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Abstract—This paper presents a bounded confidence gossip algorithm
for describing the process of opinion formation over a communication
network. Each agent in the network keeps a time-varying opinion vector
(or state) which represents its opinion about a set of matters. A common
confidence threshold is set for all of the agents. The states of agents in the
network will be updated time by time according to an iterative procedure:
At each time, (i) one agent is chosen randomly, then it chooses one of its
neighbors on the communication graph to contact with; (ii) they exchange
their states; and (iii) if they have different states and the distance between
their states is strictly smaller than the confidence threshold, they update
their states as the average of the two. This algorithm converges almost
surely to some equilibrium point such that any two adjacent agents either
have the same state or have distinct states whose distance is no less than
the confidence threshold. This is called the constant confidence threshold
algorithm. An increasing confidence threshold algorithm, which repeats
the constant confidence threshold algorithm several times with increasing
confidence threshold, is also proposed. The algorithm is also convergent
almost surely to some equilibrium point. Applicability of the method to
clustering problems is shown through numerical examples.

Index Terms—opinion dynamics; bounded confidence; gossip algo-
rithm; distributed computation; convergence analysis; data clustering;

I. INTRODUCTION

This study is motivated by the current active research on public
opinion dynamics and its vital importance in a variety of fields
such as economics, management, social science, engineering and
so on. Our objective is twofold. First is to get insights on the
opinion forming processes in social science. The second is to apply
the insights to management and engineering problems, especially
problems concerning energy management system.

The understanding of the opinion dynamics and mechanism of
forming different patterns of opinion formation –for instance, consen-
sus, clustering, or fragmentation– can be achieved using mathematical
models.

In the literature, many models addressing opinion dynamics have
been introduced. The very early works on this problem are those
of French [1] and Harary [2]. Then a lot of researches focused
on consensus and how to reach it, e.g., [3]–[5]. Several other
models based on binary values leading to uniformity of opinions
are also studied in [6], [7]. However, the uniformity does not reflect
fully the complex phenomena of public opinion formation, where,
besides consensus, clustering and fragmentation are also observed
frequently. Furthermore, binary-valued based models are also not
valid for scenarios in social networks for which continuous spectrum
of opinions is required.

In order to study the variety of opinion formation on real social
networks, a few approaches are presented. One approach is to take
stubbornness of agents into account [8], [9]. Another approach is to
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introduce a notion of bounded confidence to characterize the opinion
ranges in opinion forming processes of agents in the networks. The
latter one is known to be suitable for studying the clustering phe-
nomena in public opinion formation. We consider models following
this approach in the present paper.

Krause [10] proposes a bounded confidence model. It is then fur-
ther studied in [11]–[14]. In this model, agents synchronously update
their opinions by averaging all opinions in their confidence bounds.
However, the clock synchronization itself is a very difficult problem
in dealing with multi-agent systems. Motivated by various random
variations of the Krause model for opinion dynamics and gossip
algorithm in an endogenously changing environment, in [15], Touri
and Langbort propose a framework for the study of endogenously
varying random averaging dynamics whose evolution suffers from
history-dependent sources of randomness. It is shown that under
general assumptions, such dynamics is almost surely convergent.

In [16], Deffuant et al. introduce another bounded confidence
model which helps avoiding the difficulty of synchronous update.
In the literature, it is often called DW model. It describes opinion
dynamics for the evolution of continuous-valued opinions among a
finite group of individuals. Each individual has [0, 1]-valued opinions.
At each time step, two individuals are sampled. If their opinions differ
at most by a confidence threshold, the two opinions become closer
to each other through a process governed by a confidence factor.
The model is then studied by means of numerical simulations and
heuristic arguments without rigorous proofs.

The paper [13] gives a rigorous proof for the almost sure conver-
gence of the general Deffuant model for scalar opinion with complete
communication graph. The result is based on the important fact that
the number of clusters is non-decreasing. However, this is no longer
true for the vector opinion case.

This paper establishes a theoretical analysis for the DW models
in the case where the confidence factor is set to 1/2 with vector
opinions. More precisely, we consider a network of agents among
which there is an undirected communication graph. Each agent keeps
a real-valued vector representing its opinions about a set of issues. We
first introduce the so-called constant confidence threshold algorithm
for updating opinions of agents through communicating with each
other: At each time, (i) one agent is chosen randomly, then it chooses
one of its neighbor on the communication graph to contact with;
(ii) they exchange their states; and (iii) if they have different states and
the distance between their states is strictly smaller than the confidence
threshold, they update their states as the average of the two. It
is shown that, for any initial opinion profile, the model converges
almost surely with respect to randomly chosen interacting pairs.
Furthermore, any convergent opinion profile has the property that any
two distinct opinions of adjacent agents differ at least by a confidence
threshold. The algorithm results in the clustering among opinion
profiles. We then propose another algorithm with increasing bounded
confidence which represents a hierarchical clustering algorithm (see
e.g., [17]).

