

PDF issue: 2025-07-08

Kattobase: The linguistic structure of Japanese baseball chants

Ito, Junko Kubozono, Haruo Mester, Armin Tanaka, Shin'ichi

(Citation) Proceedings of the 2018 Annual Meeting on Phonology

(Issue Date) 2018

(Resource Type) conference paper

(Version) Version of Record

(Rights)
© 2019 Junko Ito, Haruo Kubozono, Armin Mester, Shin'ichi Tanaka.
https://creativecommons.org/licenses/by/3.0/

(URL)

https://hdl.handle.net/20.500.14094/90007772

Kattobase: The Linguistic Structure of Japanese Baseball Chants

Junko Ito^{1,2}, Haruo Kubozono², Armin Mester^{1,2}, and Shin'ichi Tanaka³ ¹UC Santa Cruz, ²NINJAL (Tokyo, Japan), ³Kobe University (Japan)

1 Introduction

This paper develops the first constraint-based analysis of Japanese baseball chants, whose intricate organization casts a very revealing sidelight on the prosodic organization of the Japanese language itself. The source of most data and basic generalizations is the last author's dissertation (Tanaka 2008), supplemented by further empirical probing which clarified a number of unclear points.

Since the beginnings of metrical phonology, the analysis of chants has played an important role in the development of the theory. Liberman (1975) uses the English vocative chant ("Jo-ohn!", with a High-Mid tune) to motivate basic properties of what came to be known as the "metrical theory of stress". He shows that, in order to formalize *tune-to-text* alignment, and to define what it means for a tune to be *congruent* with a text and its metrical pattern, a relational understanding of stress is necessary, as instantiated in metrical trees with their "strong-weak" labeling of all nodes.

Japanese baseball chants, an obligatory and quasi-ritual part of virtually every baseball game, are delivered by fans each time their team is at bat. They are accompanied by a variety of musical instruments (drums, trumpets, etc.) and take the form in (1). They consist of two measures of four beats, each composed of three notes plus one pause. 'XXX' is a rhythmically adapted form of the player's name. At issue here is the form of the rhythmic adaptation, which is tightly regulated and grounded, as we will show, in the rhythmic structure of the language itself.

(1) kat to ba see
$$X X X$$

 $\frac{1}{2} y \vdash n t = -$

Morphological structure: kat- tob - as - eINTENSIFIER-fly-CAUS-IMP 'send it flying, hit a homerun'

The examples in (2) illustrate the phenomenon.¹

^{*} For helpful comments, we are thankful to audiences at Grinnell College, Waseda University, UC Santa Cruz, and UC San Diego. We are particularly indebted to Adam Albright, Eric Baković, Ryan Bennett, Edward Flemming, Chris Golston, Bruce Hayes, and Angelo Mercado. Special thanks to Nick Kalivoda for extensive and very helpful comments on an earlier version.

¹ Our transcription is approximately phonemic and largely follows the Hepburn style of Romanization used by the leading dictionaries (Kenkyusha, among others), with some minor modifications: Vowel length is denoted by doubling; $chi=[\widehat{tJi}]$, $su=[\widehat{tsu}]$, $shi=[\widehat{Ji}]$, $ij=[\widehat{dJi}]$, hi=[ci], $fu=[\varphi u]$; and n stands for the moraic nasal of Japanese, realized as a nasal glide (assimilating in place to following stop consonants).

(2)			Source	name	Team ²
a.	kat toba see	kaa kee fuu	kakefu	掛布	Hanshin Tigers
b.	•••	oo ota nii	ootani	大谷	LA Angels
c.	•••	baa aa suu, *baa su uu	baasu	Bass	Hanshin Tigers
d.	•••	ee too oo, *ee ee too	etoo	江藤	Chunichi Dragons
e.		shii pii nn, *shii ii pin	shipin	Sipin	Yomiuri Giants

By way of introduction, we first summarize Tanaka's (2008) analysis, and at the same time present relevant examples. There are three separate rules, depending on the length of the input name, measured in moras (μ). Each CV- or V-unit is one mora, so *ichiroo= i-chi-ro-o* is a 4 μ name. Syllable-final consonants (mostly nasals) are also one mora (*son = so-n =* 2 μ).

Rule 1 in (3) deals with names up to 3μ . The simplest case is names of exactly 3μ , which fit the $X_1X_2X_3$ template exactly, as seen in (4) (we write "L" for "light syllable", "H" for "heavy syllable", and "S" for "superheavy syllable").

(3)	Rule 1a	3-mora names: Align the initial mora to the initial beat (X_1) , the final mora
		to the final beat (X_3) , the medial mora to the medial beat (X_2) .

(4)	Moras	Profile		Input		Output
	3	LLL	a.	ka-ke-fu	掛布	kaa-kee-fuu
		HL	b.	ba-a-su	Bass	baa-aa-suu
			c.	ge-n-da	源田	gee-nn-daa
			d.	sa-i-ki	才木	saa-ii-kii
		LH	e.	e-to-o	江藤	ee-too-oo

It is important that the final mora goes to X₃, not the final syllable: This is why LH $[e_1]$ - $[to_2-o_3] \rightarrow [e_1-e]$ - $[to_2-o]$ - $[o_3-o]$ and not * $[e_1-e]$ -[e-e]- $[to_2o_3]$. By the same rule, HL $[ba_1-a_2]$ - $[su_3] \rightarrow [ba_1-a]$ - $[a_2-a]$ - $[su_3-u]$, not * $[ba_1-a_2]$ - $[su_3-u]$ - $[su_3-u]$ -[u-u].

