1.p2)

=2l

182Q;;(p1.p2)

(9)Quj(P1: P2) +7k(9) Qik(P1 P2) +7iji(9) [Od(p1 + p2))

- [e=a-0)r@) [ G0, 0160, 0) (550

0(p) R0)(p)
>+/Ma<o<> e R ))’ (26)

105007-5
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where the mixing 7;;(g) is due to appropriate boundary
conditions imposed at p; = p, = 0.2

We have thus given the defining ERG differential
equations for T'(¢)[@], [Oil(¢; p), and Q;;(g; p1. p2). We
end this section by summarizing how to extract the two-
and three-point functions out of these [49]. We first set g to
the fixed-point value g, to go to the Wilson-Fisher fixed
point. To extract the two-point function of the elementary
scalar field, we expand

M)l =5 [ o) Caelp: + pIT ()
o (27)

in powers of fields. For p > 1, we obtain the two-point
function as

(@(P)p(q)) = =7 2n)*6(p + q). (28)

@ (p)

Similarly, the field independent part of

[@i@j](g*§pl»l)2) = [@i@j](o)(pl)<2”)d5(pl +p2)t--
(29)

gives, for p;, p, > 1, the two-point function as

(Oi(p)Oj(p2)) = [0:0,1”(p1)(27)*5(p1 + p). (30)

Finally, the part quadratic in fields of

©Olgir) =3 [  alp)alp)en)a(py + p2 =)
x [0 (p1,p2) + -+ (31)

gives, for p;, p, > 1, the three-point function as

(P(=p1)p(=p2)Oi(p))

A CIT S —

F(2) (pl)lz.(z) (pz) (277:)d5(p] + P2~ P)

(32)
for Z,-invariant operators [©;]. This equation needs to be
modified as (115) if the fixed point has no Z, invariance.

In the remaining part of the paper we work only in the
dimensionless convention. Hence, we omit the bars above
the symbols altogether.

2Equations (24) and (26) are derived by employing renormal-
ized sources.

IV. SCALING OPERATORS FROM ERG

In this section we construct explicitly scaling composite
operators ¢; at the Wilson-Fisher fixed pointind =4 —¢
dimensions by solving the ERG. Composite operators are
solutions of (24), which we write again as

(P9, +4,)[0](p)+(dé;; = A:;))[O;](p)

R o))
=3 C-a-0)r) [ 6,0, el TR
€9

where G, ,[®] is defined by

| nale) (s + Ra)2m ol =)
— (2m)s(p — 7).
o

A(pz/l (‘#‘Waq)(ﬂ(fﬂ‘m-

A;; is the matrix of scale dimensions, and it is not diagonal
in general,

and

Ay =di;; +vij,

where d; is the engineering (mass) dimension of O; in
coordinate space and y;; is the mixing matrix.

The scaling composite operators ¢; are suitable linear
combinations of composite operators that diagonalize the
mixing matrix A;;. The scaling operators [®;] for the
eigenvalue A; satisfy

(p-0p+d—24;+4,)[®](p)

2(.
= / 2-a-0R(0) [ Gq,_,[coJG_q,_s[(p]—5‘;([3;;;’2).

(34)

We can then introduce a normalization constant \/; so that
¢; = N|®@,] satisfies the normalization (12). Note that the
coefficient \; depends on the space dimension d, and
therefore on €. Possibly, the simplest example along this
line is given by the field ¢, = N';@, which we describe in
Sec. IVA.

Of course, before solving the ERG for the composite
operators and their products, we need to solve the ERG
equation to obtain I, [¢] at the fixed point. In this work we
use perturbation theory to solve the ERG explicitly. Since
solving for I', [¢] is not the main focus of this paper, we give
the first order derivation of T, [¢] in Appendix B. For the
present purposes, it suffices to say that the EAA para-
metrized by g is expressed as

105007-6
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1
C(9)le] =5 / o(p)p(-p)v®(g; p)
P
| 4 4
+ 5/ ¢(pi)(27)?5 <Z pi— p)
TSPl Pa j=1 i=1
x 0@ (g; py. ..y pa), (35)
where
v (g p) = p? + g7, (36a)

)

v (g p1s..opa) =g+ Fvy (pr.....pa).  (36b)

v§2> is a constant given by (B11), and the momentum

dependent v?) is given by (B15). The Wilson-Fisher

fixed point corresponds to g = g, = (4’;)2 € up to order e.

We introduce the high momentum propagator and its
derivative by

1

h(p) = pz+—R(p)’ (37a)
_ ~ (2-p-9,)R(p)
f(p)=(p-0,+2)h(p) = IR (37b)

Both R(p) and f(p) decay rapidly at p > 1. To second
order in g the beta function is given by

B(9) = g’ = (‘3/qf(61)h(Q))927 (38)

where

1
| rna) = i+ 0t (39)

Using this result, calculated in Appendix C, we obtain g,
given in (23).

