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Particle-Gibbs (PG) method is a Markov chain Monte Carlo (MCMC) method for sampling from the joint posterior
distribution of latent variables and parameters in a nonlinear state space model, which is a probabilistic time-series
model. Recently, particle-Gibbs with ancestor sampling (PGAS) was proposed as a method with better sampling
efficiency of PG. However, even with PG and PGAS, it is often difficult to realize sampling from the joint posterior
distribution with a finite number of samples. In this paper, we propose replica exchange particle-Gibbs with ancestor
sampling (REPGAS) as a method to overcome this problem by combining PGAS with the replica exchange method. We
also demonstrate the effectiveness of the proposed method by using simulated data obtained from a benchmark nonlinear
state space model and the Izhikevich model, which is a computational model of the membrane potential of a neuron.

1. Introduction

In recent years, time-series data have been investigated
extensively by using state space models.1–18) State space
models are probabilistic models that assume the existence of
latent variables. The latent variables cannot be observed
directly against the background from which observations are
obtained. In the state space models, we assume a system
model describing dynamical behavior of latent variables and
an observation model describing a process that relates latent
variables to observation values.

State space models have been utilized in various fields
(e.g., physics, earth science and brain science) in order to
estimate latent variables9,15,17,19) and forecast observation
values.6,16,18) When the values of parameters in the state
space model are known, latent variables are estimated using
sequential Bayesian filter such as Kalman filter and particle
filter, and predictive observation values can be obtained. If
the values of the model parameters are unknown, however, it
is necessary to estimate the parameters and latent variables in
the state space model simultaneously.

A method combining a sequential Bayesian filter and
expectation–maximization (EM) algorithm has been em-
ployed to estimate latent variables and parameters of state
space models.2,7,9,15,20,21) Although the method is an iterative
method for point estimation of parameters and its con-
vergence to a local optimum is guaranteed, its dependence on
the initial value makes it hard for it to estimate a global
optimum in a complex state space model.

In recent years, a method called particle-Gibbs (PG) was
proposed for estimating latent variable and parameter
distributions simultaneously.8,11,13,14) The PG is the method
combining sequential Monte Carlo (SMC) methods (also
known as particle filter),3,4,7–9,11–15) a method for approximat-
ing the latent variable distributions as a set of particles, with
Gibbs sampling that is a type of Markov chain Monte Carlo
(MCMC) method.7,22–24) Using PG, it is possible to estimate
the joint posterior distribution of latent variables and
parameters in state space models. In addition, particle-Gibbs
with ancestor sampling (PGAS) was proposed as a method
for improving the sampling efficiency of PG.11,13,14) In the
SMC method used in the PG, the particles are resampled at

each time step, so that there is a problem that only a few
initial particles survive in the end and degenerate.8,11,13,14) In
PGAS, in order to avoid this degeneracy of latent variables in
the SMC method, an ancestor sampling step is introduced;
one of particles at each time is sampled from particles in the
previous time as the ancestor of conditioned sample, and the
same effect as performing backward simulation is obtained
by performing forward simulation based on conditional SMC
with ancestor sampling11,13,14) in PG. However, when the
target distribution is a multimodal distribution and the
distance between peaks is large, it is difficult to sample from
the target distribution with a finite number of samples, and
the estimated distribution is strongly influenced by the initial
values.

In this paper, we propose a replica exchange particle-
Gibbs with ancestor sampling (REPGAS), which combines
PGAS with the replica exchange method25,26) in order to
overcome such problems of PGAS. The replica exchange
method is a type of MCMC method, that exchanges
configurations between different temperatures and improves
the MCMC framework. We show that the proposed method,
REPGAS, can overcome the problem of initial value
dependence of PGAS by estimating distributions of latent
variables and parameters. We show this by using simulated
data from a benchmark nonlinear state space model.1,8,12–14)

Furthermore, we show that it is possible to obtain samples
more efficiently than in the conventional method in a realistic
model by applying the proposed method to Izhikevich
neuron model, which is a computational model of neuronal
membrane potential expressed by multi-dimensional differ-
ential equations.27,28)

2. Method

In this section, we first describe state space models using
probabilistic models. Next, we explain PGAS, a conventional
method for estimating the parameters and latent variables in
a state space model simultaneously. After that, we propose
REPGAS combining PGAS with the replica exchange method
for overcoming the problem of initial value dependence.

