

PDF issue: 2025-07-17

IL-15 Improves Aging-Induced Persistent T Cell Exhaustion in Mouse Models of Repeated Sepsis

Saito, Masafumi ; Inoue, Shigeaki ; Yamashita, Kimihiro ; Kakeji, Yoshihiro ; Fukumoto, Takumi ; Kotani, Joji

<mark>(Citation)</mark> Shock,53(2):228-235

(Issue Date) 2020-02

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights)
© 2019 by the Shock Society

(URL) https://hdl.handle.net/20.500.14094/90008020

1 (a) Manuscript title

2	II -15 improves	aging_induced	l nersistent T	cell exhausti	ion in mouse	models of re	neated sen	isis
4	IL-15 Improves	aging-muucee	persistent 1	cell exhaust	ion in mouse	models of re	pealed sep	1919

3 (b) Author's name and affiliation

4 Masafumi Saito^{1,2}, Shigeaki Inoue^{1,2}*, Kimihiro Yamashita³, Yoshihiro Kakeji³, Takumi

5 Fukumoto⁴, Joji Kotani²

- 6 1. Department of Emergency and Critical Care Medicine, Tokai University School of
- 7 Medicine
- 8 2. Department of Disaster and Emergency and Critical Care Medicine, Kobe University
- 9 Graduate School of Medicine
- 10 3. Kobe University Division of Gastrointestinal Surgery Department of Surgery Graduate
- 11 School of Medicine Kobe Japan
- 12 4. Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of
- 13 Medicine, Kobe, Japan
- 14 (c) Corresponding author
- 15 *Shigeaki Inoue
- 16 Professor

- 17 Dept of Disaster and Emergency Medicine Kobe University. Graduate School of Medicine
- 18 Kusunoki-cho 7-5-2, Chuo-ward, Kobe, Japan
- 19 Tel: +81-78-382-6521; Fax: +81-78-341-5254; E-mail: inoues@med.kobe-u.ac.jp

20 (d) Conflict interest

21 The authors have no conflict of interest.

22 (e) Running head

23 IL-15 improves persistent T cell exhaustion

ABSTRACT

26	Aging is a grave problem in sepsis, and T cell exhaustion is the main cause of sepsis-induced
27	immunosuppression. Sepsis- and aging-induced T cell exhaustion is related to secondary infection
28	with a poor long-term outcome in the elderly. However, the trend, impact, and mechanism of T
29	cell exhaustion are still unclear. Interleukin (IL)-15 improves survival rate of septic mice via its
30	anti-apoptotic effect on T cells, however, it's still unclear how IL-15 reverses prolonged T cell
31	exhaustion in aged septic mice. The purpose of this study was to clarify the trend of sepsis-
32	induced T cell exhaustion and whether IL-15 prevents aging-induced persistent T cell exhaustion
33	in septic mice. Preserved cecal slurry was injected intraperitoneally into young (6-week-old) and
34	aged mice (18- to 24-month-old) four times, to induce clinically-relevant repeated sepsis. IL-15
35	$(1.5 \ \mu g)$ or PBS was injected subcutaneously three times, body weight was serially measured, and
36	peripheral blood cells from their cheek were serially collected for 50 days. Sepsis-induced T cell
37	exhaustion was significantly severe in aged mice than in young mice and was accompanied with
38	decreased naïve CD4 ⁺ and CD8 ⁺ T cells ($p < 0.01$) and increased expression of program death 1
39	on T cell ($p < 0.01$) and regulatory T cell population ($p < 0.01$). IL-15 significantly improved
40	sepsis-induced T exhaustion, with significantly increased numbers of NK cells and macrophages,

41 and significantly enhanced phagocytosis activity in aged septic mice (p < 0.05). It decreased the 42 long-term mortality associated with sepsis survivors by improving T cell exhaustion over an 43 extended duration and also ameliorated aging-induced persistent T cell exhaustion in septic mice. 44

INTRODUCTION

- 45
- 46

47 Sepsis is defined as a life-threating condition associated with multi-organ dysfunction 48 originating due to the dysregulated innate immune response against pathogen infections (1) and 49 affects more than 19 million people each year (2). Nearly 60% septic patients are \geq 65 years of 50 age (3), and their 3-month survival rate is significantly low than that of adult patients aged 18-64 51 years (4). Advances in treatment at intensive care unit (ICU) have improved the short-term 52 prognosis of sepsis patients; however, sepsis continues to have a poor prognosis especially in 53 elderly patients. 54 Several studies revealed that sepsis can cause immunosuppression, which may lead to ICU-55 acquired infections. Elderly septic patients have secondary infections at 2 to 4 weeks after initial 56 ICU admission (5). In line with this evidence, reduced number of immunocompetent T cells and 57 persistent lymphopenia were observed in elderly septic patients (6). They also displayed increased 58 numbers of circulating regulatory T cells (Treg), which negatively regulate the host immune 59 response, and expression of programed death-1 (PD-1) on these T cells. This phenomenon of T 60 cell dysfunction induced by sepsis is called "T cell exhaustion" (7), which appears to be more

61	severe in elderly patients. However, the precise mechanisms of induction of severe and persistent
62	T cell exhaustion in elderly septic patients and recovery from this status are not known and are
63	immunotherapeutic targets in sepsis (8-9).
64	Interleukin (IL)-15 is an attractive therapeutic target in sepsis because it plays an essential
65	role in the development and homeostasis of naive CD8 ⁺ T cells, memory T cells and natural killer
66	(NK) cells, which have a key role in pathogen elimination (10-13). In addition, our previous study
67	revealed that IL-15 inhibited CD8 ⁺ T cell apoptosis and improved survival rate in septic mice (14).
68	Although very few studies have been conducted, the above mentioned facts indicate the
69	contributory role of IL-15 to improve T cell exhaustion on a long-term prognosis. Clinically
70	relevant septic model was induced by using cecal slurry (CS) model, which is established by
71	Wynn et al. (15) and modified by Starr et al. (16) in this study. Cecal ligation and puncture (CLP)
72	is regarded as the "gold standard" for establishing an experimental sepsis model in rodents
73	because it closely mimics the clinical course of intra-abdominal sepsis. However, variability in
74	this model has been shown as severity of sepsis is highly dependent on the cecal content (e.g
75	quantity or microflora), wound-healing capability, skill of the researcher (e.g accuracy or rapidity),
76	etc. (15, 17). Unlike CLP model, CS model can induce intra-abdominal sepsis by injection of

