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Abstract: Using a fresh empirical approach to time-frequency domain frameworks, this study
analyzes the return and volatility spillovers from fossil fuel markets (coal, natural gas, and crude oil)
to electricity spot and futures markets in Europe. In the time domain, by an approach developed
by Diebold and Yilmaz (2012) which can analyze the directional spillover effect across different
markets, we find natural gas has the highest return spillover effect on electricity markets followed
by coal and oil. We also find that return spillovers increase with the length of the delivery period
of electricity futures. In the frequency domain, using the methodology proposed by Barunik and
Krehlik (2018) that can decompose the spillover effect into different frequency bands, we find most of
the return spillovers from fossil fuels to electricity are produced in the short term while most of the
volatility spillovers are generated in the long term. Additionally, dynamic return spillovers have
patterns corresponding to the use of natural gas for electricity generation, while volatility spillovers
are sensitive to extreme financial events.

Keywords: electricity; crude oil; natural gas; coal; spillover effects

1. Introduction

Electricity is traded in both spot and futures markets. Extensive research has been undertaken over
the past two decades concerning the spot market for electricity (e.g., [1–4]). Electricity is a non-storable
good and faces generation constraints, transmission constraints, and seasonal issues, which can cause
a timing imbalance in trade and fluctuations in electricity prices in the spot market.

Electricity futures have often played two roles for investors. First, electricity futures are an
essential indicator to predict future spot prices. Second, electricity futures provide investors who are
willing to take positions in power markets an excellent risk management tool for reducing their risk
exposure, by reducing the operational risks caused by high volatility in the electricity spot market. For
this reason, electricity futures trading is more extensive than spot trading. There are also many studies
concerning the electricity futures market (e.g., [5–8]).

Approximately half of the world’s electricity is generated by fossil fuels such as crude oil, natural
gas, and coal. According to the BP Statistical Review of World Energy 2019 [9], in 2018, approximately
40.5% of electricity was produced by oil, gas, and coal sources in Europe, which also necessarily implies
the possibility of the spillover effects across the fossil fuel markets and electricity market. Additionally,
in Huisman and Kilic’s [5] study, they state that although electricity cannot be stored directly, it can
be stored in the sense that fossil fuels are storable. The electricity producer who wants to sell an
electricity futures contract can either purchase the amount of fossil fuels in the spot market and store it
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until the delivery period to fulfill the delivery agreement or purchase the fossil fuel futures instead of
storing them directly. For this reason, the price of electricity futures may be related to the storage cost
of fossil fuels. On the other hand, in electricity spot market, according to the Mosquera-López and
Nursimulu’s [10] research, unlike futures markets, the electricity spot prices are more determined by
renewable energy infeed and electricity demand but not the price of fossil fuels such as natural gas,
coal, and carbon. Thus, our research aims to examine if there are some difference in the spillover effects
of fossil fuel commodity markets on the electricity market and futures in Europe. Additionally, given
that there are many types of electricity futures contracts in terms of their delivery periods, we further
examine whether there are different spillover effects between fossil fuel commodities and electricity
futures with monthly, quarterly, and yearly delivery periods. To the best of our knowledge, although
there are several papers discussing the relationship between the fossil fuels and electricity futures
market, the relationship between fossil fuels and the price of electricity futures with different delivery
periods have not been studied in previous research yet. However, it will help electricity market
investors to fully understand the information transmission between electricity markets and fossil fuel
markets to make their portfolio optimization and hedge strategy better and more comprehensive.

Many studies have investigated the interdependent relationship between fossil fuel commodities
and electricity markets. For example, Emery and Liu [11] studied the relationship between the prices of
electricity futures and natural gas futures and found a cointegration between California–Oregon Border
and Palo Verde electricity futures and natural gas futures. Mjelde and Bessler [12] used a vector error
correction model to analyze the relationship between electricity spot prices and electricity-generating
fuel sources (natural gas, crude oil, coal, and uranium) in the US. The authors found that the peak
electricity price influences the natural gas price in contemporaneous time, while in the long term, apart
from uranium, fuel source prices affect the electricity price. Based on the VECM model, Furió and
Chuliá [13] analyzed the volatility and price linkages between the Spanish electricity market, Brent
crude oil, and Zeebrugge (Belgium) natural gas. Natural gas and crude oil were seen to have an
essential influence in the Spanish electricity market, with particular causality from the fossil fuel (Brent
crude oil and Zeebrugge natural gas) markets to the Spanish electricity forward market.

Generalized autoregressive conditional heteroskedasticity (GARCH)-type models have also been
used to study the relationship between electricity and fossil fuel markets. Serletis and Shahmoradi [14]
used the GARCH-M model to investigate the linkages between natural gas and electricity prices and
volatilities in Alberta, Canada, and found a bidirectional causality. Using the BEKK-GARCH model,
Green et al. [15] measured the strength of volatility spillovers in the electricity market in Germany
caused by volatility in natural gas, coal, and carbon emission markets. According to the results, during
the sample period, natural gas and coal produced non-negligible spillovers while carbon emission
markets caused spillover effects from 2011 to 2014.

The return spillover is defined as the cross-market correlation between price changes (returns)
allowing for one market’s price fluctuation to affect the other market’s direction with a lag. On the
other hand, the volatility spillover could capture the correlation between the size of price changes.
That is, if one market becomes riskier over a period of time (which implies bigger price fluctuations)
the riskiness of the interrelated market will also change. Measuring the return spillover could allow
investors to evaluate the investment trends of markets while measuring the volatility spillover could
enable investors to evaluate the risk information across markets. The information across markets
provide useful insights into the portfolio diversification of investment, hedging strategies, and risk
management for financial agents.

