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Abstract

Real-world central banks have a strong aversion to policy reversals. Nevertheless, theo-
retical models of monetary policy within the dynamic general equilibrium framework nor-
mally ignore the irreversibility of interest rate control. In this paper, we develop a formal
model that incorporates a central bank’s discretionary optimization problem with an aver-
sion to policy reversals. We show that, even under a discretionary regime, the optimal
timing of liftoff from the zero lower bound is characterized by its history dependence, which
arises from the option value to waiting, and there exists an optimal degree of policy irre-
versibility at which the social loss is minimized.
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1 Introduction

Many studies argue that central banks prefer “gradualism” in which the targets for the official

interest rates are smoothed. The hypothesis of gradualism in monetary policy, or “interest

rate smoothing,” has been supported by a number of empirical studies (Sack and Wieland,

2000; English et al., 2003). On the other hand, there are also studies that do not support the

interest-rate-smoothing hypothesis. They show that the statistical significance of policy inertia

may come from an inappropriate estimation procedure, such as omitting serially correlated

variables (Rudebusch, 2002, 2006), ignoring the weak instrument problem (Consolo and Favero,

2009) or missing time-varying equilibrium interest rates (Trehan and Wu, 2007).

An important yet often ignored aspect of the interest rate policy in practice is that the

decisions of central banks are rarely reversed within a short period of time (Blinder, 2006;

Mendes et al., 2017). For instance, if the target interest rate is raised by 0.25% today, it is

quite unlikely that the central bank would decide to cut it by 0.25% at the next policy meeting.

Rather, the only option left for the central bank would be either to increase the interest rate

or to keep it unchanged. It seems that monetary policy decisions are practically irreversible,

or more generally, central banks have an aversion to policy reversals (Lowe and Ellis, 1997;

Blinder, 2006; Mendes et al., 2017). In the US, the Fed changed the Federal funds target 95

times between 1990 and 2008, and there were only two cases in which the Fed reversed their

policy directions within two quarters. Nevertheless, the discussion of interest rate smoothing

has normally been based on the standard linear-quadratic optimization problem of a central

bank or the empirical results obtained within a class of the partial adjustment models, in both

of which immediate interest-rate reversals are allowed at no cost. Alan Blinder, former vice

chairman of the Board of Governors of the Federal Reserve System, asserts:

“Although the basic logic of optimization suggests that such policy reversals should

not be uncommon, central bankers seem to avoid them like the plague.” (Blinder,

2006)

Blinder (2006) points out three factors that would lead central banks to have reversal aver-

sion; central bankers tend to i) be concerned about losing their credibility, ii) avoid creating

unnecessary volatility in the financial market and iii) be unwilling to be seen as admitting errors.

Given that real-world monetary policies are rarely reversed within a short period of time,

a feasible optimal policy would have to be described as a solution to an optimization problem

with an irreversibility constraint or an aversion to policy reversals. In this paper, we show that

the central bank’s reversal aversion, if present, would become a source of policy inertia even

under a discretionary regime. The intuition behind the emergence of policy inertia is that there

arises an option value to waiting, in the same way that is discussed in the classical studies on the
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irreversibility of investment (Bernanke, 1983; Dixit and Pindyck, 1994). Once an investment

has been made, the firm holds a risk of not being able to resell the installed capital at the

desired price. The firm thus may find it optimal to hold off on making an investment and wait

to see what will happen to the capital price in the future. In monetary policy, a central bank

needs to absorb shocks to the natural rate by controlling the interest rate (Woodford, 2003;

Walsh, 2017). In the presence of an irreversibility constraint, however, it may be optimal not to

immediately react to the current shocks, because a current contractionary (expansionary) policy

will prohibit the central bank from implementing an expansionary (contractionary) policy in

the future. If there is a chance that the natural rate would revert to the previous level in the

near future, then the value of option to wait can be larger than the cost of not fully absorbing

the current shock. In this way, the central bank needs to manage the risk of the current policy

change itself constraining future policy decisions.

Within this realistic optimization framework, we ask one of the most important questions in

recent monetary policy: how should a central bank determine the timing of liftoff from the zero

lower bound (ZLB)? (Evans et al., 2015; Carlstrom et al., 2015; Nakata and Schmidt, 2019b).

