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Abstract

Inter-Fragment Interaction Energies (IFIEs) obtained by Fragment Molec-

ular Orbital (FMO) method can quantitatively measure the effective inter-

actions between ligand and residues in protein, which are therefore useful for

drug discovery. However, it has not been clarified whether the IFIEs can be

reproduced using only geometrical (e.g., interatomic distances) information

of biomolecular complex without resort to explicit FMO calculations. In this
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study, through machine learning technique, we propose a highly accurate

reproduction or prediction scheme for ligand-protein IFIEs using only the

distance information as descriptors, thereby drastically saving the computa-

tional cost in FMO analysis for a variety of conformations.

Keywords: fragment molecular orbital method (FMO); inter-fragment inter-
action energy (IFIE); machine learning; ligand-protein complex; Janus kinase
(JAK)
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1. Introduction

Fragment molecular orbital (FMO) method [1–6] is a computational method

that divides large molecules such as proteins into relatively small units called

“fragments”, and then calculates the energy of the whole molecule and the

electron density quantum chemically by molecular orbital (MO) calculations

for fragment monomers and dimers in environmental potentials. By using

this method, we can apply an ab initio MO method that has been shown

to succeed for small compounds to macromolecules such as proteins without

significant loss in accuracy. With the use of the FMO method, we can obtain

the inter-fragment interaction energies (IFIEs) [6, 7] with greatly reduced

computation time. These IFIEs can be used for drug discovery because the

interaction energy between ligand and each amino acid can be quantitatively

evaluated. So far, FMO calculations have been performed on various ligand-

protein complexes, and have been shown to be useful for virtual screening and

other pharmaceutical applications [5, 6, 8–14], whereas their computational

costs are still high.

In this paper, we consider kinases as protein systems. Kinases are a

group of enzymes that transfer the γ-phosphate group of adenosine triphos-

phate (ATP) to the hydroxyl group of another protein working as a substrate.

Until now, a number of drug compounds targeting kinases that cause vari-

ous diseases have been identified. Janus Kinase (JAK) [15–17] is a cytokine

involved in immunity and a phosphorylating enzyme responsible for intra-

cellular signal transduction. By inhibiting this function, symptoms such as

rheumatoid arthritis can be suppressed. In fact, a compound targeting JAK,

Tofacitinib [15], is widely used as a therapeutic drug for rheumatoid arthritis
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and so on, and can be regarded as the first molecular-target, low-molecular-

weight drug in the field of immunosuppression.

In drug screening, extremely high-speed calculations are required to deal

with huge numbers of compounds. In addition, incorporation of the dynam-

ical structural changes of ligand-protein systems is often essential. In order

to obtain the ligand-protein IFIEs with low cost and high accuracy, we may

use the machine learning techniques to avoid actually performing the ab ini-

tio FMO calculations as much as possible. In earlier research [18], IFIEs of

polypeptides were reproduced by a machine learning method using descrip-

tors with inclusion of the electric charge information of molecules known in

advance, and a promising result for the IFIE prediction has been obtained.

However, it has not been investigated so far whether the IFIEs can be accu-

rately predicted using only the geometrical (e.g., interatomic distances) in-

formation of the biomolecular complex instead of performing the actual FMO

calculations for respective structures. If machine learning techniques can be

utilized for the high-speed prediction of ligand-residue IFIEs, it would be

very helpful for drug discovery, incorporating the effects of structural change

in the system.