In this study, we analyze the return and volatility spillovers from the fossil fuel market commodities
of natural gas, coal, and crude oil, to electricity spot and futures markets in Europe, by using two
new empirical methods in the time-frequency domain: (1) the Diebold–Yilmaz approach; and (2)
the Barunik and Krehlik methodology. The Diebold–Yilmaz approach was proposed in Diebold and
Yilmaz [16] and developed in Diebold and Yilmaz [17]. In the Diebold–Yilmaz approach, the spillover
index can be constructed based on the variance decomposition of forecast error, which allows for the
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study of the spillover effect with a fixed investment horizon in a quantitative way. However, investors
have to consider different investment horizons when they make investment decisions because shocks
may have different effects in the short and long term. For this reason, Barunik and Krehlik [18] used
the Fourier transform to convert the Diebold–Yilmaz approach into the frequency domain so that
the spillover index could be decomposed at different frequencies. Moreover, we can also obtain the
time-varying spillover effect by using the moving window method. Many recent studies have used
this method to study spillover effects and connectedness between assets, such as Singh et al. [19],
Kang and Lee [20], and Malik and Umar [21]. In a more recent study, Lovcha and Perez-Laborda [22]
used the Diebold–Yilmaz approach and the Barunik and Krehlik methodology to analyze the volatility
connectedness between Henry Hub natural gas and West Texas Intermediate (WTI) crude oil in the
time and frequency domains. Lau et al. [23] used the E-GARCH model and the Barunik and Krehlik
methodology approach to investigate the return and volatility spillover effects among white precious
metals, gold, oil, and global equity.

The remainder of this paper is structured as follows: Section 2 introduces the empirical method
used in this research, while Section 3 introduces the data used and preliminary analysis. Section 4
explains and analyzes the empirical results, and Section 5 presents the conclusions.

2. Method Framework

Diebold and Yilmaz [17] proposed an approach for measuring spillover in the generalized vector
autoregression framework using the concept of connectedness, which built on the generalized forecast
error variance decomposition (GFEVD) of a Vector Autoregressive (VAR) model with p lags.

yt =

p∑
i=1

Φiyt−i + εt, (1)

where yt is an N × 1 vector of observed variables at time t, Φ is the N × N coefficient matrices, and
error vector εt i.i.d ∼ (0, Σ) with covariance matrix Σ is possibly non-diagonal.

The VAR process can also be represented as the following Moving Average (∞) representation
Equation (2), assuming the roots of

∣∣∣Φ(z)
∣∣∣ lie outside the unit-circle:

yt = Ψ(L)εt, (2)

where Ψ(L) is an N × N coefficient matrix of infinite lag polynomials. Since the order of variables in
the VAR system may have an influence on the impulse response or variance decomposition results,
Diebold and Yilmaz [17] modified the generalized VAR framework of Koop et al. [24] and Pesaran and
Shin [25] to ensure the variance decomposition’s independence of ordering. Under such a framework,
the H-step-ahead generalized forecast error variance decomposition (GFEVD) can be presented in the
form of Equation (3):

θH
jk =

σ−1
kk

∑H
h=0

(
(ΨhΣ) jk

)2∑H
h=0

(
ΨhΣΨ′h

)
j j

, (3)

where Ψh stands for an N × N coefficient matrix of polynomials at lag h, and σkk = (Σ)kk. The θH
jk

represents H-steps ahead forecast error variance of the element j which is contributed by the k-th
variable of the VAR system. To make the sum of the elements in each row of the generalized forecast
error variance decomposition (GFEVD) equal to 1, each entry is standardized by the row sum as:

θ̃
H
jk =

θH
jk∑N

k=1 θ
H
jk

, (4)
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The θ̃H
jk is also defined as the Pairwise Spillover from k to j over the horizon H, which can measure

the spillover effect from market k to market j. Meanwhile, there are also directional spillovers as
defined by Diebold and Yilmaz:

Directional Spillovers (From): SH
k←· = 100×

∑N

j = 1
j , k

θ̃
H
kj

N , the directional spillovers (From) measure
the spillovers from all other markets to market k.

The above-defined measures of spillovers are summarized in Table 1.

Table 1. The spillover table of the Diebold–Yilmaz approach (2012).

Spillover Results

y1 y2 . . . yN From others
y1 S1←1 S1←2 . . . S1←N SH

1←· =
1
N ΣN

j=1S1← j, j , 1

y2 S2←1 S2←2 . . . S2←N SH
2←· =

1
N ΣN

j=1S2← j, j , 2
...

...
...

. . .
...

...
yN SN←1 SN←2 . . . SN←N SH

N←· =
1
N ΣN

j=1SN← j, j , N

Note: adapted from “On the Network Topology of Variance Decompositions: Measuring the Connectedness of
Financial Firms” [26].

Barunik and Krehlik [1] proposed a methodology that could decompose the spillover index in the
Diebold–Yilmaz approach on the specific frequency bands.

