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PAPER

Multi-Category Image Super-Resolution with Convolutional Neural
Network and Multi-Task Learning

Kazuya URAZOE†∗, Nonmember, Nobutaka KUROKI†a), Member, Yu KATO†∗∗,
Shinya OHTANI†∗∗∗, Nonmembers, Tetsuya HIROSE††, and Masahiro NUMA†, Members

SUMMARY This paper presents an image super-resolution technique
using a convolutional neural network (CNN) and multi-task learning for
multiple image categories. The image categories include natural, manga,
and text images. Their features differ from each other. However, several
CNNs for super-resolution are trained with a single category. If the input
image category is different from that of the training images, the perfor-
mance of super-resolution is degraded. There are two possible solutions
to manage multi-categories with conventional CNNs. The first involves
the preparation of the CNNs for every category. This solution, however,
requires a category classifier to select an appropriate CNN. The second
is to learn all categories with a single CNN. In this solution, the CNN
cannot optimize its internal behavior for each category. Therefore, this
paper presents a super-resolution CNN architecture for multiple image cat-
egories. The proposed CNN has two parallel outputs for a high-resolution
image and a category label. The main CNN for the high-resolution image
is a normal three convolutional layer-architecture, and the sub neural net-
work for the category label is branched out from its middle layer and con-
sists of two fully-connected layers. This architecture can simultaneously
learn the high-resolution image and its category using multi-task learning.
The category information is used for optimizing the super-resolution. In
an applied setting, the proposed CNN can automatically estimate the input
image category and change the internal behavior. Experimental results of
2× image magnification have shown that the average peak signal-to-noise
ratio for the proposed method is approximately 0.22 dB higher than that for
the conventional super-resolution with no difference in processing time and
parameters. We have ensured that the proposed method is useful when the
input image category is varying.
key words: super-resolution, resolution enhancement, convolutional neu-
ral network, multi-task learning, deep learning

1. Introduction

Image up-sampling techniques are used in several applica-
tions and devices such as digital cameras, smart phones,
and televisions. When inputting a low-resolution image
to a high-resolution display device, some resolution con-
version is required. The image quality can become blurry
and jagged using conventional interpolation methods such
as Bicubic interpolation. According to the sampling theo-
rem, signals that exceed the Nyquist frequency (hereinafter,
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referred to as high-frequency components) are not included
in the original signal. Because the Bicubic interpolation is
a technique to expand signals below the Nyquist frequency,
high-frequency components are not generated.

In contrast, the method called “Super-Resolution” has
been intensively investigated recently. The super-resolution
method generates a high-resolution image by estimating
high-frequency components not included in input signals.
The convolutional neural network-based super-resolution
(SRCNN), proposed by Dong et al. [1], [2], improves image
qualities significantly. After SRCNN was proposed, sev-
eral super-resolutions with convolutional neural networks
(CNNs) have been proposed [1]–[12].

However, most CNN-based super-resolutions are
trained for a limited image category. For example, the multi-
channel convolutional neural network for image super-
resolution (MCH) [5] was trained with the T91 dataset [13]
of natural images and then applied to the Set5 [14] and
Set14 [15] datasets in the same category. In practical use,
however, users can input several types of images. Figure 1
shows examples of a natural image from BSDS100 [16],
a manga image from Manga109 [17], [18], and a text im-
age from Hradiš’s dataset [19]. They have different features
from each other. If a CNN is trained for a specific cate-
gory, it often causes performance degradation for the other
categories. Table 1 presents the image qualities obtained by
the three MCHs that are trained with different categories.
The MCH trained with natural images exhibits a good peak
signal-to-noise ratio (PSNR) of 31.31 dB for natural test-
ing images, whereas the MCH trained with manga images
or text images yields unsatisfactory PSNRs of 31.20 dB or
28.08 dB for natural testing images, respectively. Similarly,
MCH trained with manga images shows the highest PSNR
of 36.65 dB for manga testing images, and MCH trained
with text images shows the highest PSNR of 24.66 dB for
text testing images. Therefore, we can determine if the CNN
achieves a good result for a previously trained category. If
we require a super-resolution for multiple image categories
with conventional CNN, the possible solutions are as fol-
lows:

PlanA Train multiple CNNs with every image category;
PlanB Train single CNN with all image categories.

In PlanA, as shown in Fig. 2-(a), the CNNs are trained for
each image category. In particular, super-resolution tech-
niques for specific category have been studied [7]. However,

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Visual difference between multiple categories.

