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Abstract

In this paper the fixed-point Wilson action for the critical O(N) model in D = 4 — € dimensions is
written down in the € expansion to order €2. It is obtained by solving the fixed-point Polchinski Exact
Renormalization Group equation (with anomalous dimension) in powers of €. This is an example of a
theory that has scale and conformal invariance despite having a finite UV cutoff. The energy-momentum
tensor for this theory is also constructed (at zero momentum) to order €2. This is done by solving the Ward-
Takahashi identity for the fixed point action. It is verified that the trace of the energy-momentum tensor is
proportional to the violation of scale invariance as given by the exact RG, i.e., the 8 function. The vanishing
of the trace at the fixed point ensures conformal invariance. Some examples of calculations of correlation
functions are also given.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Conformal field theories (CFT) are interesting for a variety of reasons. One of the most im-
portant reason is that a theory critical at a continuous phase transition is expected to acquire
conformal invariance which imposes strong constraints on the correlation functions [1]. This has
motivated the idea of bootstrap [2]. Particularly in two dimensions these ideas have been very
fruitful [3]. Reviews of later developments and references are given in [4,5].
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The advent of the AdS/CFT correspondence [6-9] or “holography” between a boundary CFT
and a bulk gravity theory opened up another approach to solving CFT’s." There is a large amount
of literature on this. See, for example, [10] for a review.

In the AdS/CFT correspondence the radial direction can be interpreted as the scale of the
boundary field theory. Thus, a radial evolution can be thought of as an RG evolution and has
been dubbed “holographic RG” [15-28]. The precise connection between the boundary RG and
holographic RG is, however, still an open question.

Recently a connection has been proposed between the Exact Renormalization Group (ERG)
equation [11-14] and the Holographic Renormalization Group (Holographic RG) equation. It
was shown in [29] that the RG evolution operator for a Wilson action of a D-dimensional field
theory obeying the Polchinski ERG equation can be formulated as a D + 1-dimensional func-
tional integral. The extra dimension, corresponding to the moving scale A of the ERG, makes it
a “holographic” formulation. Furthermore, a change of field variables or field redefinition maps
the D + 1 dimensional action for the functional integral to the action of a free massive scalar
field in AdSp+1. It was then shown that the calculation of the two point function reduces to the
familiar calculation using the AdS/CFT correspondence.

This proposal is quite general, and detailed calculations were done for the Gaussian theory
[29]. The scalar field theory action has a free parameter, i.e., the mass of the scalar field, which
is related to the anomalous dimension of the boundary operator in the AdS/CFT context. This
parameter appears to come out of nowhere. To understand the origin of the anomalous dimension
parameter, an ERG equation with anomalous dimension was analysed in [30]. The same change
of variables mapped this to a scalar field theory in the AdS space-time, and this time it was easy
to see that the mass parameter is naturally related to the anomalous dimension parameter in the
ERG. Normally, interactions are required for a field to have anomalous dimension. Since the
exact RG for interacting theories is difficult, a Gaussian theory with an anomalous dimension
introduced by hand was studied in [30].

In order to improve our understanding of the connection between ERG and the AdS/CFT cor-
respondence, it is necessary to have an interacting example — one needs a non-trivial boundary
CFT and a fixed-point Wilson action for this CFT.” Then the RG evolution of small perturbations
to this theory can be studied by ERG. Using the ideas of [29,30] this can be mapped to a scalar
field theory in D + 1-dimensional AdS space. This would make a contact with more detailed
AdS/CFT calculations of higher point correlators. A well studied field theory is the A¢* scalar
field theory in 4 — € dimensions that has the famous Wilson-Fisher fixed point. When there are
N scalar fields, this is often referred to as the O(N) model. In this paper, as a first step, we
construct a fixed-point Wilson action for this theory to order €2. It is at this order that the anoma-
lous dimension first shows up. The action is obtained by solving the fixed-point ERG equation
perturbatively. The fixed-point equation imposes the constraint of scale invariance.

In fact the theory is also conformally invariant. This follows from the properties of the energy
momentum tensor — if it is traceless the theory is conformally invariant. Indeed the tracelessness
of the energy-momentum tensor defines what we mean by a CFT [31-34]. It is thus important to
study the energy-momentum tensor and we construct it in this paper.

The energy-momentum tensor is also important in the context of AdS/CFT: one of the really
interesting aspects of the AdS/CFT correspondence is that the D + 1-dimensional bulk theory

1 Tt also opens up the amazing possibility of rewriting quantum gravity as a quantum field theory in flat space.
2 Note that the “Wilson action” always has a finite UV cutoff — this is a point of departure from the usual CFT actions
written in the continuum.
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has dynamical gravity. In addition to the scalar field, there is the gravitational field that couples
to the energy momentum tensor of the boundary CFT. Thus to extend the ideas of [29,30] to
understand bulk gravity in AdS/CFT correspondence, from ERG one has to construct the energy
momentum operator.

The energy-momentum tensor for ¢* field theory has been worked out in the dimensional
regularization scheme [33]. The construction of the energy-momentum tensor from the ERG
point of view has been studied in general in [35,37]. The main idea is to solve the Ward Identity
associated with coordinate transformations. This can be done in perturbation theory. We construct
the leading terms that corresponds to the zero momentum energy momentum tensor. One can
also check that the trace of the energy momentum tensor is proportional to the number operator.
We apply this prescription here and construct the zero momentum energy momentum tensor to
0(12).

This paper is organized as follows: In Section 2 we give a review of ERG and the fixed-
point equation. We also give some background material on the energy-momentum tensor. In
Section 3 we construct the solution to the fixed-point equation and obtain the fixed-point action.
In Section 4 we give a different approach to obtaining the fixed point equation and also calculate
some correlation functions. In Section 5 the construction of the energy-momentum tensor is
given. We conclude the paper in Section 6.

2. Background
2.1. Exact renormalization group and fixed point equation
We review the necessary background in this section. It depends mostly on [38,39].

2.1.1. Exact renormalization group

Renormalization means essentially going from one scale Ag to a lower scale A, where the
initial scale Ay is typically called a bare scale. One will want to see how the physics changes
with scale. What do we mean by physics at Ag? It means our theory will not be sensitive to
momentum p > Ag. The partition function of the full theory is given by

2= [Dpes
where
1
S= / §p2¢2 + S1[9]
p

To make it a partition function at scale Ao we will try to suppress the kinetic energy term for
0o < p < Ay. To execute this we will put a smooth cutoff in the kinetic energy term to obtain the
bare action

N P S
Sslgl =3 1[¢K<p2/Ag>¢+ S1.51#] @1

and the bare partition function

Zp = / Dep e~ 58] (2.2)
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We will choose the cutoff function will follow the condition K(0) =1 and K(oc0) =0. In
general cutoff functions satisfy stronger properties, but that will not affect the fixed point values
of the couplings [40].

Now we want to go to a lower scale A. For that, observe the following identity

1 1
/D(f)exp —zfd’(—P)m‘P(P) — S1,8l¢]
D

1 1
=fD¢1D¢2€XP _Ef A(p)¢1(—P)¢1 (p)
)4

1 1
= - _
2/ B(p) G2(=p)p2(p) — S1,BlP1 + 2]

p

Using this we can write

1 2
Zp :/D(bﬂ)th exp{ 3 / m@(—]ﬂ(bl(l?)
p

1 p2

5/ K(p?/A2) — K(p2/A?)
P

On(=p)on(p) — S1,Bldr + ¢h]}

We can effectively call ¢;(¢y,) as low(high) energy field as it is propagated by low(high) momen-
tum propagator A;(Aj) defined below

K(p*/A?) K (p*/A%) — K(p*/AD)
METE T T z

p
So we can write

(2.3)

1 1
zB=/D¢zexp —5/¢1A;‘¢>1 /Dqshexp —E/qshA;‘m—sz,B[@wh]
p i p

1
— / Dgrexp |~ / B0 1 | expl—Sraldr])
p i

where

1
eXp{_SI,A[¢l]}E/D¢h CXP{ - §/¢hA;1¢h — S1.8l¢ +¢h]} (2.4)
P

S1.A 1s the interaction part of an effective low energy field theory with a UV cutoff A.
Let

1
Salel =3 / A B+ Spalr] (2.5)
P
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be the whole action so that

Zp = / Dy e 511911 (2.6)
Using (2.4), we obtain
JNT
—[D S 1 P2 1 p2
—/ Y exp | — B[‘P]‘FE/m(P(P)(P(—P)—E/mfﬁ(mqﬁ(—m
P P
1 p2
— - —p)— (-~ 2.7
| oo @) =) =) = d=p) @7

p

where we have written ¢; as ¢ and ¢, as ¢ — ¢. This will be useful later.