The fact that the algorithms often reveal clustering phenomenon
of opinion formation suggests that we may apply the algorithms
to multi-dimensional data clustering problem. Clustering problems
aim at partitioning a set of data objects into groups based on their
similarity. Clustering can be considered to be one of the most
important unsupervised learning problems. It is the main task of
exploratory data mining, statistical data analysis, machine learning,
pattern recognition, and information retrieval. Clustering techniques
find their applications in a wide rank of fields such as management,
economic, marketing, engineering, medicine and so on.

The preliminary versions of this paper appeared in confer-
ences [19]–[21]. In our first paper [19] on bounded confidence
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via gossip algorithms, we consider a scalar opinion dynamics over
complete communication graph and we propose a distributed data
clustering algorithm based on bounded confidence via gossip algo-
rithms. We consider a scalar opinion dynamics over general commu-
nication graph in [21]. We extend this result to a vector opinion case
over complete communication graph [20]. As we described in the
explanation on [13], proving almost sure convergence in the vector
opinion case is completely different from that in the scalar opinion
case. In fact, although we employ covariance of state variable for
proving almost sure convergence in a vector case opinion [20], this
approach is not enough to show it. In this paper, we therefore deal
with vector opinion dynamics over general communication graph and
we provide a complete proof on almost sure convergence.
Paper Outline: The organization of this paper is as follows. In Section
II, we first introduce the opinion forming process on social networks.
Then we propose two bounded confidence gossip algorithms for
exchanging and updating states of agents in the network through
pairwise interaction. The first algorithm with constant confidence
threshold and the second with increasing confidence threshold. Sec-
tion III is devoted to proving the almost sure convergence of the
algorithms. Section IV gives some numerical examples to verify
the theoretical results on clustering of opinion. We make some
concluding remarks in Section V.
Notation: The set of natural numbers is denoted by N. The d-
dimensional real vector space is denoted by Rd. The identity matrix
of an appropriate size is denoted by I, and the matrix whose elements
are all ones is denoted by 1. Let ·T be the transpose operator of a
matrix or a vector. Let ∥ · ∥2 and ∥ · ∥F be Euclidean norm and
Frobenius norm, respectively of a vector or a matrix. The probability
of an event is denoted by P(·).

II. OPINION FORMING ALGORITHMS

We consider a communication network G = (V, E) where V =
{1, 2, . . . , n} denotes the set of agents and E denotes the set of
edges. We suppose that the communication graph is undirected. For
simplicity, we assume that the graph is connected, otherwise we
consider each connected component separately. Let the set of the
agent i’s neighbor be Ni = {j ∈ V : (i, j) ∈ E}, and let its
cardinality be |Ni|. Because of the connectivity of communication
graph, we have |Ni| > 0 for every i ∈ V .

The state of each agent i ∈ V , at time k, is xi(k) ∈ Rd. Let its
initial state be denoted by xi(1) ∈ Rd. In the following, we discuss
two bounded confidence gossip algorithms describing the opinion
forming process of agents in the network through communication:
one with constant confidence threshold and the other with increasing
confidence threshold. Our goal is to reach consensus at all channels.
In fact, this is useful for distributed data clustering.

Given a confidence threshold δ which is a positive constant, the
algorithm with constant confidence threshold is as follows.

Let X(k) =
[
x1(k)x2(k) · · · xn(k)

]T be the system state at
time k. That is, each row of X(k) contains the state of an agent at
time k. Suppose that the probability for choosing any i ∈ V at each
step is uniform, that is, 1/n. The probability for i to choose any of
its neighbor to contact with is 1/|Ni|. Assume that, at time k, the
edge (i, j) ∈ E are chosen with probability (1/|Ni| + 1/|Nj |)/n,
then we set

W (i, j,X(k)) =

{
Wij if 0 < ∥xi(k)− xj(k)∥2 < δ,

I otherwise,
(1)

where
Wij = I− 1

2
(ei − ej)(ei − ej)

T (2)