77	suspended cecum contents, therefore, this model may have high reproducible method regardless
78	of the skill of researcher or individuality of mice. This advantage of in CS method enables us to
79	mimic the repeated clinically-relevant infection with minimally invasive technique on mice.
80	The first purpose of this study was to clarify the trend of sepsis-induced T cell exhaustion
81	among young and aged mice with clinically-relevant repeated sepsis over 50 days. The second
82	purpose was to investigate the effects of IL-15 on sepsis-induced T cell exhaustion in young and
83	aged septic mice over an extended duration.
84	

85	MATERIALS AND METHODS
86	
87	Chemicals and recombinant mouse IL-15
88	Ammonium chloride (NH4Cl), Tris-hydroxymethyl aminomethane (Tris-HCl) and glycerol
89	were purchased from Wako Pure Chemical Industries, Ltd (Osaka, Japan). Bovine serum albumin
90	(BSA) was purchased from Nacali Tesque (Kyoto, Japan). Recombinant mouse IL-15 was
91	purchased from PeproTech (Rocky Hill, NJ, USA).
92	Antibodies (Abs)
93	All Abs were purchased from Biolegend (San Diego, CA, USA). Mouse Abs used for this
94	were as follows: PerCP/Cy5.5-conjugated mouse anti-CD4, PerCP/Cy5.5-conjugated mouse anti-
95	NK1.1, APC/Cy7-conjugated mouse anti-CD8, APC/Cy7-conjugated mouse anti-F4/80,
96	fluorescein isothiocyanate (FITC)-conjugated mouse anti-CD25, FITC-conjugated mouse anti-
97	Ly6C, PE-conjugated mouse anti-CD62L, PE/Cy7-conjugated mouse anti-CD279 (Programed
98	death-1; PD-1), APC-conjugated mouse anti-CD127 (IL-7 Receptor-a), APC-conjugated mouse
99	anti-CD11b, and Pacific blue-conjugated mouse anti-Ly6G. Mouse Fc-blocker was procured from
100	BD Pharmingen (San Jose, CA, USA).

101 Animals and housing

102	Experiment 1 . Young (5-weeks old; $n = 19$) and aged (18-24 months old; $n = 19$) female
103	C57BL6/J mice were obtained from CLEA Japan, Inc. (Tokyo, Japan). The mice were housed in
104	groups of 4 to 6 per cage and allowed to acclimatize for a week before the initiation of the test.
105	Mice were maintained under specific pathogen-free conditions with a 12 h light-dark cycle in the
106	Department of Laboratory Animal Science at Tokai University. The experimental protocol was
107	approved by the Institutional Animal Care and Use Committee at Tokai University (#181068 and
108	#181070). All experiments followed the recommendations of the International Expert Consensus
109	Initiative for Improvement of Animal Modeling in Sepsis as previously described (18).
110	Experiment 2. In another experimental set, young female and male (5-weeks old; 10
111	females, 10 males) and 18-month old female C57BL6/J mice ($n = 10$) were obtained from CLEA
112	Japan, Inc. (Tokyo, Japan). The mice were housed in groups of four per cage and allowed to
113	acclimatize for a week before the initiation of the test. Mice were maintained under specific
114	pathogen-free conditions with a 12-h light-dark cycle in the Department of Laboratory Animal
115	Science at Kobe University. The experimental protocol was approved by the Institutional Animal
116	Care and Use Committee at Kobe University (#P180806-R1).

117 Preparation of cecal slurry

118	Cecal slurry (CS) was prepared as described previously by Starr et al. (16). Briefly, male
119	ICR mice (6 to 8 week old) were scarified and whole cecums were harvested. Mice cecums were
120	snicked, transferred to nylon-mesh bag, 1 - 2 mL of sterile water was poured and filtered twice.
121	The mixture was collected and centrifuged at 11,000 rpm for 1 min. The supernatant was
122	discarded and the residue was suspended in 30% glycerol with a final concentration 0.5 mg/mL.
123	CS (400 to 500 $\mu L)$ was transferred to cryotubes and stored at -80 °C till use.
124	Study design
125	Experiment 1. CS (50 μ L) was injected four times peritoneally into young (5-weeks old;
126	n = 19) and aged (18-24 months old; $n = 19$) female mice on day 0, 4, 7 and 10 to induce sepsis,
127	and simultaneously 1.5 μg of IL-15 or PBS was also injected consecutively three times on day 3,
128	7 and 10 (Figure 1A). Body weight was serially measured, and peripheral blood cells were
129	collected from their cheek nine times within 50 days.
130	Experiment 2. Young female and male mice and aged female mice were sacrificed at day
131	12. PBMCs and spleen were harvested to investigate cell population dynamics. Peritoneal lavage
132	was also collected from each mouse to investigate the phagocytic capacity of peritoneal

macrophages and to estimate bacterial load. This experiment was conducted as described in

- 134 Figure 1A, except for the timing of sacrifice (Supplemental Figure 1A).
- 135 Phagocytosis assay
- 136 The mice were anesthetized and their peritoneal lavage fluid was collected with 10 mL of
- 137 phosphate buffered saline containing 0.1% BSA (0.1% BSA /PBS). Peritoneal exudate cells
- 138 $(2 \times 10^5/100 \ \mu\text{L})$ were incubated with 100 μL of 0.2 mg/ml pHrodoTM Escherichia coli
- 139 BioParticlesTM conjugate for phagocytosis (REF:P35361; Life Technologies, Carlsbad, CA,
- 140 USA) for 30 min at 37°C. After a 10-min incubation with Fc blocker, the cells were stained to
- 141 identify F4/80⁺ macrophages and the expression of intra-cellular PE-labeled *E. coli* was
- 142 quantified by flow cytometry using a FACS Verse device (BD Biosciences, San Jose, CA,
- 143 USA).