It is to be noted that one can go back to the bare partition function anytime. For this reason
this scheme is called “exact”, i.e. we lose no physical information by varying the scale. It is easy
to see this explicitly. Using (2.7), we can calculate the generating functional of S using Sx as

[ D exp | —Sule] - / J(=p)(p)

p

1 1
—exp| 5 / J(p) =) K (p/ o) (1= K (p/Ao)
P
) <K(P/A0)

2
K(p/A) (1 —K(p/A
K(p/A)> (p/A)( (p/ ))”

K(p/Ao)
X | D¢ exp | —Sale] —/J(—p)7¢(17) (2.8)
/ K(p/A)
p
We observe that the correlation functions of Sp are the same as those of S up to the trivial (short-
distance) contribution to the two-point function and up to the momentum-dependent rescaling of

the field by II((((’; / /1}\0)) [39]. If we ignore the small corrections to the two-point functions, we can
write

n n

1
I1 KoTm (@09, = [1

i=1 i=1

b (py 2.9
TR N 2.9)

2.1.2. Polchinski’s ERG equation
We have given an integral formula (2.4) for Sy o and (2.7) for S . It is easy to derive differ-
ential equations from these. From (2.4), we obtain Polchinski’s ERG equation

_A3SI,A[¢] =v/(_)dK(P/A) (_5SI,A[¢] 381 AlP] " 8281, al¢] )
oA dp
p

2 (2.10)
dp(p) S¢(—p)  S8¢(p)égp(—p)

for S; a. From (2.7) we obtain
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dSA o] _ zdan(p/A) LAY
AR ‘/[ g PP
P
2
+dK(p2/A) (_ AYN SSA 5°SA )] 211
dp 56(0) 56 (—p) T 36250 (—p)

for the entire Wilson action.

2.1.3. The limit A — 0+
In the limit A — 04 we expect Sp[¢] approaches something related to the partition function.
If we substitute

lim K(p/A)=0 (2.12)
A—0+
into (2.7), we get

lim ¢ S92/, K(p//\)¢([’)¢( P)_ lim e Siale]
A—0+ A—0+

1 2 2
3w a o (P)b(—p) / / P
=¢ 27r KG/R) Dy exp| —Splel+ | ————0(p)p(—p) (2.13)
@ exp sle K(p/AO)¢p¢ p
p

Hence, rewriting ¢ (p) by K(l;i/ZAO)J (p), we obtain the generating functional of the bare theory
as the A — 04 limit of S; A:

ZB[-/]E/D(P exp —SB[so]—/<p(p)J(—p)

p

n _ KA
I WICD R <—SIA[ Kw/2o) )D (2.14)
A0+ ' p?

2.1.4. IR limit of a critical theory
For the bare theory at criticality, we expect that the correlation functions

(@(p1) - @(pn)) g = / Do p(p1)---@(py) e 1% (2.15)

to become scale invariant in the IR limit, i.e., for small momenta. To be more precise, we can
define the limit

Cpr,---,pn) = tl_i>rgoe%(_(D+2)+”)l (e(pre™) - p(pae™))y (2.16)

where % is the anomalous dimension.

What does this mean for S in the limit A — 0+? As we have seen above, the interaction part
S1.A becomes the generating functional of the bare theory in this limit. Since only the IR limit
of the correlation functions are scale invariant, only the low momentum part of lima_, o+ S7.A
corresponds to the scale invariant theory defined by the IR limit (2.16).

To understand the IR limit better, we follow Wilson [11] and reformulate the ERG transfor-
mation in two steps:
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1. introduction of an anomalous dimension (section 2.1.5) — the anomalous dimension is an
important ingredient of the IR limit. We need to introduce an anomalous dimension of the
field within ERG.

2. introduction of a dimensionless framework (section 2.1.6) — each time we lower the cutoff
A we have to rescale space to restore the same momentum cutoff. This is necessary to realize
scale invariance within ERG.

2.1.5. Anomalous dimension in ERG

The cutoff dependent Wilson action Sy [¢] has two parts:

1 p2
Salgl= | OIS+ 51.416) 2.17)
P

The first term is a kinetic term, but this is not the only kinetic term; part of the interaction
quadratic in ¢’s also contains the kinetic term. The normalization of ¢ has no physical meaning,
and it is natural to normalize the field so that S; o contains no kinetic term.

To do this, we modify the ERG differential equation (2.11) by adding a number operator
[38,40]:

d YN
—ApSAlP) = | [—2p*—=InK(p/A
ASAL®] p/( P (p/ )¢(p)5¢(p)
d EXAYN 8Sn  8Sa })
— " _K(p/A _
X ){6¢<p>a¢><—p> 56 () 56 (—p)
— L NAl] (2.18)
where the number operator N [¢] is defined by
AYN
N, E/[
Alo] J ¢(P)8¢(p)
. 2
+K(P/A)(1 _ K(p/A)){ 8°SA LN ” (2.19)
P 3¢ (p)ép(—p) 8¢ (p) $p(—p)
This counts the number of fields:
(Nalolo(p)---d(pa))s, =n(p(p1)---d(pn))s, (2.20)

(Again we are ignoring small corrections to the two-point functions.) Under (2.18) the correlation
functions change as

ﬁ; @ (p1)-- b (pn)) =<ZA>%1£[¥ @GP $(pn))
ot K(pl/A) pl Pn SA ZA’ b K(pl/A/) pl pl’l SA’
(2.21)
where Z , is the solution of
—AiZA:nA Za (2.22)

oA
satisfying the initial condition
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Zpo=1 (2.23)

We can choose 1 so that Sp has the same kinetic term independent of A. For (2.18), the integral
formula (2.7) must be changed to [39]

2

p o(p) o (p) )

[ 1
P TS | TRG/A) _ 1-Kw/A -
20 ZKGIm ~ Koy KPR VZaK(p/A)

X(¢(_p) _ $(=p) )} 224

K(p/No)  ZaK(p/A)
This reduces to (2.7) for Z, = 1.
2.1.6. Dimensionless framework
To reach the IR limit (2.16) we must look at smaller and smaller momenta as we lower the
cutoff A. We can do this by measuring the momenta in units of the cutoff A. At the same time we
render all the dimensionful quantities such as ¢ (p) dimensionless by using appropriate powers

of A.
We introduce a dimensionless parameter ¢ by

A=pe’ (2.25)

where w is an arbitrary fixed momentum scale. We then define the dimensionless field with
dimensionless momentum by

$(p)=A"T g(pA) (2.26)

and define a Wilson action parametrized by ¢:

Si[@]1= Sald] (2.27)

We can now rewrite (2.18) for S‘,:

5 53] d 35,141
M —2p? d—an(p)+p 0p + d(p) - 53()

823; (SS; 83[ } Nt -
- — —_— = — =N, 2.28
f RF R ){5¢(p)8¢(—p) s sap | 2Vl 22

where we have replaced na by 7;, and

5141 /K(p)(l—K(p))( 85 85 6&)
86(p) P 36()sp(—=p)  86(p) 8p(—p)

(2.29)

Nilg] = /¢( )

is the number operator for S;.
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Rewriting (2.21) in terms of dimensionless fields, we obtain

n

1
= (6(p1) - D)),

_ K(pi)
n n
_ (i) e 3OO T] L (e ) o) (230
Zy 1 K(pie=t=1D) S

where Z; satisfies
0z =mn1 Z; (2.31)

(The corrections to the two-point functions are ignored.) Comparing (2.30) with (2.16), the exis-
tence of the IR limit implies that

Jlim =1 (2.32)
and
L
tlglolo m(‘f’(l’l) ¢>)-=C(p1,~-,pn) (2.33)

In other words S; approaches a limit as  — +00:

lim S, =S4 (2.34)

t—>—+00

We call So a fixed point because the right-hand side of (2.28) vanishes for it:

0—/( 2 i1nl<( )+ p -0, ;2 )qb( )- 35c[9]
- Pap " 56(p)
_ 00 %% 9 ~ I 235
/( Va2 K@) {5¢(P)5¢(—P) 3¢(p) 3¢(—P)} 2 ] (239

2.1.7. Fixed-point equation

Instead of choosing n dependent on 7, we may choose 7 as a constant so that there is a non-
trivial fixed-point solution S, for which the right-hand side of (2.28) vanishes. With a constant
anomalous dimension, the dimensionless ERG equation is given by

—— d D+2 35:(¢1
BzSz[¢]—p/< 2p? d—an( )+T—§+p 9 >¢>( ) 53(p)
d K(p)(1—=K(p)

+I)/(—2WK(P)—U—1)2 >

1 < 828/(] 8891 85191 )
x = [ =220 o ool o (2.36)
3dp(p)op(—p) 3¢ (p) d¢p(—p)

For the O(N) model with N fields ¢>i (i=1,---,N), the ERG equation becomes
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) 21 D+2 g 85:19]
05191 = ,,/< 20 p KD+ st a>¢(> 5 0)

K(p)(1-K
/( 2—K() (p)(p2 (p)))

P
] < 825,(4] 88:[¢] aSt[q's])
51 (p)Sdi (—p) 8¢ (p) 8¢ (—p)

where the repeated indices i are summed over.