In this study, we propose a ligand-protein IFIE prediction method using

only the interatomic distance information as descriptors in the Janus Kinase-

Tofacitinib complex system. In the following, after introducing the computa-

tional methods, we illustrate the accuracy of the proposed machine-learning

model, its difficulties, superiorities over other models, and required compu-

tational cost. Finally, future developments based on the present method will

be discussed.
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2. Methods

2.1. Preparation of datasets

2.1.1. Molecular dynamics simulation

Classical molecular dynamics (MD) simulations were performed to obtain

150 structures as an input dataset for FMO calculations. The integrated com-

putational science system, Molecular Operating Environment (MOE) [19],

was used for the initial structure preparation, in which AMBER10:EHT force

field [20] was employed. The MD simulations with the AMBER package [21]

were then carried out, in which ff14SB force field [22] was employed. The

force fields of the ligand and phosphorylated tyrosine specific to Janus kinase

were separately prepared: The general AMBER force field (GAFF) with re-

strained electrostatic potential (RESP) atomic charges [23] was used for the

former and TYR-PO3 force field [24] in AMBER parameter database for the

latter. The detailed protocols are illustrated below:

1. Structure Preparation

Crystal Strucuture of JAK1-Tofacitinib complex (PDB entry: 3EYG,

Resolution: 1.9 Å, Sequence length: 290 [15]; see Fig. 1) was retrieved

from Protein Data Bank (PDB). Missing atoms in the structure were

complemented by the “structure preparation” function of MOE. Then,

Molecular Mechanics (MM) calculation was performed to eliminate the

anomalous approach between atoms by moving only hydrogen atoms

using the AMBER10:EHT force field [20]. Simulation box in periodic

boundary condition was created with the TIP3PBOX model, in which

hydration was performed by adding solvated water molecules with the
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thickness of at least 14 Å. In addition, three Na+ counter ions were

arranged to attain the charge neutralization.

2. Production Run

Molecular dynamics (MD) simulation was performed starting with the

initial structure prepared in 1. The simulation conditions were based on

previous studies [17] that performed MD calculations on JAK. Struc-

tural relaxation was performed by gradually loosening the restraint of

heavy atoms with four stages of 25 ps each. Finally, production run of

100 ns was performed at 1 bar and 300 K under NPT conditions.

3. Obtaining Snapshots

After the MD calculation, Root Mean Square deviation (RMSd) of

trajectory was calculated based on the initial structure. The result

is shown in Fig. 2. From this result, 150 structures were obtained at

every 0.1 ns between 85 and 100 ns, where the molecular structures

are relatively stable. Finally, these structures were optimized by MM

calculations under the condition that only hydrogen atoms were moved

in vacuum after removing the ions and solvent.

2.1.2. Fragment molecular orbital calculation

Fragment Molecular Orbital (FMO) calculations [1–4, 6] are performed

to obtain the interaction energies between the ligand and the amino-acid

residues, which are the predicition target in this study. The objective vari-

ables are Inter-Fragment Interaction Energies (IFIEs), which are described

below and predicted using the distance information in ligand-protein system.

In the FMO method, when a molecule is divided into Nf fragments, the

electron energy of the entire system is approximately calculated in terms of
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the fragment energies as follows, where the index I refers to the monomer

and IJ the dimer:

E ≃
∑
I>J

EIJ − (Nf − 2)
∑
I

EI . (1)

This can be rewritten as follows:

E ≃
∑
I>J

(E
′

IJ − E
′

I − E
′

J) +
∑
I>J

Tr(∆PIJVIJ) +
∑
I

E
′

I (2)

with E
′

λ = Eλ − Vλ and Vλ = Tr(PλVλ). Here, V λ is the electrostatic

environment potential from fragments other than λ; P λ and ∆P λ are the

density matrix and its difference between dimer and monomers, respectively.

The sum of the first and second summand terms on the right side of Eq. (2),

∆EIJ = (E
′
IJ −E

′
I −E

′
J) + Tr(∆PIJVIJ), represents an effective interaction

between fragments I and J . This ∆EIJ is defined as IFIE.

FMO calculations were performed using software ABINIT-MP [6] for 150

structures prepared as in Sec. 2.1.1 to obtain the IFIEs between ligand and

amino-acid residues as objective variables. For the FMO calculation method,

the MP2 approximation considering up to the second-order perturbation over

the Hartree-Fock (HF) approximation was employed, and for the basis func-

tion, 6-31G* was used.