Rule 1b in (5) deals with shorter names. The crucial point is that the first mora fills X_1 and X_2 (*ta*₁-*ni*₂ \rightarrow *ta*₁*a*-*aa*-*ni*₂*i*), not the second mora X_2 and X_3 (**ta*₁*a*-*ni*₂*i*-*ii*).

(5) Rule 1b In 2μ names, there is no medial mora. Spread from the left to fill X₂. In 1μ names, there is only an initial mora. Spread from the left to fill X₂ and X₃.

Illustrative examples appear in (6).

(6)	Moras	Profile		Input		Output
	2	LL	a.	tani	谷	taa-aa-nii
			b.	yano	矢野	yaa-aa-noo
		Н	c.	son	宣	soo-oo-nn
			d.	chen	陳	chee-ee-nn
			e.	rii	Lee	rii-ii-ii
			f.	kai	甲斐	ka-aa-ii
	1	L	g.	ri	李	rii-ii-ii

(6cd) again illustrate the final-mora rule: *n* alone fills X₃, not the final rhyme *on*: $[so_1-n_2] \rightarrow [so_1-o]-[o-o]-[n_2-n]$, not * $[so_1-o]-[o-o]-[o-n_2]$.

Things are different with 4µ names, and longer names: Now the whole final syllable goes to X₃, whether light or heavy: $[i_1]$ - $[chi_2]$ - $[ro_3-o_4]$ \rightarrow $[i_1i]$ - $[chi_2i]$ - $[ro_3-o_4]$ (8e), and not the final mora (* $[i_1i]$ - $[chi_2ro_3]$ - $[o_4-o]$. A new rule is therefore needed, given in (7).

² See the Appendix for an alphabetized list of source names and player affiliation.

(7) Rule 2 4-mora names: Align the initial mora to X_1 , the final syllable to X_3 , medial moras to X_2 .

(8)	Moras	Profile		Input		Output
	4	LLLL	a.	kiyohara	清原	kii-yoha-raa
			b.	tatsunami	立浪	taa-tsuna-mii
			c.	rinaresu	Linares	rii-nare-suu
			d.	kuromati	Cromartie	kuu-roma-tii
		LLH	e.	ichiroo	イチロー	ii-chii-roo
			f.	ochiai	落合	oo-chii-ai
			g.	wiruson	Wilson	wii-ruu-son
		HLL	h.	joojima	城島	joo-oji-maa
			i.	ootomo	大友	oo-oto-moo
		HH	j.	hansen	Hansen	haa-nn-sen
			k.	taihoo	大豊	taa-ii-hoo
			1.	shinjoo	新庄	shii-nn-joo
		LHL	m.	furanko	Franco	fuu-ran-koo

More examples illustrating the pattern are given in (8).

Besides the emergence of the final syllable as a mapping target, the mapping of HLL names (8hi) is remarkable: $[jo_1-o_2]-[ji_3]-[ma_4] \rightarrow [jo_1o]-[o_2-ji_3]-[ma_4a]$, not $*[jo_1-o_2]-[ji_3i]-[ma_4a]$. As indicated, we understand the winning output as mapping the two *o*-moras to different beats (with an onset violation). Here we simply note the facts, and will return to their explanation in the next section.

A special case are 4μ names like $[ku_1]$ - $[ra_2-i_3-n_4]$ (*Klein*) (9a), whose profile seems to be LS. If it is the case that the superheavy syllable is actually broken up into L+H $[ku_1]$ - $[ra_2]$ - $[i_3-n_4]$, as argued by several authors, including Vance (2008, 125–127), Kubozono (2015, 13–16), and Ito and Mester (2018, 212–216), the final syllable rule already covers this case. The long vowel in (9b) seems to resist this kind of splitting.

(9)	Moras	Profile		Input		Output
	4	LS or LLH	a.	kurain	Klein	kuu-raa-in ³
			b.	kuruun	Kroon	kuu-ruu-nn
		SL or LHL	c.	baanzu	Barnes	baa-an-zuu
			d.	joonzu	Jones	joo-on-zuu

Names with 5 or more moras follow the same final syllable rule, but we need to distinguish two cases on the basis of the weight of the penultimate syllable. Names with penultimate H map this syllable to X_2 , as formulated in (10) and illustrated in (11).

(10) Rule 3a $\geq 5\mu$ names with H penultimate syllable: Align the final syllable to X₃, the penultimate H syllable to X₂, the remainder (which can be of any length) to X₁.

(11)	Moras	Profile		Input		Output
	5	HHL	a.	boochaado	Borchard	boo-chaa-doo
		LLHL	b.	seginooru	Seguignol	segi-noo-ruu
		LHH	c.	deshinsei	DeCinces	dee-shin-sei
	6	LLLHL	d.	desutoraade	Destrade	desuto-raa-dee

In (12) we give the corresponding rule for names with L in the penult, as illustrated in (13).

³ Another less preferred variant is *kuu-rai-nn*.

(12) Rule 3b $\geq 5\mu$ names with L penultimate syllable: Align the final syllable to X₃, the penultimate L syllable and the antepenultimate syllable (whether L or H) to X₂, the remainder (which can be of any length) to X₁.