2.1 State space models
A state space model can be represented by the graphical
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model shown in Fig. 1, and there are latent variables
z1:N ¼ fz1; z2; . . . ; zNg which cannot be observed directly
in the background in the time range f1; 2; . . . ; Ng, and
observation values y1:N ¼ fy1; y2; . . . ; yNg. At time n the
state space model is expressed as follows:

zn � fðzn j zn�1; �fÞ; ð1Þ
yn � gðyn j zn; �gÞ; ð2Þ

where fðzn j zn�1; �fÞ is called the system model, and
gðyn j zn; �gÞ is called the observation model. Here, �f and
�g are the parameters in the system model and observation
model, respectively. The system model represents the process
of updating latent variables, and the observation model
represents the process of obtaining observations from the
latent variables.

If the model of interest is linear Gaussian state space
model, the system model and observation model are
expressed as follows:

fðzn j zn�1; �fÞ ¼ Nðzn j Azn�1;�fÞ; ð3Þ
gðyn j zn; �gÞ ¼ Nðyn j Bzn;�gÞ; ð4Þ

where Nð� j �;�Þ represents the Gaussian distribution with
mean vector � and covariance matrix �. Also, A is the state
transition matrix, B is the observation matrix, and �f and �g

are the covariance matrices. In this case, the parameters are
�f ¼ fA;�fg and �g ¼ fB;�gg.

In the linear Gaussian state space model, it is possible to
estimate the latent variables z1:N employing the Kalman filter.
However, in the nonlinear or non-Gaussian state space
model, it is necessary to employ the SMC methods.

2.2 Particle-Gibbs with ancestor sampling
We explain a conventional method for simultaneously

estimating the parameters and latent variables in a state space
model simultaneously. PGAS is a method for improving
the sampling efficiency of PG. It is an MCMC method
combining the SMC method with Gibbs sampling.8,11,13,14)

In PGAS, the values of parameters� and latent variables z1:N
are initialized as �½0� ¼ f�f½0�; �g½0�g and z1:N½0�, and the
samples of latent variables and parameters are obtained
alternately.

The k-th sample of latent variables z1:N½k� is obtained from
pðz1:N j z1:N½k � 1�; y1:N;�½k � 1�Þ with the conditional
SMC with ancestor sampling given the previous sample of

latent variables z1:N½k � 1� as conditioned sample and the
previous sample of parameters �½k � 1�. In the conditional
SMC with ancestor sampling, the distribution of latent
variables is approximated by particles fzð1Þ1:N; zð2Þ1:N; . . . ; z

ðMÞ
1:Ng as

follows:

pðz1:N j z1:N½k � 1�; y1:N;�½k � 1�Þ

’ 1

M

XM
i¼1

�ðz1:N � zðiÞ1:NÞ; ð5Þ

where zðiÞ1:N is i-th particle, M is the number of particles, and
�ðz1:NÞ is the Dirac delta distribution. To obtain particles, at
the time step n, the indices of ancestor particles at previous
time step n � 1 fA1

n�1; A
2
n�1; . . . ; A

M�1
n�1 g are sampled based

on the normalized weights fW1
n�1;W

2
n�1; . . . ;W

M
n�1g obtained

as follows:

Wi
n�1 ¼

wi
n�1XM

j¼1
wj

n�1

; ð6Þ

wi
n�1 ¼ gðyn�1 j zðiÞn�1; �gÞ: ð7Þ

Latent variables zn at the time step n are sampled from the
system model fðzn j zðA

i
n�1Þ

n�1 ; �fÞ. The particles are set to be
zðiÞ1:n  fzðA

i
n�1Þ

1:n�1 ; z
ðiÞ
n g for particle numbers i 2 f1; 2; . . . ;