Table 1 Peak signal-to-noise ratios [dB] of 2× magnified images.

Training images
Testing images

Natural images Manga images Text images

Natural images 31.31 35.48 23.25
Manga images 31.20 36.65 24.53

Text images 28.08 29.77 24.66
This table lists the results of the super-resolution CNN trained with each
image category. Red, bold numbers indicate the best score in each testing
dataset. When the training and testing image categories are the same, the
CNN yields the highest image quality in each image category.

Fig. 2 How to improve the image qualities of multiple categories.

PlanA must estimate the category of the input image man-
ually or automatically to select a suitable CNN. If users
know the input image category, they need to select the op-
timal CNN manually and determine in advance the type of
images used for learning the CNN. In addition, the solu-
tion requires maintaining the parameters of multiple CNNs.
Therefore, PlanA is not suitable for low-end devices with a
small memory capacity.

In PlanB, as shown in Fig. 2-(b), a single CNN is
trained with images of all categories. However, because the
CNN has difficulty in understanding the image categories,
it operates uniformly for all inputs. In this case, although
the CNN can show better results for all categories, it cannot
yield the best result for each.

Moreover, [11], [12], [20] introduced some indicators
for improving image quality performance after investigating
recent super-resolution techniques. A promising strategy is
to learn the potential correlations among image characteris-
tics and reflect it in the loss function. Although the mean
square error is widely used for the loss function between
low-resolution and high-resolution images, it does not rep-
resent the object information of the image. Thus, the CNN
is trained uniformly without understanding the object.

Moreover, multi-task learning has been studied in re-
cent deep learning [12], [21]–[25]. Multi-task learning is
a technique that manages multiple tasks with single ma-
chine learning model and improves main-task performance
using the optional information contained in sub-tasks [21].
In CNN-based super-resolutions, multi-task learning is im-
plemented by combining multiple loss functions [24], [25].
Shi et al. improved the image quality by adding the optional
information about object boundaries on sub-networks [24].
Rad et al. proposed an architecture that can generates the
super-resolution image and the semantic information of nat-
ural image [14], [15], [25], [26]. Reference [12] stated that
because different tasks focus on different aspects of the data,
combining related tasks with super-resolution models usu-
ally improves the performance of the super-resolution by
providing additional information and knowledge.

Based on our survey, we considered the training for un-
derstanding image categories to be a promising solution for
improving the image quality performance. Thus, we pro-
pose an image super-resolution method that is adaptable to
multiple image categories, implemented with a single CNN
and multi-task learning. The proposed architecture has two
parallel outputs: a magnified image and its category. In the
proposed architecture, the main CNN is equivalent to the
conventional super-resolution CNN. Moreover, an optional
neural network (NN) branches out from the middle layer of
the main CNN. The branched NN is used to learn the im-
age categories in the training phase. This is removed in the
inference phase. This removable architecture can make an
internal category classifier in the super-resolution CNN. Be-
cause the trained CNN has the category classification abil-
ity, users do not need to input the image category manually.
Therefore, our method can address the problems of PlanA
and PlanB.
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The remainder of this paper is organized as follows.
Section 2 details the outline of MCH proposed by Ohtani
et al. Section 3 introduces the multi-category image super-
resolution with CNN and multi-task learning. Finally,
Sect. 4 presents experiments to show the usefulness of the
proposed method.

2. Conventional Method

In this section, we provide an overview of the MCH, pro-
posed by Ohtani et al. [4], [5].

2.1 Multi-Channel Convolutional Neural Network for Im-
age Super-Resolution (MCH)

Figure 3 shows an overview of the MCH. Let K be the mag-
nification ratio. To obtain a K× magnified image, the MCH
generates K × K pixels per input pixel. In the case of 2×
magnification, there are four types of output pixel locations,
as shown in Fig. 4: (A) upper left, (B) upper right, (C) lower
left, and (D) lower right of the nearest input pixel. These
output pixels are generated from K2 output channels of the
single CNN. Figure 5 shows the architecture of the MCH.
Let Y be the low-resolution image. The outputs of the first
convolutional layer are calculated as

F1(Y) = max(0,W1 ∗ Y + B1), (1)

where W1 is the filter for convolution, B1 is the bias, and
“∗” denotes the convolution operation. W1 is 4-dimensional
tensor, and its size is 1× f1× f1×n1, where f1× f1 is the filter
size, and n1 is the number of filters in the first convolutional