Under discretionary policy, a central bank always has to absorb the natural rate shock, so the

interest rate will be lifted from zero as soon as the natural rate takes a positive value. However,

this is suboptimal once the interest rate hits the ZLB, because the zero-interest-rate policy

(ZIRP) would be contractionary as long as the natural rate takes a negative value at which

there is a gap between the actual and the desirable interest rates. The fully optimal policy

is to keep the interest rate at zero for an extended period of time even after the natural rate

turns positive (Eggertsson and Woodford, 2003; Jung et al., 2005). However, the well-known

difficulty is that a commitment to the ZIRP is time inconsistent and therefore it is not practical

for real-world central banks to implement the optimal commitment policy (Bodenstein et al.,

2012; Nakata, 2015).

In this study, we find that delegating monetary policy to a central banker having reversal

aversion would improve social welfare, because an aversion to policy reversals effectively func-

tions as a commitment device at the ZLB. Since there is a value to waiting, a reversal-averse

central bank would keep the interest rate at zero even after the natural rate turns positive.

In fact, we reveal that there exists an optimal degree of reversal aversion at which the social

loss, arising from the volatility of inflation and output gap, will be minimized. The optimal

irreversible policy thus provides an alternative and practically feasible delegation scheme for

circumventing the well-known time-inconsistency problem (Rogoff, 1985; Walsh, 2003; Bilbiie,

2014). In particular, in contrast to the previous delegation schemes in which a central bank

is assigned additional target variables other than inflation and output, the proposed delega-

tion scheme based on policy irreversibility is target-free in the sense that no additional target
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variables are required.

The analysis of policy reversal aversion can be relevant not only for interest-rate policies,

but also for balance sheet policies. In particular, when a central bank conducts a flow-based

balance sheet policy, it would be natural for the central bank to avoid reversing the pace of

asset purchases, just as it would avoid reversing the direction of interest rate changes. For

example, when the Fed was reducing the pace of asset purchases towards the end of the QE3

program, the change in pace was being carefully smoothed; in the early stage of the program,

the Fed purchased $40 billion of mortgage-backed securities (MBS) per month and $45 billion of

Treasuries per month (Swanson, 2020; Federal Reserve Bank of New York). In December 2013,

the Fed decided to slow the pace to $35 billion per month for MBS and to $40 billion per month

for Treasuries. Such a gradual reduction in pace continued until they ceased the QE3 program

in October 2014. It is likely that this would have reflected the Fed’s aversion to reversing the

direction of ongoing policies. While we focus on interest-rate policies in the current study, the

discussion about policy reversal aversion could also be extended to balance sheet policies.

Aside from the theoretical contribution to the literature on interest rate policy at the ZLB,

our study also contributes to the general DSGE framework by developing a novel technique for

solving a dynamic optimization problem with an irreversibility constraint, or more generally with

an aversion to policy reversals. While Kobayashi (2010) solved an optimization problem with

a strict irreversibility constraint using the Bellman formulation, the current method employs a

more general approach that allows us to treat a strict irreversible control problem as a special

case. Here, we formulate the central bank’s problem as a dynamic loss-minimization problem

with a penalty for immediate reversals, in which a strictly irreversible policy corresponds to

the solution under a prohibitively high penalty. The constrained monetary policy is analyzed

in an otherwise standard new Keynesian model, so there could be various possible applications

of this method for the study of recent monetary policy tools such as quantitative easing (Chen

et al., 2012; Gertler and Karadi, 2013).

2 Related literature

The current study analyzes the effect of a central bank’s reversal aversion within the standard

new Keynesian framework developed by Woodford (2003). Along with many other studies, our

paper focuses on discretionary policy because the optimal commitment policy is in principle

time-inconsistent and notoriously difficult to implement in practice (Bodenstein et al., 2012;

Nakata, 2015). Many researchers have thus proposed “commitment devices,” which would lead a

discretionary policy to be closer to, or under certain circumstances even identical to, the optimal

commitment policy. This is also known as the problem of optimal delegation of monetary policy
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and has been an active research area over the past three decades (Rogoff, 1985; Walsh, 2003,

2017; Bilbiie, 2014). For a recent example, Bilbiie (2014) proposes a specific loss function for the

central bank with which the discretionary policy becomes identical to the optimal commitment

policy. Our finding that there is an optimal degree of reversal aversion suggests that delegating

monetary policy to an independent central banker having an aversion to policy reversals would

improve social welfare. Our study thus contributes to the literature on the optimal delegation

problem by proposing a highly feasible delegation scheme.