M � 1g, while the M-th particle is set to be the previous
sample zðMÞ1:n  fzðA

M
n�1Þ

1:n�1 ; zn½k � 1�g. Here, the index of
ancestor particle AM

n�1 is sampled based on the weights
fŴ1

n�1; Ŵ
2
n�1; . . . ; Ŵ

M
n�1g calculated as follows:

Ŵi
n�1 ¼

ŵi
n�1XM

j¼1
ŵ j

n�1

; ð8Þ

ŵi
n�1 ¼ Wi

n�1 fðzn½k � 1� j zðiÞn�1; �fÞ: ð9Þ
In PGAS, we iterate the above flow from time step 1 to N and
the k-th sample of latent variables z1:N½k� is sampled based on
weights fW1

N;W
2
N; � � �WM

N g.
The k-th sample of parameters �½k� is obtained from

pð� j z1:N½k�; y1:NÞ with an MCMC method (e.g., the
Metropolis algorithm) given the k-th sample of latent
variables z1:N½k�.

PGAS iterating infinitely is guaranteed to sample from the
target distribution. However, if the target distribution is
multimodal and the peaks are apart, it is difficult to sample
from the target distribution with a finite number of samples
and the estimated distribution has strongly dependent on the
initial values.

2.3 Replica exchange particle-Gibbs with ancestor
sampling

In our study, we propose REPGAS combining PGAS and
the replica exchange method for improving the problem
influenced by the initial value of PGAS. Figure 2 presents the
schematic diagram of REPGAS. The estimated distributions
of the latent variables z1:N and parameter θ in the state space
model are obtained by providing the time series data y1:N to
REPGAS as inputs. In REPGAS, we introduce the extension
variables called temperature into PGAS. By running PGAS
in multiple temperatures and exchanging samples between
temperatures as shown in the middle part of the figure, the

z1 znn-1

ynyn-1y1 yN

zN・・・・・・ z
( |  , )f zn n-1z θf

( | , )g yn nz θg

Fig. 1. Graphical model of a state space model. z1:N and y1:N are latent
variables and observations, respectively. The arrow from zn�1 to zn
represents a system model [Eq. (1)], and the arrow from zn to yn
represents an observation model [Eq. (2)]. The goal of this paper is to
estimate the distribution of parameters � ¼ f�f; �gg and latent variables z1:N
from observations y1:N.
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transitions that are difficult to achieve with PGAS can be
realized by passing through high temperatures. Although
Fig. 2 shows the case where both the latent variable zn and the
parameter θ are one-dimensional, REPGAS is also applicable
to the case of multidimensional data.

We introduce temperatures T ¼ ½T1; T2; . . . ; TR� (R is the
number of temperatures) as extension variables and consider
the following extended joint posterior distribution:

�EXðfz1:Ng; f�g j y1:NÞ ¼
1

ZEX

YR
r¼1

�Tr ðzr1:N;�r j y1:NÞ; ð10Þ

where ZEX is the normalizing constant, and fz1:Ng and f�g
are represented as fz1:Ng ¼ fz11:N; z21:N; . . . ; zR1:Ng and f�g ¼
f�1;�2; . . . ;�Rg, respectively. Furthermore, the joint
posterior distribution at each temperature �Tr ðzr1:N;�r j y1:NÞ
is represented as follows:

�T rðzr1:N;�r j y1:NÞ ¼
1

ZðTrÞ pðz
r
1:N;�

r j y1:NÞ
1
T r ; ð11Þ

where ZðTrÞ represents a partition function. At sufficiently
high temperatures, the latent variables and the parameters
almost follow a uniform distribution, independent of
observed y1:N. The distribution with T1 ¼ 1:0 corresponds
to the original posterior distribution to be investigated. The
posterior distribution pðzr1:N;�r j y1:NÞ is obtained using
Bayes’ theorem as follows:

pðzr1:N;�r j y1:NÞ ¼
pðy1:N j zr1:N;�rÞpðzr1:N j �rÞpð�rÞ

pðy1:NÞ
;

ð12Þ
where pðy1:NÞ is a constant, and pð�Þ is a prior distribution of
parameters �.