First and foremost, by the application of the Fourier transform, spillovers in the frequency domain
can be measured. Through a Fourier transform of the coefficients to obtain a frequency response
function Ψh: Ψ

(
e−iω

)
=
∑

h e−iωhΨh, where i=
√
−1. The generalized causation spectrum over frequencies

ω ∈ (−π,π) can be defined as:

(f(ω)) jk ≡

σ−1
kk

∣∣∣∣∣(Ψ(
e−iω

)
Σ
)

jk

∣∣∣∣∣2
(Ψ(e−iω)ΣΨ′(e+iω)) j j

(5)

It is crucial to note that (f(ω)) jk represents the contribution of the k-th variable to the portion of
the spectrum of the j-th variable at a given frequency ω. To find the generalized decomposition of
variance to different frequencies, (f(ω)) jk can be weighted by the frequency share of the variance of
the j-th variable. The weighting function can be defined as:

Γ j(ω) =

(
Ψ
(
e−iω

)
ΣΨ′

(
e+iω

))
j j

1
2π

∫ π
−π

(Ψ(e−iλ)ΣΨ′(e+iλ)) j jdλ
(6)

Equation (6) gives a presentation of the power of the j-th variable at a given frequency, the sum
of the frequencies to a constant value of 2π. Meanwhile, it is important to note that the generalized
factor spectrum is the squared coefficient of weighted complex numbers and is a real number when the
Fourier transform of the impulse is a complex number value. Therefore, we can set up the frequency
band d = (a,b): a, b∈ (−π,π), a < b.

The GFEVD under the frequency band d is:

θ jk(d) =
1

2π

b∫
a

Γ j(ω)(f(ω)) jkdω (7)
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This also needs to be normalized; the scaled GFEVD on the frequency band d = (a,b): a, b∈ (−π,π),
a < b can be defined as:

θ̃ jk(d) =
θ jk(d)∑
k θ jk(∞)

(8)

We can define θ̃ jk(d) as the pairwise spillover on a given frequency band d. Meanwhile, given the
total spillover proposed by Diebold and Yilmaz [16], it is possible to define the total spillover on the
frequency band d. Similarly, there are also directional spillovers in the frequency domain:

Frequency Directional Spillovers (From): SFk←·(d) = 100×

∑N

j = 1
j , k

θ̃kj(d)

N , the frequency directional
spillovers (From) represents the spillovers from all other markets to market k on the frequency band d.

Similar to Table 1, the above-defined measures of spillovers on the frequency band d are
summarized in Table 2.

Table 2. The spillover table of the Barunik–Krehlik methodology (2018).

Spillover Results

y1 y2 . . . yN From others
y1 SF1←1(d) SF1←2(d) . . . SF1←N(d) SF1←·(d) =

1
N ΣN

j=1SF1← j(d), j , 1

y2 SF2←1(d) SF2←2(d) . . . SF2←N(d) SF2←·(d) =
1
N ΣN

j=1SF2← j(d), j , 2
...

...
...

. . .
...

...
yN SFN←1(d) SFN←2(d) . . . SFN←N(d) SFN←·(d) =

1
N ΣN

j=1SFN← j(d), j , N

Note: adapted from “On the Network Topology of Variance Decompositions: Measuring the Connectedness of
Financial Firms” [26].

3. Data and Preliminary Analysis

In this study, we use data from three fossil fuels markets: natural gas, coal, and crude oil; and four
electricity markets: the electricity spot market and the monthly, quarterly, and yearly electricity futures
markets. We employ daily data for the period from 2 January 2007, to 2 January 2019, with a total of
3019 observations. These data have been converted local currencies into euros at the daily exchange
rate. All variables we used are listed in Table 3.

Table 3. Variables in the model.

Variable Data Data Source

Ele_Spot EPEX Germany Baseload Spot Bloomberg
Ele_Fut_Mon EEX Germany Baseload Monthly Futures Bloomberg
Ele_Fut_Qr EEX Germany Baseload Quarterly Futures Bloomberg
Ele_Fut_Yr EEX Germany Baseload Yearly Futures Bloomberg
Gas ICE UK Natural Gas Monthly Futures Bloomberg
Coal ICE Rotterdam Coal Monthly Futures Bloomberg
Oil ICE Brent Crude Oil Monthly Futures Bloomberg

For the fossil fuels markets, we used a representative price of natural gas, coal, and crude oil
futures markets in Europe. First, we used the United Kingdom (UK) National Balancing Point (NBP)
natural gas futures to represent the natural gas market. The NBP natural gas market is the oldest
natural gas market in Europe and is widely used as a leading benchmark for the wholesale gas market
in Europe. Second, we used the Rotterdam coal futures to represent the coal market, which is financially
settled based upon the price of coal delivered into the Amsterdam, Rotterdam, and Antwerp regions of
the Netherlands. The futures contract is cash-settled against the API 2 Index, which is the benchmark
price reference for coal imported to Northwest Europe. Third, we used the Brent crude oil futures to
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represent the crude oil market. The Brent crude oil market is one of the world’s most liquid crude oil
markets. The price of Brent crude oil is the benchmark for African, European, and Middle Eastern
crude. All futures mentioned above are traded on the Intercontinental Exchange (ICE) Futures Europe
commodities market. The price of natural gas quoted in EUR per therm, the price of coal quoted in
EUR per metric ton, and the price of crude oil quoted in EUR per barrel.

In Europe, electricity futures markets are offered in the European Energy Exchange (EEX). The EEX
is a central European electric power exchange established in August 2000 and has become the leading
energy exchange in Europe with more than 200 trading participants from 19 countries. In 2008, the
power spot markets EEX and Powenext merged to create the European Power Exchange (EPEX SPOT)
to offer spot markets in electricity. In this study, we used the spot, monthly futures, quarterly futures,
and yearly futures markets of the Physical Electricity Index (Phelix) Baseload, which is the reference in
Germany and majority of Europe. The electricity spot commodity is traded in the EPEX SPOT, and
futures commodities are traded in the EEX. The prices of electricity spot and futures quoted in EUR
per megawatt-hour (Mwh).

The closing prices of all variables are plotted in Figure 1. As shown, we find that the variation in
electricity spot prices is more extreme, with more spikes and jumps than other commodities. It is clear
that electricity futures and fossil fuel prices show a similar pattern.