As mentioned in Introduction, a disadvantage of discretionary policy at the ZLB is that

the interest rate is controlled to move in sync with the natural rate, if possible, although the

optimal commitment policy requires the interest rate to be kept at the ZLB for an extended

period of time even after the natural rate turns positive (Eggertsson and Woodford, 2003;

Jung et al., 2005; Adam and Billi, 2006, 2007; Nakov, 2008). Accordingly, as a solution to the

delegation problem, various commitment devices have been proposed to allow central banks

to delay the timing of liftoff from the ZLB. As argued by Woodford (2003), the point is how

to effectively incorporate history dependence, or policy inertia, into practical monetary policy.

Nakov (2008) argues that social loss will be reduced by employing a Taylor rule that depends on

the lagged interest rate. Nakata and Schmidt (2019b) analyze optimal discretionary policy in a

liquidity trap, showing that a central bank with an interest-rate-smoothing objective can lower

social loss by mimicking the optimal commitment policy. Jeanne and Svensson (2007) assert

that a central bank’s concern about its balance sheet and the level of capital would provide a

mechanism to commit to a low interest rate. Boneva et al. (2018) consider a “threshold-based

forward guidance” in which a central bank makes a state-contingent commitment to the ZIRP

until the values of particular macroeconomic variables exceed prespecified thresholds.

The current paper investigates the role of a central bank’s intrinsic aversion to policy rever-

sals as a commitment device at the ZLB. Although the prevalence of policy reversal aversion

and the need to study it have been repeatedly pointed out by several central bankers (Lowe

and Ellis, 1997; Blinder, 2006; Mendes et al., 2017), formal analysis of this phenomenon is still

scarce, with the exception of the work by Kobayashi (2010). While Kobayashi (2010) analyzes

strict policy irreversibility using a backward-looking model developed by Ball (1999) and Svens-

son (1997), the current study employs a more general approach within the forward-looking new

Keynesian model.

An important property that follows from a central bank’s reversal aversion is that there

exists an option value to waiting. A similar mechanism has been well studied in the literature

on the irreversibility of investment (Bernanke, 1983; Dixit and Pindyck, 1994), in which a firm

has to determine the optimal amount of investment, assuming that the installed capital could

not be resold (i.e., “reversed”) at the desired price. Recently, Lei and Tseng (2019) considered
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a “wait-and-see” monetary policy in which a central bank faced with fixed adjustment costs for

policy shifts values the option to wait until new information arrives in the future. A crucial

difference from our study is that in their model, the emergence of the value of waiting results

from the exogenous fixed costs of policy changes, while a central bank’s intrinsic reversal aversion

is the only factor that generates the value of waiting in our model. Our model thus makes it

possible to quantify the welfare effect of a central bank’s intrinsic aversion to policy reversals.

3 Policy reversal aversion in practice

As explained in Introduction, central banks tend to avoid reversing their policy decisions once

their new policy actions have been recognized publicly. In the literature, on the other hand,

the observed gradual policy shifts have been interpreted as reflecting the central banks’ ob-

jective of interest rate smoothing (Sack and Wieland, 2000; English et al., 2003; Coibion and

Gorodnichenko, 2012). In this section, we first describe the differences and similarities between

the well-examined interest rate smoothing and policy reversal aversion. Then, we discuss some

empirical evidence that the Fed and the Bank of England really have an aversion to reversals.