A. The scaling field ¢,

To first order in g, we obtain

r@ (g p.—p) = p* + v’ (40)
where
o =5 [ fa@) (@1)
2-¢/,
is a constant. As p — oo, we obtain
r®(g; p,—p) = p*. (42)

Hence, to first order in g, the two-point function is the same
as the Gaussian theory:

W()o(q)) = §<zn>d5<p o). @)

Taking the inverse Fourier transform, we obtain

1 1
(p(r)e(0)) = N (44)
where
1 1 d-2
Lo Le(4) )

(See Appendix A.) Thus, ¢, = N'|¢ has the normalization
of (12).

B. The composite operator [p?/2]

In this subsection we construct the composite operator
[?/2]. This satisfies the ERG equation

((eo+ 902, + 90, + 2+ 8,)[507] )

=12(9) B(ﬂz] (p) + /(2 —q-9,)R(q)

q
1

5 1,
X 5/” G(g)q,—rG(g>—s,—qW [Efﬂ }(P),
(46)

where y,(g) is the anomalous dimension. To solve this, we
expand the operator in powers of ¢:

0= o [ o)

S Pl P j=

: (Zﬂ)d5(z pi— p) (g prsoees P2n)-
(47)
We normalize the operator by the condition
c?(g;0,0) = 1. (48)

This determines y,(g). To order g, we only need the first
two terms n = 0, 1. We expand

(g p1.pa) = (P pa) + 97 (P pa), (49a)
cO(g) =l + gcl?, (49b)
r2(9) = g72.1- (49¢)

105007-7
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1. Order g°
Equation (48) gives
2
¢ (p1.p2) = 1. (50)

independent of momenta. For n = 0, the ERG equation
gives

(0) 11 (2)
— - — 1
o 2_62/qf(61) v (51)

2. Order g'
For n = 1, the ERG equation gives

<Zpi'api +€> 052>(P1,P2) =721 —/qf(Q)h<Q+P>-

i=12

(52)
Equation (48) gives
/ fl@h(a) =25 =% L (53)
}/2 1= q (471_)2 .
Hence, the equation becomes
<ZP;‘ - 0p, + €> C(lz)(Pl, p2)
i=12
—— [ Ha)bta+p)=ha). (54
q
This has no homogeneous solution analytic at p; = p, =0.

Hence, the solution is given uniquely by

przifp ](p q)= Efpz] (p) Bfﬂz} (¢)+ / 5(/}%

The 1PI part is determined by the ERG equation

{(eg+p(9)0y+p-0,+q-0,+4+A,}Qn(g:p.q)

wz] (P)-G(9)-, o]

P (p1, pa) = —F(p), (55)

where we define

/ hg)(h(g + p)—h(a)).  (56)

q

For n = 0, the ERG equation gives
(=2 +26)c\” = 0. (57)

We have thus obtained

37|05 [ opowrotont )-8 ()
+o7 (22)8(p). (58)

The anomalous dimension is

Lo, (59)

72(9+) 3

=7219« =

C. The scaling field ¢,

To determine the normalization

10 = N2 02| ). (60)

we need to compute the two-point function of [1¢?].
Let

5q05(s) Bw} (q)+9Qxn(g:p.q). (61)

. d 1 62 .
= 212(0)Q2(5:.0) + 1o @83(p +0) + [2=r-00R0) [ 600,600 55y Q2600
5 1, & ,
+ | oo 57 P00 s (579 ) (€2
We expand
Qs(g: 1. q) i / H(/’ )(2x) ‘15<Zp -p- q>d‘2”)(g;p,q;p1,-.-,pzn)~ (63)
n:() Pls-sPon j= i=1

The mixing y5,0(g) is determined by the normalization condition
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d%(g;0,0) = 0. 4
(4:0.0)=0 O 4P (pgiprp) =) [ W+ P+ pa). (70)
To first order in g, only d®) and d® are nonvanishing. We
expand For n = 0, the ERG equation is
d2(g;p.q: p1.p2) = 947 (p.@:p1.p2)s (652)  (p-a, +26)d (p.—p)
d9(g; p,—p) = dy (p,—p) + 9d\" (p,—p),  (65b I
(¢:p.=p) = dy (P, =p) + 9di"(p,=p),  (65b) - _E/f(‘” / h(P2h(r + p)
r22.1(9) = Y2210 + 9ra2.1.1- (65¢) / '
o [ @FOMIG + )+ WP A+ )
1. Order g° r
The ERG equation is - 2/f(r)h(r+ P)F(p). (71)