144 Bacterial colony counting

- 145 The mice were anesthetized and lavage of their peritoneal cavities was carried out using
- 146 10 mL of warm saline on day 12. Peritoneal lavage fluids were placed in sterile vials and equal
- 147 volumes were used for bacterial culture. Ten-fold serial dilutions of each lavage fluid were made
- 148 and cells were plated; next, colonies were counted after 24 h of incubation.

149 Flow cytometric analysis of murine T cell, NK cell and macrophage distribution

- 150 Blood samples were collected from mice cheek, and murine peripheral blood mononuclear
- 151 cells (PBMC) were isolated by density gradient cell separation using Histopaque1083TM (Sigma-
- 152 Aldrich, St Louis, MO, USA). Separated PBMC were treated with red blood cell lysis buffer

153	containing 139.5 mM NH ₄ Cl and 1.7 mM Tris-HCl (pH 7.65) at 37°C for 10 min, and then washed
154	with 0.1% BSA /PBS. Murine PBMC were incubated with Abs mixture for 30 min at 4°C after
155	treating with mouse Fc-blocker to block non-specific binding sites. Stained cells were analyzed
156	using FACS Verse. The proportion of the designated cell fraction was determined by recording
157	10,000 events (Figure 1B), and data files were analyzed using the FlowJo software (Tree Star,
158	OR, USA).
159	Mice were gently sacrificed by cervical dislocation under anesthesia after peripheral blood
160	samples had been collected. Each spleen was surgically removed and separated by gently pressing
161	the organs through a 70-micron filter. The collected spleen cells were washed using 0.1%
162	BSA/PBS washed and the red blood cells were lysed as well as the blood samples. After treating
163	with mouse Fc-blocker, the spleen cells were incubated with the mixture of Abs for 30 min at 4°C
164	and analyzed using the FACS Verse device.
165	Collected mouse peritoneal lavage fluids were aseptically collected, treated with red blood
166	cell lysis buffer at 37°C for 10 min, and centrifuged at 300×g for 5 min. The samples were washed
167	with 0.1% BSA /PBS and incubated with the mixture of Abs for 30 min at 4°C after treating with
168	mouse Fc-blocker. Stained cells were analyzed using the FACS Verse device.

169 Statistical analysis

170	Statistical analysis was performed using the EZR statistical software (19). Group
171	differences in body weight and T cell distribution were assessed by repeated-measures ANOVA.
172	For survival studies, a log rank test was used. $P < 0.05$ was considered as statistically significant.
173	Results are presented as mean \pm SD. Two-way analysis of variance (ANOVA) was performed to
174	determine the main effects of IL-15 (treated versus non-treated mice) and age (young versus aged),
175	as well as the interaction between these two factors.
176	

RESULTS

178	Aging induced lower body weight and survival rate in clinically-relevant repeated sepsis model
179	To investigate sepsis-induced chronic immunosuppression in Experiment 1, a repeated
180	sepsis model was established by injection of CS into mice (Figure 1A). The reaction produced
181	was characteristic of the induction of mild inflammatory responses. Body weight drastically
182	decreased after the initial injection of CS in both young and aged mice. However, unlike that in
183	aged septic mice, body weight of young mice was recovered until day 10 after the initial injection
184	of CS. Notably, administration of IL-15 prevented the initial reduction of body weight in young
185	septic mice at day 3 (Figure 1B). In the case of aged septic mice, their body weight loss persisted
186	for over 50 days (Figure 1B). Although IL-15 administration attenuated persistent body weight
187	loss in aged septic mice, there were no statistically significant differences with or without IL-15
188	administration.
189	Survival rates in young slurry and aged slurry group mice were 91.7% (11/12) and 69.2%
190	(9/13) respectively (Figure 1C). All IL-15-administered mice survived, but the differences in with
191	or without IL-15 administration groups were not statistically significant (young mice: $p = 0.41$;
192	aged mice: $p = 0.15$; Figure 1C).

193 IL-15 reversed aging-induced CD4⁺ and naïve CD4 T cell reduction in septic mice

194	To investigate whether IL-15 administration influenced CD4 ⁺ T cells in septic mice, we
195	monitored CD4 ⁺ T cell and subpopulations in peripheral blood (Figure 2A). As shown in Figure
196	2B, the distribution of $CD4^+$ T cell was consistently lower in aged septic mice for at least 50 days
197	than in young septic mice ($p < 0.01$). Although CD4 ⁺ T cells were observed, and the frequencies
198	were not significantly different between two young septic mice groups ($p = 0.07$), the IL-15-
199	treated aged septic mice showed a significant increase in $CD4^+$ T cells than non-treated mice (p
200	=0.03). In addition, in both IL-15-treated young and aged septic mice, naive $CD4^+$ T cell
201	population was significantly higher than that in non-treated mice (young mice: $p < 0.01$; aged
202	mice: <i>p</i> <0.01; Figure 2C).
203	IL-15 inhibited aging-induced increase of PD-1 on CD4 $^+$ T cells and Treg in septic mice
204	To investigate whether IL-15 improves sepsis-induced T cell exhaustion, we analyzed the
205	population of PD-1 ^{$+$} CD4 ^{$+$} T cells and Treg cells, which are well known hallmarks of T cell
206	exhaustion. Flow cytometric analysis revealed that $PD-1^+CD4^+T$ cell population drastically
207	increased after primary injection of CS in both aged and young septic mice (Figure 2D). PD-1
208	expression was sustained in CD4 ⁺ T cells of aged septic mice as compared to young septic mice