Fig. 3 Multi-channel CNN. (Y and F(Y) represent the low-resolution
image and the super-resolution image, respectively. F3.1(Y), F3.2(Y),
F3.3(Y), and F3.4(Y) denote separate channels of F3(Y). ↑ A, ↑ B, ↑ C,
and ↑ D indicate upsampling to their locations on the magnified image as
shown in Fig. 6)

Fig. 4 Input/output pixel location (2× magnification).

layer. max(0, x) denotes the rectified linear unit [27]. The
outputs of the second convolutional layer are calculated as

F2(Y) = max(0,W2 ∗ F1(Y) + B2). (2)

The size of W2 is n1 × f2 × f2 × n2, where f2 × f2 is the filter
size, and n2 is the number of filters in the second convolu-
tional layer. Finally, the K2 pixels are calculated as

F3(Y) = W3 ∗ F2(Y) + B3, (3)

where F3(Y) has K2 channels. The size of W3 is n2× f3× f3×
K2. Let F3.1(Y), F3.2(Y), · · · , F3.K2 (Y) be separate channels
of F3(Y). Then, the super-resolution image, F(Y), can be
obtained using

F(Y) = ↑ A(F3.1(Y))+ ↑ B(F3.2(Y)) + · · · , (4)

where ↑ A( ), ↑ B( ), · · · mean upsampling to their locations
on the magnified image. Figure 6 shows an example of a
2×2 synthesis. In the MCH, all the convolutional layers have
no padding to prevent image border effects.

2.2 Training Method

In the training phase, we prepare original high-resolution
images and their down-sampled images by the Bicubic in-
terpolation. The CNN is trained with the low-resolution im-
age Y as input signal and the high-resolution image T as
the teaching signal. The loss function of MCH is the mean
squared error (MSE) given by

LMSE(Θ) =
1
N

N∑

i=1

‖F(Yi;Θ) − Ti‖2, (5)

where N is the number of training data samples, and Θ is
parameters to be determined by backpropagation technique
such as W1, W2, W3, B1, B2, and B3. The learning rate is
10−4 for the first and second convolutional layers and 10−5

for the third convolutional layer in Ref. [5].

Fig. 5 Architecture of MCH.

Fig. 6 Separation and synthesis of pixels (2× magnification).
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3. Multi-Category Image Super-Resolution with Con-
volutional Neural Network and Multi-Task Learn-
ing

In this section, we propose an image super-resolution tech-
nique that is adaptable to multiple image categories, imple-
mented with a single CNN and multi-task learning. Figure 7
shows the concept of the proposed method. This architec-
ture has an internal category classifier; however, it has no
input or output for the category information. The category
information is estimated internally and only used for opti-
mizing the super-resolution.

The remainder of this section is organized as follows.
Section 3.1 presents the CNN architecture of the proposed
method. Section 3.2 explains the training method of the pro-
posed method. Finally, Sect. 3.3 details the behavior of the
proposed method in inference. In the following, we refer to
the proposed method as multi-channel convolutional neural
network for multi-category (MCH-MC).

3.1 Proposed CNN Architecture

Figure 8 shows the proposed CNN architecture. Let Y be
the low-resolution image. The output from the first to third
convolutional layers is given by the same approach as MCH

F1(Y) = max(0,W1 ∗ Y + B1), (6)

F2(Y) = max(0,W2 ∗ F1(Y) + B2), (7)

F3(Y) = W3 ∗ F2(Y) + B3. (8)

Thereafter, super-resolution image F(Y) is generated by

Fig. 7 Concept of the proposed architecture for multiple categories.

Fig. 8 The architecture of MCH-MC.

synthesizing each channel F3.1(Y), F3.2(Y), · · · , F3.K2 (Y) as
shown in Eq. (4).