In REPGAS, we obtain samples of the latent variables
zr1:N and parameters �r for each temperature with PGAS
according to Eq. (11), and exchange samples between
temperatures Tr and Trþ1 according to the following
exchange probability:

pEX ¼ minð1; REXÞ; ð13Þ

REX ¼ �EXðfz�1:Ng; f��g j y1:NÞ
�EXðfz1:Ng; f�g j y1:NÞ

; ð14Þ

where fz�1:Ng and f��g are expressed as follows:

fz�1:Ng ¼ fz11:N; . . . ; zrþ11:N ; z
r
1:N; . . . ; z

R
1:Ng; ð15Þ

f��g ¼ f�1; . . . ;�rþ1;�r; . . . ;�Rg: ð16Þ
In REPGAS, it becomes possible to overcome the problem

of initial value dependence in PGAS by passing through
a high temperature state in the replica exchange method.
Moreover, it also becomes possible to prevent increasing the
calculation time because each PGAS is able to be run in
parallel.

3. Results

In this section, it is shown by employing our REPGAS for
the benchmark nonlinear state space model, that the joint
posterior distribution of latent variables and parameters can
be estimated from observations, that sampling efficiency is
improved compared to PGAS, and that it is possible to
overcome the problem of initial value dependence in PGAS.
Furthermore, we also show that the efficiency of REPGAS is
confirmed by applying it to the Izhikevich neuron model.

3.1 Benchmark nonlinear state space model
In this paper, to verify the effectiveness of the proposed

method, we use the following benchmark nonlinear state
space model:1,8,12–14)

zn � N zn

���� zn�1a þ b
zn�1

1 þ z2n�1
þ c cosðdnÞ; �2

z

� �
; ð17Þ

yn � N yn

���� z
2
n

e
; �2

y

� �
; ð18Þ

where a, b, c, d, and e are constants, and �z and �y are
standard deviations of the system model and observation
model, respectively. In this model, the latent variables have
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Fig. 2. (Color online) Schematic diagrams of REPGAS. (Left) Observations of time series data y1:N are given as the input. (Middle) The left figures are the
distributions of latent variables and the right figures are the distributions of parameters in low and high temperatures. The arrows express the transitions of
samples in REPGAS. In REPGAS, the transitions that are difficult to achieve with PGAS (dashed arrows) can be realized by passing through high temperature
(solid arrows). (Right) The estimated distributions of latent variables z1:N and parameter θ are obtained as the output by collecting samples.
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both positive and negative values, but the observations are
converted to only positive values through the observation
model.

In the following numerical experiments, we estimate the
joint posterior distribution of latent variables and parameters
pðz1:N;� j y1:NÞ from the observations y1:N with the parame-
ters fa; b; c; d; e; �2

z ; �
2
y g ¼ f2; 25; 8; 1:2; 20; 10; 1g and the

number of data N ¼ 1500. Here we focus on estimating the
system model parameters � ¼ ½a; b; c; d�.

We show a portion of the data used in the following
experiments in Fig. 3, where the vertical axis represents the
value of observation yn and latent variable zn, the horizontal
axis represents the time step n, the solid line is observation
yn, and the dashed line is latent variable zn.

3.1.1 Experiment to compare sampling efficiency
To compare the sampling efficiency of PGAS and

REPGAS, we estimate the joint posterior distribution of
latent variables and parameters pðz1:N;� j y1:NÞ when the
initial values of parameters �½0� are true values. Here, the
number of samples is K ¼ 106, the number of burn-in
samples is Kburn-in ¼ 5 � 105, and the number of particles is
M ¼ 50. The initial values of latent variables are z1:N½0� ¼
½0; 0; . . . ; 0�, and the number of replicas of REPGAS is
R ¼ 90.