2.2. IFIE prediction

2.2.1. Selection of target residues

In this research, IFIEs were predicted from the distance information be-

tween ligand and neighboring residues around it. We have supposed that

the IFIEs between the ligand and its distant residues would be difficult to
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predict accurately only by the distance information. The present study is

thus regarded as a first step toward this direction of research.

Therefore, first, residues to be predicted were selected. The selection

criterion was that residues whose center of gravity distance from ligand was

within 7 Å were adopted, leading to totally 50 residues (Fig. 1).

For each of the selected 50 residues, the procedures as mentioned in the

following subsections were performed. The IFIE prediction model between

the ligand and each residue was thus built and evaluated.

2.2.2. Standardization of IFIEs

Before performing the prediction, the IFIEs between ligand and target

residues were standardized. Standardized IFIE as IFIEstd was calculated as

follows:

IFIEstd =
IFIE − IFIEave

IFIEvar

, (3)

where IFIE is the IFIE value between ligand and target residue for each

structure (snapshot), IFIEave is the average of the IFIEs for calculated 150

structures, and IFIEvar is the standard deviation of IFIEs for the 150 struc-

tures.

2.2.3. Preparation of descriptors for machine learning

In the following, we illustrate the preparation of descriptors to be used

for the prediction model. The preparation consists of three steps: selection

of descriptors, their standardization, and dimension reduction for descriptors

using sparse modeling.

Selecting Distance Information
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Interatomic distance information used for predicting IFIE between ligand

and amino-acid residue was selected as follows:

• Information on all interatomic distances between the ligand and the

predicted (target) residue

• Information on all interatomic distances between the ligand and the

residues on both neighboring sides of the predicted residue (e.g., when

predicting ASP880, information on all the interatomic distances be-

tween the ligand and ARG879, and between the ligand and LEU881)

• Information on five distances in descending order of the coefficients of

variation (see below) between the ligand and other 47 residues (where

“other” residues are those not corresponding to the above three residues,

i.e., focused and neighboring residues, out of the 50 selected residues

to take account of the contributions from surroundings)

Here, the coefficient of variation was calculated as

CV =
σ

µ
, (4)

where σ is the standard deviation of the distance between a ligand atom

and a residue atom for 150 structures, and µ is the average of the distance

between the ligand atom and the residue atom for 150 structures. That is,

CV refers to the degree of fluctuations of interatomic distance.

With the above selection, on average, 2297 distance information for each

of 50 residues was selected as descriptors.

Standardization of descriptors
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After the selection above, these descriptors were standardized as follows:

x̂ =
x− µ

σ
, (5)

where x̂ is the standardized descriptor, x is the interatomic distance selected

above, µ is the average of distances over 150 structures, and σ is the standard

deviation of distances. From x̂ for different interatomic pairs and structures,

we then obtain the matrix of standardized descriptors Xstd.

Preprocessing by sparse modeling

As described above, there are about 2300 descriptors on average for

respective ligand-residue (target) pair. Then, to make descriptors sparse,

the linear regression with l1 regularization was performed in advance using

IFIEstd as the target variable through

arg minω{||IFIEstd −Xstdω||22 + α||ω||1}, (6)

where IFIEstd is the reference values (vector as data points), Xstd is the

matrix of descriptors, ω is the weight, Xstdω is the prediction values, α is

set to 0.01, and ||λ||p refers to lp norm of λ. Here, when λ ∈ Rn, lp norm is

calculated as

||λ||p = (Σn
j=1|λj|p)1/p. (7)

Finally, the sparse descriptors Xspa are given by Xstd and ω above:

Xspa = Xstdω. (8)

Xspa was used for input to the model in Sec. 2.2.4. Of the about 2300

descriptors selected above, 81 descriptors on average were retained for each

of the predicted 50 residues. In the processing above, Scikit-Learn’s library

[25] was used for the actual calculations.
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2.2.4. Construction of prediction model

In the following, Keras [26], a deep learning library of Python, was used

for building and training of the neural network model.

Building the Model

Neural Network model to predict IFIE was built, where the input values

were descriptors Xspa addressed in Sec. 2.2.3, and the output value was

IFIEstd. The model was composed of two hidden layers and 20 nodes each.