2.2. Energy momentum tensor: scale invariance and conformal invariance

2.2.1. Energy momentum tensor in the classical theory

11

(2.37)

In this paper we will focus on the following Euclidean action whenever a concrete action is

required for a calculation

1 1 A
St = [ dPxJRI3e" 0,000+ 310 + 0]

Using

1
58 =2g8""8gu, 8J8= 5\/§g“”8gw, 88w = —81088"° ov

we get

1 1
55 =~ [ dPx 33, E1" 990 - g L1= - [ aPx 3. ET"

where

2 &S
T = = =2 =i — gL
\/g‘sg/w
One can check that
oL oL 8SE
8”T = —0 =
=005 = (555) | =9

Thus, classically the energy momentum tensor is conserved on-shell.

Now we rewrite T},,, in a form that will be useful later. Define the traceless tensor

tyy = D3,0, — g0

and the transverse tensor
Opn = (guv0 — 8,0,) P>
Using the identity
1
Bupdu = 00, 58° — 0 ducp

one can rewrite

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)
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1
Ty =———
74D -1

! 202 + (4 4,02 2.43
_Bg;w m¢” + ( _D)qu + E (2.43)

2 2\ 42 1
tuv¢ + (auav g,uva [ _B‘f’tuv(i’

4(D — )

2

‘b : 88 : 3s _ 2 :
The trace which is proportional to g, Sg Can be written as 57 when g,, = e, and is the
response to scale transformations.

mn— 2D (4— D) b-2, (2.44)
LI PR RS |
with
8SE
_¢ ¢

proportional to the equation of motion. The terms proportional to m? and A are genuine violations
of scale invariance. But the first term can be gotten rid of by defining the improved energy
momentum tensor

2 2
e T (2.45)

Oy =Ty + D~
S TY) T )

which is still conserved. So in a genuinely classically scale invariant theory with m? =0 and
A =0or D =4 one expects
2—-D
B
O,= > E

2.2.2. Trace of the energy momentum tensor in the quantum theory: perturbative

When quantum corrections® are included the condition for scale invariance is modified. The
trace will be defined as before proportional to 35 Before we turn to the exact RG let us see what
happens in the usual lowest order perturbation theory. Let us start at Ao and evolve to A with A
close to Ag.

4
Sa, = / [ 8,00 + m0¢ + 4o ﬁ'] (2.46)

X

and

1 1 4
Sa= f [(1 = 8Z(0)59u$d" ¢ + 5 (m + 5mo())$” + (ho + m(r))% + 0(1/A>}
J !
Here 8 Z is the correction to the kinetic term coming from the two loop diagram at O(1?), dmy ~

O(M) and A9 ~ O(kz) are the corrections starting at one loop.
We rewrite S, in a suggestive way by adding and subtracting some terms proportional to § Z:

14
SA:/[ ﬂ¢aﬂ¢+ (m0+8mo(t)2+8Zm0)¢ +(Ao+5ko(t)+26Z?»o)¢

X

mZ(t):mR A(t)=AR

3 We are working in Euclidean space. So “quantum” fluctuations are actually statistical fluctuations.
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+0/8)]

1 1 4
— 87 [Ea,tcpa“(/; + Em%)¢2 + 210%} (2.47)

AL
5%

If we think of S, as the bare action Sg and S as the renormalized action Sk so that Sp =
SR + Scounter—term, then Ag = Ap and A(¢f) = Ag. The relation between renormalized and bare
quantities is

AR+ OAR
Ag=—+r—
ZZ
Here 8\ is the counterterm and is chosen to cancel the correction §1g so SAg = —81g. Let us

write everything in terms of Ap:
AB=AR+0OAR —20ZAR AR 4+ 8hg — 28 ZAg
AB+28ZAo —8AR =Xho +28Z0o + )Xo = AR = A(2)
Thus for small ¢:
M(0) =ho+BO)t ; mP(O) =m*O) (1 +yn) ; 8Z==2y1
Furthermore define
x=iA" =X Age

The trace of the energy momentum tensor is given by the dependence on ¢

_A—D l 2 2 ¢—4 l o5,
=A /|:2m()7/m()‘«0)¢ + B(20) 4!:|-|-2)/ 2¢5¢(X)

¢4

1 1 _
+D / [5m36” + 20501+ (D -2) / S99+ 0(1/A0)] (2.48)

Define dimensionless variables as

m§ = m? A§ = m*e* A?
and

ho = (Ao)* PRy = Roe P (AP
and fields

D—2 D=2

p=(N)Th=eTIA,

-

Now add and subtract
D -2 AT
( > ) / ¢
X

3¢(x)
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to get
1 _ 4
~14 = [ [372@ 4 mGan + (BG) - 0~ r0
T “ﬁ—function”
+ S 2.49
( y> 6¢< ) 24

LHS can be identified with the trace of the energy momentum tensor in the quantum theory and
can be compared with the corresponding classical expression in (2.44). The above gives an idea of
how the quantum corrections modify 7},,. A detailed calculation of the energy momentum tensor
in the renormalized theory in terms of composite operators and using dimensional regularization
is given in [33]. A systematic and precise treatment is provided by ERG and is given in [35,37]
and is summarized below.

2.2.3. Energy momentum tensor in exact RG

We summarize the properties of the energy momentum tensor in ERG, given in [35].

The Ward Identity almost* defines the energy momentum. Because of general coordinate
invariance

Sxt=—e" 5 ¢'(x)=¢(x)+ € 3 (x)

is equivalent to (Assume that g, = 1)

88w = €(u,)

and
/ch/ = / Dégrsg 5 Slp,g+38g1=15[¢" gl
Thus the following identity must hold

7= f Dl eS8 O[T 0 / Dy sge SO CH81[ I ()@ )+€ 6 (1))
Then using the definition of the energy momentum tensor, i.e.

Z[J=0,g+3g]= f DipgsgeSIP8+08] = f Depge 510812 [ /8dgu T (2.50)

we get the Ward identity

n
=0 (T ()P (x1)...0 (xn)) + Z S(x = xi) (P (x1)....000 (x)...0 (xp)) =0 (2.51)
i=1
This is a statement of the conservation of 7}, corresponding to the classical statement (2.40).
In ERG this can be written as a Ward identity for the composite operator [7},,]

aTw (@] = / SPIK(p)(p+ @) 5 ( )<[¢(p+q>]e ¢l (2.52)

p

4 up to transverse terms of the form 9,9, — 0d,,y that do not contribute.
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The equation corresponding to (2.49) and (2.44) is

T/ (0) = —ﬁ - (—2 + N (2.53)

where —y gives the ERG evolution, with anomalous dimension, in terms of dimensionless
variables - the “B-function”. It vanishes at the fixed point. A/ is the number operator. Note that
this equation is obtained for zero momentum or as an integral over space-time in position space.
The classical analog of this is (2.44), which was obtained for arbitrary momentum.

Note that in equations (2.52) and (2.53), both LHS and RHS are composite operators. So
one strategy will be to evaluate 7, using these equations in the bare theory at some scale Ag
which will be taken to be infinity. The bare theory is very simple so the calculations can be
done exactly. Then one can evolve T, down to a scale A << A order by order using the ERG
evolution operator. If we choose A and m to be on the critical surface we are guaranteed that at
A the theory flows to the fixed point action. Thus we will have evaluated the energy momentum
tensor at the fixed point.

Another approach is to work directly with the known fixed point action and solve the Ward
identity order by order. In this paper we follow the second approach.

3. Wilson-Fisher fixed point for the O (N) model

We will find the fixed-point Wilson action by putting % =0 in (2.37). As we will work
mostly with dimensionless variables we will remove the bar sign from the dimensionless vari-
ables unless otherwise mentioned. Also t dependence of actions and fields being readily implied,
the subscript t will be omitted too. We give the fixed point action S in the following form:

S=8+ 81+ S¢

where S, and Sy are given by

dD
5= / o) L1 (06! (—p) (3.54)
- dP Pi
—51_[/ 2m)D Ua(p1, p2: p3, pa)5 ¢> (P0$' (p2)5 ¢ (P3¢’ (p4) (3.55)
i=1

where p1 + p2 + p3 + pa =0 is implied. Instead of putting an explicit delta function and inte-
grating over p4 we will simply impose momentum conservation at every stage. Accordingly Se
is given by

S6 = 3,1_[/(2 )D Us(p1. p2; P3» P43 Ps. Pe)

1 1
X 5¢’(p1)¢>’(pz)5¢’(p3>¢’(p4)5¢’<(ps>¢>’<<p6) (3.56)

3.1. Equations for the vertices

We get the following equations for U,Us and Ug:
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Equation for U

dPp nK(1—-K) s
(2n)0{< [ ))

1
x g |:4NU4(P1, —pi1; p, —p) +8Us(p1, p; —pi1, —P)]

1 D -1 PL o 2
=520 02(p)57(p = p1) — +1=2—>5-K'(p7) |U2(p1)

2 K(Pl)
1 dUsx(py)
2P,
Equation for Uy

dPp nK({—-K) PR
(sz( 2z K ))&

X {6NU6(p1,pz; D3, pa; p, —p) +12Us(p1, p; p2, —p; P3, P4)

+ 12Us(p1, p2; p3, p; pa, —p)}

nK1-K) ., 2
—Z( - K (pj>)Uz<p,-> gUa(p1, p2; p3, pa)
J

b K’(pz)) lU4(pl P2i P3s P4)
Kpp )8 e

[4 D — ZPz ] Us(p1, p2; 3, p4)
l

Here p = pa+ py+ pn == (pi + pj + pn)-
Equation for Ug
2 1 K(1-K) / .
0=% 2 (_—_K((Pi+p'+p )
. . 2 J m
48 6 perm of (m,n) 2 (p’ +p] +pm) )

x Us(pi, Pj; Pm» P)Us(Pa, Pb; Pns —P)

nK( —K) 2
+Z<K( 2 5 g )V g Uspr p2i 3, pi ps. o)
J

2
-1 p
Y (5 -2 Us(p1,
+ ( 3 K (p])> 1g U6(P1- P23 P3. a3 ps. Do)

6
d 1
6—-2D — i —— U
+[ E Di dpiLS 6(P1, P25 P3, P4; P5, D6)

(3.57)

(3.58)

(3.59)
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3.2. Solving the equations
We know that Us ~ O(¢) and Ug ~ O(€?) and n ~ O(e?), where € =4 — D.