(13)	Moras	Profile		Input		Output
	5	HLLL	a.	gonzaresu	González	gon-zare-suu
	6	LLLLLL	b.	makudonarudo	Macdonald	makudo-naru-doo
		LHLH	c.	robaatoson	Robertson	roo-baato-son

In (14), we give more examples of $\geq 5\mu$ names.

(14)	Moras	Profile		Input		Output
	5	LLLLL	a.	ogasawara	小笠原	oga-sawa-raa
		LLLLL	b.	kobayakawa	小早川	koba-yaka-waa
		LHLL	c.	arekkusu	Alex	aa-rekku-suu
		LHLL	d.	mahoomuzu	Mahomes	maa-hoomu-zuu
		LLHL	e.	kitabeppu	北別府	kita-bep-puu
		LLLH	f.	oguribii	Oglivie	oo-guri-bii
		HHL	g.	g. infante Infante i		in-fan-tee
		HHL	h.	n. boochaado Borchard		boo-chaa-doo
		LHH	i.	i. buranboo Bruml		buu-ran-boo
		HLH	j.	oosutin	Austin	oo-osu-tin
		HLH	k.	doddoson	Dodson	doo-oddo-son
		HLH	1.	bansuroo	Vance Law	baa-nsu-roo
	6	HLLLL	m.	kontorerasu	Contreras	konto-rera-suu
	LHLLL n.		n.	furanshisuko	Francisco	furan-shisu-koo
		LLHLL	0.	ferunandesu	Fernández	feru-nande-suu
		LLLHL	p.	desutefaano	Distefano	desute-faa-noo
		LLLLH	q.	makanarutii	McAnulty	maka-naru-tii
	7	HLHLL	r.	gengoroomaru	源五郎丸	gengo-rooma-ruu

2 Analysis

The challenge any analysis must cope with is that we seem to be dealing with three separate patterns, as summarized in (15).

- (15) 1. for \leq 3-mora names: last mora goes to last beat
 - 2. for 4-mora names: last syllable goes to last beat
 - 3. for ≥5-mora names: last syllable goes to last beat, and special provisos for H and L penults

Ideally we would like to unify everything into a single rule, but the distinction between the three patterns seems very well motivated, having to do with the length of the input. Since the overall goal is to split the input into three parts, which are then mapped to the three beats, it makes sense that what goes into the last beat is different for short names and for longer names. But "making sense" is not yet an explanation—our goal is now to give an analysis in Optimality Theory (OT, Prince and Smolensky 1993), in terms of ranked and violable constraints, and capture the different aspects of the pattern in one single and uniform constraint ranking, instead of having three distinct procedures.

We first lay out our constraints, beginning in (16), where "K" stands for "kattobase form".

a.	$\mathbf{K} = \mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$	A kattobase form consists of 3 beats, $X_1X_2X_3$.
b.	$X \ge FOOT$	A beat is minimally a foot (Ft).
c.	FOOTFORM (X_2)	X ₂ is a quantitative trochee (H, LL, or HL).
d.	MAX	Every element of the input is present in K.
e.	ALIGN-LEFT(X ₃ , μ])	The left edge of X_3 corresponds to the left edge of (the content of) the last
		mora of the input. One violation when the edges do not coincide.
f.	ALIGN-LEFT(X_3,σ])	The left edge of X_3 corresponds to the left edge of (the content of) the last
		syllable of the input. One violation when the edges do not coincide.

(16)

For our purposes, the basic rhythmic structure of Japanese is the trochaic (strong-weak, sw) foot with the three forms in (17), which include the uneven trochee HL, for reasons we will return to.

(17)	Ft	Ft	Ft
	\sim		\sim
	s w	S	s w
	L L	Н	H L
	ta ta	taa	taa ta

(16c) raises an immediate question: Why is there a special constraint requiring X_2 to be exactly a trochee? Empirically speaking, the answer is clear: In long names, material exceeding the size of a trochee goes into X_1 , not into X_2 : *MacDonald* \rightarrow *makudo-naru-doo*, not **maku-donaru-doo*. X_3 is in any case restricted to the last syllable of the input because of the ALIGN-LEFT constraints (σ , μ): *MacDonald* \rightarrow *makudo-naru-doo*, **maku-dona-rudo*.

But what is the reason X_2 plays this special role, not X_1 or X_3 ? Our hypothesis is that the reason lies in what X_2 corresponds to in a Japanese word: It corresponds to the last, and most prominent, foot of the word, the foot which receives the default antepenultimate accent, as illustrated in (18).

If so, FOOTFORM(X_2) is actually FOOTFORM(HEADFOOT), a positional markedness constraint, as in (19).

(19) FOOTFORM(HDFT) The headfoot is a quantitative trochee (H, LL, or HL).

In conjunction with (20a), the general DEP- μ constraint militating against any kind of lengthening, there is also another headfoot-specific positional faithfulness constraint (20b) preventing epenthesis in X₂.

(20)	a.	Dep-µ	Every mora in the output has a correspondent in the input—no epenthesis of a mora (i.e., no lengthening).
	b.	Dep-µ (HdFt)	Every mora in the output's head foot has a correspondent in the input—no epenthesis of a mora (i.e., no lengthening).

The remaining constraints cover familiar territory: There are two crisp edge constraints (Ito and Mester 1999) militating against spreading consonants or vowels across X-boundaries (21ab), and the familiar onset constraint (21c).