Furthermore, Rectified Linear Unit (ReLU) [27] was used as the activation

function, and the weights were initialized according to a truncated normal

distribution.

Training the Model

The data set obtained in Sec. 2.1 was divided into 105 (training) struc-

tures from 85 to 95.5 ns and 45 (test) structures from 95.5 to 100 ns so that

the ratio of training : test = 7 : 3. The training was repeated 500 times

using the optimization method Adam [28] so that the mean square error as

the loss function was minimized. The batch size was 32.

Evaluating the Model

The weight determined above and new descriptors were input to the

trained model, and IFIEstd was predicted. The predicted result was inversely

transformed into IFIE by Eq. (3), and the coefficient of determination R2

was calculated from the following equation:
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R2 =
Cov(ξ, η)2

σ2
ξσ

2
η

, (9)

where ξ is the predicted IFIEs, η is the reference IFIEs, Cov(ξ, η) is the co-

variance of the predicted and reference IFIEs, and σξ and ση are the standard

deviations of the predicted and reference IFIEs, respectively.

3. Results and discussion

3.1. Prediction results

3.1.1. Prediction results for 50 residues

Figure 3 shows the results of the prediction performed for each residue.

The average of R2
test of 50 residues is 0.85, which means that the IFIEs for

most residues could be predicted accurately. As an example, we show the

IFIE prediction result between the ligand and LYS911 with the best accuracy

(Fig. 4) and the IFIE prediction result between the ligand and LYS908 with

the second highest accuracy (Fig. S1 in Supplementary data). From these

figures, it can be seen that the accuracy of IFIE prediction between ligand

and residue obtained with particularly good precision is close to unity for

R2
test (Figs. 4(a) and S1(a)), and there is almost no difference between the

predicted and correct IFIE values with wide ranges during the MD trajectory

(Figs. 4(b) and S1(b)). On the other hand, the corresponding results for the

worst R2
test case are shown in Fig. 4 (c)-(d) for ALA906. We observe in this

case that the relatively poor value of R2
test = 0.607 is substantially due to the

smallness of IFIE magnitude.

In this study, as described in Sec. 2.1.2, IFIE was calculated using the

MP2 method in addition to the HF method. That is, IFIE can be devided into
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IFIEHF and IFIECORR as in the following expression Eq. (10). IFIEHF is

a component that mainly describes the electrostatic interaction energy, and

IFIECORR is a component that expresses the dispersion interaction energy:

IFIEMP2 = IFIEHF + IFIECORR. (10)

It is noted that some residues have IFIECORR = 0 due to the Dimer ES

approximation in the FMO calculation [6]. Then, in order to assess the

difference in the prediction result for each component, the prediction was

also performed using IFIEHF and IFIECORR separately as the objective

variables for 33 residues with available IFIECORR, where just the objective

variable was changed with the other conditions being the same as in the

proposed model above.

The worst cases for the IFIE prediction are shown in Table 1 for ten

residues with R2
test being less than 0.78. For all the 33 residues with available

IFIECORR, IFIEHF has the values of R2
test lower than those of IFIECORR

by about 0.1 on average. Table 1 shows that the R2
test result of IFIEHF

is significantly lower than that of IFIECORR in each residue, while four

residues do not have IFIEHF and IFIECORR separately due to the Dimer

ES approximation [6]. It is thus suggested that the accuracy of IFIE pre-

dictions is significantly affected by the IFIEHF component, which primarily

represents the electrostatic contribution. There are a number of non-polar

residues in Table 1 with R2
test being less than 0.78. Here, we also observe

in the case of non-polar residues that the dispersion interactions can be well

described in terms of the information on interatomic distances, whereas the

electrostatic interactions represented by IFIEHF may not be appropriately

13



described only in terms of distance information. It is then suggested that the

inclusion of other descriptors than the interatomic distances, such as electric

charges, may be effective for further improvement on prediction accuracy.