In contrast, image classification NN is branched from
the second feature map, F2(Y). Global average pooling
(GAP) is a technique that outputs the average pixel value of
each feature map [28]. Using GAP, one-dimensional vector
F4(Y) of length n2 is calculated as

F4(Y) = GAP(F2(Y)), (9)

where GAP(F2(Y)) outputs the pixel averages of every fea-
ture map, F2(Y). GAP reduces a 3-dimensional matrix
to a 1-dimensional vector. The outputs of the first fully-
connected layer are calculated as

F5(Y) = max(0,W5·F4(Y) + B5), (10)

where F5(Y) is an n5-length vector. W5 is a 2-dimensional
matrix, and its size is n2 × n5. The outputs of the second
fully-connected layer are given by

F6(Y) = W6·F5(Y) + B6, (11)

where F6(Y) is a D-length vector, and D is the number of
image categories. Let F6.1(Y), F6.2(Y), · · · separate units of
F6(Y). The ith output of SoftMax function is calculated as

Fsoft.i(Y) =
exp(F6.i(Y))

∑D
j=1 exp(F6. j(Y))

, (12)

where Fsoft.i means ith unit of Fsoft, and i is from 1 to D.
Each unit of Fsoft stores the probability of the input image
category.

3.2 Training Method

This subsection presents details of the training method of
the proposed CNN architecture. MCH-MC has two train-
ing phases for the internal classifying system, as shown in
Fig. 9-(a) and (b). First, the CNN is pre-trained to classify
input image categories in Phase1. Next, the CNN is trained
to improve image quality performance for super-resolution
in Phase2.

MCH-MC has two outputs: F(Y) and Fsoft(Y); there-
fore, MCH-MC is trained with multi-task learning [21].
MCH-MC requires two teaching signals of T and t. T is
an original high-resolution image corresponding to a low-
resolution image Y. The loss function is calculated using
Eq. (5). In contrast, t is a D-length vector with accurate cat-
egory labels. The loss function is calculated with SoftMax
cross entropy (SCE) by

LSCE(Θ) = − 1
N

N∑

i=1

D∑

j=1

ti j log Fsoft. j(Yi;Θ), (13)

where N is the number of training data samples, and Θ is
parameters to be determined by backpropagation technique
such as W1, W2, W5, W6, B1, B2, B5, and B6.
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Table 2 Training conditions of MCH-MC in each phase.

Phase
Loss ratio Learning rate

Dropout ratio
rMSE rSCE Other layers Third convolutional layer

Phase1 0.1 1 10−3 10−4 0.5
Phase2 1 0.1 10−4 10−5 None

Fig. 9 Two training phases for the internal classifying system and the
inference phase.

After calculating each loss, the total loss L(Θ) is de-
fined as

L(Θ) = rMSELMSE(Θ) + rSCELSCE(Θ), (14)

where rMSE and rSCE are composite ratios. This training
method is a kind of multi-task learning [21]. The balance
between rMSE and rSCE is changed, as presented in Table 2.
We explain the details of each training phase.

3.2.1 Phase1: Pre-Training as Classifier

In Phase1, the CNN is pre-trained to improve the image clas-
sification ability. Therefore, rSCE is set ten times larger than
rMSE, as presented in Table 2.

In addition, Dropout [29] is inserted after the first and
second convolutional layers to prevent the CNN from over-
optimized for image classification tasks. Dropout is a tech-
nique that randomly disables neuron of intermediate layer at

the ratio Dratio and improves the generalization performance
by preventing overfitting. In MCH-MC, Dratio is 0.5.

3.2.2 Phase2: Training for Super-Resolution

In Phase 2, the CNN is trained for the super-resolution. All
weighted layers are inherited from the pre-trained model ob-
tained from Phase1 [30]. Thereafter, rMSE and rSCE were set
to 1 and 0.1 as presented in Table 2, respectively. Herein,
L(Θ) operates to improve the super-resolution ability. rSCE

is set to a small value for maintaining image classification
ability. Dropout layers used in Phase1 are removed from the
CNN architecture. The learning rate of Phase2 are reduced
from Phase1 and is set to the same values as used in Ref. [5]
for a fair comparison.

3.2.3 Approach for Unbalanced Training Dataset

If the number of training images between each category
is not always the same. Then, SoftMax Cross Entropy is
significantly influenced by the principal category that has
more images than others. Consequently, although the CNN
operates with higher classification accuracies for the prin-
cipal category, it has lower accuracies for the remaining
category. To address this problem, the MCH-MC adopts
Weighted SoftMax Cross Entropy to correct the unbalance
of data samples between each category. The weighted Soft-
Max cross entropy is given by

LWSCE(Θ) = − 1
N

N∑

i=1

D∑

j=1

α j ti j log Fsoft. j(Yi;Θ), (15)

where the weight α j is an inversely proportional value to the
quantity of data samples of category j. Consequently, the
CNN can be trained appropriately, if the training dataset is
nonuniform for each category. In Sect. 4, MCH-MC adopts
LWSCE alternate to LSCE.