We show in Fig. 4 the autocorrelation function results
calculated with PGAS and REPGAS samples of parameters
� at T1 ¼ 1:0. In all the graphs, the vertical axis represents
the value of the autocorrelation function and the horizontal
axis represents the lag length of the autocorrelation function.
The dashed lines are the results calculated with PGAS
samples of parameters a, b, c, and d. The solid lines are the
results calculated with REPGAS samples.

In all of the parameters a, b, c, and d, the decay of the
autocorrelation is faster with REPGAS than it is with PGAS.
Therefore, it was shown that the sampling efficiency of
REPGAS is higher than of PGAS.

3.1.2 Experiment to compare dependence on initial values
To verify whether the proposed method, REPGAS,

improves PGAS in terms of initial values dependence, we
estimate the joint posterior distribution of latent variables
and parameters pðz1:N;� j y1:NÞ when the initial values
of parameters are �½0� ¼ ½a; b; c; d� ¼ ½1:5; 28; 7; 1:195�,
which are far from the true values ½a; b; c; d� ¼ ½2; 25; 8; 1:2�.
Here, the number of samples is K ¼ 2 � 106, the number of
burn-in samples is Kburn-in ¼ 106, and the number of particles

is M ¼ 50. The initial values of latent variables are z1:N½0� ¼
½0; 0; . . . ; 0�, and the number of replicas of REPGAS is
R ¼ 90.

We show the estimated results of the parameters � and
latent variables z1:N in Figs. 5, 6, and 7. Figure 5 shows the
results of parameters � ¼ ½a; b; c; d� estimated with PGAS,
and Fig. 6 shows the results estimated with REPGAS. In
Figs. 5 and 6, the vertical axis in each graph represents the
value of the probability density function and the horizontal
axis represents the values of parameters a, b, c, and d. The
solid lines are true values, the dashed lines are initial values,
and the histograms are estimated posterior distributions of the
parameters.

Fig. 3. (Color online) Observations yn (blue solid line) and true latent
variables zn (red dashed line) obtained from the benchmark nonlinear state
space model at time step n ¼ 100{300.

Fig. 4. (Color online) Autocorrelation function results of samples obtained
by employing PGAS and REPGAS in the benchmark nonlinear state space
model. In each graph, the vertical axis represents the value of the
autocorrelation function and the horizontal axis represents the lag length of
the autocorrelation function. The blue dashed lines are the results calculated
with PGAS samples of parameters a, b, c, and d, the red solid lines are the
results calculated with REPGAS samples at T1 ¼ 1:0.

Fig. 5. (Color online) Estimated posterior distributions of parameters
obtained by employing PGAS in the benchmark nonlinear state space
model. In each graph the vertical axis represents the value of the probability
density function and the horizontal axis represents the values of parameters a,
b, c, and d. The red solid lines are true values; the light blue dashed lines are
initial values.
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As shown in Fig. 5, the estimated distributions are far from
the true values. MCMC methods including PG are guaranteed
that the sample from the target distribution can be realized
with infinite samples. However, as shown in this result, it
may not be possible with a finite number of samples, and in
PGAS there is dependence on initial values. In contrast,
as shown in Fig. 6, the peak values of the estimated
distributions obtained using our REPGAS match the true
values. Furthermore, the distributions by REPGAS have
multiple peaks in addition to the true ones, and it can be seen
from Fig. 6 that PGAS is stuck on the peak that is not true.

Figure 7 shows the estimated results of the latent variables
at time steps between n ¼ 100 and 300, and the upper graph
is the result obtained with PGAS and the lower graph is the
result obtained with REPGAS. In both graphs, the vertical
axis represents the value of latent variable zn, and the
horizontal axis represents the time step n. The dashed lines

are true values, the solid lines are mean values of estimated
distributions and the filled areas are the range � � � (μ is the
mean and σ is the standard deviation).