Table 1: R2
test results for each component (HF versus CORR) by the proposed model

(Model I). “AVERAGE” means the average of the results for 33 residues where IFIECORR

was available. The listed 10 residues were taken by the ten lowest R2
test values (R2

test <

0.78). IFIEHF and IFIECORR were not separately obtained for the residues with * mark

due to the Dimer ES approximation [6].

Residue IFIE IFIEHF IFIECORR

AVERAGE 0.859 0.816 0.913

ALA906 0.607 0.821 0.974

LEU964 0.636 0.727 0.941

GLY962 0.641 0.510 0.939

LEU891* 0.654 - -

LEU1010 0.748 0.721 0.942

LEU929* 0.765 - -

ASP1021 0.775 0.774 0.873

LEU959 0.777 0.573 0.975

LYS939* 0.778 - -

LYS1018* 0.779 - -

3.1.2. Prediction results for Total-IFIE

Figure 5 shows the results of Total-IFIE which is the sum of all the

IFIEs between ligand and 50 residues obtained above. The reproduction
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(training) and prediction (test) accuracies were R2
train = 0.976 and R2

test =

0.685, respectively. Considering the analysis below, we suppose that, while

the prediction was only for the 50 residues around the ligand in this study,

it could be obtained with similar accuracy even if it is extended to all 290

residues of JAK1.

As seen for the results of the test data set in Fig. 5(b), the difference

between the reference value and the predicted value was particularly large

for the structures at 99.1 and 100.0 ns, where the difference was about 10

kcal/mol. Considering the results for each residue in these structures, it is ob-

served that the cause for the difference is due to particularly poor prediction

results for ASP1021 (which is shown in Table 1 with R2
test = 0.775), as seen

in Fig. 5(c). There was a difference of about 5 kcal/mol between the correct

and predicted values only for ASP1021 with large magnitude of IFIE mainly

due to the electrostatic interaction. This fact seems to reflect the sensitivity

of electrostatic interaction to structural change, since the charged ASP1021

is a part of the DFG loop that is the activation loop in JAK [15–17]. For this

reason, in Fig. 5(b), it is considered that there was a particularly large differ-

ence in the Total-IFIE for the structures at 99.1 and 100.0 ns. However, the

structural fluctuations of ASP1021 in this study are not so large compared

to those of the other selected residues. The average of root mean square

fluctuation (RMSF) of the 50 residues obtained by 100 ns MD simulation

is 0.574 Å, while that of ASP1021 is 0.450 Å. Therefore, in order to clarify

the relationship between structural fluctuations and prediction accuracy for

IFIE, more detailed investigations on molecular interactions are needed, in-

cluding those residues with larger structural fluctuations in the DFG loop
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and other parts of JAK.

3.1.3. Prediction results for all IFIEs

All the results for 150 structures of 50 residues (totally 7500 points) are

shown in Fig. 6. We here find that R2
test is 0.995, indicating that the predic-

tion is highly accurate in total. Further, in the figure, it can be seen that

the deviation and variation are relatively large in the region where the IFIE

values are smaller than about −20 kcal/mol. This is considered to be due to

the fact that, as shown in Sec. 3.1.2, the prediction results for some particular

structures of some residues become worse.

3.2. Comparison with other models

In order to show the superiority of the proposed IFIE prediction model,

three other models were built and the R2
test values were compared. The

proposed model above is referred to as Model I, and other models II-IV are

described below:

• Model II

In the neural network part of the proposed model (Model I), the output

is each IFIE for a single residue. In contrast, this model (Model II) pre-

dicts IFIEs of all 50 residues at once by a single training. Accordingly,

the 50 descriptors with large coefficient value of variation (CV ) were

equally taken from the interatomic distance information between the

ligand and the respective 50 residues (2500 in total). Here, the batch

size was set to 105 and the number of epochs was set to 20,000. Other

conditions are the same as in Model I.
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• Model III

This is a model that directly predicts Total-IFIE alone. The 50 de-

scriptors with large CV were equally taken from the information on

the interatomic distances between the ligand and the respective 50

residues (2500 in total). Again, the batch size was set to 105 and the

number of epochs was set to 20,000. Other conditions are the same as

in Model I.