In this study, we calculated the first order logged differences in prices as the returns and extracted
the conditional variance series by fitting the AR-GARCH model as the volatilities. The descriptive
statistics for the returns and volatilities of the variables are given in Table 4, where we can see, as
expected, that the electricity spot market is the most volatile. The skewness value of the return of coal
futures is negative and others are positive. Meanwhile, quarterly electricity futures have the highest
skewness, indicating that they have the most extreme gains.

Table 4. Descriptive statistics of the return and volatility series.

Spot Fut_Mon Fut_Qr Fut_Yr Gas Coal Oil

Descriptive Statistics of the Return

Mean 0.0002 0.0000 0.0001 −0.0000 0.0001 0.0001 0.0000
Minimum −2.0000 −0.2429 −0.2002 −0.09366 −0.1334 0.2179 −0.1094
Maximum 2.3785 0.4042 0.3422 0.1535 0.3589 0.1751 0.1718
Std. Dev. 0.2537 0.0315 0.0204 0.0118 0.0296 0.0161 0.0211
Skewness 0.6253 2.415 3.1200 0.5691 1.8429 −0.4293 0.0590
Kurtosis 11.4001 38.3887 72.8856 16.7734 22.1089 35.6286 7.3911

JB 9072.9 *** 160,472 *** 619,264 *** 24,026 *** 47,642 *** 134,014 *** 2427.2 ***
ADF −56.9 *** −37.7 *** −36.9 *** −38.0 *** −39.8 *** −39.1 *** −39.9 ***
PP −123.9 *** −52.1 *** −51.6 *** −50.9 *** −52.2 *** −53.2 *** −59.1 ***

Descriptive Statistics of the Volatility

Mean 0.0589 0.0010 0.0003 0.0001 0.0001 0.0003 0.0004
Minimum 0.0160 0.0006 0.0000 0.0000 0.0009 0.0001 0.0001
Maximum 0.9180 0.0020 0.0068 0.0023 0.0136 0.0018 0.0048
Std. Dev. 0.0589 0.0003 0.0005 0.0002 0.0012 0.0002 0.0005

Skewnesss 5.3783 1.3262 6.3463 4.0463 4.0977 2.9271 3.5460
Kurtosis 52.2126 4.0317 58.6978 30.5627 29.5249 12.4334 20.0091

JB 319,207 *** 1018.8 *** 410,502 *** 103,802 *** 96,952 *** 15,505 *** 42,720 ***
ADF −9.7 *** −3.4 ** −10.3 *** −5.6 *** −7.0 *** −3.0 ** −3.5 ***
PP −11.7 *** −3.3 ** −12.6 *** −7.8 *** −10.2 *** −3.3 ** −3.9 ***

Note: Spot, Fut_Mon, Fut_Qr, Fut_Yr, Gas, Coal, Oil refer to EPEX Germany Baseload Spot, EEX Germany Baseload
Monthly Futures, EEX Germany Baseload Quarterly Futures, EEX Germany Baseload Yearly Futures, ICE UK
Natural Gas Monthly Futures, ICE Rotterdam Coal Monthly Futures, ICE Brent Crude Oil Monthly Futures,
respectively. JB: Jarque and Bera Test (1980); ADF: Augmented Dickey and Fuller Unit Root Test (1979); PP: Phillips
and Perron Unit Root Test (1988); *, ** and *** denote rejection of the null hypothesis at 10%, 5% and 1% significance
levels, respectively.
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Figure 1. Time-variations of the price series. Note: spot: EPEX Germany Baseload Spot; monthly
futures: EEX Germany Baseload Monthly Futures; quarterly futures: EEX Germany Baseload Quarterly
Futures; yearly futures: EEX Germany Baseload Yearly Futures; gas: ICE UK Natural Gas Monthly
Futures; coal: ICE Rotterdam Coal Monthly Futures; oil: ICE Brent Crude Oil Monthly Futures; the
units of electricity spot, monthly futures, quarterly futures, and yearly futures are EUR/Mwh; the units
of gas, coal, oil are EUR/therm, EUR/metric ton, and EUR/barrel, respectively.

All of the returns and volatilities have a kurtosis value that is significantly higher than three,
implying that the distribution of returns and volatilities will show tails that are peaked and fat.
The highest kurtosis value is for quarterly electricity futures both in returns and volatilities.

The results of the Jarque–Bera (JB) test show that all returns and volatilities reject normality at the
1% significance level. Finally, since the Diebold–Yilmaz approach is based on the VAR model, the data
should be stationary. From the results of the Augmented Dickey–Fuller (ADF) unit root test and the
Philips and Pearron (PP) unit root test, the null hypothesis that of each variable being nonstationary is
rejected at the 1% or 5% significance level for all cases.
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4. Empirical Results and Discussion

First, we used a four-variable VAR model with four different sets of variables (four sets of returns
and four sets of volatilities): The first set is yt =

(
Ele_Spott, Gast , Coalt, Oilt

)
, the second set is

yt = (Ele_Fut_Mont, Gast, Coalt, Oilt), the third set is yt = (Ele_Fut_Qrt, Gast, Coalt, Oilt), and
the fourth set is yt = (Ele_Fut_Yrt, Gast, Coalt, Oilt). For the four sets of returns, according to the
Schwarz Criterion (SC), the lag length of the VAR model is 4 in the first set and 1 in the other sets,
while in the four sets of volatilities, the lag length of the VAR model is 2 in the first set and 1 in the
other sets. Subsequently, the Diebold–Yilmaz approach, which is based on the generalized variance
decomposition, is applied to the VAR models to assess the direction and intensity of the spillover index
across the selected variables in the time domain.