(21)	a.	CRISPEDGE-C	The edges of X are crisp: no spreading of consonants across. One violation
			for every consonant linked to two different Xs.
	b.	CRISPEDGE-V	The edges of X are crisp: no spreading of vowels across. One violation for
			every vowel linked to two different Xs.
	c.	ONSET	A syllable has an onset.

The overall ranking of the constraints is as in (22). We will gradually justify all dominance relations.

The simplest case is 3μ names (23) such as $ka_1 - ke_2 - fu_3 \rightarrow ka_1a - ke_2e - fu_3u$. Comparing the winning candidate (23a) with (23d) $*ka_1a - ke_2fu_3 - uu$, we see the constraint DEP- μ (HDFT), violated by the winner, must be dominated by either CRISPEDGE-V or ALIGN-L(X₃, σ), which are both violated by the loser.⁴

(23)

INPUT	Οι	JTPUT	MAX	CRISPE-C	X≥FT	FtFrm (HdFt)	CRISPE-V	AL-L (X3, σ])	Dep-µ (HdFt)	AL-L (X3,μ])	ONSET	Dep-µ
kakefu	a. 🕨	kaa-kee-fuu							1			3
掛布	b.	kaa-ake-fuu					1		1		1	3
	с.	kake-ee-fuu					1		2		1	3
	d.	kaa-kefu-uu					1	1		1	1	3
	e.	kake-fuu-uu					1	1	1	1	1	3
	f.	kaa-aa-kefu					1	1	2	1	1	3
	g.	ka-ke-fu			3	1						

The winning candidate *kaa-kee-fuu* also shows three instances of mora epenthesis, and thus violates general DEP- μ three times. Since this constraint is bottom-ranked and does not contribute to the explanation in interesting ways, we will in general not include it in our tableaux.

Turning next to short names, we give tableaux for 1µ- and 2µ-names in (24) and (25).

⁴ Technically, ONSET or AL-L(X_3,μ]) could also dominate DEP- μ (HDFT) with the same effect, but we will soon see that these must be ranked lower.

The fact that (24a) wins over (24def) shows that $X \ge FT$ dominates all of CRISPE-V, AL-L(X₃, σ]), DEP- μ (HDFT), AL-L(X₃, μ]), and ONSET. In (25), (25a) *ta*₁*a*-*aa*-*ni*₂*i*, with its two violations of DEP- μ (HDFT), wins over (25b) *ta*₁*a*-*ni*₂*i*-*ii* (with only one violation). This teaches us that AL-L(X₃, σ])>>DEP- μ (HDFT) (the loser does not align the last syllable with X₃).⁵Another possibility would be AL-L(X₃, μ])>>DEP- μ (HDFT), but we will see below in (32) that there is independent evidence for AL-L(X₃, σ])>>DEP- μ (HDFT).

(25)										
		MAX	CRISPE-C	X≥FT	FtFrm (HdFt)	CRISPE-V	AL-L (X3, σ])	Dep-µ (HdFt)	A _L -L (X ₃ ,μ])	Onset
INPUT	OUTPUT									
tani	a. ►taa-aa-nii					1		2		1
谷	b. taa-nii-ii					1	1	1	1	1
	c. tani-ii-ii					2	1	2	1	2
	d. nii-ii-ii	2				2	1	2	1	1

(26a) *so₁₀-oo-n₂n* beats, and harmonically bounds, (26b) *so₁₀-oo-on₂* because it does better on CRISPE-V and AL-L(X₃, μ).

(26)

INPUT	1	0	UTPUT	MAX	CRISPE-C	X≥FT	(HDFT)	FtFrm	CRISPE-V	AL-L (X3, σ])	Dep-µ (HdFt)	AL-L (X3,μ])	Onset
son	a.		► soo-oo-nn						1	1	2		2
宣	b.		soo-oo-on						2	1	2	1	2
	c.		soo-nn-nn		1					1	1	1	2
	d.		son-nn-nn		2					1	2	1	2

A similar point holds for $ba_1a_2su_3 \rightarrow ba_1a - a_2a - su_3u$ and $ge_1n_2da_3 \rightarrow ge_1e - n_2n - da_3a$ in (27). Note that the winning candidate $ba_1a - a_2a - su_3u$ assigns the two *a*-moras to different syllables—the candidate $ba_1a_2 - aa - su_3u$ does worse both on CRISPE-V, AL-L(X3, σ) and DEP- μ (HDFT) and is harmonically bounded by the winner.

⁵ Another possibility would be AL-L(X₃, μ])>>DEP- μ (HDFT), but we will see below in (32) that there is independent evidence for AL-L(X₃, σ])>>DEP- μ (HDFT).

(27)			MAX	CRISPE-	X≥FT	FTFRM (HDFT)	CRISPE-	$\frac{A_{L}-L}{(X_{3},\sigma])}$	Dep-µ (HdFt)	AL-L (X3,μ])	ONSET
INPUT		OUTPUT		С			V				
$ba_1a_2su_3$	a.	►ba1a-a2a-su3u							1		1
Bass	b.	ba1a2-su3u-uu					1	1	1	1	1
	c.	ba1a2-aa-su3u					1		2	1	1
	d.	ba1a-a2su3-uu					1	1		1	2
	e.	X-ba1a2-su3u			1						
ge1n2da3	f.	▶ ge1e-n2n-da3a							1		1
源田	g.	ge1n2-daa-a3a					1	1	1	1	1
	h.	ge1n2-nn-da3a		1					1		1

An interesting contrast to the HL-word $ba_1a_2su_3 \rightarrow ba_1a_2a_3u_3u$ is the LH word $e_1to_2o_3 \rightarrow e_1e_1o_2o_0o_3o$ in (28): Even though ALIGN-LEFT(X₃, σ]), which ranks higher than ALIGN-LEFT(X₃, μ]), favors (28b), CRISPEDGE-V, which ranks even higher, selects (28a).