3.3 Inference Phase for Super-Resolution

After training the CNN, super-resolution processing is per-
formed with the trained model. In this phase, the GAP and
fully-connected layers used for image classification are re-
moved, as shown in Fig. 9-(c). Consequently, the inference
CNN is the same architecture as MCH as shown in Fig. 5.
Therefore, there are no differences in the processing time
and the number of parameters to be stored in the device.

However, the MCH-MC has an image classification
ability in the first and second convolutional layers. We will
show this ability in later experiments (Sect. 4.3.4). There-
fore, MCH-MC can respond to the image category and
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change the internal behavior automatically. We do not re-
quire specifying the input image category or determine the
kind of images the CNN learned in advance. This is an ad-
vantage of the proposed method.

4. Experiments and Results

In this section, we show the effectiveness of the proposed
method. The remainder of this section is organized as fol-
lows: Sect. 4.1 and 4.2 explains the experimental condi-
tions and descriptions, respectively. Section 4.3 evaluates
the effectiveness of the proposed method from five view-
points. Section 4.3.1 evaluates the image qualities and pro-
cessing times quantitatively. Section 4.3.2 shows the tran-
sition in image quality performance and backpropagations.
Section 4.3.3 shows transition in classification accuracy and
image quality. Section 4.3.4 visualizes the importance ar-
eas for the classification judgement with Grad-CAM. Sec-
tion 4.3.5 shows the correlation between image quality and
classification results.

4.1 Experimental Conditions

Our experimental environment is as follows—OS: Ubuntu
16.04 LTS, CPU: Intel Core i7-8700 3.20GHz, Memory:
16.00GB, GPU: NVIDIA GeForce GTX 1080 8GB, and
IDE: MATLAB.

All CNNs are implemented with a Caffe package [31].
In all experiments, we focus only on the luminance chan-
nel in the YCrCb space because several studies of super-
resolution are evaluated only on the luminance channel [2]–
[10], [24]. We evaluate 2× image magnification. PSNR and
structural similarity (SSIM) are calculated only at the cen-
ter of the luminance channel to prevent the influence of the
image boundaries.

4.2 Experimental Descriptions

In our experiment, we evaluate the performances by K-fold
cross-validation. The number of divisions is five.

The training and testing images are three datasets, as
presented in Table 3. We define BSDS100, which is a
dataset of natural images, Manga109, which is a dataset of
comic images, and Hradiš’s dataset, which is a dataset of
text images, as “Nature,” “Manga,” and “Text,” respectively.

In the training phase, we prepare 60×60 pixel teach-
ing signals, T, cropped from original images with a stride s
pixel. The sizes of stride s are five for “Nature” and “Text,”
and 10 for “Manga.” The input signals, Y, are prepared by
downsampling these teaching signals with the Bicubic in-
terpolation of 1/2 scaling factor. The MSE loss function is
optimized with the central pixels of T because all convolu-
tional layers have no padding. The teaching signals of image
category t are vectors of three elements corresponding to
“Nature,” “Manga,” and “Text.” We do not use any data aug-
mentation for the training and testing images. According to
[5], the filter sizes of CNN are as shown in Table 4. The filter

Table 3 Training and testing datasets.

Dataset Amount Ave.Pixels Category name
BSDS100 [16] 100 154,401 “Nature”

Manga109 [17], [18] 109 966,011 “Manga”
Hradiš’s Dataset [19] 100 40,000 “Text”

Table 4 Parameter setting of CNN for 2× magnification.

MCH·MCH-MC MCH-MC
{ f1, f2, f3}={5, 5, 3} n5=256
{n1, n2}={64, 32} D=3

Table 5 Setting of weighted SoftMax cross entropy parameter, “α,” on
MCH-MC.

K-fold αNature αManga αText

1 0.4760 0.0888 1
2 0.4760 0.0888 1
3 0.4760 0.0888 1
4 0.4751 0.0886 1
5 0.4995 0.0931 1

Table 6 Training datasets and the CNN architecture of each method.