3.1 Relationship between interest rate smoothing and reversal aversion

The nominal interest rate under interest rate smoothing is generally specified as a policy function

of the form

it = f (it−1,Zt, et) , (1)

where it is the nominal interest rate (or the policy rate), and Zt and et denote the vectors of

endogenous variables, typically inflation and output, and exogenous variables such as economic

shocks, respectively. Eq. (1) can be regarded as a general functional form for interest rate

smoothing in which the central bank tries to suppress the fluctuation of the change in the level

of the interest rate, ∆it ≡ it − it−1. The central bank takes it−1 into account in setting it, but

the direction of the current policy change, given by sgn(∆it), is determined independently of

sgn(∆it−1). For instance, in a widely used partial adjustment model, the current interest rate is

expressed as a weighted average of the past interest rates and the desired value (English et al.,

2003; Rudebusch, 2006).

On the other hand, the policy reversal aversion we will consider in this paper constrains

the direction of policy changes. Specifically, a policy function of a central bank having policy

reversal aversion takes the form:

it = g (it−1,∆it−1,Zt, et) . (2)
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The central bank now needs to take into account the previous policy shift ∆it−1, as well as the

previous level of the interest rate it−1, to avoid reversing the previous direction of the policy

change in setting it (or equivalently, ∆it). In particular, policy irreversibility is regarded as a

special case in which policy reversals are strictly prohibited and thereby sgn(∆it) ·sgn(∆it−1) ≥
0.

Kobayashi (2010) argues that due to the functional similarity between Eqs. (1) and (2), one

could not statistically identify the difference between the two regimes, interest rate smoothing

and policy irreversibility, if the regression equation for it is based on a partial adjustment model.

If the central bank really has an aversion to policy reversals, however, the sign of ∆it−1 would

affect the sign of ∆it, and thereby the level of the current interest rate it depends on it−1 in a

nonlinear manner.

3.2 Example: The Fed and the Bank of England

Now let us look at the empirical data on the policy changes of central banks to see if there is a

tendency toward reversal aversion in practice. We consider the Federal Funds (FF) target rate

and the Bank rate as the policy instruments of the Fed and the Bank of England, respectively.

The data on the FF target rate ranges from August 1987, when the chairman Greenspan was

appointed, to December 2008. For the UK, the data ranges between June 1997, when the BoE

was given its independence, and December 2016.

Let the sign of a policy change be δ ≡ sgn(∆i). If a central bank has an aversion to policy

reversals, then the unconditional sign distribution P (δ) would be different from the conditional

distribution P (δ|δ−), where δ− denotes the sign of the last policy shift. By contrast, if the

central bank’s decision is independent of the direction of the last policy change, as in the case

of interest rate smoothing, then it would be that P (δ|δ−) = P (δ). For simplicity, in this

section we only consider positive and negative policy shifts (i.e., δ ∈ {−1, 1}), since it is hard

to identify the timing of “no policy change” (i.e., δ = 0). Because there was always a possibility

of having a non-regular policy meeting especially in the 80’s, looking only at the regularly held

meetings does not fully capture the decision of the central banks to do nothing (Thornton, 2006;

Kobayashi, 2009). It should be noted that the number of reversal policy changes would be lower

if we included the events with δ = 0. We will consider the possibility of δ = 0 in the theoretical

model.

The FF target rate and the Bank rate are plotted in Fig. 1a and b, respectively, and

the left panels of Fig. 1c and d show that for both the Fed and the BoE, the unconditional

sign distribution P (δ) is significantly different from P (δ|δ−). The observed common patterns

regarding the relationship between P (δ) and P (δ|δ−) are summarized in Table 1. The current

direction of policy change is largely affected by the sign of the last policy shift, and there are few
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Figure 1: Reversal aversion of the Fed and the BoE. (a) The Federal Funds target rate (black

solid) and the natural interest rates estimated by Laubach and Williams (2003) (red dashed)

and Del Negro et al. (2017) (blue with circle). (b) The UK Bank rate (black solid) and the

natural rates estimated by Holston et al. (2017) (red dashed). (c) Sign distributions of policy

changes δ ≡ sgn(∆i) (left panel) and the changes in the estimated natural rates, δ ≡ sgn(∆rn)

(middle and right). In each panel, P (δ) and P (δ|δ−) denote the unconditional and conditional

distributions, respectively, where δ− denotes the sign of the last shift in the corresponding

interest rate. (d) Same as (c) for the UK data.
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Table 1: Observed relationship between P (δ) and P (δ|δ−) for policy changes. See the caption

of Fig. 1 for the definitions of P , δ and δ−.