(p-0, +€)d(()0) (P.—P)=72m00+ / f(r)h(r+p).  (66) Equation (64) determines

Equation (64) gives
1 722,01 = 25”22) / h(P)3- (72)
722,00 = —/f(r)h(r) = gﬁz- (67) b
Hence, we obtain The solution is
O .y —
dy (p.=p) = F(p). 8) ) (pu=p)==of? [ Pt +p) =) = Flp)
2. Order g! (73)

For n = 1, the ERG equation is
Thus, we obtain

2
(Zpi'ap, +P'ap+‘1'3q+2+€>d52>(19»q;p1,p2) d"(g.; p.—p)
i=1

= F(p)+a.{ =08 [ B0POG + )= h(r) = F(pP .

r

- () / () + p)h(r+ p + )

+h(r)f(r+p)h(r+p+q)

+h(r)h(r+ p)f(r+p+q)). (69)  For large p, this gives the two-point function of [}¢?].

The asymptotic behavior of F(p) for large momentum

The solution, analytic at zero momenta, is given is obtained in (CI1). We then obtain the two-point
uniquely as function as

(74)

2 2
(%)% @) = Q1500+ 0)(Fayng(5) = . Frym (")

1 2
= (27)45(p + q) [— ln% + const

2(4r)?
1 p2 2 p2 1 4 S
+€{E <ln7> +IHI-8<7—2—1I171'+§(47I) ﬂ2(0)> H (75)
| 1 1/ 1 d—2\\?
3. Normalization for ¢, A2 =5 (4H§F<T)> (1 + Ae). (76)

We wish to determine the constant A, so that ¢, =
N> [@?/2] is normalized as in (12). We expect N, to differ
from the value at the Gaussian fixed point at order €, and we Since the scale dimension of ¢, (in coordinate
parametrize it as space) is
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2
Azzd—2+yz(g*)ﬁ2—§€, (77)
we expect, from (13),

2

1 ,,r(g—4+§e) <4 )%—H%e
p

(37030 ) = 3 @a(ia(a) = ea(p+ )t
3

3

p—

1 2 2\ 2 2
~(27)%(p+q) [ lnﬁ+const+e{<lnp> +ln%

3(an) T 1 (—6A—4—y— 31n7z)}} (78)

Comparing this with (75), we obtain

A=— ;( byt (40 )) (79)

D. The composite operators [p*/4!] and ¢,

In this subsection we construct the composite operator [p*/4!]. This satisfies the ERG equation

((eo+ 900, + 00+ e+ 8} 310 (0) = 1s) 31| (0) 4 ragmalo ) + v 502 0)
1 5% 1,
- [@=a-0080)5 [ 06,60 g 5 0)
(50)

where y4(g) is the anomalous dimension. To solve this, we expand

el St o con(onon v

----- Pon j=

We normalize the operator by the condition

(4:0.0.0.0) = 1. (52) ra(9) = gras- (84d)
This determines y,(g). The mixing is determined by the We do not need to calculate ¢,
additional boundary conditions at p; = p, = O:
1. Order g°
c2(g: 1. p2) = €2(9:0.0) = O(p*). (83)  orn—2. Eq (82) gives
To order g, we only need the first three terms n = 0, 1, 2.
We expand c(()4) _ L (85)

C(4>(93P1v '~-7P4) = C(<)) +gC(1 )(plv "'7p4>7 (843)

For n = 1, the ERG equation gives

2) 2

cD(gip1.p2) = ¢y’ +9ci”(p1.pa).  (84b)

P=-11 / f(g) = o2, (86)

cO(g) = c(() ) 4 gc(l ), (84c) 2-¢€2),
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2. Order g!
For n = 2, the ERG equation gives

4
<ZP1' -0, +€)C(14)(p1, coer P4)

i=1
= V41— / F(@)(h(q + py + p2) + h(g + p3 + p4)
q
+ (¢, u channels)). (87)

The normalization condition (82) at p; = 0 requires

i =6 | F@hla) = <25 (38)
q
We then obtain

et (Pr. e pa) = =F(p1 + p2) = F(ps + pa)
— (, u channels). (89)

For n = 1, the ERG equation gives

2
(S0, 20-2)ePin

i=1

= =260 + V4 o2 (=) (PT + PB) + Va2 g2 2 (— D7)
~of) [ s@mta+p) =5 [ @) )
q 2 q

—052)/f(Q)h(q)—/f(q)(F(Q+p1)+F(C1+pz))-
(90)

The boundary conditions (83) at p; = p, = 0 demand

Yapore = M2 (913)
= e L F(p=o0 91b
V4,022 /2 = —4€V) d—p2 (p=0), (91b)
where
d
m=-73 f@)F(g+p)| - (92)
p q p=0
The solution is given by
(2) (2) . d
¢ (pi,p2)=-v"(F(p)—p d_ng(P =0)
= G(p1) = G(pa). (93)

The function G(p) is defined by

(p-0,-2+2¢)G(p) =/f(61)F(q+p) +vﬁz)§ﬂz +mp?,
q
(94)

and the condition

=0. (95)