As shown in Fig. 7, in the estimated distributions obtained
using PGAS, there are parts where the positive and negative
signs of the latent variable zn are wrong. In consideration of
the form of Eq. (18), it is considered that there is a local
optimum at the point where the positive and negative signs
are reversed. In contrast, since the parameters can be
estimated appropriately as shown in Fig. 6, the estimated
distributions of latent variables obtained using REPGAS
captured the true values.

The above results show that it is possible to overcome the
problem of initial value dependence of PGAS by employing
REPGAS.

3.2 Izhikevich neuron model
Next, to verify the effectiveness of the proposed method,

we use the Izhikevich neuron model, which is a computa-
tional model of the membrane potential of a neuron:27,28)

dv

d�
¼ 0:04v2 þ 5v þ 140 � u þ Iex;

du

d�
¼ aðbv � uÞ;

where v and u are respectively the membrane potential and
membrane recovery variable. Iex is the input current from
outside the neuron, and a and b are parameters expressing the
characteristic of the neuron. If the membrane potential v
reaches the threshold v� in the Izhikevich neuron model, the
membrane potential and membrane recovery variable are
reset as follows:

v c;

u u þ d;

where c and d are also parameters expressing the character-
istic of the neuron.

In this paper, assuming that the membrane potential of the
Izhikevich neuron model with Gaussian system noise and
Gaussian observation noise is observed, we estimate the
membrane potential without observation noise v1:N, the
membrane recovery variables u1:N, and parameters � ¼
fa; b; c; dg simultaneously from only the observed membrane
potential y1:N.

In following experiments, we used the true parameters
� ¼ fa; b; c; dg ¼ f0:02; 0:2;�55; 4g and the number of
data N ¼ 200. Means and variances of the Gaussian system
noise superimposed on the membrane potential v1:N and the
membrane recovery variable u1:N are f�v; �2

vg ¼ f0; 2:25g
and f�u; �2

ug ¼ f0; 0:25g, respectively. The mean and
variance of the Gaussian observation noise are f�y; �yg ¼
f0; 9g.

We show the data used in the following experiments in
Fig. 8. In this figure, the vertical axis represents the value of
observation yn and latent variables fvn; ung, the horizontal
axis represents the time step n, the solid line is observation
yn, and the dashed lines are latent variables fvn; ung.

In REPGAS, the initial values of parameters are �½0� ¼
½a; b; c; d� ¼ ½0:01; 0:8;�65; 8� and latent variables are
v1:N½0� ¼ ½0; 0; . . . ; 0� and u1:N½0� ¼ ½0; 0; . . . ; 0�. The num-
ber of samples is K ¼ 1:5 � 106, the number of burn-in

Fig. 6. (Color online) Estimated posterior distributions of parameters
obtained by employing REPGAS in the benchmark nonlinear state space
model. The red solid lines are true values; the light blue dashed lines are
initial values.

Fig. 7. (Color online) Estimated posterior distributions of latent variables
obtained by employing PGAS and REPGAS in the benchmark nonlinear
state space model. The upper graph is the result of PGAS and the lower graph
is the result of REPGAS. The red dashed lines are true values, the blue solid
lines are mean values of estimated distributions, and the blue filled area are
the range � � � (μ is the mean and σ is the standard deviation).
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samples is Kburn-in ¼ 5 � 105, the number of particles is
M ¼ 50, and the number of replicas of REPGAS is R ¼ 90.

We show the calculated results of the autocorrelation
function with PGAS samples of parameters � and REPGAS
samples at T1 ¼ 1:0 in Fig. 9. In all graph, the vertical axis
represents the value of the autocorrelation function, and the
horizontal axis represents the lag length of the autocorrelation
function. The dashed lines are the autocorrelation function
results calculated with PGAS samples of parameters a, b, c,
and d, and the solid lines are the results calculated with
REPGAS samples. It can be confirmed that the sampling
efficiency of REPGAS is higher than that of PGAS since the
values of the autocorrelation function of REPGAS are lower
than those of the autocorrelation function of PGAS when the
lag length is small.