δ = −1 δ = 1

δ− = −1 P (−1) < P (−1| − 1), P (1) > P (1| − 1)

δ− = 1 P (−1) > P (−1|1), P (1) < P (1|1)

cases in which policy directions are reversed within a short period of time. Note that P (1| − 1)

and P (−1|1) are not zero because we exclude the possibility of δ = 0 as explained above. Thus,

we necessarily observe some policy reversals, but these changes were mostly made after a long

period of “doing nothing.” This property is not captured by the conventional models of interest

rate smoothing, because they allow the policy rate to move in any direction independently of

the past policy changes.

It should be noted that such a policy reversal aversion would naturally be observed if the

central banks follow the natural rates exhibiting non-reversal behaviors. If this is the case, it

is not appropriate to regard the central bank as having a reversal aversion. To explore this

possibility, we also show the sign distributions of the changes in the estimated natural interest

rates (Fig. 1c and d). We use the estimated natural rate data provided by Laubach and Williams

(2003) and Del Negro et al. (2017) for the US and by Holston et al. (2017) for the UK.

We find that although the conditional sign distributions of policy shifts are totally different

from the corresponding unconditional distribution (Fig. 1c and d, left), this is not true for the

natural rate changes. In all the examined estimation methods, the conditional distributions of

the natural rates are relatively similar to the unconditional distribution (Fig. 1c middle and

right, Fig. 1d, right). Of course, we have to carefully interpret the result because there may be

non-negligible errors and noises in the estimation of the natural rates. Nevertheless, given the

striking difference between the sign distributions, it would be safe to say that the central banks

have a reversal aversion at least to some extent.

4 Simplified framework: A finite-period model

To see how the introduction of reversal aversion would affect the optimal conduct of monetary

policy, we first consider a simple four-period model with the ZLB. In this section, we assume for

simplicity that the central bank is not allowed to reverse the direction of a policy shift made in

the previous period. We will relax this assumption and consider an arbitrary degree of reversal

aversion in Section 5.
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4.1 Structural equations

We consider the following standard new Keynesian model developed by Woodford (2003):

xt = Etxt+1 − σ(it − Etπt+1 − rnt ), (3)

πt = βEtπt+1 + κxt, (4)

for t = 0, 1, 2, 3, where xt, πt, and it denote the output gap, inflation rate, and nominal interest

rate, respectively. Et is the expectations operator conditional on information available at time t.

Equation (3) is the forward looking IS curve, which is derived from the standard Euler equation

for consumption (Woodford, 2003; Walsh, 2017). The IS equation indicates that the current

output gap is determined by the expected output gap and the deviation of the real interest

rate from the natural rate, denoted by rnt . Equation (4) is the standard new Keynesian Phillips

curve; the current inflation rate is expressed as the sum of the current output gap and inflation

expectations when firms’ opportunity to change prices is given by a constant probability (Calvo,

1983; Yun, 1996).

4.2 Monetary policy with an irreversibility constraint

Suppose that a central bank faces a strict irreversibility constraint in which reversing the direc-

tion of the policy shift made in period t− 1 is not allowed in period t (Kobayashi, 2010). In the

presence of a strict irreversibility constraint, the control space Ωt for the current policy rate it
is given by

Ωt =


{it | it ≤ it−1, it ∈ Ω} if δt−1 = −1,

Ω if δt−1 = 0,

{it | it ≥ it−1, it ∈ Ω} if δt−1 = 1,

(5)

where δt denotes the sign of the current policy shift ∆it ≡ it − it−1, defined as δt ≡ sgn(∆it).

Ω denotes the set of all possible values that the policy rate can take. To keep the analysis

simple, we consider a small set of discrete values as the control space: Ω ≡ [0, 0.5, 1, 1.5]× 1/4.

It should be noted that the set Ω does not include negative values, which effectively introduces

the ZLB constraint: it ≥ 0, t = 0, 1, 2, 3 (Eggertsson and Woodford, 2003; Jung et al., 2005;

Adam and Billi, 2006, 2007; Billi, 2011; Coibion et al., 2012; Nakata and Schmidt, 2019b).