Second, with the assistance of the Barunik and Krehik [18] methodology and following the methods
of Toyoshima and Hamori [27], the spillover indexes obtained by the Diebold–Yilmaz approach were
decomposed into three frequency bands: the high frequency, ‘Frequency H’, roughly corresponding to
1–5 days; the medium frequency, ‘Frequency M’, roughly corresponding to 5–21 days; and the low
frequency, ‘Frequency L’, roughly corresponding to 21 days to infinity.

Finally, as noted by Barunik and Krehik [18], the methodology does not work if the forecasting
horizon (H) < 100; therefore, the 100-days ahead forecasting horizon (H) for generalized variance
decomposition was used in this study.

With the assistance of the Diebold–Yilmaz approach, Table 5 shows the return spillover effects from
the three fossil fuels to the electricity spot market and the three types of futures markets. In addition,
the last column of the table labelled ‘Directional Spillover (From)’ shows the total spillover effect from
all fossil fuel commodities combined on the electricity spot market.

Table 5. The return spillover results of the Diebold–Yilmaz approach (2012).

Return Spillovers

Electricity Spot

Ele_Spot Gas Coal Oil From
Ele_Spot 99.578 0.205 0.118 0.099 0.106

Electricity Monthly Futures

Ele_Fut_MonGas Coal Oil From
Ele_Fut_Mon 93.738 4.549 1.348 0.364 1.565

Electricity Quarterly Futures

Ele_Fut_Qr Gas Coal Oil From
Ele_Fut_Qr 87.512 8.142 2.719 1.627 3.122

Electricity Yearly Futures

Ele_Fut_Yr Gas Coal Oil From
Ele_Fut_Yr 77.674 10.015 7.176 5.136 5.581

Note: Ele_Spot, Ele_Fut_Mon, Ele_Fut_Qr, Ele_Fut_Yr, Gas, Coal, Oil refer to EPEX Germany Baseload Spot, EEX
Germany Baseload Monthly Futures, EEX Germany Baseload Quarterly Futures, EEX Germany Baseload Yearly
Futures, ICE UK Natural Gas Monthly Futures, ICE Rotterdam Coal Monthly Futures, ICE Brent Crude Oil Monthly
Futures, respectively.

Table 5 highlights several important findings. First, as shown in each row of the table, for both spot
and futures markets, natural gas is the largest contributor to the forecast error variance decomposition
(FEVD) of electricity return, which further implies that natural gas has the most influence on the
electricity return. Meanwhile, among the three fossil fuels, crude oil has the least influence upon the
electricity return. This may be due to electricity production from one specific fuel and storage costs.
According to the BP Statistical Review of World Energy 2019 [9], in Europe, from 2007 to 2018, almost
25.35% of electricity was produced from coal, followed by 18.88% from natural gas, and 2.02% from
crude oil. This explains why crude oil has the least influence upon the electricity return. Fama and
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French [28] state that a trader can offset the risk of positions they have in a forward contract by holding
a long or short inventory in the underlying commodity. Huisman and Kilic [5] note that although
electricity cannot (yet) be stored directly, it can be stored in the sense that fossil fuels are storable.
When an electricity producer sells an electricity futures contract, they have two choices: (1) purchase
the amount of fossil fuels in the spot market and store it until the delivery period to fulfill the delivery
agreement or; (2) purchase the fossil fuel futures instead of storing them directly. If the fuels have a
high storage cost, the electricity producers would prefer to hold a futures contract on the fuels rather
than purchase them in the spot market and store them directly. Compared to coal and crude oil, natural
gas has higher storage costs and, therefore, the electricity producer would prefer to purchase natural
gas futures. This further explains the high connectedness of electricity and natural gas futures markets.
Based on high demand and high storage costs, it is not difficult to understand why natural gas futures
have the most influence on the returns of electricity.

Second, it is interesting to note that the most significant return spillover effects are seen in yearly
electricity futures, followed by the spillover effect to quarterly futures, then monthly futures. The return
spillovers from fossil fuel commodities is the least in the electricity spot market. Under the assumption
of storage costs mentioned earlier, when an electricity producer sells an electricity futures contract with
a long delivery period, they would prefer to purchase futures contracts on underlying fuel commodities,
rather than purchase them in the spot market and store until the delivery period. This implies that
the return spillovers from fuel futures to electricity futures with a long delivery period are higher
than to electricity futures with a short delivery period. Mosquera-López and Nursimulu [10] explored
the drivers of German electricity prices in spot and futures markets and found that spot prices are
determined by renewable energy infeed and electricity demand, while in futures markets prices are
determined by the price of fossil fuels such as natural gas, coal, and carbon. This may explain why
the return spillovers from fossil fuel commodities to electricity futures are higher than to electricity
spot prices.

The return spillover results of Barunik and Krehil [16], which decompose the Diebold–Yilmaz
spillover indexes into three different frequencies, are presented in Table 6. The spillovers from fossil
fuel commodities to electricity markets are highest in the high frequency, followed by the medium
frequency and the low frequency. This indicates that return shocks are transmitted from fossil fuel
markets to electricity markets within only one week.

Table 7 shows the volatility spillover effects from the threVe fossil fuel commodities to the electricity
spot market and the three types of futures. The results are unusual; among the three fossil fuel markets,
natural gas has the highest volatility spillovers to electricity spot markets (0.691%), monthly (9.539%),
and quarterly futures (3.565%), but not to yearly futures (0.145%). Additionally, oil exhibits the weakest
volatility spillovers to all electricity markets (0.098%, 0.417%, and 0.211%, respectively), again, with the
exception of yearly futures (1.835%).