• Model IV

This model performs the LASSO regression [29] without using the neu-

ral network model. The major difference from other models is that the

LASSO regression is a linear model, whereas the neural networks in

Model I-III are nonlinear. The selected descriptors were the same as in

Model I, but the input descriptors were not made sparse.

Table 2 shows a summary for the prediction results by the four models,

and Figs. S2-S4 in Supplementary data illustrate the details. On the whole,

the results of R2
test for 50 residues by Model I were shown to be superior to

those by other models.

On the other hand, in the prediction of Total-IFIE, it was found that the

model that directly predicted Total-IFIE (Model III) had better accuracy in

R2
test, as seen in Fig. S3. Therefore, when we need to predict IFIE-sum (the

sum of IFIEs between ligand and all residues) used as the binding energy

between the ligand and the protein, it is considered to be better to use the

Total-IFIE prediction model (Model III). However, it should be noted that

this model cannot describe the IFIE per residue. It was also found that the
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results plotted for all the IFIEs were similarly accurate in all the models

owing to the enlarged ranges of IFIE values employed in the plots.

From the results above, it can be concluded that Model I is superior to

other models because of the ability to predict IFIE for each residue with high

accuracy.

Table 2: Results of R2
test for each model. Model I is the model proposed and recommended

in this study. Model II gives the outputs of IFIEs for 50 residues by a single neural network.

Model III is a model that directly predicts Total-IFIE (therefore the results for each 50

residue are not obtained). Model IV is a linear regression model.

Models Average of 50 residues Total-IFIE All IFIEs

Model I(Recommended Model) 0.854 0.685 0.995

Model II 0.702 0.391 0.987

Model III - 0.810 -

Model IV 0.679 0.625 0.986

3.3. Computational cost

Here, the execution time by the proposed model (Model I) is illustrated.

The average time required to calculate the IFIEs for 50 residues by the pro-

posed model was 410.3 seconds on a personal computer with 2 CPU cores of

Intel Core i5 and 8GB memory. This includes the model training time, and

if excluding it, the IFIE can be obtained in much shorter time.

On the other hand, the average FMO execution time per structure was

36528.2 seconds (the number of used nodes was 420 for the 20 structures and
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36 for the 130 structures, respectively) on the K computer in Kobe, where 1

node has 8 CPU cores of SPARC64 VIIIfx with 16 GB memory.

From these facts, we see that the computational cost required to obtain

IFIEs is drastically reduced if the proposed model is used.

4. Conclusions

We have proposed an IFIE prediction model and others for the JAK1-

Tofacitinib complex on the basis of machine learning techniques applied to

the FMO calculation data. The proposed model (Model I) has those impor-

tant characteristics such as the generation of each trained model for every

50 residue surrounding the ligand, the standardization of IFIE as the ob-

jective variable, and the method of selecting descriptors with sparse mod-

eling. In this way, it was shown that the proposed model can accurately

reproduce the IFIEs between ligand and residues for each 50 pair and the

Total-IFIE through machine learning based on neural network model. Fur-

thermore, the prediction of IFIE divided into the HF and correlation energies

showed the relatively low accuracy for IFIEHF , thus indicating the deficien-

cies associated with the description of electrostatic interactions. This is a

tendency found for residues with low IFIE prediction accuracy. Therefore,

it is concluded that the prediction accuracy of IFIE is significantly affected

by IFIEHF . Then, it was found that the worse prediction impaired at spe-

cific residues resulted in the low accuracy in Total-IFIE for some structures.