209	(Figure 2D). In addition, Treg population as well as PD-1 ⁺ CD4 ⁺ T cells of aged septic mice were
210	also consistently higher than those in young septic mice ($p < 0.01$; Figure 2E). Meanwhile, IL-15
211	inhibited the increase in these cell populations especially in aged septic mice. PD-1 ⁺ CD4 ⁺ T cell
212	population was consistently low in IL-15-administered aged septic mice as compared with aged
213	slurry mouse group. Importantly, in this group, PD-1 ⁺ CD4 ⁺ T cells were significantly down-
214	regulated at day 3 after the initial injection of CS ($p < 0.01$; Figure 2D). Furthermore, Treg cell
215	population was also consistently down-regulated in IL-15-administered aged septic mice
216	compared to non-treated aged septic mice ($p < 0.01$; Figure 2E).
217	II 15 newersed aging induced name CD9 T cells reduction in sentia mice
211	1L-15 reversed aging-induced naive CD6 1 ceus reduction in septic mice
217	We examined whether IL-15 prevents $CD8^+$ T cell exhaustion in septic mice over an
217 218 219	We examined whether IL-15 prevents CD8 ⁺ T cell exhaustion in septic mice over an extended duration. In young septic mice, the frequency of CD8 ⁺ T cell population upon IL-15-
217218219220	We examined whether IL-15 prevents $CD8^+$ T cell exhaustion in septic mice over an extended duration. In young septic mice, the frequency of $CD8^+$ T cell population upon IL-15-administration was consistently higher than that in not-treated young septic mice (<i>p</i> =0.03; Figure
 211 218 219 220 221 	 We examined whether IL-15 prevents CD8⁺ T cell exhaustion in septic mice we examined whether IL-15 prevents CD8⁺ T cell exhaustion in septic mice over an extended duration. In young septic mice, the frequency of CD8⁺ T cell population upon IL-15- administration was consistently higher than that in not-treated young septic mice (<i>p</i> =0.03; Figure 3A). In contrast, IL-15 did not influence the frequency of CD8⁺ T cells in the peripheral blood of
 211 218 219 220 221 222 	We examined whether IL-15 prevents $CD8^+$ T cell exhaustion in septic mice extended duration. In young septic mice, the frequency of $CD8^+$ T cell population upon IL-15- administration was consistently higher than that in not-treated young septic mice ($p = 0.03$; Figure 3A). In contrast, IL-15 did not influence the frequency of $CD8^+$ T cells in the peripheral blood of aged septic mice ($p = 0.91$; Figure 3A). In addition, the frequency of naïve CD8 T cells was
 211 218 219 220 221 222 222 223 	TL-15 reversed aging-induced naive CD8 T cells reduction in septic mice We examined whether IL-15 prevents $CD8^+$ T cell exhaustion in septic mice over an extended duration. In young septic mice, the frequency of $CD8^+$ T cell population upon IL-15- administration was consistently higher than that in not-treated young septic mice ($p = 0.03$; Figure 3A). In contrast, IL-15 did not influence the frequency of $CD8^+$ T cells in the peripheral blood of aged septic mice ($p = 0.91$; Figure 3A). In addition, the frequency of naïve CD8 T cells was significantly higher in IL-15-treated aged septic mice in comparison with non-treated aged septic

226	Flow cytometric analysis revealed that PD-1 ⁺ CD8 ⁺ T cell population drastically increased
227	after primary injection of CS in both aged and young septic mice, as well as PD-1 ⁺ CD4 ⁺ T cell
228	(Figure 3C). Although PD-1 ⁺ CD8 ⁺ T cell was not significantly difference in young septic mice,
229	this cell population was down-regulated in IL-15-administered aged septic mice compared to non-
230	treated aged septic mice ($p < 0.01$; Figure 3C). All the results are summarized in Table 1.
231	IL-15 up-regulated splenic CD4 ⁺ T cell and NK cells in aged septic mice
232	To investigate whether IL-15 effects splenic immune cells in septic mice, we sacrificed
233	young and aged septic mice 12 days after the initial injection of CS in Experiment 2
234	(Supplemental Figure 1A). The frequency of splenic CD4 ⁺ T cells was significantly higher in IL-
235	15-treated mice in both young and aged mice in comparison with the non-treated group ($p < 0.05$,
236	Supplemental Figure 1B). Although CD8 ⁺ T cells tended to increase in the spleens of IL-15-treated
237	mice, no significant difference was evident ($p = 0.07$, data not shown).
238	IL-15 activates and maintains NK cells (10-13). Thus, we next investigated whether IL-15
239	could increase NK cells in aged septic mice on day 12. As we anticipated, flow cytometry analysis
240	revealed a significant increase in NK cells in spleens of IL-15-treated aged septic mice compared

241	to non-treated mice (2.5 \pm 0.1% vs 2.0 \pm 0.4%, p =0.02; Supplemental Figure 1B). In addition,
242	IL-15 tended to increase the frequency of NK cells in PBMCs in aged female mice. However, the
243	increase was not statistically significant (6.2 \pm 3.9% vs 2.4 \pm 0.9%, <i>p</i> =0.11, data not shown). We
244	also investigated the expression of markers of activated NK cells (CD25, CD69, and CD107a).
245	The expressions of these markers were not significantly different when IL-15 was administered
246	or not administered in both young and aged septic mice (data not shown).
247	IL-15 increased circulate macrophage and enhanced phagocytosis activity in aged septic mice
248	We examined the phagocytic activity and bacterial clearance in IL-15 treated mice. First,
249	we analyzed the distribution of macrophages in PBMCs in septic mice. We observed that the
250	frequency of macrophages was statistically different between young and aged septic mice (p
251	<0.01, Supplemental Figure 1C). Moreover, significantly more circulating macrophages were
252	evident in IL-15-treated aged septic mice than in non-treated aged mice ($p = 0.03$, Supplemental
253	Figure 1C). We next examined whether IL-15 affected phagocytic activity, which was defined as
254	the percentage of cells with one or more engulfed PE-conjugated E. coli beads within the
255	phagocytic cell population in peritoneal lavage. The phagocytic activity of aged mice was
256	significantly reduced compared to young septic mice ($p < 0.01$, data not shown). The phagocytic

257	cell population was significantly enhanced in IL-15-treated aged septic mice in comparison with
258	non-treated aged septic mice ($p = 0.01$, Supplemental Figure 1B). Finally, we investigated the
259	effectiveness of IL-15 on bacterial colony formation. No bacterial colonies formed after 24 h
260	storage at 37°C of peritoneal lavage of IL-15-treated aged septic mice. However, there was no
261	statistically significant difference between the treated and non-treated groups (Supplemental
262	Figure 1E).
263	We sought to determine the levels of IL-6, IL-10, interferon-gamma (IFN-y), and tumor
264	necrosis factor-alpha (TNF- α) in the plasma of septic mice using cytometric bead flow cytometry
265	assay. However, these cytokines were under the limit of detection in all mice in this model (data
266	not shown).