Method
Training dataset

Architecture
Nature Manga Text

SRforNature � MCH
SRforManga � MCH

SRforText � MCH
SRforAll � � � MCH
SRforMC � � � MCH-MC

weights of each layer are initialized by random values from
a Gaussian distribution with a mean and standard deviation
of 0 and 0.001, respectively, and 0 for biases. The Adam
optimizer is used with β1 = 0.9 and β2 = 0.999 [32]. The
aforementioned parameters are common for all the meth-
ods. We set the weight, α, of the MCH-MC as presented
in Table 5. The number of backpropagations of Phase1 in
the MCH-MC is 1 million (32 batch size). The number of
backpropagations of the MCH and MCH-MC in Phase2 are
10 million (32 batch size) at the maximum. We examine the
following five methods:

• SRforNature
• SRforManga
• SRforText
• SRforAll
• SRforMC (SRforMulti-Category)

These methods have different CNN architectures and train-
ing images as shown in Table 6.

4.3 Experimental Result and Discussion

4.3.1 Performance of Image Qualities and Processing
Times

Table 7 lists the PSNRs and SSIMs for 2×magnified images
of testing datasets. Red bold and underlined blue numbers
indicate the highest and second highest values, respectively.
First, we focus on each category. On category “Nature,”
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Table 7 PSNRs and SSIMs of 2× magnified images.

Method
PSNR[dB] / SSIM

Nature Manga Text Average

SRforNature 31.31 / 0.8883 35.48 / 0.9656 23.25 / 0.9203 30.17 / 0.9259
SRforManga 31.20 / 0.8868 36.65 / 0.9698 24.53 / 0.9423 30.96 / 0.9340

SRforText 28.08 / 0.7772 29.77 / 0.8711 24.66 / 0.9426 27.57 / 0.8639
SRforAll 31.22 / 0.8870 36.25 / 0.9683 25.28 / 0.9510 31.07 / 0.9364
SRforMC 31.31 / 0.8883 36.46 / 0.9694 25.57 / 0.9565 31.29 / 0.9389

Red bold and underlined blue numbers indicate the best and second-best scores in each testing dataset, respectively.

Fig. 10 Visual comparison on 2×magnified images. (Red bold and underlined blue numbers indicate
the best and second-best scores in each testing image, respectively.)

SRforNature and SRforMC have almost the same image
quality performances. On category “Manga,” SRforManga
achieved the highest image quality performances. On cate-
gory “Text,” however, SRforText did not achieve the high-
est image quality performance, because the number of train-
ing images used for SRforText is significantly fewer than
that for other methods. From these results, we observe that
CNN-based super-resolution achieves a good image qual-
ity if sufficient number of images of the same category is
learned previously. However, if there are few training im-
ages of the same category, the average PSNR and SSIM are
degraded.

Next, we focus on SRforAll and SRforMC. These
methods have the same training datasets; however, they have
different CNN architecture. SRforMC achieved a 0.22pt
higher average PSNR and a 0.0025pt higher average SSIM
than SRforAll. This is because MCH-MC is trained with a
category information. Thus, SRforMC is the best solution if
the input image category is variable.

Furthermore, we evaluate the image quality subjec-
tively. Figure 10 shows examples of magnified images.

Table 8 Processing time of 2× magnified images in all categories.

Processing time[s]
MCH MCH-MC

0.8003 0.8003

There are significant subjective degradations in “108005”
by SRforText, “DualJustice” by SRforText, and “0000001”
by SRforNature. The reason is an inconsistency between the
input and training image categories. Whereas SRforText en-
hances the edges, SRforNature smoothens them. Therefore,
we must consider the training image category of the CNN
before using it.

Finally, we evaluate the processing time on a CPU.
GPU acceleration is not used in this evaluation because
MCH is developed for low complexity and high-speed pro-
cessing [5]. Table 8 shows the processing time for each ar-
chitecture at inference. There was no difference in process-
ing time because the MCH-MC of the inference mode has
the same CNN architecture as the MCH shown in Fig. 5.
Consequently, the processing times of all methods were the
same.
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Fig. 11 The average PSNR curves for the number of backpropagations.
(2× magnification)

However, a comparison of super-resolutions is basi-
cally evaluated with standard benchmark training and test-
ing datasets including T91 [13], BSDS200 [16], Set5 [14],
Set14 [15], and BSDS100 [16]. The comparison of MCH
and other super-resolutions is stated in [5]; therefore, we do
not consider it in this study.

4.3.2 PSNR Convergence Curves

Figure 11 shows the PSNR convergence curves. In the fig-
ure, the PSNR curves of SRforMC shows those of Phase2.
The horizontal and vertical axes of these curves indicate the
number of backpropagation and the average PSNR, respec-
tively. In general, the image quality performance of CNN
improves with the number of backpropagations. SRforMC
achieved higher PSNRs than SRforAll at the same number

Fig. 12 Transitions in classification accuracy and image quality on SR-
forMC.