3.2.1. O(): retrieving Gaussian theory
We start with (3.57) for U,. Neglecting Uy and 7 and collecting coefficients of ¢> we get

2
p dUx(p)
0=K'(PU(PUs(p) + (1 = 2L K'(p?) | Ua(p) — PP =222 (3.60)
K(p?) dp
Ux(p) = ;2) solves this equation. This is expected since the Gaussian theory is expected to be

a fixed pomt and this ERG was obtained from Polchinski’s ERG by adding on the kinetic term

3 f (2;1)0 Pod (p) 2 K(pz) ¢ (—p). Thus our solution can be written as

M) 2
Kpn Tl (P +OE) (3.61)
O(e)

Ux(p) =

3.2.2. O(e): fixed point value of m>
We go back to (3.57) and keep Uy which is O(¢) but drop n which is O(€2).

d’p (-nK(1-K) K
/ <2n>D< 2 ke )>X

1
{§[4NU4(1)1, p2; p,—p) +8Us(p1, p; —p, _Pl)] - 52Uz(p)Uz(p)5D(p — Pl)}

2
=1 D )2 1 dUx(p1)
—4+1-=2 K U — —p— 3.62
+( > + ) (pl)) 2(p1) P n (3.62)

We use (3.61) in the above equation and look at the terms of order €. To leading order we set
U4 = X, which is O(¢). The equation for Uz(l) is given by

AN +8 [ dPp

0=—2 K'(p?
3 ()P )
+2 P U“>( DK + (2P k ))U“)( SELLED
P1 p - P1 D1 — 2
K( 2) ’ : D) dp?
To leading order this equation is solved by a constant U, (1), ie.
4N +8 [ dPp |
0= —i K (p?) +ud 3.63
s | aep K P+ Us (3.63)
Thus
N+2 p dP
G e P k'(p? (3.64)

2 2m)D
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de .
2m)P ~ 2DxD21(D/2) /(p

To get leading results we can set D = 4:

2)¥dp2

o o0

4N +8 1 AN +8 1

(D 2 2pre 2 2 2

U ’'=r—— d K =—A— dp K 3.65

b 3 (4n)2/ P P K (p?) A (4n)2/ p K (p°) (3.65)
0 0

We have used K (0) =1, K(oo0) = 0. This gives the fixed point value of the dimensionless mass

parameter:

o0
N+2 1
M _ 2 22
Uy =m?=—-2 dp*K 3.66
) =my 2 (471)2/19 (r°) (3.60)
0

To evaluate the integral explicitly we need a specific form for K. We use K (p?) = ¢=P". Then
the integral is equal to 1.

3.2.3. O(€?): expression for the six-point vertex
Let us turn to (3.59) reproduced below:

2 -1 K(d-K) 2
0=—2 3 (——Q—K’<(p,-+p,»+pm>)
48 6 perm of (i,j,m) 2 (pi + Pj + pm)

X Usa(pi. pj: Pm, PYUs(pa; Pb; Pn, —P)
6 2
—nK(1-K -
+> { (mp;) - —n¥>2U2(Pj) - (—" —2- L K/(pi))}
j=1

2 p 2 K®)

1
X EU6(P1,P2§ D3, P4; D5, P6)

6
d |1
+|:6—2D—ZPi—}—Ufy(Pl,Pz;P3,P4;P5,P6) (3.67)
o dpi]48

where p = py + pp + pn = —(pi + Pj + Pm)-
In this equation we keep terms of O(e?). Since 7 is O(e?), and multiplies terms of O(€?), it
contributes only at O(e*) in this equation, so it can be dropped here. Furthermore then, if we use

the second and third terms cancel each other. So we

2
the leading order solution for U, = %pz),

are left with

2
0=—2c D K'(Wi+pj+pm))Uspi, pji Pa» PUa(Pas Pyi Prs —p)
6 perm (i, j,m)

— pl ’ ; 18 6 1515 1525 153’ 1’347 1’35’ }'36 .
Since U4 == )\. to thlS Order, we Obtain

2
0= X Kitpi+pn)?)
6 perm (i,j,m)
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[6 2D - Zpl ] Us(p1, p2: P3, p4: Ps. Pe) (3.69)

The solution for one permutation is

K((p1+ p2+ p3)») — K(0)
(p1+ p2+ p3)?

Us(p1. pa: p3. p4: ps. pe) = A>
The full solution is given by
Us(p1, p2; p3, P4; P5, P6)
=—2*{h(p1+ p2+ p3) + h(p1 + p2+ ps) + h(p1 + p2 + ps)
+h(p1+ p2+ ps) + h(p1 + p3 + pa) + h(p2 + p3 + pa)} (3.70)
where h(x) = W.
3.2.4. Fixed point value of L: solution for Uy at O(€)
The Uy equation is given by (3.58). In this equation 1 can be neglected as —n =~ O(€?). Also

we put the value of U, upto order of € found above. There is a cancellation between the second
and third terms on the R.H.S and we obtain

A N 211
[(4 D~ Zp, ) ZZK(% s ] Ua(p1, p2; p3. pa)

dPp 2
— K 6NU ,
@b (p )48{ 6(p1, P2; 3, p4; P, —P)
+ 12Ue(p1, p; p2, —p; p3» pa) + 12Us(p1, p2; p3, P; P4, —p)} (3.71)

The solution is given in the Appendix A.1. The fixed point value A* given below solves the above
equation:
167>

A*=@4-D
( )N+8

(3.72)

3.3. Determining anomalous dimension

U, equation at O(e?)

0_/{ dPp (—_r/K(l—K)_K/( 2)){ 8284 3% 88 ”
AL ? POV sgT(msdl (—p) 567 (p) 5T (—p)

+{—5—2K( 5K )}¢<p>

where we plug in:

88

Us(pi, p2; p3, pa) = A+ Usa(pi, p2; p3, pa)

0(e2)
p N+2 (dPp , , -
Uy(p) = = —p—= K U 3.73
2p) =" 5 @)D (P?) + U2(p) (3.73)

0(€2)
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and keep only O(€?) terms in the above equation to get

d°p (-nK(1—-K) _, ,
(2n>D< »? _K(p)>x

1 - .
{g [4NU4(m, —p1; p,—p) + 8Us(p1, p; —p, _Pl)i|

1
—EZUz(p)Uz(p)S (p— Pl)]}

2
-n P ) szZ(Pl)
+—+1-2 K U —pi——— 3.74
On simplification it gives

-n(1-K) , alp , 51 -
- — K —[4NU. , =D Py —

> g M )P (p )8 4(p1,—p1; P, —p)
+8U4(p1, p1; —p, —Pl)i| +K'(pH U2 (p) Uz (p1)

77P1 zd Z(Pl)

247 — =0 3.75

+ K + U2(p1) P % (3.75)

In the L.H.S the third term will cancel with part of the second term (showr} in A.3). Also the
raison d’etre for introducing 7 is to ensure that U, = p* 4+ O(p*). So we let U> = O(p*). So the
anomalous dimension is given by

0 d d°p

o_ % K'Y ANU (p1, —p1; P, —p)
2 dp}J @eoP 8

(3.76)

+80 " (p1, p; —p1, —p):l
pi=0
Here the superscript /1 is explained in Appendix A and refers to a class of Feynman diagrams.
Uy, is determined by solving (3.71). So using (3.76) and (A.151) one can determine n. This is
done in the Appendix A.4. The result is of course well known [11]:

2 1 N+2 €
n_ 2Nt _ V2 e 3.77)
2 4 (16m2)2 (N+8)?2 4
Collecting results we have (we have put D=4 for O(€?) terms),
2 D
)4 N+2 d p re.2 7
U = - K U 3.78
2(p) K > 2m)D (p*) + Ua(p) (3.78)

The expression for 02(]7) is given in (A.149) (also in the next section a neater expression is
presented).