DISCUSSION

270	Changes in T cell function and the relative proportions with aging are well known, and
271	these age-related immunological changes involve the decline of immune response against new
272	pathogens in elderly people (20-21). Consistent with this evidence, our results revealed that the
273	frequency of CD4 ⁺ T cells and naïve CD4 ⁺ T cells in aged mice significantly decreased in
274	comparison with young mouse at day 0 (Figure 2B and 2C). Additionally, we also showed that
275	the frequency of PD-1 expressing CD4 and Treg (Figure 2D and 2E) and CD8 T cell (Figure 3B
276	and 3C) was significantly higher in aged mouse than in young mouse. These findings imply that
277	aging is associated with increased susceptibility to and severity of infection.
278	Recent studies reported that sepsis is associated with a greater risk of long-term mortality
279	(22-24). Interestingly, Prescott et al. reported only a 5-year survival rate of 20% for severe sepsis
280	patients (24). One of the main reasons of long-term mortality in sepsis is a persistence of T cell
281	exhaustion. In addition, our previous studies demonstrated that T cell exhaustion is one of the
282	causes in elderly sepsis patients suffering from secondary infections (4-5). Therefore, establishing
283	strategies to rescue T cell exhaustion is important to prevent long-term mortality on sepsis (7-8).

284	Hence, our data is important to provide evidence that sepsis-induced T cell exhaustion might be
285	more prolonged than previously assumed. In the case of young septic mice, their body weight and
286	CD8 ⁺ T cell populations were recovered for 50 days (Figure 1B and 3A). On the contrary, CD4 ⁺
287	T cells of young septic mice were only recovered to approximately 81% of the initial frequency
288	on the last day (day0: $45.6 \pm 2.4\% \rightarrow day50$: $37.0 \pm 2.8\%$, Figure 2B). These results indicate that
289	host immune function needs time to recover from sepsis induced T cell exhaustion even in young
290	mice. In aged septic mice, we observed consistent reduction of CD4 ⁺ and CD8 ⁺ T cells (Figure
291	2B and 3A), and up-regulation of Treg and PD-1 $^+$ T cells during 50 days (Figure 2D, 2E and 3C).
292	These results suggest that elderly septic mice show severe and prolonged T cell exhaustion than
293	young septic mice, leading to secondary infection after sepsis in elderly survivors. Rossi et al.
294	have published several studies regarding lymphopenia with skewed differentiation of
295	hematopoietic stem cells in the elderly (25-26). This age-dependent skewed distribution of aged
296	HSCs may be related to the reduction of T cells in the elderly.
297	The term exhaustion has been used to describe the state of functional unresponsiveness,
298	replicative senescence, and ultimate physical deletion of T cells during chronic infection in mice
299	and humans (4,7,27). It is also well known that the population of PD-1 ⁺ CD4 ⁺ T cells increases

300	with aging (28). This T cell anergy retains the capacity to produce low levels of cytokine such as
301	IL-2 and interferon- γ (29), explaining one of the reasons why elderly people have high
302	susceptibility to infection. However, our study revealed that sepsis increased PD-1 expression for
303	only a limited period of time during CS injection; the frequency of this cell population increased
304	after initial injection of CS, and maintained at high level up to day 10, but decreased and returned
305	to initial level by day 14 (Figure 2D, and 3C). On the contrary, the frequency of circulating Treg
306	was maintained at a consistently high level in both young and aged mice with CS-induced sepsis
307	during the period (Figure 2E). Recent studies have shown that Treg is the main contributor to the
308	induction and maintenance of immunosuppression (30-31), rather than PD-1 expression on T cells
309	during sepsis. Taken together, these results suggest that the PD-1 expressed T cell population
310	might have only a limited contribution to sepsis-induced "persistent" T cell exhaustion, whereas
311	Treg cell is the one of the key players in the persistent T cell exhaustion. Since our data showed
312	that IL-15 could inhibit a consistently high level of Treg distribution in peripheral blood in both
313	young and aged septic mice (Figure 2E), IL-15 has a potential to improve sepsis-induced
314	persistent T cell exhaustion and reinvigorate immune response against pathogens in aged mice.
315	Nascimento et al. revealed that IL-33 has a major function in the induction of sepsis-induced long-

term immunosuppression via expansion of Treg, type 2 macrophages, and type 2 innate lymphoid cells (31). Therefore, we further examined whether IL-15 was associated with the production of Treg inducible cytokines like IL-10, IL-33, and transforming growth factor- β , and how IL-15 can

319 inhibit the expansion of Treg populations during sepsis.

316

317

318

320 IL-15 is secreted primarily by dendritic cells, monocytes, and epithelial cells during 321 infection. Since it shows IL-2-like activity, IL-15 is not only essential for development and 322 activation on T cells and NK cells (10-13), but also it can prevent sepsis-induced T cell apoptosis 323 by regulating of apoptotic associated molecules (14). Thus, it has attracted attention as a potential 324 therapeutic for patients with chronic infection including sepsis (14). In fact, no deaths occurred 325 in IL-15-treated young and aged septic mice (Figure 1C). In addition, IL-15 significantly inhibited 326 reduction of CD4⁺ T cell (Figure 2B), and continuously up-regulated naive CD4⁺ and CD8⁺ T cell 327 in aged septic mice after injection of CS (Figure 2C and 3B). Furthermore, PD-1 expression was 328 suppressed on CD4⁺ and CD8⁺ T cells, and Treg cell expansion by IL-15 treatment in aged septic 329 mouse group (Figure 2D, 2E and 3C). Taken together, IL-15 could improve sepsis-induced T cell 330 exhaustion on long-term prognosis and reinvigorate immune response against pathogen in aged 331 mice, and it might prevent and reduce the risk of secondary infection.