Table 9 Top-1 accuracy of image classification in SRforMC.

Top-1 Accuracy[%]

Nature Manga Text Average
72.0 96.4 89.0 85.8

of backpropagation points. This advantage will may not
change after 10 million backpropagations.

4.3.3 Transition in Classification Accuracy and Image
Quality

Figure 12 shows the transition in classification accuracy and
image qualities in SRforMC for all testing images. The hor-
izontal and vertical axes in this figure indicate the average
accuracy of image classification and the average PSNR, re-
spectively. The Phase1 start point is at the lower left of this
figure and is obtained after 1,000 backpropagations. Next,
the point moves to the right to indicate that the CNN is
trained to improve image classification accuracy. Subse-
quently, the point moves to the top, indicating that CNN is
trained to improve the PSNRs while maintaining the classi-
fication accuracy.

Table 9 presents the final accuracies of image clas-
sification in SRforMC. The average accuracy is 85.8%.
Therefore, we can ensure that SRforMC has both the super-
resolution and image classification abilities.

4.3.4 Visualization of Classification Ability

We subjectively evaluate the CNN’s internal behavior for
each category with gradient-weighted class activation map-
ping (Grad-CAM) [33]. Grad-CAM is a technique that con-
siders the important area for assessments as a heat map. In
this experiment, Grad-CAM shows which area is recognized
as “Nature,” “Manga,” or “Text” in the second feature map,
F2(Y).

Figure 13 shows some examples of Grad-CAM outputs
for each category. By observing the red and yellow areas, we
subjectively found that “Nature,” “Manga,” and “Text” are
based on uneven, flat, and edge areas, respectively. Thus,
the first and second convolutional layers extract important
characteristics for the classification.
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Fig. 13 Importance of judgment grounds in each category classification.

Table 10 Increase in image qualities from SRforAll to SRforMC.

Increase of PSNR[dB] / Increase of SSIM

True False
+0.20 / +0.0027 +0.14 / +0.0017

4.3.5 Correlation between Image Quality and Classifica-
tion

In this subsection, we evaluate whether the image quality
depends on the classification accuracy. Table 10 shows the
increase in the average PSNRs from SRforAll to SRforMC
according to the success or failure of the category classi-
fication. The increase in the PSNRs and SSIMs is larger in
the correctly classified image group than in the misclassified
image group.

In contrast, some image samples improved in image
quality despite misclassification; therefore, we discuss this
result. Figure 14 shows the increase in PSNR from SRforAll
to SRforMC for each testing image. The horizontal and ver-
tical axes in this figure indicate the PSNR increase from
SRforAll to SRforMC and their distributions, respectively.
The distribution of correct classification spreads to the right
compared to that of misclassification. This result indicates
that these misclassified images insignificantly improved in
image quality than the correctly classified images. How-
ever, some misclassified images achieved significant image
quality improvement.

Fig. 14 Increase in PSNR from SRforAll to SRforMC depending on the
classification result.

Fig. 15 Image sample with a large quality improvement despite misclas-
sification in SRforMC.

Figure 15 shows an example that significantly im-
proved the PSNR despite the misclassification. This sam-
ple is a “Text” with a large font size. Then, the CNN es-
timated it as a “Manga” with a probability of 86.8% or a
“Text” with a probability of 10.7%. Grad-CAM shows that
the black flat parts caused the “Manga” probability, and the
edge parts caused the “Text” probability. Because the for-
mer probability is larger than the latter, the CNN seems to
estimate it as a “Manga.” However, SRforMC improved the
0.58pt PSNR and reduced the overshoots around the edge
area, as shown in the enlarged images. Therefore, the pro-
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posed method made accurate decisions locally, leading to
the improved image quality. Therefore, SRforMC can per-
form appropriate processing based on the image characteris-
tics, although image categories are not accurately classified.

5. Conclusion

In this study, we propose an image super-resolution for mul-
tiple image categories with a single CNN and multi-task
learning. The proposed CNN does not require an external
category information; however, it has an internal category-
classifying ability. In our experiments, the average PSNR
of the proposed method was approximately 0.22 dB higher
than that of the conventional method with the same training
dataset and processing time. The proposed method is useful
when the input image category is varying. Implementation
for a single image containing multi-category will be consid-
ered in our future studies.
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