4

(N+2) A2
Us(p1, p2; P3; pa) =4 — D)N 8+ Ton 2Zh(1’1

—12[(N +4) F(p1+ p2) +2F(p1+ p3) +2F (p1 + p4)] (3.79)
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where

Foy =2 [ 222 [ —h
p=3 @)D (@)|h(p+q)—h(q)

and
K(0) - K(p?
h(p)=——F—
p
Us(p1, P25 P35 P45 Pss P6)

= —kz{h(pl + p2+ p3) + h(p1 + p2 + ps) + h(p1 + p2 + ps)

+h(p1+ p2+ pe) + h(p1+ p3+ ps) + h(p2 + p3 + p4)} (3.80)
and the anomalous dimension is given by
n_,N+2 1 N42 & 3.81)
2 4 (16722 (N+8)?2 4 '

To evaluate the integrals we have put D = 4 and used specific form of K (p?) = e P

This completes the solution of the fixed point ERG equation and determination of the eigen-
value 7 corresponding to anomalous dimension up to O (¢2). In the next section we give a slightly
different approach to obtaining the fixed point action and evaluate correlation functions.

4. Correlation functions
4.1. A more general equation

In the previous section we set ‘;—f = 0 and solved the fixed point equation for the action order
by order. One can also solve a more general equation where the LHS is not set to zero but to
%—‘f =8 j%. The parameters can be chosen so that the beta functions are zero. This has the
effect that the equations are modified at each order by terms of higher order. The advantage is
that the solutions are easier to write down.

We want to obtain the fixed-point Wilson action to order A2 in the following form:

2

1
S[¢'] = / 26! (08! (—p) < P
p

U
X + 2(P))

2
P1,P2,P3. P4

4
X (Z pi> <A + Va(p1. p2; p3, p4)>
i=1

1 1 1 1 -
ba [ 39 008 307 (0”36 (020 ()5 (Z Pf)
.Pls'“,[’ﬁ =l

1 1 1
41 f 36! (P08 (21367 (p)8” (1)

(4.82)
x Ve(p1, p2; P3, P4; Ps» P6)
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As we will all vertex function in powers of A we have to put the general expression for e

oA

1,2
o = (et By

Where ﬂ(l) the leading term in the beta function, is given by

K(0) —-K
K/(p)w (N+8)/f(P)h(p)

dD
(D p
=2(N+8
B =2+ [ 5L
where f(p) = —2K'(p?).
If we assume V,(p) = szl)(P) + A% )(p) szl)(p) + <V2 (p) + Vz”(p)) where VI(”)
is analog of 02](”) in A.3, then
aVa(p)
at

Similarly if Va(p1, p2; p3. pa) = V] (p1, p2; p3. pa) + VI (p1. p2; p3, ps), where
I(I1 . . ~ 11 .
V4( )(pl, P2; P3, p4) is equivalent to U4( )(pl, P2; P3, pa) in A2,

= (ex+332)08" (p) + 2220l (p) + 223 B v ()

9
— [x + Va(p1, p2; p3, p4)] (e/\ + ﬁ“)/\z) +2Vu(p1, p2; p3s p4)(e + ﬁ“)k)

ot
A. (3.64) is modified to
) AN +38 d®p ., )
S€% (p) = 2 (Zn)DK(p )+ v, (p),
gives

) N+21 [ dPp
=— - 4.83

vy (p) <2/ @ )Df(p) (4.83)
=—(N+2)wn

dD
where vy = ﬁ%f (Zn)ppf(p)
B. (A.140) turns into

4
d
[6 +> p; d—p] Vi (p1, p2; p3, pa))
j=1 J

=-222 / K/(pz)[uv +4h(p1+ p2+ p) +2h(p + p1 + p3) +2h(p + p1 + pa)
p
— (N + 8)h(p)} (4.84)

If we write V{!(p1, p2; p3. pa)) = —/\2{(N +4)F(p1 + p2) +2F(p1 + p3) + 2F (p1 + p4)}
the equation for F'(p) can be written as,

_ [ dPp LPe)
(p-dp+e€)F(p)= F@h(q+p)+ 3P (4.85)

@2m)P
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where

1 dPp
2 _
3P = / 2n)D f(p)h(p)

The solution, analytic at p =0 is,
1 dPp
F(g)== h h —h
@=3 [ Gy ) (M + ) = h(p)
C. Similarly (A.139a) gets modified to,
V ’
|:€+ZP;d ] 4 (P1, D23 P3, P4)

4
(2 _l ._# 12
(p){ S;h(p,) 4(2_€)K<p,>}

de
)
=A (N+2)/ om)D

whose solution is,
5 (N + 2) 2
V) (p1. p2i p3. pa) = (2 )D< K'(p ))Zh(p,

Also
_Pl)}

1
§{4NV4'(Pls —pi: p.—p) + 8V} (p. p1: —p.
(N+2)2
/(2 5 K@) +h(p)

D. (3.75) turns into,
dvy(p1)
(2 =20y —2pi———

D1

dD 2
2{ / (zn)”D(—K%p?))} h(py) —2(0")’ K’ (pD)

The solution is
1 1
vz’(m)=—(N+2>2A2(2_6)2Z{/ (Zn)Df(m} h(p1)

E. (A.147) changes to
11
(p1)
"0+ By 278" (p) +2p] i’
1

(—2+2¢)v)

== 320 +2) [ RGP hpr+ p+ 1) = )]

rp

2
b2 [x@] [ xR e -}
p

23

(4.86)

(4.87)

(4.88)

(4.89)
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If we assume
Vil (p)=—=31*(N+2)G(p)
Then G (p) satisfies the following equation,

2v7 @ 2
(p.ap—2+26)G(p)=/f(q)F(p+q)+T/f(p)h(p)Jrn p (4.90)
p

From (3.76) we get n = 3(N + 2)A>n® where,

12 = [ r@ora+ )
dp2 p=0

The solution, analytic at p =0 is

1 17@
G(p) =§/h(q)(F(p+q) - F(g)+ TP
1 2up
-5 (/f(q)F(q)Jr T/f(p)h(p)) (4.91)
p

Vzl (p)+ V21 I p) when calculated in the limit € — 0 gives the expression of 02( p) mentioned in
the previous section.
The solutions are given by,

Va(p) = —h(N +2)v2 =22 (3N +2)G(p) + (N +2* (82 h(p)) (4.922)
Va(p1, p2; p3, pa) = —lz((N + 4 F(p1+ p2) +2F (p1+ p3) +2F (p1 + ps)
4
—(N+2)02 ) h(pi) ) (4.92b)
i=1

Vs(P1, P23 P3, P43 P, P6) = —A> (h(p1 + p2 + p3)
+h(p1+ p2+ pa) + h(p1+ p2 + ps)

+h(p1+ p2+ pe) + h(p3 + pa+ p1) + h(p3 + pa + p2)) (4.92¢)
where
F(p)=—2K'(p%); h(p) = %f“lﬂ)
and
Y R wos)

2—-¢2J @n)P
If we take the limit € — 0 and K (p?) = e P we get
1L (dp _. 1 1

2 -p*_ 2
2] en)p¢ 2 1672

1 [ dP
Fi =5 [ Slsh@[h+0) - o)

V) =
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The coupling constant A is given, to order e =4 — D, as

€ (47:)2
=—3 = (4.94)
—-By N+ 8
The anomalous dimension is given, to order €2, as
N+2
I ) (4.95)
2(N +8)2

4.2. Calculation of correlation functions

In this section we will calculate two-, four-, and six-point correlation functions. Recall that
our Wilson action has a fixed momentum cutoff of order 1. If we consider the momenta much
larger than the cutoff, the vertices of the Wilson action gives the correlation functions [36]. We
first rescale the ﬁeld

1
J(p) = m¢ () (4.96)
and define
Wi =-S101+ 5 / T (= )% .97)
p

For our Wilson action, this is given by

1
W[J’]=/ I (p)J (—p) h(p)* (h( ) Vz(P))

p

4
1 1 1
+3 f ST DI (P57 ()T (p)3 (Z Pi)

P1,P2.P3,D4 i=1

4
< [Th(pi) - (=1 = Va(p1. p2: p3. pa))
i=1

6
1 1 1 1
+3 / 57 0T (P51 (03I ()3T 5 (p5) I E (p6) 8 (Z pi)
prps i=1
6
x [ Tr@) - ()Vs(pr. pa: ps. pa: ps. pe) (4.98)
i=1
In the high momentum limit we obtain the generating functional of the connected correlation
functions
Wi = lim w[J]] (4.99)

t—+400

where

I (p)=exp <—tD_T2+"> J(pe™) (4.100)
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In our case we obtain

1
Wi/ 1= / 577" (=p) exp(t2 = m) h(pe')® ( ) Vz(pef)>
)4
1 1 1 4
1 1 J J .
+3 / 57 0T ()57 ()] <p4>3(Zpl>
P1,D2, D3 P4 i=1