332	Recent studies have revealed that PD-1 signaling inhibits phosphoinositide 3-kinase
333	(PI3K)/protein kinase B (Akt) pathway, which is involved in T cell proliferation, development
334	and activation, and results in T cell dysfunction (32). On the other hand, IL-15 activates PI3K/Akt
335	pathway via activation of Janus kinase (JAK)-3/Signal transducers and activators of transcription
336	(STAT)-5 pathway in lymphocyte (33). We further examine whether IL-15 up-regulates Akt
337	phosphorylation on exhausted T cells. It is still unclear why administration of IL-15 in acute phase
338	of sepsis improve aging-induced long-term persistence of T cell exhaustion. We did not anticipate
339	that IL-15 would inhibit sepsis-induced immunosuppression over an extended duration because
340	it has a short half-life in vivo (34). As clinically important, administration of IL-15 in acute phase
341	of sepsis could prevent the sepsis-induced severe immunosuppression, and results in the
342	possibility of reducing the risk of secondary infection. We further study to elucidate the molecular
343	mechanism by which IL-15 prevents sepsis-induced immunosuppression for a long time.
344	Our data indicate that aged septic mice display more severe T cell exhaustion than young
345	mice. The function of the acquired immune system decreases with age. This can be problematic
346	since the initial response to sepsis may be important. Data have indicated that increased mortality
347	is associated with a failure of protective immunity, with aged mice reported to display a failure of

348	innate immune response against sepsis, with no failure seen in young mice (35). Presently, IL-15
349	increased splenic NK cells, which play a role in initiating the host defense and coordinating innate
350	and adaptive immune response by producing IFN- γ and TNF- α , and also enhanced phagocytic
351	activity in aged septic mice (Supplemental Figure 1B and 1D). These results indicate that the
352	inhibition of severe and prolonged T cell exhaustion by IL-15 occurs via activation of innate
353	immune cells, such as NK cells and macrophages in aged mice and results in an increased survival
354	rate of aged septic mice from 70% to 100% (Figure 1C).
355	In conclusion, sepsis induced T cell exhaustion was more sever and prolonged in aged mice.
356	IL-15 could improve sepsis-induced T exhaustion by increasing the frequency of naïve CD4 ⁺ and
357	$\mathrm{CD8}^{\scriptscriptstyle+}\ \mathrm{T}$ cell distribution and down-regulating the expression of PD-1 on T cell and Treg
358	population, with increasing NK cells and macrophage and phagocytosis activity in aged septic
359	mice. IL-15 may potentially improve T cell exhaustion over an extended period.
360	

361	ACKNOWLEDGMENTS
362	This study was supported by the Teaching and Research Support Center of the School of
363	Medicine of Tokai University. We are thankful to Dr. Yoshiaki Okada and Yumiko Iida for
364	extensive technical support and advice on flow cytometric analysis. We are thankful to Nobuo
365	Watanabe, Yoshiko Shinozaki, Katsuko Naito and Kayoko Iwao for extensive support during
366	mouse-handling and observation of animal health.
367	We are thankful to Kazumichi Fujioka (Department of Pediatrics, Kobe University
368	Hospital), Takashi Matozaki and Yasuyuki Saito (Division of Molecular and Cellular Signaling,
369	Department of Biochemistry and Molecular Biology, Kobe University Graduate School of
370	Medicine) for extensive technical support and advice on flow cytometric analysis.
371	

373		
374	1.	Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo
375		R, Bernard GR, Chiche JD, Coopersmith CM, et al: The Third International Consensus
376		Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315 (8):801-810, 2016.
377	2.	Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, Angus DC,
378		Reinhart K: International Forum of Acute Care Trialists: Assessment of global incidence and
379		mortality of hospital-treated sepsis: current estimates and limitations. Am J Respir Crit Care
380		Med 193(3): 259-272, 2016.
381	3.	Martin GS, Mannino DM, Eaton S, Moss M: The epidemiology of sepsis in the United States
382		from 1979 through 2000. N Engl J Med 348:1546–1554, 2003.
383	4.	Inoue S, Suzuki-Utsunomiya K, Okada Y, Taira T, Iida Y, Miura N, Tsuji T, Yamagiwa T,
384		Morita S, Chiba T, Sato T, Inokuchi S: Reduction of immunocompetent T cells followed by
385		prolonged lymphopenia in severe sepsis in in the elderly. Crit Care Med 41(3): 810-819,
386		2013.

REFERENCES

372

387 5. Hotchkiss RS, Monneret G, Payen D: Sepsis-induced immunosuppression: from cellular

388		dysfunctions to immunotherapy. Nat Rev Immunol 13: 862-874, 2013.
389	6.	Inoue S, Suzuki-Utsunomiya K, Okada Y, Iida Y, Taira T, Miura N, Tsuji T, Yamagiwa T,
390		Morita S, Chiba T, et al: Reduction of immunocompetent T cells followed by prolonged
391		lymphopenia in severe sepsis in the elderly. Crit Care Med 41:810-819, 2013.
392	7.	Wherry EJ, Kurachi M: Molecular and cellular insights into T cell exhaustion. Nat Rev
393		Immunol 15(8): 486-499, 2015.
394	8.	Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, Moldawer LL, Moore
395		FA: Persistent inflammation and immunosuppression: A common syndrome and new horizon
396		for surgical intensive care. J Trauma Acute Care Surg 72(6): 1491-1501, 2012.
397	9.	Chang K, Svabeck C, Vazquez-Guillamet C, Sato B, Rasche D, Wilson S, Robbins P,
398		Ulbrandt N, Suzich J, Green J, et al: Targeting the programmed cell death 1: programmed
399		cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit Care 18:
400		R3, 2014.
401	10.	Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, Ma A: IL-15 receptor
402		maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation.
403		Immunity 9: 669-676, 1998.