In addition, in contrast to the return spillover results, the volatility spillovers from natural gas
to monthly electricity futures (9.539%) is higher than for electricity futures with a longer delivery
period. However, crude oil and coal transmit the highest volatility spillovers to yearly futures, while
the spillovers to monthly futures are higher than to quarterly futures. Finally, with the exception of
natural gas, both volatility spillovers and return spillovers are higher for electricity futures than for the
electricity spot market.

Table 8 displays the volatility spillover results in the frequency domain. In contrast to the results
in Table 6, the total volatility spillover is higher in the low frequency than in the high frequency.
This indicates that the transmission of volatility shocks from fossil fuel markets to electricity markets is
slower than that of return spillovers. The transmitted shocks from fossil fuels have long-lasting effects
on electricity market volatility.
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Table 6. The return spillover results of the Barunik–Krehlik methodology (2018).

Return Spillovers

Electricity Spot

Frequency H 1–5 Days
Ele_Spot Gas Coal Oil From

Ele_Spot 97.182 0.193 0.116 0.084 0.098
Frequency M 5–21 Days

Ele_Spot 1.902 0.009 0.002 0.011 0.005
Frequency L > 21 Days

Ele_Spot 0.494 0.003 0.001 0.004 0.002

Electricity Monthly Futures

Frequency H 1–5 Days
Ele_Fut_MonGas Coal Oil From

Ele_Fut_Mon 74.381 2.913 0.961 0.250 1.031
Frequency M 5–21 Days
Ele_Fut_Mon 14.234 1.191 0.283 0.083 0.389
Frequency L > 21 Days
Ele_Fut_Mon 5.123 0.445 0.104 0.031 0.145

Electricity Quarterly Futures

Frequency H 1–5 Days
Ele_Fut_QrGas Coal Oil From

Ele_Fut_Qr 68.856 5.671 1.974 1.149 2.199
Frequency M 5–21 Days
Ele_Fut_Qr 13.703 1.803 0.545 0.349 0.674
Frequency L > 21 Days
Ele_Fut_Qr 4.953 0.668 0.200 0.129 0.249

Electricity Yearly Futures

Frequency H 1–5 Days
Ele_Fut_YrGas Coal Oil From

Ele_Fut_Yr 60.862 7.287 5.117 3.450 3.964
Frequency M 5–21 Days
Ele_Fut_Yr 12.348 1.993 1.505 1.231 1.182
Frequency L > 21 Days
Ele_Fut_Yr 4.464 0.734 0.553 0.455 0.436

Note: Ele_Spot, Ele_Fut_Mon, Ele_Fut_Qr, Ele_Fut_Yr, Gas, Coal, Oil refer to EPEX Germany Baseload Spot, EEX
Germany Baseload Monthly Futures, EEX Germany Baseload Quarterly Futures, EEX Germany Baseload Yearly
Futures, ICE UK Natural Gas Monthly Futures, ICE Rotterdam Coal Monthly Futures, ICE Brent Crude Oil Monthly
Futures, respectively.

Table 7. The volatility spillover results of the Diebold–Yilmaz approach (2012).

Volatility Spillovers

Electricity Spot

Ele_Spot Gas Coal Oil From
Ele_Spot 98.804 0.691 0.407 0.098 0.299

Electricity Monthly Futures

Ele_Fut_Mon Gas Coal Oil From
Ele_Fut_Mon 87.992 9.539 2.052 0.417 3.002

Electricity Quarterly Futures

Ele_Fut_Qr Gas Coal Oil From
Ele_Fut_Qr 95.585 3.565 0.639 0.211 1.104

Electricity Yearly Futures

Ele_Fut_Yr Gas Coal Oil From
Ele_Fut_Yr 88.839 0.145 9.181 1.835 2.790

Note: Ele_Spot, Ele_Fut_Mon, Ele_Fut_Qr, Ele_Fut_Yr, Gas, Coal, Oil refer to EPEX Germany Baseload Spot, EEX
Germany Baseload Monthly Futures, EEX Germany Baseload Quarterly Futures, EEX Germany Baseload Yearly
Futures, ICE UK Natural Gas Monthly Futures, ICE Rotterdam Coal Monthly Futures, ICE Brent Crude Oil Monthly
Futures, respectively.
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Table 8. The volatility spillover results of the Barunik–Krehlik methodology (2018).

Volatility Spillovers

Electricity Spot

Frequency H 1–5 Days
Ele_Spot Gas Coal Oil From

Ele_Spot 9.671 0.003 0.003 0.002 0.002
Frequency M 5–21 Days

Ele_Spot 35.053 0.042 0.009 0.010 0.015
Frequency L > 21 Days

Ele_Spot 54.079 0.646 0.395 0.086 0.282

Electricity Monthly Futures

Frequency H 1–5 Days
Ele_Fut_MonGas Coal Oil From

Ele_Fut_Mon 0.297 0.009 0.010 0.009 0.007
Frequency M 5–21 Days
Ele_Fut_Mon 0.852 0.029 0.029 0.026 0.021
Frequency L > 21 Days
Ele_Fut_Mon 86.843 9.502 2.012 0.382 2.974

Electricity Quarterly Futures

Frequency H 1–5 Days
Ele_Fut_QrGas Coal Oil From

Ele_Fut_Qr 9.962 0.195 0.000 0.014 0.052
Frequency M 5–21 Days
Ele_Fut_Qr 24.567 0.536 0.001 0.034 0.143
Frequency L > 21 Days
Ele_Fut_Qr 61.057 2.834 0.638 0.164 0.909