For example, ASP1021 shown here is a part of the DFG loop, which is the

activation loop in JAK, and there is room for improvement on the effect of

structural change on prediction accuracy. As a whole, we showed the supe-
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riority of the proposed model (Model I) over other models (Models II-IV). It

may be concluded that the proposed model can predict the IFIE for every

residue in ligand-protein complex, and the high prediction accuracy thereof

is a great advantage. Finally, the computational cost of the proposed model

was assessed. It was found that IFIEs can be obtained much faster using the

proposed model than actually performing FMO calculation without signifi-

cant loss of accuracy.

From the analyses in the present study, we conclude that it is possible

through machine learning for limited numbers of FMO calculations to predict

IFIEs for JAK residues near Tofacitinib with high accuracy using only the

geometrical (distance) information. Therefore, the IFIE predictions for all

residues in the JAK1-Tofacitinib complex based on this model and the ex-

tension to prediction models for other ligand-kinase complexes are feasible.

The transferability of the present method has been demonstrated through

involvement of a wide variety of amino-acid residues interacting with ligand

molecule. As future developments, the predictions for each energy component

[30] to form the IFIEs would also be possible in addition to the application

to the solvated biomolecular systems [31]. We may expect that the FMO-

IFIE information for relatively small numbers of structures can be used for

the prediction of IFIEs for large variety of structures. Besides, the find-

ings obtained in this study will give some insights into the construction of

forthcoming FMO-based force fields. Taken together, there is much room for

further investigations concerning the combination of ab initio FMO method

and machine learning techniques [32–35] toward efficient drug discovery.
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Figure captions

Figure 1: (a) Crystal structure of JAK1-Tofacitinib complex (PDB entry:

3EYG). The 50 residues whose IFIEs with the ligand are predicted in this

study are depicted in pink surrounding the ligand, where the distances be-

tween the centers of gravity of the ligand and the residues are within 7 Å.

(b) Molecular structure of ligand compound, Tofacitinib.

Figure 2: RMSd results for 100 ns MD simulation of JAK1-Tofacitinib com-

plex. 150 structures were obtained at every 0.1 ns between 85 and 100 ns

surrounded by a red frame.

Figure 3: IFIE prediction results for 50 residues by the proposed model

(Model I). The ordinate refers to the value of R2, and the abscissa the selected

50 residues. The blue bar represents the result of R2 for the test data set, and

the orange bar the result of R2 for the training data set. R2 was calculated

from Eq. (9) in Sec. 2.2.4.

Figure 4: (a) IFIE prediction result between ligand and LYS911 by the pro-

posed model (Model I). The results for 150 structures are plotted with the

correct value on the ordinate and the predicted value on the abscissa. The

blue points refer to the results for the test data set, and the orange points

the results for the training data set. If R2 = 1, all points are plotted on the

red line (y = x). (b) The results for time-series 150 structures are plotted

with IFIE on the ordinate and time on the abscissa in the case of LYS911.

The orange/blue lines indicate the temporal change of the predicted/correct

values according to the change of structure. The left side of the red verti-
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cal line refers to the results for the training data set, and the right side the

results for the test data set. (c) IFIE prediction result between ligand and

ALA906 by the proposed model (Model I). The results for 150 structures

are plotted with the correct value on the ordinate and the predicted value

on the abscissa. The blue points refer to the results for the test data set,

and the orange points the results for the training data set. If R2 = 1, all

points are plotted on the red line (y = x). (d) The results for time-series 150

structures are plotted with IFIE on the ordinate and time on the abscissa in

the case of ALA906. The orange/blue lines indicate the temporal change of

the predicted/correct values according to the change of structure. The left

side of the red vertical line refers to the results for the training data set, and

the right side the results for the test data set.

Figure 5: (a) Total-IFIE prediction result by the proposed model (Model

I). The results for 150 structures are plotted with the correct value on the

ordinate and the predicted value on the abscissa. The blue points refer to

the results for the test data set, and the orange points the results for the

training data set. If R2 = 1, all points are plotted on the red line (y = x).

(b) The results for time-series 150 structures are plotted with the Total-IFIE

on the ordinate and time on the abscissa. The orange/blue lines indicate

the temporal change of the predicted/correct values according to the change

of structure. The left side of the red vertical line refers to the results for

the training data set, and the right side the results for the test data set.