4
xexp(t(D+4—2n) [[h(pie') - (=1 — Va(pie', pae'; pse’, pae))
i=1
by [ 5T G030 o0 03T ()T (0 (i p,->
3! 2 27 S 2 :
P15 D6 i=1
6
xexp(t@2D +6—=3n) [ [r(pie") - (=) Vs(pre'. pae's pse'. pae's pse', pse’)

i=1

(4.101)
In the limit t — 400 we obtain
1
W' = / 27 ()7 =p) Cap)
p
1 1 1 4
2z I (oI (p2) =T (p3) T (ps) § i | Ca(p1, p2; p3,
+2 / > (p1) (pz)2 (p3)J7 (p4) Zp, 4(p1, p2; P3, P4)
P1.P2.P3. P4 i=1
1 1 1 1 1 J J 1 K K :
+3 57 eI (P23 ()1 (pa) 5 T (p5) T K ()8 | D pi
'p1,~~,p6 i=1
x Ce(p1, p2; P3, P4; Ps, P6) (4.102)
4.2.1. Two-point function
1 _ 1\2 _ t
Cz(p)—t_lyooeXp(t(Z m) h(pe') <h(pet) Va(pe ))
T 1 2 2 —2t '
= lim o [p (1= n1)+223(N +2)e 2 G (pe )] (4.103)
Using
I 2 ¢ 1 2 2t
G(pe') — p“e 20 In (p e ) (4.104)
we obtain
C()—i<1+ﬁln 2)— ! (4.105)
2 p - p2 2 p - pz_,] *
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4.2.2. Four-point function

C4(p1, p2; p3, P4)

4
= lim exp (1(D +4 —21)) _]_!h(pie’) (=2 = Va(pi€', pae'; p3e’, pse))
i=
4

1

=[] lim (l—et)[—k
" p t—+40o0

i=1 1

+ 22 ((N+DF ((p1+ p2)e') +2F ((p1 + p3)e') +2F ((p2 + p3)e’))] (4.106)

Using
1
F(pe') =5°—— In(pe' 4.107
(pe) ey (pe') (4.107)
we obtain
4 1
[ [P7-Catpr. p2; p3, pa) = =2 <1 +eyg {(m +p)N (1 4 p3) (P2 + ps)z})
i=1
(4.108)
4.2.3. Six-point function
Since Vj is already of order A2, we can take D =4 and 1 = 0 to obtain
Ce(p1. p2: 3. p4: Ps, Pe)
6
= lim '@PHO3D [T h(pie’) (=) Ve(pie'. pae's pac', pae'; pse’. pee’)
t—400 il
o 1
_ T 14¢ a2 t
T l_! ple¥ A (h((pr+ p2+p3)e)+--+)
ie
o 1 1 1
=12 —<—+-~-+—> (4.109)
1_[ p? \(p1+ p2+ p3)? (p3 + pa+ p2)?

i=1
5. Construction of the energy-momentum tensor at the fixed point

Given a fixed-point Wilson action, we wish to construct the energy-momentum tensor
Oy (p). Itis a symmetric tensor implicitly determined by the Ward identity

_ s 4 i _s
PuOu(p) =e q/K(q)(q+p)vm([¢ @+p)]e) (5.110)

where

1 K(p)(1-K 5
<¢1(p)_ (p)( (p) ) 5.111)

I:‘PI(P)] = Fp) p2 5(}5[(—]7)



28 S. Dutta et al. / Nuclear Physics B 956 (2020) 115022

is the composite operator corresponding to ¢/ (p). The Ward identity leaves an additive ambigu-
ity of the form

<P25uv - PuPu) O(p)

where O(p) is a scalar composite operator. Since ®,,, must have zero scale dimension, O must
have scale dimension —2. There is no such O, since the squared mass operator %d)z acquires
a positive anomalous dimension at the fixed point. Hence, the Ward identity determines ©®,,
unambiguously. In fact we are going to calculate ®,,(p) only at p = 0; we need not worry
about this ambiguity anyway.

It is convenient to expand ®,(p) in powers of [¢I ]:

00 n 2n
o= [T5 [¢" 0] [6" o] o (pr —p)
n=0 Pl pon i=1 i=1

X Cp,v,Zn(plv D2+ 5 P2n—1» P2n) (5.112)

To order A2, we only have three coefficients c,,0, cyv,2, Cuv,4. Since the field-independent term
n = 0) is proportional to §(p), we cannot determine ¢, o from the Ward identity. So, we will
prop p v, y
determine only ¢y, 2 and ¢y 4.
From (4.82), we obtain

[0/ (] =0" ) = h(p) | Va(p)é! ()

3
1
- / 5¢’(m)¢’(pz)¢’(ps>a<§ pi—p) O+ Va(p1, p2; 3, — D))
i=1

P1,P2,P3

1 1 1 >

+3 / §¢J(P1)¢J(P2)§¢K(P3)¢K(P4)¢I(P5)5(Zpi—l?)
Pl Ds i=1

X Ve(p1, p2; D3, P4s Pss —p)} (5.113)
Inverting this we obtain, to order A2,
o' () =¢' )| +hp [ Vi) 6" ()]
+ [ sl en][e )l en]s

P1,P2,P3

3
x <ZP:’ —p> (k+V41PI(p1,pz;p3,—p)>] (5.114)

i=1

where we have defined the 1PI vertices as
Vi (p) = —A(N +2)vy — A23(N +2)G(p) (5.115a)
VP (p1, p2s p3. pa) = =22 (N + D F (p1 + p2) + 2F (p1 + p3) +2F (p1 + p4))

(5.115b)

Note that ¢! has no sixth order term expanded in [¢]’s to order A%
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The rhs of (5.110) gives

eS/ K(q)(q +p)u5(;—(q) <[¢[(q +p)]e_s)

q

= / K(q@)(g+p) (— [¢’(q + p)]

q

S
sl (q) 8¢’ (q)

[¢’(q + p)]) (5.116)

Expanding this in powers of [¢]’s, we obtain from (5.110) the following equations that determine
the coefficients ¢, 2 and ¢y, 4.

Pucuv2(p1, p2) = —p1vp3 — papi

+AWN +2) | v2py — /(61 + p)wR(g@)h(q)h(q + p)
q

+ 22N +2)[3(p1G(p2) + p2G(p1)

N+ 2)v2/(q + PWR@A@A(G + p) (h(q) + h(g + p))
q

1
+ 3 / {(g + p)vR(g) —qvR(q + p)}h(q)h(qg + p)
q

X {(N +2F(p) +3F(q + p) +3F(q + p2)} | (5.117a)

and

PuCuv,4(P1, P25 P3, P4) = —Apy
32V +4) (F(p1 + p2)(p3 + padu + F(p3 + pa)(p1 + p2)y)
+2p1 (F(p2+ p3) + F(p2+ p4a)) +2p20 (F(p2 + p3) + F(p2 + pa))
+2p30 (F(pa+ p1) + F(pa+ p2)) + 2pay (F(p3 + p1) + F(p3 + p2)) }

1
+22 / (@ + PIR@) — awR(q + P h(@h(g + p)
q
x {(N +4) (h(q + p1+ p2) +h(g + p3+ pa))

+4 (h(g + p1 + p3) + h(g + p1 + pa)} (5.117b)

To determine ¢y, 2(p1, p2) at p = 0, we substitute p» = p — p; into the ths of (5.117a), and
expand the result to first order in p. This gives

cuv2(P1, —p1) = —pi8uw +2P1u Py

1
+ AN +2)8, yv2 — / R(q) (h(q)2 + Bh(q)q : th(q)>
q

+ 22N +2){3 (850G (p) = 2p1p1, G (p1)
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+ [ (3 R@ = 20,0, R @) @) (=N + Duahl) + 3 + po) |

q
(5.118)

Similarly, substituting ps = p — (p1 4 p2 + p3) into the ths of (5.117b) and expanding the result
to first order in p, we obtain

Cuv,a(P1, P23 3, —(P1+ P2+ p3)) = —Adyuy
+ KZ{(N +4) (8 F(p1+ p2) —2(p1 + p2)u(p1 + p2)v F'(p1 + p2))
+2 (8w F(p1 + p3) — 2(p1 + p3)u(p1 + p3) F'(p1 + p3))
+2 (8w F(p2+ p3) — 2(p2+ p3)u(p2 + p3)v F'(p2 + p3))
+ [ (R - 20,08 @) hia?
q
x (N +4h(g + p1 + p2) +2h(g + p1 + p3) +2h(q + p2 + p3)) } (5.119)

Check of the trace anomaly

Using the energy-momentum tensor obtained above, we can verify the trace anomaly

O(0) = — (DT_z + %n) N(0) (5.120)

where the anomalous dimension is given by (4.95) to order €2.
The trace is easily obtained from (5.118, 5.119) as

00 = [ 5[+'w)][¢'-n)] [—(D—zmz

p

1
+ AN +2)D vz—/R(tI) (h(q)2+5h<q)q~8qh<q>>
q

FA2(N + 2){3<D —p-3,)G(p)