404	11.	Berard M, Brandt K, Paus SB, and Tough DF: IL-15 promotes the survival of naive and
405		memory phenotype CD8 ⁺ T cells. <i>J Immunol</i> 170: 5018-5026, 2003.
406	12.	Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier
407		K, Sedger L, Willis CR, et al: Reversible defects in natural killer and memory CD8 ⁺ T cell
408		lineages in interleukin 15-deficient mice. J Exp Med 191(5):771-780. 2000.
409	13.	Boyman O, Krieg C, Homann D, Sprent J: Homeostatic maintenance of T cells and natural
410		killer cells. Cellu Mol Life Sci 69(10):1597–1608. 2012.
411	14.	Inoue S, Unsinger J, Davis CG, Muenzer JT, Ferguson TA, Chang K, Osborne DF, Clark AT,
412		Coopersmith CM, McDunn JE, et al: IL-15 prevents apoptosis, reverses innate and adaptive
413		immune dysfunction, and improves survival in sepsis. J Immunol 184: 1401-1409, 2010.
414	15.	Wynn JL, Scumpia PO, Delano MJ, O'Malley KA, Ungaro R, Abouhamze A, Moldawer LL:
415		Increased mortality and altered immunity in neonatal sepsis produced by generalized
416		peritonitis. Shock 28: 675-683, 2007.
417	16.	Starr ME, Steele AM, Saito M, Hacker BJ, B. Evers BM, Saito H: A new cecal slurry
418		Preparation protocol with improved long-term reproducibility for animal models of sepsis.
419		<i>PLoS ONE</i> 9 (12): e115705, 2014.

420	17.	Gentile LF, Nacionales DC, Lopez MC, Vazant E, Cuenca A, Cuenca AG, Ungaro R, Szpila
421		BE, Larson S, Joseph A, et al: Protective immunity and defects in the neonatal and elderly
422		immune response to sepsis. J Immunol 192:3156-3165, 2014.
423	18.	Osuchowski MF, Ayala A, Bahrami S, Bauer M, Boros M, Cavaillon JM, Chaudry IH,
424		Coopersmith CM, Deutschman C, Drechsler S, et al: Minimum quality threshold in pre-
425		clinical sepsis studies (MQTiPSS): an international expert consensus initiative for
426		improvement of animal modeling in sepsis. Int Care Med Exp 6:26, 2018.
427	19.	Kanda Y: Investigation of the freely available easy-to-use software 'EZR' for medical
428		statistics. Bone Marr Transpla 48: 452-458, 2013.
429	20.	Weng NP: Aging of the immune system: how much can the adaptive immune system adapt?
430		Immunity 24: 495-499, 2006.
431	21.	Hakim FT Gress RE: Immunosenescence: deficits in adaptive immunity in the elderly. <i>Tissue</i>
432		Antigens 70: 179-189, 2007.
433	22.	Prescott HC, Langa KM, Iwashyna TJ: Readmission diagnoses after hospitalization for sever
434		sepsis and other acute medical conditions. JAMA 313 (10):1055-1057, 2015.
435	23.	Prescott HC, Osterholzer JJ, Langa KM, Angus DC, Iwashyna TJ: Late mortality after sepsis:

436	propensity matched	cohort study. BMJ	7 353: i2375, 2016.
	1 1 2	•	

- 437 24. Iwashyna TJ, Ely EW, Smith DM, Langa KM: Long-term cognitive impairment and
- 438 functional disability among survivors of severe sepsis. *JAMA* 304 (16):1787-1794, 2010.
- 439 25. Rossi DJ, Seita J, Czechowicz A, Bhattacharya D, Bryder D, Weissman IL: Hematopoietic
- 440 stem cell quiescence attenuates DNA damage response and permits DNA damage
- 441 accumulation during aging. *Cell cycle* 6 (19) :2371-2376, 2007.
- 442 26. Rossi DJ, Bryder D, Weissman IL: Hematopoietic stem cell aging: Mechanism and
- 443 consequence. *Exp Gerontol* 42 (5): 385-390, 2007.
- 444 27. Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, Elliott T, Hengartner H,
- 445 Zinkernagel R: Induction and exhaustion of lymphocytic choriomeningitis virus-specific
- 446 cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility
- 447 complex class I-peptide complexes. *J Exp Med* 187:1383–1393, 1998.
- 448 28. Shimada Y, Hayashi M, Nagasaka Y, Ohno-Iwashita Y, Inomata M: Age-associated up-
- regulation of a negative co-stimulatory receptor PD-1 in mouse CD4⁺ T cells. *Exp Gerontol*
- 450 44:517-522, 2009.
- 451 29. Shimatani K, Nakashima Y, Hattori M, Hamazaki Y, Minato N: PD-1⁺ memory phenotype

452		CD4 $^{\scriptscriptstyle +}$ T cells expressing C/EBPa underlie T cell immunodepression in senescence and
453		leukemia. Proc Natl Acad Sci USA 106:15807-15812, 2009.
454	30.	Venet F, Chung CH, Kherouf H, Geeraert A, Malcus C, Poitevin F, Bohe' J, Lepape A, Ayala
455		A, Monneret G: Increased circulating regulatory T cells (CD4 ⁺ CD25 ⁺ CD127 ⁻) contribute to
456		lymphocyte anergy in septic shock patients. Intensive Care Med 35: 678-686, 2009.
457	31.	Nascimento DC, Melo PH, Pineros AR, Ferreira RG, Colon DF, Donate PB, Castanheira FV,
458		Gozzi A, Czaikoski PG, Niedbala W, et al: IL-33 contributes to sepsis-induced long-term
459		immunosuppression by expanding the regulatory T cell population. Nat Commun 8: 14919,
460		2017.
461	32.	Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA: Selective effects of PD-1 on
462		Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell
463		proliferation. Sci Signal 5: ra46, 2012.
464	33.	Johnston JA, Bacon CM, Finbloom DS, Rees RC, Kaplan D, Shibuya K, Ortaldo JR, Gupta
465		S, Chen YQ, Giri JD: Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus
466		kinases by interleukins 2 and 15. Proc Natl Acad Sci USA 92: 8705-8709, 1995.
467	34.	Wong HC, Jeng EK, Rhode PR: The IL-15-based superagonist ALT-803 promotes the