Ll! rp“] (p) = % li[qo(p,-)(Zn)d& (Z: P — ,,)

CS Pl Pa =1

x (1 =g(F(py + p2) + F(ps +ps) +--+))

+%~/Plvp2 @(p1)e(p2)(27)'5(p1 + p2 — p)

x {052)(1 —9<F(P) —pzd%zF(O)»

—mG@o+me»}. (9%)

3. The normalization N,

Before discussing the normalization of the scaling
operator ¢, let us recall that ¢, is actually a linear
combination of [p*/4!](x), pd*¢p, and the total derivative
0?¢?/2. The operator @d*p is an equation of motion
operator whose correlation functions vanish at separate
points (the equation of motion operator contributes to
correlation functions only via delta functions). Hence,
the mixing with p0?¢ is totally harmless. Thus, the mixing
with the total derivative and the equation of motion
operator can be neglected for our present purposes.3

We determine the normalization factor A, to the
leading order in ¢, i.e., O(¢). Since ¢4 vanishes in the
Gaussian theory, we have ¢4 ~ €, and the O(¢) correction
to NV, is relevant only for the OPE coefficient to higher
orders. Therefore, we can take the Gaussian value of A/,
given in (A9):

111 1 d—2\4
J\Tﬁzﬂﬁfzm%ﬂr( 2 ) 67

It is also possible to obtain this result directly in the ERG
framework. The computation in momentum space requires
three-loop calculations, and we do not display it here.

*Note that, since we are interested in the OPE coefficient at the
Wilson-Fisher fixed point, we could solve directly the fixed-point
equation for the scaling composite operators and their products.
This leads to the same final OPE coefficient but the calculations
are somewhat more cumbersome.
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V. OPE COEFFICIENTS FROM ERG

As mentioned in Sec. IIB we will deduce the OPE
coefficients from the three-point functions of the associated
operators. In this section we compute the coefficients ¢y,
and cq14 to order € at the Wilson-Fisher fixed point. The
three-point functions involved are, respectively, (¢;¢¢p,)
and (¢, ¢ ¢,). We have already explained how to compute
these within the EAA formalism in Sec. III.

Using (32), we obtain

J\ﬁ (¢1(=p1)@1(=p2)#2(P))

= <§0(—P1)€0(—P2) [(/ﬂ (p)>-

1 [,]® )
=22 27 (P1.p2)(27)8(py + p2 — p), (98a)
Pip;

Aﬁ@l(—plm,(—pz)m@»

_ <¢(—p1)w(—1’2) [%“"4] o )>

1 |1 @)

=25l {Zfﬂq (P1:p2)(27)*8(py +p2—p),  (98b)
where we have to take the momenta much larger than the
fixed cutoff of order 1.

We now have all the ingredients to compute the three-
point functions of the normalized fields. In Sec. IV we have
determined the normalization constants A; and the
composite operator vertex functions [O] (2) entering (98).

|

P1>p2

(1(=p1)d1(=p2)2(p)) — (2”)d5(P - P1—D2) pd_A2

To finally read off the OPE coefficient we compare the
limit p; > p, of (98) with the expectation from CFT (15)
with an unknown OPE coefficient c;y;. It is interesting to
note that taking either one of p; or p, much larger than the
other corresponds to taking an OPE in the three-point
function. For instance, if we take p;> p,, we are
effectively taking the short distance limit of the product
d1(=p1)¢i(py + p). Of course, if one applies the same
reasoning to the case p, > p; one can read off the same
OPE coefficient. This is manifest in our vertices since they
are symmetric under p; <> p,. Taking one of the momenta
much larger than the other corresponds to a short distance
limit, and the comparison of the two limits p; > p,
and p, > p; reminds us of the bootstrap associativity
requirements.

A. The OPE coefficient c;;,
We expand the OPE coefficient

¢ = V2(1 + Be) (99)

to first order in €, where \/E is the value for the Gaussian
theory. We compute B by comparing the result obtained
from the ERG with that expected from CFT. For com-
pleteness, we also sketch an alternative method by con-
structing the operator product [¢h; ¢b,] and expanding it up to
the operator ¢;.