(28)

Input	(Output	MAX	CrispE-C	X≥FT	FtFrm (HdFt)	CRISPE-V	AL-L (X3, σ])	Dep-µ (HdFt)	A _L -L (X ₃ ,μ])	ONSET
$e_1 to_2 o_3$	a. I	$e_1e-to_2o-o_3o^6$						1	1		2
江藤	b.	e1e-ee-to2o3					1		2	1	2
	c.	e ₁ to ₂ -o ₃ o-oo					1	1	1		2

To recapitulate the crucial constraint interactions, we compare the derivations for *tani, baasu*, and *etoo* in (29).

(29)

		CRISPE-V	AL-L (X3, σ])	Dep-µ (HdFt)
INPUT	OUTPUT			
LL ta ₁ ni ₂	a. ►ta1a-aa-ni2i	1		2
谷	b. ta ₁ a-ni ₂ i-ii	1	1	1
HL ba ₁ a ₂ su ₃	c. ►ba ₁ a-a ₂ a-su ₃ u			1
Bass	d. ba1a-a2su3-uu	1	1	
LH e ₂ to ₂ o ₃	e. e ₁ e-ee-to ₂ o ₃	1		2
江藤	f. ▶e₁e-to₂o-o₃o		1	1

While in 3μ -words ending in H the last mora, not the last syllable, is assigned to X₃ (because of CrispE-V, see (29ef)), this is not the case in 4μ -words ending in H, as shown in (30). Here (30a) and (30e) do not violate CrispE-V, so AL-L(X₃, σ]) decided in favor of the candidates assigning the final syllable to X₃.

⁶ Note that the two parts of the long vowel are evaluated separately by CRISPE-V, that is why the winner e_1e -to₂o-o₃o does not violate this constraint.

(30)		MAX	CRISPE-(X≥FT	FtFrm (HdFt)	CRISPE-V	AL-L (X3, σ])	Dep-µ (HdFt)	A _L -L (X ₃ ,μ])	Onset
INPUT	OUTPUT		()			V				
shi1n2jo304	a. \blacktriangleright shi_1i-n_2n-jo_3o_4							1	1	1
新庄	b. $shi_1n_2-jo_3o-o_4o$						1			1
	c. $shi_1i-n_2jo_3-o_4o$						1			2
	d. shi ₁ i-in ₂ -jo ₃ o ₄					1		1	1	1
$ta_1i_2ho_3o_4$	e. ►ta ₁ a-i ₂ i-ho ₃ o ₄							1	1	1
大豊	f. $ta_1i_2-ho_3o-o_4o$						1			1
	g. $ta_1a-i_2ho_3-o_4o$						1			2
	h. ta_1i_2 -ii-ho ₃ o ₄					1		1	1	1

A LLLL-name like *kiyohara* assigns only the first mora to X_1 and applies lengthening here, not in X_2 because of DEP- μ (HDFT) (31a) vs. (31b).

(31)

INPUT		Output	MAX	CRISPE-C	X≥FT	FtFrm (HdFt)	CRISPE-V	AL-L (X3, σ])	Dep-µ (HdFt)	AL-L (X3,μ])	ONSET	Dep-µ
kiyohara	a.	▶kii-yoha-raa										2
清原	b.	kiyo-haa-raa							1			2
	c.	kii-yoo-hara						1	1	1		2
	d.	kiyo-hara-aa					1	1		1	1	2
	e.	kiyoha-raa-aa					1	1	1	1	1	3

But lengthening in X_2 is not absolutely ruled out and indeed found when a higher-ranking constraint is at stake. This is shown by a 4µ-name like *kurain*, whose syllabification we take to be *ku.ra.in* (see (9) above): (32a) *kuu-raa-in* beats (32b) *kuu-rai-nn* because of ALIGN-LEFT(X_3,σ]), which crucially dominates DEP-µ(HDFT) and AL-L(X_3,μ]).⁷

(32)

INPUT	Output	MAX	CRISPE-C	X≥FT	FtFrm (HdFt)	CRISPE-V	AL-L (X3, σ])	Dep-µ (HdFt)	AL-L (X3,μ])	Onset
kurain	a. ▶kuu-raa-in							1	1	1
Klein	b. kuu-rai-nn						1			1
	c. kura-ii-nn						1	1		2
	d. kura-in-nn		1				1		1	2
	e. kura-ii-in					1	1	1	1	2
	f. kuu-uu-rain					1		2	1	1

In (33) the winner (33a) *joo-oji-maa* beats (33b) *joo-jii-maa* because it avoids lengthening within the head foot X_2 , at the cost of lengthening in X_1 and an onset violation.⁸

⁷ But *kuu-rai-nn* is another possible (if less preferred) output, so there might be some variability in the ranking between AL-L(X₃, σ] and one or both of its dominated constraints.