Electricity Yearly Futures

Frequency H 1–5 Days
Ele_Fut_YrGas Coal Oil From

Ele_Fut_Yr 4.405 0.002 0.018 0.001 0.005
Frequency M 5–21 Days
Ele_Fut_Yr 11.985 0.005 0.050 0.003 0.015
Frequency L > 21 Days
Ele_Fut_Yr 72.448 0.138 9.113 1.831 2.771

Note: Ele_Spot, Ele_Fut_Mon, Ele_Fut_Qr, Ele_Fut_Yr, Gas, Coal, Oil refer to EPEX Germany Baseload Spot, EEX
Germany Baseload Monthly Futures, EEX Germany Baseload Quarterly Futures, EEX Germany Baseload Yearly
Futures, ICE UK Natural Gas Monthly Futures, ICE Rotterdam Coal Monthly Futures, ICE Brent Crude Oil Monthly
Futures, respectively.

It is well established that financial markets can be affected by extreme events such as financial
crises, price fluctuations, and market turmoil. For this reason, this section of our paper aims to capture
the dynamics of spillover, in particular to investigate how spillovers from the fossil fuel market to the
electricity market may change under extreme events. To accomplish this, a moving windows analysis
with a 400-day window length was applied.

Figure 2 presents the dynamic directional return spillover from all fossil fuel commodities
to electricity markets, measured by the Diebold–Yilmaz approach (2012) and the Barunik–Krehlik
methodology (2018). The pairwise directional return spillovers are shown in Figure A1 in the
Appendix A. In Figure 2, the solid line refers to the time-varying spillover of the Diebold–Yilmaz
approach (2012), the long-dash line refers to spillover in the high frequency (1–5 days), the dotted line
refers to spillover in the medium frequency (5–21 days), and the two-dash line refers to spillover in the
low frequency (over 22 days). The results in Figure 2 indicate various characteristics.

First, the spillover effect of all three fossil fuel commodities to yearly electricity futures vary from
0% to 8.7%, followed by quarterly futures (0% to 6.3%), monthly futures (0% to 5.8%), and the spot
market (0% to 2.8%). According to the results, it can be concluded that the return spillovers from fossil
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fuel commodities to electricity futures with a long delivery period are higher than to those with a
short delivery period and that the return spillover effect is lowest in the electricity spot market. This is
consistent with the results of the statistical analysis in Table 5.

Second, the spillovers from all three fossil fuel commodities to electricity markets are highest in
the high frequency category, followed by the medium frequency and low frequency categories. This is
also consistent with the results of the statistical analysis, shown in Table 6.

On the other hand, the proportion of spillovers from fossil fuel commodities to electricity futures
in the medium frequency and low frequency categories are higher than to the electricity spot market in
those frequencies. Compared to electricity spot, it appears that the spillovers to electricity futures are
higher in the long term. There is an implicit possibility that the speed of information transmission
from fossil fuel commodities to electricity futures is slower than to electricity spot.

Finally, it is clear that the patterns of return spillovers from fossil fuel commodities to electricity
spot and futures markets are quite different. As we mentioned before, spot prices are determined by
renewable infeed and electricity demand while futures prices are determined by fossil fuels and mostly
influenced by natural gas. We find that the directional spillover from fossil fuel commodities to the
electricity futures market, especially quarterly futures and yearly futures, has some similar patterns
with the change of electricity production toward natural gas in Europe. For example, the spillovers to
quarterly and yearly futures decreased until 2015 but then tended to increase thereafter. This closely
corresponds with the changes in electricity production using natural gas in Europe, which decreased
from 2010 to 2015 and has since increased, as indicated by Figure 3.
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Figure 2. Diebold–Yilmaz approach (2012) directional return spillover (From) and Barunik–Krehlik
methodology (2018) directional return spillover (From). Note: spot: EPEX Germany Baseload Spot;
monthly futures: EEX Germany Baseload Monthly Futures; quarterly futures: EEX Germany Baseload
Quarterly Futures; yearly futures: EEX Germany Baseload Yearly Futures.
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Figure 3. Electricity generation by natural gas in Europe. Data source: BP Statistical Review of World
Energy, 2019.
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The findings regarding dynamic directional volatility spillover from all fossil fuel commodities
to electricity markets are presented in Figure 4 (The pairwise directional volatility spillovers are
shown in Figure A2 in the Appendix A). First, it appears that the volatility spillover evolves more
fiercely in contrast to return spillovers. In particular, there are many sharp increases, or fluctuations,
corresponding to extreme events. This further indicates that volatility spillovers may be more sensitive
to extreme events than return spillovers. For example, there are three significant sharp fluctuations in
2009, 2015, and 2016, possibly influenced by the 2008 global financial crisis, the 2014 international oil
price’s violent shock, and the 2016 rise of coal and natural gas prices. Additionally, the proportions of
volatility spillovers from fossil fuel commodities to electricity markets in the high frequency and low
frequency categories also increased when the extreme events occurred.

Energies 2020, 13, x FOR PEER REVIEW 15 of 21 

 

The findings regarding dynamic directional volatility spillover from all fossil fuel commodities 

to electricity markets are presented in Figure 4 (The pairwise directional volatility spillovers are 

shown in Figure A2 in the appendix). First, it appears that the volatility spillover evolves more 

fiercely in contrast to return spillovers. In particular, there are many sharp increases, or fluctuations, 

corresponding to extreme events. This further indicates that volatility spillovers may be more 

sensitive to extreme events than return spillovers. For example, there are three significant sharp 

fluctuations in 2009, 2015, and 2016, possibly influenced by the 2008 global financial crisis, the 2014 

international oil price’s violent shock, and the 2016 rise of coal and natural gas prices. Additionally, 

the proportions of volatility spillovers from fossil fuel commodities to electricity markets in the high 

frequency and low frequency categories also increased when the extreme events occurred.  