1. From the three-point function
Using a result (15) from CFT, we obtain

€112 (4ﬂ)d F(% (d— Az))

i , 100
p344=2k FGA)CG(d-2)) (100)

1

where we have substituted the Gaussian value A; = % (d —2). Now, using the results from Sec. IV, i.e., A, (77), N'| (45),

and NV, (76), (79), we obtain

1
2

o=p)o(=p2) |2 02| () ) = o (1 (=21 )01 (=P2) ()
( 27| =5,

1 \T1=-9T(1-95 1 [p?\é
”ﬂz(1+36)<1+§Ae)( ol Cd <ﬂ>6

PiP;

[We have omitted (27)98(p, + p, — p) for simplicity.]
We compare this with the result from (58):

r(1-5  pipi\4

= % {1 + e{B +é (m’f ty—lnz—1- % (4@%(0))” . (101)
. {ln%%—l—y—lnﬂ—2—§(4ﬂ)2ﬁ’2(0)}. (102)

2

Hence, we obtain

1 (2) p1—0 €
[—fpz] (P1:p2) — 1= g Foymp(P1) = 14—
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1

B=——. 103
. (103)
In conclusion we have obtained
1
C112:\/§<1—6€) (104)

to order ¢, in agreement with the results in the literature [28].

Finally, it is interesting to note that the final result (104)
is independent of the form of the cutoff kernel R(p). This
signals the physical nature of the OPE coefficients. In the
present case, this is achieved by a cancellation of cutoff

. 21(2
dependent factors present in A/, and ["’7]< ),

2. From the operator product

We consider the operator product [¢[@?/2]] and expand it
up to a term linear in the fields:

oo [5] )] = i (2572 )t o)+
(105)

Let us first consider what is expected for the Wilson
coefficient in momentum space. We recall that C,; ~ x™22,
and A, ~2 — %e. To linear order in € one has

4n? y 1 1 In2
CIZI(P) = \/EF |:1 +€<B—6+EIHP2—§IH7T—T>:| .

On the other hand, ERG gives
1 -0 1 [1 @
{rp(p) [5 (ﬂz} (Q)] = = [5 (pz] (=p.q+ p)o(q + p)

= #(1 _g*Fasymp(q))(p(q + p) (107)

The comparison reproduces

Clp = \/§<1 —g)

B. The OPE coefficient ¢4

At order O(g") the theory is Gaussian so that ¢;;4 = 0 to

order €°. We then expect
ci1is = Ce + O(€?). (108)

Hence, we can use the Gaussian values for the scale
dimension
Ay=2(d-2)=4-2¢ (109)

and NV, (97).

Hence, from (15), we expect

<<p(—p1)¢(—172) E cp“} (p)>

_ ﬁwl(—plml(—pz)mm»

p1—0 Cl14 1 1 € 2

— (27)%(py + pr — p) — _QF(I ——>

( LT Y pip3 VA (dn) 2
(%)

r'2-e)

1 1
= (2”)d6(p1 + P2 —P) 5 2C€

pirs  VAl(4n)?

Xp%(—ln%%—kconst). (110)
We compare this with the result from (96),
[% ¢4] . (P1.P2)™= = 9.Gagymp(P1)
(4g)2ﬁ(4j[)4 pi(=Inp3 +const), (111)

where we have used the asymptotic form Gyeymp(P)
obtained in (C19). Hence, we obtain

VA4l 1

C=21"—____ 112
6-3! /54 (112)
In conclusion we have obtained
€
Ciig = —— 113
114 \/ﬂ ( )

in agreement with the results in the literature [28].

C. Extension to other systems

Let us mention that the strategy developed in this work is
rather general, and it applies to a wide variety of models.
For instance, unitarity is not an essential ingredient, and we
can as well compute the OPE coefficients of nonunitary
theories. To see this explicitly, in this subsection we
compute the OPE coefficient ¢;;; in the Lee-Yang model
in d = 6 — ¢ dimensions.

The Lee-Yang model has been studied via ERG even
beyond the perturbative regime [50,51]. Here, we limit
ourselves to computing the leading perturbative correction
to c¢y1;, which vanishes in the noninteracting theory. Let us
consider the action [52]

Sly] = /{%8”)(8,4)(-1—1'%)(3}. (114)
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In the one-loop approximation, it is possible to compute the
wave function renormalization and the beta function of the
coupling g. We do not reproduce these computations here
and merely report the fixed-point value of the coupling, i.e.,

. =~ 84 /27”3\/5 The coefficient is cutoff independent.

We read off the OPE coefficient from the three-point
function (¢;¢,¢;). In general one has

@(xl ))((XZ)O(X»conn
or

- /Z]’zz G(x1,21) (6e(x)5(p(z1)5(p(zz)>G(Zz’xl)

G(Zl,Zz>

/ 5T
21,20, Uy 58(X)5(/)(Z1)
&r

X G(uy, x)G(uy, x,). 115
()b (ur)agluz) V)Gl ) (1)
To the first order in g,, we have
(p11¢1) = —ig.N3G(p1)G(p2)G(py + p2)
'\/E\/—(64 %) ! (116)
~ —i\/=/€(647°) ——,
3 Pip;

where N\ = V4z3 is the normalization of the field. A
straightforward comparison with the expectation from
CFT gives

e
3VE
which agrees with other results in the literature [25,27].
Note that the imaginary factor in ¢;;; is a clear sign of the
nonunitarity of the model. This does not prevent us from
using our framework to compute the OPE coefficients.