Algorithm 1 Constant Confidence Threshold
1: procedure CONSTANT CONFIDENCE(X(1), δ, κ)

κ: number of iterations
2: for k = 1 : κ do
3: An agent i’s clock ticks.
4: The agent i contacts one of its neighbors, say j.
5: i and j exchange their states xi(k), xj(k).
6: if 0 < ∥xi(k)− xj(k)∥2 < δ then

7: xi(k + 1)← xi(k) + xj(k)

2

8: xj(k + 1)← xi(k) + xj(k)

2
9: else

10: xi(k + 1)← xi(k)
11: xj(k + 1)← xj(k)
12: end if
13: xℓ(k + 1)← xℓ(k), ∀ℓ ∈ V\{i, j}
14: end for
15: end procedure

with ei =
[
0 · · · 0 1 0 · · · 0

]T is a unit vector with
the ith component equals to one.

Using the above notations, we can rewrite Algorithm 1 in compact
form as

X(k + 1) = W (i(k), j(k), X(k))X(k), (3)

where i(k) and j(k) are random sequences which describe the
selected agents.

Let us consider the following simple example to see how the
algorithm works.

Example 1: Consider a system of three agents V = {1, 2, 3} on
a complete graph, that is, E = {(1, 2), (1, 3), (2, 3)}, with an initial
opinion profile X(0) = [0 0.4 1]T and confidence threshold δ = 0.7.
If agent 1’s clock ticks and agent 1 contacts agent 2, that is, W (0) =
W12, the system’s opinion profile at the end of the first time slot is
X(1) = [0.2 0.2 1]T which is an equilibrium point of the system.
On the other hand, suppose that agent 2’s clock ticks and agent 2
contacts agent 3, that is, W (0) = W23. This drives the state at the
end of the first time slot to X(1) = [0 0.7 0.7]T . Otherwise, if agent
3’s clock ticks and agent 3 contacts agent 1, that is, W (0) = W13,
the system’s opinion profile at the end of the first time slot remains
as X(1) = [0 0.4 1]T . Since the probability which these exists a time
slot k such that W (k) = W12 or W (k) = W23 is 1, all the system
state converges to [0.2 0.2 1]T or [0 0.7 0.7]T with probability 1.
This phenomenon holds in a general case. We will show the almost
sure convergence of all the system states in Section III.
The above example also illustrates the randomness of stationary opin-
ion profiles achieved due to the randomness of choosing interaction
pairs.

The increasing confidence threshold algorithm is described in
Algorithm 2.

Remark 1: Algorithm 1 is quite simple. Nevertheless, when we
choose a quite large δ, we usually get total consensus. Conversely, if
we choose a quite small δ, we have so many clusters (see Example 3).
Using Algorithm 2, we can gradually decrease the number of clusters
to the amount we want. In other words, Algorithm 2 helps us to
control the number of clusters. Of course, the computational cost for
Algorithm 2 is more than that of Algorithm 1.

The following section gives a rigorous proof for the almost sure
convergence of the constant confidence threshold algorithm.
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Algorithm 2 Increasing Confidence Threshold
1: procedure INCREASING CONFIDENCE(X(1), d,∆δ, κ)

d > 0: upper bound for confidence threshold
∆δ: increment of confidence threshold δ
κ: numbers of iterative steps of the constant confidence threshold
algorithm for each value of confidence threshold

2: δ ← 0.
3: while δ ≤ d−∆δ do
4: δ ← δ +∆δ.
5: CONSTANT CONFIDENCE(X(1), δ, κ).
6: X(1)← X(κ).
7: end while
8: end procedure

III. CONVERGENCE ANALYSIS

Let us first study the structure of equilibrium set. First we give the
definition of equilibrium point.

Definition 1: A point X∗ = [x∗
1 x∗

2 · · · x∗
n]

T ∈ Rn×d is an
equilibrium point of (3) if it satisfies

X∗ = W (i, j,X∗)X∗ ∀(i, j) ∈ E . (4)

Then we have the following lemma.
Lemma 1: Any equilibrium point X∗ of (3) has the form

x∗
i = x∗

j or ∥x∗
i − x∗

j∥2 ≥ δ ∀(i, j) ∈ E . (5)

Proof: Let X∗ be an equilibrium point of (3). Suppose that there
exist i and j such that 0 < ∥x∗

i − x∗
j∥2 < δ. According to (4),

(x∗
i )

T = eT
i X

∗ = eT
i WijX

∗

= eT
i

(
I− 1

2
(ei − ej)(ei − ej)

T

)
X∗

= (x∗
i )

T − 1

2
eT
i (ei − ej)(x

∗
i − x∗

j )
T

=
1

2
(x∗

i + x∗
j )

T

or equivalently x∗
i = x∗

j . This contradicts the above assumption. It
follows that X∗ must have the form (5).