+ / (D—q-3;)R(@) - h(@)* (—(N +2)v2+3F(q + p)) }}
q

ot [ Aol ms(50)
i=1

Pl D4

X |:—AD

+A2{(N+4) (D—p- ap)F(p)‘p:mH2
T2 =p ) F)| _ 42(D—p-iy) F(p)|

=p1+pr3 p=p2+p3
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+/(D—q~aq>R(q)-h<q>2
q

X (N +4)h(g + p1 +p2) +2hq + p1 + ps) +2h(q + p2+ p3)) |

(5.121)
On the other hand the number operator, defined by
3
—_ S 1 -S
N(0) = —e /K(q)&i)[(q) ([¢'@]e™). (5.122)

q

is calculated as

NO = [ 5[¢'®)][o ][22+ v+ 2 (—2v2+ / R(q>h(q)2>

p q

+22N +2) :—6G(p) +20 420 [ R@H@? =6 [ R P +p)] ]

q q

+% / %[d)'(m)][¢’(pz)]%[cbj(ps)][cbj(m)]5(24:1)")
i=1

P15 P4

X [4k — 402 (N +4)F(p1 + p2) + 2F (p1 + p3) + 2F (p2 + p3)}

— 222 / R(@)h(@)*{(N +Hh(p + p1 + p2)
q

+2h(p + p1 +P3)+2h(P+P2+p3)}] (5.123)
Using
f@)=(q-9 +2)h(g)=2—q-3,)R(q) - h(g)* (5.124)
and the equations satisfied by F and G
(p-9p+€) F(p) = / £@)- (g + p) — (@) (5.1250)
q
2
(P-3p =2+2¢)G(p) =302 / f(@) -h(g)+np*+ / f(@)-F(g+p) (5.125b)
q q
we obtain
0(0) + (% + yﬁf)ﬂ) N(0)

:(e,\my,\z) [/%[d)z(m] [¢1(_p)] W+,

p
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_ % / % [ (0] [¢" ()] % [0/ 02| [#” (b0 5 (i p,-> ] (5.126)
i=1

P1:P2,P3,P4

where we have dropped €A?>G(p) and €A*F (p), which are terms of order €. This vanishes at
the fixed point, where

e+ By22 =0,

to order €2.
Correlation functions

In the previous section we saw how the fixed-point Wilson action gives the correlation func-
tions. Similarly, the coefficient functions c, 2(p1, p2) and cyy 4(p1, p2; p3, pa) give the 1P1
correlation functions of the energy-momentum tensor at p = 0:

1PI
(00! (¢’ @) =4 (0,008 (e’ @)
=3(p -+ )" Jim e ey 2(pef, —pe) (5.127)
and

1PI
(010 @ (p)¢” (8% (p2)9" (1)

4
=[1r7 " (0 @@ (p1)8” (p2)6% (p3)8" (p))
i=1

4

=4 (Z 171) tl_i)r&e(—é+4ﬂ)t I:(SIJSKLC,AL\)A(plet’ pzet; P3€t, p4€t)
=

SILSJK

+81K87 L, a(pre’, pae's pae', pae') + cuva(pre’, pae'; pre’, p3e’)]

(5.128)

We obtain the two-point function as

lim ¢ e, 2(pe’, —pe') = lim (14 n0) (=080 + 2000

t—>0o0

+32(N +23¢7 (8,G(pe") = 2p,upue® G (peh) ) |

—pn (_ 28,0+ 2 pv) (5.129)
where we have used the asymptotic form
— 0 1
G =2pupG'(P) "= s (P60 — 2P, ) In p? (5.130)

We obtain the four-point function as

lim (€41

13 I, t t
/w,4(ple ’P26’ ’ P3e 7p4e )
t—00

:Atgrgo(l —et)|:8,w{ —1
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+ A ((N+4F ((p1+ p2)e’) +2F ((p1 + p3)e') + F ((p2 + p3)e')) }

_k{(N+4)(p1+p2)u(pl+P2)v (P1+p3)u(p1+p3)v
(p1 + p2)? (p1+ p3)?
(p2+ p3)u(p2+ p3y }
(p2+ p3)?
= —Aduy [1 + 1 gln {(m + PN (1 + p3) (o2 + p3)2}] (5.131)

where we have kept only the logarithms of momenta at order €2.
6. Summary and conclusions

In this paper we have studied some aspects of the O (N) model using the Exact RG formalism.
We have done two things:

1) We have constructed the Wilson action for the O (N) model at the Wilson Fisher fixed point
in 4 — € dimensions up to order €. This is done by solving the fixed point equation, order by
order in €. Some correlation functions have also been calculated.

2) We have constructed the energy momentum tensor for this theory. This is done by solving
the Ward Identity for diffeomorphism invariance. The traceless-ness of the energy momentum
tensor implies that the Wilson action is scale and conformal invariant. It is important to note that
all this is in the presence of a finite cutoff A.

As mentioned in the introduction, one of the motivations for this construction is the use the
ideas in [29,30] and construct the AdS action corresponding to this CFT. A related problem is to
construct the AdS action for sources for composite operators such as ¢’ ¢’ . Even more interesting
would be to study the massless spin 2 field that would be the source for the energy momentum
tensor. This would give dynamical gravity in the bulk as a consequence of Exact RG in the
boundary by a direct change of variables similar to what was done for the scalar field in [29,30].
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Appendix A. Fixed point action
A.l. Evaluation of Uy

‘We need to solve
4
05
i=1

dPp 1
Z/ )P K/(Pz))@{WUé(pl,pz; 3. pa: p.—p) + 12Us(p1, pi pa. — s P3. Pa)

4
d 1
dp; ) + ZZK/(Pf)Uz(D(p/)} gUs(p1. p2i p3. pa)
i =

+ 12Ue(p1, p2; p3, P; P4, —p)}
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¢1
Pl
p -p
I J
¢ P2 D4 ¢
p3
¢J

Fig. 1. Type I diagram.

dP N+2
-/ pDK’<p2>){—( ;)(h<p1)+h<pz>+h<p3>+h(p4>)

(2m)
- (N: Y (h(P + p1+p2) +2h(p+ p1+p3) +2h(p+p1 + P4)>} (A.132)
where
/ é:)pb K'<P2>>{ - (N; 2 (h(m) + h(p2) + h(p3) +h<p4>>} (A.133)

corresponds to the kind of diagrams shown in Fig. 1. Here the external loop does not involve
momenta p; + p;. We will call it Type I diagrams. Considering only leading order terms in p?
the contribution from type I diagram in (A.132) is

N+2 A2
- _ K'(p? A.134
5 1e.2 PP )0 ( )
Now consider the second term in L.H.S of (A.132). In the limit of small external momenta after
putting the value of Uz(l)( p) = —# # (as we are considering terms of O(€?) we have put
D =4to find U2(1)) we get
! AON+21
=D 2K )| 15 g Valpr P2 p3 pa)
j=1 pj—007T
22 N+2

=—4K'(p? - = A.135
GUNIRTE (A.135)

This cancels exactly with (A.134).
Similarly in (A.132) the term

dPp
/ @m)P

+2h(p + p1+ p3) +2h(p + pi +p4))} (A.136)

(N+4)
4

K’(p%{ —~ (h(p+p1 + p2)
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p1 p3

P2 P4
o¥ ¢’
Fig. 2. Type II diagram.

corresponds to the kind of diagram shown in Fig. 2. We will call it Type II diagram. In the limit
pi — 0 the above term becomes

N+8) 1 [,
w8 / dp*K' () (K (P = K (0))
0
VR [ LKD)
= 167r2/d {2 dp? K(O)K(p)}
0

Using K (00) =0 and K (0) = 1, this integral gives % Equating this contribution with e% from
L.H.S of (A.132) we obtain

1 N+8 A2
—(4— D))= NFS A7
8 8 (4m)?
Thus in addition to the trivial fixed point A = 0, we have a non trivial fixed point:
1672

N+38

A=@-D) (A.137)

A.2. Solving for Uy

U, will have contribution from both type I and II diagram explained above. We write
Oy= Ul + 0/
according to contributions from type I(II) diagrams.

(We shall set D =4 while evaluating integrations in those terms that are already of O(€?))

Type I diagram 1In (A.132) the first term on the LHS and the first terms on the RHS (Type I)
cancel only in leading order. In general their difference is

N+2 1 [, K(pH—-K©O)
AZT X W/dpzl( (PZ)[Z]T -K (P?):|
0

J J
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Taylor expanding we find
N +2
2 2 2 " _
Y X G )Z/dp K' ()K" (0)5 Zp, chj

This is a contribution to U4(p1 , P25 P3, pa) that we can call AU4 (p1, p2; p3, pa). Consider a
type I graph where the line at one end has p; and lines with momenta p;, p3, p4 are at the other
end. This corresponds to the term

N+2 1
)\2 % d2K/ ZK//O_ZE 2
3 (4n)2/ P K (p7)K'( )2p1 cpy
when contracted in a loop in order to contribute to Ug, so that say p3 = —p4, we have py) = —py.