Let us note that in the present computation the anoma-
lous dimension of the operators involved was not necessary,
but only the O(e”)-scaling dimensions enter the calcula-
tion. This is because the OPE coefficient is trivial at leading
order, i.e., at order O(e”). As a consequence the O(+/e)
coefficient is determined by the leading order composite
operator and the EAA at order O(+/€). Generically, how-
ever, in order to compute an OPE coefficient to a certain
order it is necessary to compute the anomalous dimension
of all the operators involved to the same order. Indeed, the
anomalous dimensions enter the determination of the
normalizations N; and in the construction of the relevant
1PI composite operator vertices, as in the examples of
Secs. VA and V B.

(117)

Cl11 =—1

D. On nonperturbative approximation schemes

In this work we solved the ERG equations perturbatively.
However, ERG is known to provide a framework for non-
perturbative approximation schemes, which allows one to
provide also precise results. See, e.g., [53,54]. It is natural

then to ask if any of such approximation schemes can
be naturally employed within the strategy outlined in
this work.

The most widely employed approximation schemes are
the derivative expansion and the scheme devised by Blaizot,
Méndez-Galain and Wschebor (BMW) [55]. In the deriva-
tive expansion one retains the full field dependence of the
operators appearing in the EAA up to a certain number of
derivatives: I't[p] = [V(p) + [ K(9)0pdp + ---. In the
BMW scheme, instead, one does not retain such a general
field dependence but aims to keep full momentum depend-
ence with the use of background fields. We refer to [55] for a
detailed presentation.

The strategy outlined in Sec. II B clearly relies on having
control over the momentum dependence of the composite
operator vertices. It follows that a derivative expansion type
of scheme is not suitable for our purposes. An ideal scheme
may be the BMW since it retains the momentum depend-
ence. Recently, the BMW has been applied to compute the
two-point function of the operator ¢?/2 in relation to the
“Higgs amplitude mode” [16]. Such a study shows that it is
indeed possible to keep track of the momentum dependence
of the composite operator vertices in nonperturbative
approximation schemes. It may thus be possible to apply
our strategy even beyond perturbation theory. Note that a
crucial ingredient in the BMW scheme is the use of large
external, i.e., nonloop, momenta. This fits well with the
recipe of looking at large momenta in order to read off the
OPE coefficients.

Finally let us mention a different approach studied in
the literature. Cardy proposed a formula that relates the
second order expansion of the beta function around a fixed
point with the OPE coefficients [56]. Such a formula has
been employed to obtain leading order corrections to the
OPE coefficients in the e expansions [57]. In its original
formulation, however, the proposed relation displays
scheme dependent OPE coefficients. It is possible, how-
ever, to define scheme independent coefficients in the
expansions of the beta functions around a fixed point by
introducing a connection on the theory space [58]. This
may lead to a possible further strategy that tackles the
computation of the OPE coefficients via a geometric
viewpoint of the RG flow. However, it must be emphasized
that, strictly speaking, the argument by Cardy applies only
to the coefficients related to non-integrable singularities.
For this reason, the strategy outlined in this paper gives
access to even fewer singular OPE coefficients.

VI. SUMMARY AND OUTLOOK

In this work we studied OPE within the ERG formalism
and showed by explicit computation that ERG can be
employed to compute the OPE coefficients. Such OPE
coefficients are independent of the RG scheme employed
once one fixes a normalization convention for the operator
content of the theory.

105007-14



OPERATOR PRODUCT EXPANSION COEFFICIENTS IN THE ...

PHYS. REV. D 101, 105007 (2020)

In Sec. II we introduced the ERG framework for com-
posite operators and outlined our strategy for the computa-
tion of the OPE coefficients. In Sec. III we introduced a
version of the ERG framework suitable for discussions of a
fixed point. In Sec. IV we studied explicitly some examples
of composite operators, for which we computed OPE coeffi-
cients within the e expansion in Sec. V. Interestingly, as
mentioned in Sec. V D, our strategy does not rely on the use
of perturbation theory. Perturbation theory has been used as a
way to provide an actual approximate solution to the ERG
equations of interest. However, by employing nonperturba-
tive approximation schemes it may be possible to go beyond
perturbative results, and we hope our work paves the way in
this direction.

It must be said that the strategy employed in this work is not
expected to be as efficient as other methods in the literature
to compute the CFT data, in particular with respect to the
bootstrap approach. However, besides its conceptual rel-
evance, the ERG framework allows one to easily extend
the methodology studied in this work to very different
systems, possibly even in the absence of conformal symmetry
or out of equilibrium. For this reason we think it worthwhile
studying OPE further within the ERG formalism.
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APPENDIX A: TWO- AND THREE-POINT
FUNCTIONS IN MOMENTUM SPACE

In this section we derive the most important formulas
used in the main text. We adopt the following notation:

/ = / d?x / = / dd—p
x ’ p (2”)d
We denote by G(p) the Fourier transform of g(x):

3(p) = / e7rg(x) so that g(x) = / ¢7(p).