⁸ The winner is (33a), which distributes the two *o*-moras over X_1 and X_2 , and not the homonymous (33c), which keeps both *o*-moras within X_1 but has gratuitous violations of CRISPE-V and DEP- μ (HDFT).

(33) Input	(Dutput	MAX	CRISPE-C	X≥FT	FtFrm (HdFt)	CRISPE-V	$A_{L}-L$ (X ₃ , σ])	Dep-µ (HdFt)	AL-L (X3,μ])	Onset
jo102ji3ma4	a. 🖡	jo₁o-o₂ji₃-ma₄a									1
城島	b.	jo102-ji3i-ma4a							1		
	с.	jo102-oji3-ma4a					1		1		1
	d.	jo ₁ o ₂ ji ₃ -ii-ma ₄ a							2		1
	e.	jo102-ji3ma4-aa					1	1		1	1
	f.	jo102ji3-ma4a-aa					1	1	1	1	1
	g.	X-jo102ji3-ma4a			1						

Recapitulating the crucial interactions, we compare the derivations for *ichiroo* and *joojima* in (34).

(34)

(54)			CRISPE-V	Dep-µ (HdFt)	Onset
	INPUT	OUTPUT	~		
LLH	i1chi2ro304	a. ▶i ₁ i-chi ₂ i-ro ₃ O ₄		1	1
	イチロー	b. i1i-ichi2-ro304	1		2
HLL	jo102ji3ma4	c. jo ₁ o ₂ -ji ₃ i-ma ₄ a		1	
	城島	d. ▶jo10-02ji3-ma4a			1

The candidate *ii-chii-roo* bests *ii-ichi-roo* because CRISPE-V >>DEP- μ (HDFT). But, as we just saw in (33), *joo-oji-maa* bests *joo-jii-maa* because CRISPE-V is not involved, and DEP- μ (HDFT) >>ONSET. The same kind of same interaction is found in the derivation of the 5 μ -name *oosutin* \rightarrow *oo-osu-tin* in (35).

1	2	5	١
U	Э	J)

INPUT	Output	MAX	CRISPE-C	X≥FT	FTFRM (HdFt)	CRISPE-V	AL-L (X3, σ])	Dep-µ (HdFt)	AL-L (X3,μ])	Onset
o102su3ti4n5	a. ►o ₁ o-o ₂ su ₃ -ti ₄ n								1	2
Austin	b. o_1o_2 -su ₃ u-ti ₄ n	l						1	1	1
	c. o_1o_2 -su ₃ ti-n ₄ n						1			2

The 5µ-name *doddoson* in (36), whose *kattobase*-form is (36a) *doo-oddo-son* and not (36c) *dod-doo-son*, shows that spreading a consonant across X-boundaries is worse than spreading a vowel: CRISPEDGE-C>>CRISPEDGE-V.

(36)

LUDUZ		MAX	CRISPE-C	X≥FT	FtFrm (HdFt)	CRISPE-V	A_L-L (X ₃ , σ])	Dep-µ (HdFt)	AL-L (X3,μ])	Onset
INPUT	OUTPUT									
doddoson	a. ►doo-oddo-son					1		1	1	1
Dodson	d. doo-ddo-son				1				1	
	b. dod-doo-son		1					1	1	
	c. dod-doso-nn		1			1	1			1

 5μ -names (and longer names) clarify some issues that have so far not come up. First, there is the question of where "extra" material goes: moras that are not needed to fill each X with one foot. This issue is settled by (37): X₁ is the place for extra material (*makudo-naru-doo*), not X₂ (**maku-donaru-doo*) or X₃ (**maku-dona-rudo*). This is ensured by the dominance of AL-L(X3, σ]) and/or AL-L(X3, μ]) over DEP- μ , as shown by (37a) vs. (37c).

(37)

Input	OUTPUT MAX	$\begin{array}{c} \text{Dep-}\mu\\ \hline\\ \text{ONSET}\\ \text{AL-L}\\ \text{AL-L}\\ (X_3,\mu])\\ \hline\\ \text{Dep-}\mu\\ (H_DF_T)\\ \hline\\ \text{Dep-}\mu\\ (H_DF_T)\\ \hline\\ \text{AL-L}\\ (H_DF_T)\\ \hline\\ \text{CrispE-V}\\ \hline\\ \text{FTFRM}\\ (H_DF_T)\\ \hline\\ \text{(HDFT)}\\ \hline\end{array}$
makudonarudo	a. ▶ makudo-naru-doo	1
Macdonald	b. makudona-ruu-doo	1 2
	c. maku-dona-rudo	1 1
	d. maku-donaru-doo	1 1
	e. mado-naru-doo 2	

Next, there is the issue of assigning antepenult-penult sequences of different quantitative profiles (LH, HH, LL, HL) to X_1 and X_2 (see (10)-(13) above). (38) shows that a heavy penult fills X_2 by itself.