The social loss function to be minimized by the central bank is given by the sum of the

squared deviations of inflation and of the output gap from their steady states: 1
2E0

∑3
t=0 β

t
(
π2
t + λx2

t

)
.

Thus, the central bank’s minimization problem constrained by the irreversibility condition is

formulated as

min
it∈Ωt

1

2
E0

3∑
t=0

βt
(
π2
t + λx2

t

)
, (6)
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subject to Eqs. (3) and (4). Unlike the standard models of monetary policy, the central bank

is faced with a time-varying control space, which suggests that the choice of the current policy

rate is not independent of the change and the level of the previous policy rate. This adds a non-

trivial nonlinearity to the model in addition to the ZLB constraint. We solve the minimization

problem by formulating the value function.

4.3 Solving the model

We solve the four-period model in a backward manner. The central bank’s problem in the last

period (i.e., t = 3) can be specified by the value function:

V3(rn3 , i2, δ2) = min
i3∈Ω3

π2
3 + λx2

3, (7)

s.t. x3 = −σ(i3 − rn3 ), (8)

π3 = κx3, (9)

where Vt denotes the value at time t. Because the economy terminates at t = 3, the expectations

terms in the IS and the Phillips curves are dropped (Nakata et al., 2019). For t = 0, 1, 2, on

the other hand, we need to include the expectations terms obtained in the previous step. The

central bank’s problem thus leads to

Vt(r
n
t , it−1, δt−1) = min

it∈Ωt

π2
t + λx2

t + βEtVt+1(rnt+1, it, δt), (10)

s.t. xt = Etxt+1 − σ(it − Etπt+1 − rnt ), (11)

πt = βEtπt+1 + κxt, (12)

for t = 0, 1, 2. We assume i−1 = δ−1 = 0 to consider a situation in which the economy is already

in a liquidity trap at the beginning of t = 0.

4.3.1 Parameters

Consider a simple scenario in which the natural rate takes either of the following two values:

rL or rH, where rL < rH. The behavior of the natural rate is ruled by a Markov process whose

conditional probabilities are given by

Prob(rnt = rL|rnt−1 = rL) = q, (13)

Prob(rnt = rL|rnt−1 = rH) = p. (14)

In this section, we set rL = −1/4 and rH = 1.5/4. Note that to investigate the optimal policy

decision at the ZLB, rL should be sufficiently small so that the policy rate could hit the ZLB.

Following Adam and Billi (2007), the other model parameters are specified as follows: β = 0.99,
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Table 2: Realized path of the natural rate in the four-period model

t 0 1 2 3

rnt rL rH rH rH

σ = 1, κ = 0.024, λ = 0.003 and q = 0.875. To see the uncertainty effect stemming from the

natural rate, we will examine different values of p in the following.

To obtain an intuition behind the optimal (discretionary) irreversible policy at the ZLB, we

specify the realized path of the natural rate as in Table 2. This scenario allows us to examine

an illustrative situation in which the central bank is trapped at the ZLB at t = 0 but not

necessarily for the periods from t = 1 onward.

4.3.2 Irreversible policy as risk management

As mentioned above, we consider that the economy has already been in a liquidity trap at the

beginning of t = 0 so that the irreversibility constraint does not bind at t = 0. Since a positive

natural rate shock hits the economy in period 1 (i.e., rn1 = rH), the problem for the central

bank at t = 1 is whether to raise the interest rate (i.e., i1 > 0) or to keep it at the ZLB (i.e.,

i1 = 0). Let `t ≡ π2
t +λx2

t be the temporal loss for the central bank. In period 1, the net benefit

of raising the interest rate (i.e., i1 > i0 = 0) relative to keeping i1 at 0 is given by

N1 = `1|i1=0 − `1|i1>0 + βE1 [V2(rn2 , 0, 0)− V2(rn2 , i1, 1)]

= `1|i1=0 − `1|i1>0 + β {p [V2(rL, 0, 0)− V2(rL, i1, 1)]

+ (1− p) [V2(rH, 0, 0)− V2(rH, i1, 1)]} . (15)