Numerical values of Total-IFIE are shown at 99.1 and 100.0 ns, indicating

that the deviation between the predicted value (pred) and the correct value

(ref) is particularly large there. (c) IFIE prediction result between ligand and
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ASP1021 by the proposed model (Model I). The results for 150 structures

are plotted with the correct value on the ordinate and the predicted value on

the abscissa. The blue points refer to the results for the test data set, and

the orange points the results for the training data set. If R2 = 1, all points

are plotted on the red line (y = x). The points surrounded by red circles

correspond to the structures at 99.1 and 100.0 ns, and it is observed that

they are greatly deviated from the line of y = x.

Figure 6: All IFIE prediction result by the proposed model (Model I). The

results for all 150 structures of 50 residues are plotted with the correct value

on the ordinate and the predicted value on the abscissa. The blue points

refer to the results for the test data set, and the orange points the results

for the training data set. If R2 = 1, all points are plotted on the red line

(y = x), which is virtually hidden behind the points.
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Figure captions

Figure S1: (a) IFIE prediction result between ligand and LYS908 by the

proposed model (Model I). The results for 150 structures are plotted with

the correct value on the ordinate and the predicted value on the abscissa.

The blue points refer to the results for the test data set, and the orange

points the results for the training data set. If R2 = 1, all points are plotted

on the red line (y = x). (b) The results for time-series 150 structures are

plotted with IFIE on the ordinate and time on the abscissa. The orange/blue

lines indicate the temporal change of the predicted/correct values according

to the change of structure. The left side of the red vertical line refers to the

results for the training data set, and the right side the results for the test

data set.

Figure S2: (a) IFIE prediction results for 50 residues by Model II. The ordi-

nate refers to the value of R2, and the abscissa the selected 50 residues. The

blue bar represents the result of R2 for the test data set, and the orange bar

the result of R2 for the training data set. R2 was calculated from Eq. (9) in

Sec. 2.2.4 in the main text. (b) Total-IFIE prediction result by Model II. The

results for 150 structures are plotted with the correct value on the ordinate

and the predicted value on the abscissa. The blue points refer to the results

for the test data set, and the orange points the results for the training data

set. If R2 = 1, all points are plotted on the red line (y = x). (c) All IFIE

prediction result by Model II. The results for all 150 structures of 50 residues

are plotted with the correct value on the ordinate and the predicted value

on the abscissa. The blue points refer to the results for the test data set,
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and the orange points the results for the training data set. If R2 = 1, all

points are plotted on the red line (y = x), which is virtually hidden behind

the points.

Figure S3: Total-IFIE prediction result by Model III. The results for 150

structures are plotted with the correct value on the ordinate and the predicted

value on the abscissa. The blue points refer to the results for the test data

set, and the orange points the results for the training data set. If R2 = 1, all

points are plotted on the red line (y = x).

Figure S4: (a) IFIE prediction results for 50 residues by Model IV. The

ordinate refers to the value of R2, and the abscissa the selected 50 residues.

The blue bar represents the result of R2 for the test data set, and the orange

bar the result of R2 for the training data set. R2 was calculated from Eq.

(9) in Sec. 2.2.4 in the main text. (b) Total-IFIE prediction result by Model

IV. The results for 150 structures are plotted with the correct value on the

ordinate and the predicted value on the abscissa. The blue points refer to the

results for the test data set, and the orange points the results for the training

data set. If R2 = 1, all points are plotted on the red line (y = x). (c) All

IFIE prediction result by Model IV. The results for all 150 structures of 50

residues are plotted with the correct value on the ordinate and the predicted

value on the abscissa. The blue points refer to the results for the test data

set, and the orange points the results for the training data set. If R2 = 1, all

points are plotted on the red line (y = x), which is virtually hidden behind

the points.

3



2020/7/24

1

Figure S1 (a)

Figure S1 (b)



2020/7/24

2

Figure S2 (a)

Figure S2 (b)



2020/7/24

3
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