0	٥١
(3	8)
· -	- /

			MAX	CRISPE-C	X≥FT	(HDFT)	CRISPE-V	AL-L (X3, σ])	Dep-µ (HdFt)	AL-L (X3,μ])	ONSET	Dep-µ
INPUT	(DUTPUT										
desutoraade	a. 🕨	desuto-raa-dee										1
LH	b.	desu-tora-ade						1		1	1	
Destrade	c.	desutora-aa-dee					1		1		1	2
	d.	desu-toraa-dee				1						1
	e.	desu-tora-dee	1									1
buraianto	f. 🕨	▶burai-an-too										1
HH	g.	buu-raian-too				1					1	2
Bryant	h.	burai-anto-oo					1	1		1	1	2

In (39), we see that a light penult is assigned to X_2 together with the antepenult, whether the antepenult is light or heavy.⁹

(39)

Input	Ou	TPUT	MAX	CrispE-C	X≥FT	FtFrm (HdFt)	CrispE-V	AL-L (X3, σ])	Dep-µ (HdFt)	AL-L (X3,μ])	Onset	Dep-µ
makudonarudo	a. I	► makudo-naru-doo										1
Macdonald	b.	makudona-ruu-doo							1			2
	c.	maku-dona-rudo						1		1		
	d.	maku-donaru-doo				1						2
	e.	mado-naru-doo	2									1

⁹ The fact that the HL sequence *baato* is assigned to X_2 is the motivation for admitting the uneven trochee HL as a quantitative trochee in Japanese. It remains to be seen whether it is possible to find an alternative analysis which conforms to the standard view going back to Poser (1984; 1990) that admits only the bimoraic trochee.

Input	Output	MAX	CrispE-C	X≥FT	FtFrm (HdFt)	CrispE-V	AL-L (X3, σ])	Dep-µ (HdFt)	AL-L (X3,μ])	ONSET	Dep-µ
robaatoson	f. ▶roo-baato-son								1		1
Robertson	g. roba-ato-son								1	1	
	h. robaa-toso-nn						1			1	1
	i. roo-bato-son	1							1		
	j. robaa-too-son							1			1

Recapitulating, we juxtapose the derivations for *makudonarudo*, *boochaado*, *robaatoson*, *and desutoraade* in (40), showing only the crucial constraint interactions.

(40)

()			0	FtFrm (HdFt)	Dep-µ (HdFt)	AL-L (X3,μ])	ONSET	Dep-µ
	INPUT		OUTPUT					
LH	desutoraade	a.	► desuto-raa-dee					1
	Destrade	b.	desu-toraa-dee	1				1
HH	buraianto	c.	▶burai-an-too					1
	Bryant	d.	buu-raian-too	1				2
LL	makudonarudo	e.	▶ makudo-naru-doo					1
	Macdonald	f.	makudona-ruu-doo		1			2
HL	robaatoson	g.	▶ roo-baato-son			1		1
	Robertson	h.	robaa-too-son		1			1

3 Summary and conclusion

We summarize by first assembling the evidence for all constraint rankings. The overall system is repeated in (41).

In (42), we present the evidence for each of the labeled ranking relation (produced with the help of OTWorkplace (Prince et al. 2015)). Crucial W(inner)~L(oser) pairs justifying a particular ranking are given in bold. "W" in a constraint column means that the constraint prefers the winner; "L" means that the constraint prefers the loser. What is important here is the core of OT ranking logic: In order for the winner to defeat a given loser, it must do better on the highest-ranking constraint that distinguishes the two.

()	Input	WINNER	Loser	MAX	CRISPEDGE-C	X≥Foot	FTFRM(HDFT)	CRISPEDGE-V	ALIGN-L(X ₃ , σ])	Dep-µ(HdFt)	ALIGN-L(X ₃ , μ])	ONSET	Dep-µ
0	ogasawara	oga-sawa-raa	gaa-sawa-raa	W								L	W
0	son	soo-oo-nn	soo-nn-nn		W			L		L	W		
Ø	ri	rii-ii-ii	rii-X-ii			W		L		L		L	L
4	doddoson	doo-oddo-son	doo-ddo-son				W	L		L		L	L
6	etoo	ee-too-oo	ee-ee-too					W	L	W	W		
60	kurain	kuu-raa-in	kuu-rai-nn						W	L	L		
8	joojima	joo-oji-maa	joo-jii-maa							W		L	
0	robaatoson	roo-baato-son	roba-ato-son									W	L

In conclusion, the OT-analysis, with its ranked and violable constraints, has succeeded in folding what appeared to be a set of separate rules depending on the length of the input into a single unified constraint system with a single ranking, where the length of the input exerts its influence by resulting in different violation profiles in outputs, and does not require separate rules for inputs of different length. Besides the alignment constraints specific to the baseball chant, the other constraints are uncontroversial faithfulness (MAX/DEP) constraints and structural markedness constraints (on foot/syllable structure and their edges). Among the many remaining questions, however, the most important perhaps is why the desired foot form in X_2 is the quantitative trochee that admits also the trimoraic HL-foot, and not the bimoraic trochee otherwise firmly grounded in the phonology of Japanese. It is clear that much work remains to be done—in particular in grounding the constraints better in the prosodic system of the language.