Second, the volatility spillovers from all three fossil fuel commodities to electricity markets are 

highest in the low frequency category, followed by medium frequency and then high frequency, 

which is consistent with the results of the statistical analysis in Table 8.  

 

 
Figure 4. Cont.



Energies 2020, 13, 1900 15 of 20
Energies 2020, 13, x FOR PEER REVIEW 16 of 21 

 

 

 

Figure 4. Diebold–Yilmaz approach (2012) directional volatility spillover (From) and Barunik–Krehlik 

methodology (2018) directional volatility spillover (From). Note: spot: EPEX Germany Baseload Spot; 

monthly futures: EEX Germany Baseload Monthly Futures; quarterly futures: EEX Germany Baseload 

Quarterly Futures; yearly futures: EEX Germany Baseload Yearly Futures. 

5. Conclusions 

This study analyzed return and volatility spillover effects from coal, natural gas, and crude oil 

fossil fuel markets to electricity spot and futures markets in Europe from 2 January 2007, to 2 January 

2019, using a new empirical method in the time-frequency domain frameworks developed by Diebold 

and Yilmaz [17] and Barunik and Krehlik [18]. The study obtained the following major findings. 

First, natural gas has the highest return spillover effect upon the electricity spot market and 

futures markets, followed by coal and crude oil. The results may be explained by two factors: (1) 

electricity production favoring one specific fossil fuel and; (2) the different storage cost of fossil fuels.  

Second, due to increasing storage costs over time, the return spillovers from fossil fuel 

commodities to electricity futures with a long delivery period are higher than to electricity futures 

with a short delivery period. Meanwhile, compared to electricity futures markets, the spot market is 

more dependent on renewable energy infeed and electricity demand than fossil fuels such as natural 

gas and coal. Thus, the return spillover effect on electricity futures is higher than on electricity spot 

markets.  

Figure 4. Diebold–Yilmaz approach (2012) directional volatility spillover (From) and Barunik–Krehlik
methodology (2018) directional volatility spillover (From). Note: spot: EPEX Germany Baseload Spot;
monthly futures: EEX Germany Baseload Monthly Futures; quarterly futures: EEX Germany Baseload
Quarterly Futures; yearly futures: EEX Germany Baseload Yearly Futures.

Second, the volatility spillovers from all three fossil fuel commodities to electricity markets are
highest in the low frequency category, followed by medium frequency and then high frequency, which
is consistent with the results of the statistical analysis in Table 8.

5. Conclusions

This study analyzed return and volatility spillover effects from coal, natural gas, and crude oil
fossil fuel markets to electricity spot and futures markets in Europe from 2 January 2007, to 2 January
2019, using a new empirical method in the time-frequency domain frameworks developed by Diebold
and Yilmaz [17] and Barunik and Krehlik [18]. The study obtained the following major findings.

First, natural gas has the highest return spillover effect upon the electricity spot market and futures
markets, followed by coal and crude oil. The results may be explained by two factors: (1) electricity
production favoring one specific fossil fuel and; (2) the different storage cost of fossil fuels.

Second, due to increasing storage costs over time, the return spillovers from fossil fuel commodities
to electricity futures with a long delivery period are higher than to electricity futures with a short
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delivery period. Meanwhile, compared to electricity futures markets, the spot market is more dependent
on renewable energy infeed and electricity demand than fossil fuels such as natural gas and coal. Thus,
the return spillover effect on electricity futures is higher than on electricity spot markets.

Third, in the frequency domain, we found that the majority of return spillover is generated in
the short term which further implies that return shocks are transmitted from fossil fuel markets to
electricity markets within only one week.

Contrary to expectations, we found that among the three fossil fuel markets, natural gas has the
highest volatility spillover effect on electricity spot markets and monthly and quarterly futures, but not
on yearly futures. Similarly, oil exhibits the weakest volatility spillover effect on all electricity markets,
also except yearly futures markets.

Additionally, the volatility spillover from natural gas to monthly electricity futures is higher
than for electricity futures with a longer delivery period. Meanwhile, crude oil and coal cause the
highest volatility spillovers to yearly electricity futures, followed by monthly and then quarterly
futures. Except for natural gas, the volatility spillovers from coal and crude oil to electricity futures
are higher than in the electricity spot market, which is the same result as that found in the analysis of
return spillovers.

In the frequency domain, the majority of volatility spillover is produced in the long term which
further indicates that transmitted shocks from fluctuations in fossil fuels have long-lasting effects on
electricity market volatility.

Furthermore, we also explored dynamic spillovers by adopting the 400-day moving window
method. We found there is a similar pattern in the dynamics of return spillovers from fossil fuel
commodities to electricity futures with long delivery periods, and to electricity generation from natural
gas. However, we found the dynamic volatility spillovers from fossil fuels to electricity markets are
more sensitive to extreme events such as the 2008 global financial crisis, the 2014 international oil
price’s violent shock, and the 2016 rise in coal and natural gas prices, as shown by volatility spillovers
varying sharply when the extreme events occurred.

The results in this paper may be helpful for investors with different investment horizons in
Europe to diversify their portfolios, hedge their strategies, and make their risk management plans.
For short term investors, constructing well-diversified portfolios consisting of fossil fuels futures,
electricity spot and futures is a complicated task, especially in times of financial turmoil. On the
other hand, for long-term investors, including the fossil fuels in portfolios composed primarily of
electricity spot and futures with different delivery periods could enable them to obtain the long-term
diversification benefits.
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