468		antigen-independent conversion of memory CD8 ⁺ T cells into innate-like effector cells with
469		antitumor activity. Oncoimmunol 2 (11): e26442, 2013.
470	35.	Nacionales DC, Gentile LF, Vanzant E, Lopez MC, Cuenca A, Cuenca AG, Ungaro R, Li Y,
471		Baslanti TO, Bihorac A, et al: Aged mice are unable to mount an effective myeloid response
472		to sepsis. J Immunol 192 (2): 612-622, 2014.
473		

Figure	Legends

- 474
- 475

476	Figure 1. Administration of IL-15 attenuates body weight loss and improves survival in	n
477	sepsis-induced mice.	

- 478 A) Schematic figure of the sepsis model generated using CS and treatment of IL-15 in this study
- 479 (Experiment 1). Sepsis- induced female young (6 weeks-old) and aged (18-24 months-old)
- 480 C57BL/6N mice were treated with or without 1.5 µg of mouse recombinant IL-15 by
- 481 subcutaneous injection at day 3, 7 and 10.
- 482 B) Effect of administration with/without IL-15 on body weight in young and aged mice. Young
- 483 slurry: slurry-injected young mice without IL-15 treatment (n = 11, blue broken line and open
- 484 circle); Young slurry+IL-15: slurry-injected young mice with IL-15 treatment (n = 8, blue line
- 485 and closed circle). Aged slurry: slurry-injected aged mice without IL-15 treatment (n = 13, red
- 486 broken line and open triangle); Aged slurry+IL-15: slurry-injected aged mice with IL-15 treatment
- 487 (n = 6, red line and closed triangle).
- 488 C) Survival study of with/without IL-15-treated mice monitored for 50 days after sepsis induction.
- 489 The data are expressed as means \pm SD from three individual experiments. *, p < 0.05, **, p < 0.01.

492	Peripheral blood was collected from their cheek at various timepoints and separated to perform
493	FACS analysis of peripheral CD4 ⁺ T cells. A) Gating strategy used for the identification of CD4 ⁺
494	and CD8 ⁺ T cells and their subpopulations in mouse peripheral blood leukocytes. B) CD4 ⁺ T cells
495	C) percentage of CD62L ^{High} within CD4 ⁺ T cells: naïve CD4 ⁺ T cells, D) PD-1 ⁺ within CD4 ⁺ T
496	cells, and E) Tregs (CD25 ⁺ CD127 ⁻ within CD4 ⁺ T cells) were analyzed by flow cytometry. Young
497	slurry: slurry-injected young mice without IL-15 treatment ($n = 11$, blue broken line and open
498	circle); Young slurry+IL-15: slurry-injected young mice with IL-15 treatment ($n = 8$, blue line
499	and closed circle). Aged slurry: slurry-injected aged mice without IL-15 treatment ($n = 13$, red
500	broken line and open triangle); Aged slurry+IL-15: slurry-injected aged mice with IL-15 treatment
501	(n = 6, red line and closed triangle).
502	The data are expressed as the means \pm SD from three individual experiments. *, $p < 0.05$, **, p
503	<0.01.

505 Figure 3. Effect of IL-15 on CD8⁺ T cell and its subpopulation after inducing sepsis

506	Mice blood was from their cheek at indicated times and separated to perform FACS analysis of
507	peripheral CD8 ⁺ T cells. A) CD8 ⁺ T cells, B) percentage of CD62L ^{High} within CD8 ⁺ T cells: naïve
508	CD8 ⁺ T cells, and C) PD-1 ⁺ within CD8 ⁺ T cells were analyzed by flowcytometry. Young slurry:
509	slurry-injected young mice without IL-15 treatment ($n = 11$, blue broken line and open circle);
510	Young slurry+IL-15: slurry-injected young mice with IL-15 treatment ($n = 8$, blue line and closed
511	circle). Aged slurry: slurry-injected aged mice without IL-15 treatment ($n = 13$, red broken line
512	and open triangle); Aged slurry+IL-15: slurry-injected aged mice with IL-15 treatment ($n = 6$, red
513	line and closed triangle).
514	The data are expressed as the means \pm SD from three individual experiments. *, $p < 0.05$, **, p
515	<0.01.
516	
517	Supplemental Figure 1. IL-15 increases spleen CD4 T cells and NK cells and enhances
518	phagocytosis activity in aged mice
519	A) Schematic diagram of the sepsis model generated using CS and treatment of IL-15
520	(Experiment 2). Sepsis-induced, female, young (6 weeks-old) and aged (18 months-old)
521	C57BL/6N mice were untreated or treated with 1.5 μ g mouse recombinant IL-15 by subcutaneous

522	injection at day 3, 7, and 10. Young and aged mice injected 50 μLCS and were sacrificed 12 days
523	after (Experiment 2). B) Spleens were harvested, and the distribution of T cells and NK cells
524	(defined as CD3 ⁻ NK1.1 ⁺) in those tissues was analyzed by flow cytometry. C, D) Peritoneal lavage
525	was aseptically collected. C) Proportion of macrophages in PBMCs. D) Separated peritoneal
526	lavage cells were cultured with PE-labeled E. coli beads for 30 min to evaluate the phagocytic
527	activity. E) Bacterial colonies were determined from serial dilutions of peritoneal lavage fluid.
528	The data are expressed as the mean \pm SD from three individual experiments. *, $p < 0.05$, **, p
529	< 0.01