4 Appendix

Romanized transcription	Original Name	Katakana transcription	Former/Main Team
arekkusu	Alex Ochoa	アレックス	Chunichi Dragons
baanzu	Jacob Barnes	バーンズ	Milwaukee Brewers
baasu	Randy Bass	バース	Hanshin Tigers
bansuroo	Vance Law	バンスロー	Chunichi Dragons
boochaado	Joe Borchard	ボーチャード	Chicago White Sox
buraianto	Kris Bryant	ブライアント	Chicago Cubs
buranboo	Cliff Brumbaugh	ブランボー	Orix Buffaloes
chen	陳	チェン	Chunichi Dragons
deshinsei	Doug DeCinces	デシンセイ	Yakult Swallows
desutefaano	Benny Distefano	デステファーノ	Chunichi Dragons
desutoraade	Orestes Destrade	デストラーデ	Seibu Lions
doddoson	Pat Dodson	ドッドソン	Kintetsu Buffaloes
etoo	江藤	エトー	Chunichi Dragons
ferunandesu	José Fernández	フェルナンデス	Florida Marines
furanko	Julio Franco	フランコ	Lotte Marines
furanshisuko	Juan Francisco	フランシスコ	Yomiuri Giants
genda	源田	ゲンダ	Seibu Lions
gengoroomaru	源五郎丸	ゲンゴローマル	Hanshin Tigers
gonzaresu	Dicky González	ゴンザレス	Yakult Swallows

hansen	Bob Hansen	ハンセン	Seibu Lions
ichiroo	イチロー	イチロー	Seattle Mariners
infante	Omar Infante	インファンテ	Detroit Tigers
joojima	城島	ジョージマ	Hanshin Tigers
joonzu	Garrett Jones	ジョーンズ	Yomiuiri Giants.
kai	甲斐	カイ	Softbank Hawks
kakefu	掛布	カケフ	Hanshin Tigers
kitabeppu	北別府	キタベップ	Hiroshima Carp
kiyohara	清原	キヨハラ	Yomiuri Giants
kobayakawa	小早川	コバヤカワ	Yakult Swallows
kontorerasu	José Contreras	コントレラス	Chicago Whitesox
kurain	Phil Klein	クライン	DeNA BayStars
kuromati	Warren Cromartie	クロマティ	Yomiuri Giants
kuruun	Marc Kroon	クルーン	Yomiuri Giants
mahoomuzu	Pat Mahomes	マホームズ	DeNA Baystars
makanarutii	Paul McAnulty	マカナルティー	San Diego Padres
makudonarudo	Bob Macdonald	マクドナルド	Hanshin Tigers
ochiai	落合	オチアイ	Chunichi Dragons
ogasawara	小笠原	オガサワラ	Yomiuri Giants
oguribii	Ben Oglivie	オグリビー	Kintetsu Buffaloes
oosutin	Tyler Austin	オースティン	New York Yankees
ootani	大谷	オータニ	LA Angels
ootomo	大友	オートモ	Yomiuri Giants
ri	李	IJ	Chunichi Dragons.
rii	Leon Lee	リー	Lotte Orions
rinaresu	Omar Linares	リナレス	Chunichi Dragons
robaatoson	David Robertson	ロバートソン	New York Yankees
saiki	才木	サイキ	Hanshin Tigers
seginooru	Fernando Seguignol	セギノール	Nippon Ham
shinjoo	新庄	シンジョー	Hanshin Tigers
shipin	Sipin	シピン	Yomiuri Giants
son	宣	ソン	Chunichi Dragons
taihoo	大豊	タイホー	Chunichi Dragons
tani	谷	タニ	Yomiuri Giants
tatsunami	立浪	タツナミ	Chunichi Dragons
wiruson	George Wilson	ウィルソン	Seibu Lions
yano	矢 野	ヤノ	Hanshin Tigers

5 References

Ito, Junko, and Armin Mester. 1999. Realignment. In *Proceedings of the Utrecht Workshop on Prosodic Morphology*, ed. René Kager, Harry van der Hulst, and Wim Zonneveld, 188–217. Cambridge: Cambridge University Press.

- Ito, Junko, and Armin Mester. 2018. Tonal alignment and preaccentuation. *Journal of Japanese Linguistics* 34(2): 195–222.
- Kubozono, Haruo. 2015. Introduction to Japanese phonetics and phonology. In *Handbook of Japanese Phonetics and Phonology*, ed. Haruo Kubozono, 1–40. Berlin/Boston/Munich: De Gruyter, Mouton.
- Liberman, Mark. 1975. *The Intonational System of English*. Doctoral dissertation, Cambridge, Mass.: MIT. [Published in 1979, New York and London: Garland Publishing].

Poser, William J. 1984. Hypocoristic formation in Japanese. In *Proceedings of WCCFL 3*, ed. Mark Cobler, Suzannah MacKaye, and Michael T. Wescoat, 218–229. Stanford: Stanford Linguistic Association.

Poser, William J. 1990. Evidence for foot structure in Japanese. Language 66(1): 78-105.

Prince, Alan S., and Paul Smolensky. 1993. Optimality Theory: Constraint Interaction in Generative Grammar. Brunswick, New Jersey, and Boulder, Colorado: Rutgers University and University of Colorado, Boulder. [Published in 2004, Malden, MA: Wiley-Blackwell].

Prince, Alan S., Bruce Tesar, and Nazarré Merchant. 2015. OTWorkplace Installer Package. Http://ruccs.rutgers.edu/images/personal-alan-prince/otworkplace/OTWorkplaceInstallerPackage_ver12.zip. Tanaka, Shin'ichi. 2008. Rizumu/akusento no "yure" to on'in/keitai-kouzou [Fluctuation in rhythm and accent and

phonological and morphological structure]. Tokyo, Japan: Kurosio Publishing.

Vance, Timothy J. 2008. The Sounds of Japanese. Cambridge, U.K.: Cambridge University Press.