Conversely, for any point X∗ of the form (5), Wij = I for any
way of choosing (i, j) ∈ E , then condition (4) is always satisfied.
This completes the proof.

The structure of the equilibrium set suggests the following notion
of convergence which will be studied in the remaining of this section.

Definition 2: Given a confidence threshold δ > 0, an algorithm
given by the iterative process over a communication network G =
(V, E)

X(k + 1) = F (X(k)) for k = 1, 2, . . .

is said to achieve δ-clustering convergence if the system starting from
any initial state X(1) eventually converges to some state X∗ of the
form (5).

Let us define

f(X(k)) = ∥X(k)∥2F ,

where ∥·∥F is the Frobenius norm of a matrix. We have the following
property of the sequence {f(X(k))}.

Lemma 2: There exists limk→∞ f(X(k)).

Proof: If the update at time k + 1 happens between two agents
i, j such that 0 < ∥xi(k)− xj(k)∥2 < δ, then

f(X(k))− f(X(k + 1))

= ∥xi(k)∥22 + ∥xj(k)∥22 − 2

∥∥∥∥xi(k) + xj(k)

2

∥∥∥∥2
2

=
∥xi(k)− xj(k)∥22

2
, (6)

which is strictly positive. Otherwise f(X(k + 1)) = f(X(k)). It
follows that {f(X(k)} is a non-increasing sequence. This, together
with the fact that {f(X(k)} is bounded from below by 0, establishes
the lemma.

For any ε < δ, given k ∈ N, we define

Ωk = {∀(i, j) ∈ E ,
∥xi(k)− xj(k)∥2 ≤ ε or ∥xi(k)− xj(k)∥2 ≥ δ},

Ω =
∪
k∈N

Ωk.

The following theorem is the key result for proving the almost sure
convergence of the constant confidence threshold algorithm.

Theorem 1:

P (Ω) = 1.

Proof: Let Ωc
k be the complement of Ωk, that is

Ωc
k = {∃(i, j) ∈ E , ε < ∥xi(k)− xj(k)∥2 < δ}.

We have that

P(Ω) = 1− P(Ωc) = 1− P

((∪
k∈N

Ωk

)c)

= 1− P

(∩
k∈N

Ωc
k

)
. (7)

We claim that the second term of the right hand side of (7) equals
zero. We are done if we can prove this claim. Suppose otherwise that

P

(∩
k∈N

Ωc
k

)
> 0. (8)

We define Ak is the event that the pair (i, j) ∈ E with ε < ∥xi(k)−
xj(k)∥2 < δ is chosen at k.

Lemma 2 implies that for any sufficiently large k,

f(X(k))− f(X(k + 1)) <
ε2

2
. (9)

Suppose that there exists some random finite instant k0 which is
sufficiently large, the update happens between the two adjacent agents
i and j satisfying ε < ∥xi(k0)− xj(k0)∥2 < δ, according to (6),

f(X(k0))− f(X(k0 + 1)) =
∥xi(k0)− xj(k0)∥22

2
>

ε2

2
.

The above inequality contradicts (9). This implies that, from some



4

large enough k0, P(Ak0) = 0. We therefore see that

P

(∩
k∈N

Ωc
k

)

≤ P

 ∩
k≥k0

[
Ωc

k

∩(
Ak

∪
Ac

k

)]
≤ P

 ∩
k≥k0

(
Ωc

k

∩
Ac

k

)
= P

 ∩
k≥k0

Ωc
k

∩ ∩
k≥k0

Ac
k


= P

 ∩
k≥k0

Ωc
k

 P

 ∩
k≥k0

Ac
k

∣∣∣∣∣∣
∩

k≥k0

Ωc
k


= 0. (10)

Here the notion P(X | Y ) denotes the conditional probability
of random variable X given Y . Due to the assumption (8), the
conditional probability above is well defined. The last equality is
deduced from the fact that the probability for Ac

k to happen at infinite
steps, given by ∩k0∈NΩ

c
k, is zero. We see that (10) contradicts (8).

This follows that

P

(∩
k∈N

Ωc
k

)
= 0.