1. Two-point functions

The Fourier transform of the two-point function

1
falx) =—; (A1)
X
is obtained as
- 1 Ir¢-a) [ 4\«
Fap) = [ er =wn DD (A7

Using the above results we can calculate the normali-
zation constants N'|, A/,, and A, at the Gaussian fixed
point. The standard normalization of ¢ is given by the
propagator in the momentum space:

@()o(@))G = pﬂ(zzr)dé(p +4).

(A3)

This corresponds to a = % above. Hence, the propagator
in the coordinate space is given by

1 1
(@(r)e(0))g = AT (A4)
where
1 1 d-2
—=—T—. A5
NT 4z ( 2 ) (A3)
Equation (A4) implies
1 1 1 1 1
P YN _ ! 2 _
(3°050°0) =3 60000%; = s
(A6)
Hence, we obtain
1 1 1 d—2\?
_— = p— F . A7
AN TN T 3 ( 2> (A7)
Similarly,
1 1 1 1 1
LA 4 _ 4 4 1
(G030 0) = 3100000 = s
(A8)
implies
1 1 1 d—2\*
— = = r . A
NT 4NS 412872 < 2 ) (49)

2. Three-point functions

Let us denote x7; = [x; — x;|*, and consider the three-
point function

1
(x2 )d/2—u3 (x2 )d/2—u| (x2 )d/z—b2
12 23 13

f3(x1, %0, x3) = (A10)

appearing in the three-point function (11) of a CFT. We
denote by f5 the Fourier transform of f:
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f3(x1, %0, x3) = / e~ iPxmire=ipss (2)45(py + py + p3)fa(p1. pa. P3)-
P1P2P3

Since f; depends only on the differences x; — x3, x; — x,, we obtain

- . ) . ) 1
f3(p1. P2 —p1 — p2) = / ePtiP fo(x) xp,0) = / e'Prtipat - - - (A11)
)T ()T ()7

X1,X2

We can express 1/(x2,)%>7 by using (A2). This gives

[(v3)T(v))T(1s)

\]~C3(p17p27 —P1— p2) = 4U1+V2+V37[3d/2
D(§ = v3)l(§ = vi)0(§ — v

)Jy1u2y3 (p17p2)’

where

1
Jyyqu (p17p2):/ v P v
e q ()7 (g + p1)?)2((g = p2)?)
Hence, we obtain

C(v)I(v2)I(v3)

F(%l - vl)F@ - Vz)r(g -

[3(x1, 20, x3) = 4urtvatagddfa v3) / (27)48(py + pa + p3)e'Pratrterna)y,  (pypy).
P1P2P3

We now consider the limit p; > p,. We obtain

q—py)?) pttATAImA A2 (42 T(u)T(k;)  T(d — vy —v3)

Pi>p - 1 1 1 1 T+ =90(§ = v)T(§ —v3)
Jl/]l/gl/j;(pl’ pZ) _)2 (p%) 2/(q) (( 2 2 2
q

Hence, in the same limit the Fourier transform f5 is obtained as

TR(d+8 A = A)TE=A,) 1 |
((A1+A3 Az)) T(8,) pitaiiss ik,

fs (P1.P2.—P1 — P2) iz (4”)d4_%(A‘+A2+A3 (A12)

APPENDIX B: THE FIXED-POINT EFFECTIVE AVERAGE ACTION TO THE FIRST ORDER IN ¢

We wish to construct an ERG trajectory parametrized by g along which the Gaussian fixed point at g = 0 is connected to
the Wilson-Fisher fixed point at g = g,. (Please see [59] for more detailed discussions of the fixed point in € expansions.)
The ERG differential equation in the dimensionless framework is given by

(o800l = [ (p-0,+ 2" )ol) T~ [2— -0, =0 R 36l0),. ol (@)

where G(g), _,[¢] is defined by

p.—q

M e d _ . 4 .
/q <5¢(p)5¢(—q)+R(p (2=)e(p ‘1>>G<9)q,-r[¢] (27)*5(p = ). (B2)

We expand I'(g) in powers of ¢ as

I'(9)le] =%/pfﬂ(p)co(—p)v(2>(g;p) +% Hfﬂ pi)(27) "5<Zp,) (¢:p1sespa) +--- (B3

Piseees P4 j=

The anomalous dimension %n(g) of ¢ in (B1) is determined by the condition
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B,
— 0@ (g; =1. B4
2" (9:p) o (B4)

The beta function f(g) is determined by the boundary
condition

v#(g:0,0,0,0) = g. (BS)
The Gaussian fixed point is given by
1 2
FOel =5 [ e(p)e(=p)p (B6)
P