Next, we show in Figs. 10 and 11 the estimated results of
the posterior distributions of parameters pð� j y1:NÞ, mem-
brane potentials pðv1:N j y1:NÞ and membrane recovery
variables pðu1:N j y1:NÞ obtained by employing REPGAS.

Figure 10 shows the estimated results of the posterior
distributions of parameters a, b, c, and d. In each graph, the
vertical axis represents the value of the probability density
function and the horizontal axis represents the values of
parameters a, b, c, and d. The solid lines are true values, the
dashed lines are initial values, and the histograms are
estimated posterior distributions of the parameters. In each
of the graphs, it is verified that the true values can be
appropriately estimated.

We show the estimated results of latent variables obtained
by employing REPGAS in Fig. 11. The upper part of the
figure is the result of estimated distributions of the membrane
potentials v1:N, and the lower part of the figure is the result of
estimated distributions of the membrane recovery variables
u1:N. In both parts of the figure, the vertical axis represents
the value of the latent variable and the horizontal axis
represents the time step n. The dashed lines are true values,

Fig. 8. (Color online) Observations and true latent variables obtained from
the Izhikevich neuron model. The vertical axis represents the value of the
observation yn (blue solid line), and two latent variables: the membrane
potential vn (red dashed line), and the membrane recovery variable un (red
dashed line).

Fig. 9. (Color online) Autocorrelation function of samples of the
parameters in the Izhikevich neuron model obtained by employing PGAS
and REPGAS. Each line is shown as in Fig. 4.

Fig. 10. (Color online) Estimated posterior distributions of parameters in
the Izhikevich neuron model obtained by employing REPGAS. The red solid
lines are true values; the light blue dashed lines are initial values.

Fig. 11. (Color online) Estimated posterior distributions of latent variables
in the Izhikevich neuron model obtained by employing REPGAS. The upper
graph is the result of estimated distributions of the membrane potentials v1:N
and the lower graph is the result of estimated distributions of the membrane
recovery variables u1:N. The red dashed lines are true values, the blue lines
are mean values of estimated distributions, and the blue filled areas are the
range � � � (μ is the mean and σ is the standard deviation).
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the solid lines are mean values of estimated distributions, and
the filled areas are the range � � � (μ is the mean and σ is the
standard deviation). Both parts of the figure conform the
nonlinear changes of the latent variables.

From these results, it was shown that the posterior
distribution of not only latent variables fv1:N; u1:Ng but also
parameters � in the Izhikevich neuron model can be
estimated more efficiently by employing the proposed
method than it can by employing the conventional method.
As for the estimation of the posterior distributions of latent
variables and parameters by employing PGAS, the distribu-
tions converge to the same results as in Figs. 10 and 11.

4. Conclusion

In this paper, we have proposed REPGAS, a method for
estimating the joint posterior distribution of latent variables
and parameters in a state space model. The problem of initial
value dependence in REPGAS is improved compared to
PGAS by combining PGAS with the replica exchange
method. We have shown in experiments using the benchmark
nonlinear state space model that REPGAS can improve the
problem of initial value dependence of PGAS and estimate
the joint posterior distribution. In addition to improving the
problem, REPGAS succeeds in sampling from a multimodal
posterior distribution. Furthermore, we have also shown that
the autocorrelation time is reduced in the Izhikevich neuron
model by employing REPGAS compared to PGAS.

We have proposed in this paper a method for estimating
the joint posterior distribution of latent variables and
parameters. The proposed concept is a general framework
that introduces advantages of the replica exchange method
to particle Markov chain Monte Carlo methods. If we are
interested in the joint posterior distribution of only parame-
ters marginalized over latent variables, we can employ the
particle marginal Metropolis–Hastings (PMMH) algorithm to
estimate the distribution.8) Since the PMMH algorithm also
has the problem of initial value dependence, it would be
improved by combining it with the replica exchange method,
too. Furthermore, it is important to determine the temperature
distribution that maximizes the efficiency of the replica
exchange method in PGAS and PMMH. We leave this as a
future work.
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