This completes the proof.
In the following we state and prove the main result of this paper.
Theorem 2: For any given X(1) and a given confidence threshold

δ, the proposed algorithm achieves δ-clustering convergence almost
surely with respect to choosing interaction pair at each iterative step.

Proof: Theorem 1 holds true for any small ε > 0. Let ε tend to
zero. Then we get the theorem.

Theorem 2 ensures that the opinion profile, obtained from the
averaging update between random chosen pairs of agents, eventually
converges to one such that any two adjacent agents either have the
same opinion or different opinions whose distance is no less than the
confidence threshold δ. As a consequence, when the number κ of
iterations is chosen large enough, X(κ), obtained from Algorithms 1
and 2 would be close enough to some stable state of the form (5).
Notice that the above results hold regardless connectivity of the graph,
while the algorithms have the following property if the graph is
complete.

Corollary 1: Suppose that the communication graph is complete,
then for any given initial opinion profile and a given confidence
threshold δ, the proposed algorithm drives the opinions of agents
to a stable state where any two opinions are either the same or differ
no less than the confidence threshold, with probability 1.

IV. APPLICATIONS TO OPINION FORMATION AND DISTRIBUTED

DATA CLUSTERING

Example 2 (Opinion Formation): We consider a network of 100
agents. The communication graph over the network is a random
geometric graph, namely, the 100 agents are located uniformly and
independently in the unit square, and each pair of agents is connected
if their Euclidean distance is no more than some critical distance. The
communication graph is depicted in Fig. 1, where the critical distance
is chosen to be 0.15.

Initial opinion profiles used in the simulations are taken randomly
from (0, 1)100. We take δ = 0.35. Fig. 2 shows a trajectory of opinion
profile according to time from 1 to 2× 105. Fig. 3 demonstrates the

0 0.2 0.4 0.6 0.8 1
xi

0

0.2

0.4

0.6

0.8

1

y
i

Fig. 1. Communication graph in Example 2

Fig. 2. One trajectory of opinion profile with δ = 0.35

final opinion profile of the trajectory at k = 2 × 105 accompanied
by the communication graph. In this figure, the markers are at
(xi, yi, zi), i = 1, 2, · · · , 100, where the positions of agents are
represented by the x and y coordinates, and their opinions are shown
by the z coordinate. The solid lines connecting markers represent
edges of the communication graph. The result shows the clustering
phenomenon in the convergent opinion profile. We see that any two
adjacent agents either have nearly same opinions or very far opinions
whose distance is at least δ.

Example 3 (Data Clustering): We consider a network consisting
of 100 agents with complete communication graph. We use the same
initial opinion profile as that in Example 2. Figs. 4 and 5 demonstrate
the convergence results with different values of confidence threshold
δ = 0.5, 0.05.

We see that, with δ = 0.5, all the opinions form only one δ-
cluster at all time in Fig. 4. Then, the system state gets to averaging
consensus. On the other hand, in the other simulation with δ = 0.05,
we get several clusters in final opinion profile (Fig. 5).

Fig. 6 illustrates a process resulting from the Algorithm 2. Here
the confidence threshold increases from 0.05, to 0.1, to 0.15, and
then to 0.2. For each value of confidence threshold, there are 104

iteration steps.
Both examples ensure the clustering phenomena of public opinion

resulting from the two opinion forming algorithms. Example 3
implies that we are able to apply our algorithms to the clustering
algorithms. Since our algorithm is according to distributed manner,
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y-position

0.5
1 0

Fig. 3. Convergent opinion profile with δ = 0.35

Fig. 4. Averaging convergence with δ = 0.5

Fig. 5. Clustering convergence with δ = 0.05

Fig. 6. Increasing confidence threshold with increment 0.05

computational cost for each update is O(n). That is, if the number of
data are large, we can apply our distributed algorithms for clustering.
This is a key feature of them. Furthermore, if we select appropriate δ,
we can adjust the number of clustering. In fact, when we selected δ
as 0.5, we obtained only 1 cluster (Fig. 4). However, δ = 0.05 leads
to 10 clusters (Fig. 4). In addition to it, we can adjust the number of
clusters on line by increasing δ gradually (Fig.6).

V. CONCLUDING REMARKS

In this paper, we have proposed two gossip algorithms describing
the opinion formation process over a network of agents through
pairwise interaction. The algorithms are shown to converge almost
surely with respect to choosing interaction pairs for any initial opinion
profile. More precisely, the algorithms reveal clustering formation of
opinion profile.
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