In the main text we only need the first order approxi-
mation to I'(g):

2)

v (g; p) = p* + gvy” (p). (B7a)

4
v (g; p1, pa. p3. pa) = g(1 + g”é )(PlvP27P3’P4))’

(B7b)
V29 (g py, ..y pan) 2 O(g"). (B7c)
We expand
B(g) = Prg® + . (B8a)
nlg) =mg+---. (B8b)
v<12> (p) satisfies
@) 1 1
(=2+e)v"(p) = ) f(q) —5mpr (B9)
q
where
(2—-g-9,)R(q)
fa)=——=—F—~ (B10)
(4> +R(q))?
Equation (B4) gives #; = 0, and we obtain
@) 11
=- - B11
W=yt [ 1@, (B11)
which is a mass term independent of p. v§4> satisfies

4
<Z pi-0p, + 5) Ug” (P1. P2s D3, P4)

i=1
=—p, - /f(q)(h(q +p1+p2) +h(g+ pi+ p3)
q

+h(q + p1 + pa))- (B12)

where

h(q) = . (B13
(q) 21 R(g) )
Equation (B5) gives
p==3 [ slata) (B14)
q
We then obtain
vé‘” (P1:P2: D3 P4)
=—{F(pi+p2) +F(pi+ps)+F(pi+ps)}.  (BIS)
where F(p) is defined by
1
Fp) =3 [ ba)hia+p) - @), (B16
q
The fixed-point value g, is obtained from
0= eg. +p(9.) ~e€g. + g2 (B17)
as
2
gox—— < Gr)S e (B13)

p 3] flohia)” 3

The value of 3, at € = 0 is calculated in (C9).

APPENDIX C: ASYMPTOTIC BEHAVIORS OF
F(p) AND G(p)

L F(p)
F(p) is defined by

(p- 8, +)F(p) = / F(@)(h(q + p) — h(g)). (C1)

Since f(g) vanishes rapidly for ¢ beyond the cutoff scale
(order 1), the above gives, for p > 1,

(-0, +F(p) =35:+0(5). (€2

where f, is given by (B14).
This implies the asymptotic behavior

p>1

F(D) 2 Fugug(p) = T3 Pale) + Crle)p™,  (C3)

where we have indicated the ¢ dependence of f,. Since
F(p) is finite as € — 0+, we must find
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e 11
Cre) =5 ==~ p(e = 0) + O(e”).

3 (C4)

To compute Cr(¢) exactly, we recall the high momentum
propagator has the same short-distance singularity in
coordinate space as the Gaussian two-point function:

~ . r—0 eipr
h(r)E/e””h(p)—>/ 5
P p P

~ o0 = ;g7 (57 e (€9
Since
Fp) =5 [ M@ hta+p)= e (c6)
we obtain
Fi)= [ Foier = 0225 (oo (€

Thus, the p-dependent part of the asymptotic behavior of
F(p) is the same as the Fourier transform of the squared
Gaussian propagator. Hence, using (A2), we obtain

1 1 T(E)T2- ol 1
Crle)=3 (47)? 2r(d -2) R (4m)?” (c8)
This implies
1 1

In the main text we need the expansion of the asymptotic
behavior to order e:

2
p 2
Fasymp(P) :2(471)2 |:—1HZ+1HTL'—}/+2+§(4ﬂ)2ﬂ/2(0)
(C10)
1 2\ 2 1 2
+€{Z (lni—ﬂ) + (%— 1 —Elnﬂ> ln%—l—constH .
(C11)

P5(e =0) depends on the choice of the cutoff func-
tion R(p).

2. G(p)

Similarly, we can obtain the asymptotic behavior of
G(p), which is defined by

(p-0,—2+20)G(p) = / F@)F(q+ p)

2
2
+ ”g )gﬂz +mp?

p—0

—mp® +0(p°), (C12)
where
@___ 11
e G
d
m=-——= [ f(a)F(q+p) (C13b)
dp q p=0
The equation gives the asymptotic behavior
p>1 1 ¢
G(p) = Gugymp(P) =5_m(€)p* + Cale)p?™*.  (C14)
Since G(p) is finite as ¢ — 0+, this implies
e— =0
Cole) = —mle=9) (C15)
2¢e
We can calculate Cg(€) exactly from
~ inr 1 ~ 3 r—0 1 3
G(r) = [ Glp)e” = 570 =2 5 (o (O}
» ! !
(C16)
Using (A2), we obtain
1 1 T(Er@G-d)ewo 1 1
Cole) == i 3 — .
31(42) T(G(d-2)) € 12(4r)
(C17)
Hence,
11
0)=- Cl18

In the main text we need Ggym,(p) to order €”:

1 1
Gasymp(P) = p? (2—3| () Inp? + const). (C19)
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