It contributes to U2( Di ) an amount
1
/dsz’(pz)EAUi(pl,—pl,p, —p)=/dp2K’(p2)§c(pf)

= [C/dsz’(pz)]p% = Api

This is just a simple wave function renormalization that does not depend on p;. There is no
contribution to the mass. The same argument applies to all the other permutations of the type I
terms. A simple wave function renormalization ¢'> = (1 + A)¢? can ensure the normalization
of the kinetic term. They do not affect the physics or contribute to . However, type-1 term
contributes to sub-leading order term of m? or Uy.

U i satisfies the following equation:

Z U ( ) A N_+2
pzd gUa(p1. p2i p3. pa) = A
o
1 K(ph) — K(0)
X a2 /szK/(PZ)[Zjig —K/(pf)} (A.138)
0 j Pj
The solution is
2
(N+2) 1 K(p;) — K(0)
Ul(p1, p2; p3, pa) = — A2 (A.1392)
! 2 167122 5
(N+2) 1
=2 16n22h(Pj) (A.139b)
j=1

where K (p) = ¢=P” is assumed.

Type Il diagram In (A.132) if we keep terms upto O(e?),

4
1 d |-~
g[ijr}Ui'(m,pz;ps,m)
j=1 Pj

2m)b

K/(pz){uv +4h(p + p1+ p2) +2h(p + p1+ p3) +2h(p + p1 + pa)
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— (N +8)h(p)} (A.140)

where h(p) = LZK(”). It is to be noted in the momentum independent part —64% we have

written € in terms of A using the fixed point value of A.
The solution at O(e?), analytic at zero external momenta, is given by

Uil (p1, p2; p3, pa)

)‘.2 de
=-7 (2n)Dh(p)[(N +Hh(p1+ p2+p) +2h(p + p1+ p3) +2h(p + p1 + pa)
— (N +8)h(p) | (A.141a)
=~ 2V +DF 1+ p2) +2F(p1 + p3) +2F (p1 + pa) (A.141)

where F(g) =1 [ &5n(p) (h(p +0) = h(p)).

A.3. Equation for U,

From (3.75) we get

o= (K 0)-

Ir - N
{—[4NUi(p1, —p1;p,—p) +4NU} (p1, —p1; p, —p)

8
+8U4 (p1. p; —p1.—p) + 80U (p1. p; —p1, —p)]
n ~ dUs(p1)
o ()i (p)8P (p - Pl)} — 5P+ 0a(p) — p%Tf (A.142)
1
From (A.139a)
1 - 5
g{4NUi(p1,—p1;p,—p)+8Ui(p1,p; -p. —p1)}
1 , A2
=3 (N + 2 1 h(p) + h(p1) (A.143)
and from (A.141a)
1 11 711
3 4NU," (p1,—p1; p,—p) +8U," (p1, p; —p, —p1)
322
== 2w [ L[+ prtp) - 4o (A144)
r

If we decompose U in two parts namely l}{ and 021 ! respectively, in the following way,
L.

dUj(py) _ [ d°p ’

ap? ) @o)P

h(p1) — (U)K (pP)
(A.145)

K/(pz)%<zv+2>2 *

7l 2
Uz(pl)_l’] ]67'[2
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which gives

O =5 2;)2 (sz)zh(m) (A.146)
2.
—203(p1) +2p 2%
= — 612N +2) / (jn)p,) (= K'H)Fpi+p)
+ (N +2)? 12; (;Z:)D ( - K’(pz))h(p) . (A.147)

which gives

i dP 2 (2 2
i [ o] — O (N +2)(=K'(@*)F(p+q){ —n p
T L i |

2p*
p?=0
(N+2)> 22
— ) 167272 (A.148)
The second term in the expression of 0{1 is evaluated using K (p) = e P
Hence the full expression of 02( p1) is given by
. A2 (N +2)?
U = - h
2(p1) (16”2)2 1 (p1)
S &5 - 02N + (K @D F(p+0)} -1 p?
+p? dp?
! f 2p4
(N +2)2 A2
S— 16772 (A.149)

A.4. Expression for n

Only Type II diagrams contribute to 1. Because we need the external momentum to flow
through the loop - to get a momentum dependence in U,. This can happen only in Type II terms
and that too for certain contractions.

(Calculation of this section requires us to go back to bar denoted variable as dimensionless
variable. So p’s from last section are replaced with p.)

From (3.76) we have

n 1 d _ N S
=337 K/(qz){‘WUi](q,—q;r,—r)+8U4”(q,V;—r,—CI)}
q

(A.150)

72=0

We can convert differentiation w.r.t p; into that w.r.t A, i.e.
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Yy
Pigp; =% an

So (A.140) gives following expression for U i I

Lgripr P2 p3 pa
8 4 "ATATATA

)ﬁ InA

_ — 1 2 — 1 3
=ZfdlnA’ /K/(Pz)[(N+4)h(p+%+%)+2h(p+%+%)
0 p
— P1 P4 _
+2h(p+ ot p) —(N+ 8)h(p)} (A.151)

Hence

1 Sl = == = Il = = = _ =
4ANU, (q,—q;r,—1)+8U, (g, 7; =1, —q)

8
InA
=’\—2/d1nA’ /K’(ﬁz) (12N +48)h (i + L + 1)
4 N
0 p,r
+ (12N +48)h(p + % - %) —24(N +2)h(ﬁ)} (A.152)

So we need to find the coefficient of 72 in [h (p+E+ ;’\_’/) +h(p+L— /’\—/,)] which is calculated
as

Lriry g2 . q r’ . q r’
2 A g MO+ ) T+ = )]
r'=0
rHrY d? _ q -
A7 <df/udf/vh(p Y +r>
=0
L G
4 \dirdr, TN
r=0
P d2 K@) -1
4 dirdr, P2 ——
_ _ . q

where we have used the facts: in 4 dimensions (d;l—u ﬁ) =68*(p) and K(0) =1.
From (A.150), (A.152) and (A.153) we get

InA
=2+ / K@ / dlnA’ (%)2 / KK (5 +5)?) (A.154)
q 0 p
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Evaluation of integral: Let us use ¢’ = % and A’ as variables of integration, rather than
q= q and A’. So change variables:

A/
—:—/_; — d4— /d4
q ‘IA q q /

to get
InA , ,
n_ 2 ’ ANTZ o, (AN Ie=Nptoe= . 4 \2
I=-3 (N+2)/dlnA /<X> K'@G )(K> K'(PIK" (5 +-5))
i p
Using K'(§'%) = 4K jf}; = 22,2 9K we get

A
n 2 , dK / 1 / Pp=2Np M r = =2
— =-3A°(N+2 dA — | K K
> (N + )f an | 257 (PHIK"((P+4)7)
0 q' p

Since ¢’ is an independent variable we can write this as

A
n 2 /dK 1 / P =2\l = | =IN2
—=-3A°(N+2 dA K K
! (N + >f/ vz | KK G
g 0 p

The integral over p is a function of ¢’ and not A’. So we can do the A’ integral easily. Using
K (00) =0 we get

n 322 ~/2 / 1o =2\l = 1 =IN2 1.,
—=——(N+2 K K K =-A2WN+2)——
T=—Zw+2) | K@ >_,2 POK (P +37) = PPN +2) ey
q’ P
4
" 62n)8

The integral underbraced above is calculated to give — for K(x) = e~*. But it can be

6(2 )8
shown to give identical result for any smooth K (x) [41]. Using A = 1o Vg€ we can write the
anomalous dimension as:

n 1., 1 N+2 €
—=-A(N+2 = — A.155
2 4 N+ )(16712)2 (N +8)% 4 ( )
Appendix B. Asymptotic behaviors of F(p) and G(p)
The function F(p) is defined by
(r-2,+e) Fo = [ f@(hta+ p)~ hi@) (B.156)
q
For large p, we obtain an equation satisfied by the asymptotic form Fysymp(p):
1
(P 8p +€) Fasymp(p) = —/f(q)h(q) T n)? +0(e) (B.157)
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This implies
1 _
Fasymp(p)Z_E/f(Q)h(‘I)"‘CF(e)P ¢ (B.158)
q
where CFr(¢€) is independent of p. Since F(p) is finite in the limit € — 0+, we must find
1
C - ... B.159
FO= gt (B.159)
Hence, expanding in €, we obtain
1
Fasymp(p) = ~an? In p + const 4 O(e) (B.160)
We next consider G(p) satisfying
(p-9p—2+2¢)G(p) = / F@F(q+p)+2v / F@h(g) +n®p? (B.161)
q q

where

2= / f@Fq+p)| = +0(e) (B.162)

dp? p=0 6(4m)?4
q

The asymptotic form G asymp(p) satisfies

(p- 8y —2+2€) Gagymp(p) = 1P p? (B.163)
This gives

1

Gasymp(P) = 51'?p? + Cg(€)p*™* (B.164)
Since G (p) is finite as € — 0+, we obtain

Cg(e) b1 + (B.165)

€)= —— . .
¢ € 124

Hence,

Gasymp(p) = p* < st P+ const) +0(e) (B.166)
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