The central bank raises the interest rate in period 1 if N1 > 0, or

`1|i1=0 − `1|i1>0︸ ︷︷ ︸
Temporal benefit of raising i1

> β E1 [V2(rn2 , i1, 1)− V2(rn2 , 0, 0)]︸ ︷︷ ︸
Expected cost of raising i1

. (16)

The LHS of Eq. (16) represents the temporal benefit of lifting off from the ZLB, which takes

a positive value since the central bank could absorb the current natural rate shock by raising

i1, leading to a lower temporal loss. The RHS of Eq. (16) is interpreted as the (discounted)

expected cost of raising i1. Increasing the current interest rate might cause losses in the future

because there is a possibility that a negative shock would occur again (i.e., rn2 = rL). In that

case, the central bank would need to lower the interest rate in period 2 to absorb the negative

shock, reversing the direction of the policy change decided at t = 1. However, such a reversal

policy shift is not allowed due to the irreversibility constraint. To maintain the controllability
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of the interest rate in period 2, the current interest rate needs to be kept at the ZLB in period

1 (i.e., i1 = δ1 = 0). Thus, the central bank faces a trade-off between the current benefit of

absorbing the existing shock and the expected cost of abandoning flexible policies in the future.

An alternative way to interpret the optimal policy decision in period 1 is to regard the

cost of not raising i1 as the price of an option, in analogy with the irreversibility of invest-

ment (Bernanke, 1983; Dixit and Pindyck, 1994). If the central bank raises the interest rate

in period 1, it would lose the option to cut the interest rate in period 2, due to irreversibility,

which would cause losses if a negative shock hits the economy in period 2. The temporal loss

that the central bank has to incur when keeping i1 at the ZLB is therefore valuable as it gives

the central bank an option to set i2 = 0 when rn2 = rL. Thus, the choice of whether to raise i1
can be considered as a problem of whether to purchase the option to cover the risk of failing to

absorb a negative shock.

The condition that the central bank purchases the “option” (i.e., setting i1 = 0) leads to

`1|i1=0 − `1|i1>0︸ ︷︷ ︸
option price

< β E1 [V2(rn2 , i1, 1)− V2(rn2 , 0, 0)]︸ ︷︷ ︸
Expected payoff from option

. (17)

The LHS of Eq. (17) can be interpreted as the price of the option that guarantees a right to

conduct flexible monetary policy in period 2 whatever happens to the natural rate. On the other

hand, the RHS corresponds to the expected payoff from the option. The expected payoff from

keeping i1 at the ZLB, or the option value, plays a role as a price threshold below which the

central bank is willing to buy the option to cover the irreversibility risk. This risk-management

aspect of the central bank’s problem adds one more dimension to the conventional formulation

of monetary policy in which it is implicitly assumed that the central bank can freely control

interest rates. In our model, the central bank needs to manage the risk of the current policy

change itself constraining future policy decisions.

4.3.3 Optimal irreversible monetary policy

Because a change in policy itself creates a risk, the optimal level of the interest rate depends

on the probability that the natural rate will return to the current value. If the central bank

knows in period 1 that the natural rate will return to rL in period 2 with high probability,

then the central bank would not take a risk of losing the option to lower the interest rate

in period 2. Thus, there is a negative relationship between the desired interest rate i1 and

Prob(rn2 = rL|rn1 = rH) = p (Fig. 2). The figure indicates that the central bank should keep i1
at zero if p ≥ 0.4.

Now let us look at the path of the interest rates. For comparison, we also consider the

following alternative policy regimes: i) optimal commitment, ii) pure discretionary policy and
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Figure 2: Optimal interest rate in period 1 under irreversible policy vs. p = Prob(rn2 = rL|rn1 =

rH). Vertical dotted line denotes the threshold of p below which N1 > 0 (See, Eq. (15)).

iii) interest rate smoothing. Each of these three policies is assumed to be conducted without

an irreversibility constraint. To obtain the path under interest rate smoothing, we consider the

following standard temporal loss function (Nakata and Schmidt, 2019b; Debortoli et al., 2019):

`∆t = π2
t + λx2

t + λ∆∆it
2, (18)

where λ∆ is set at 0.01 for the moment. To illustrate the uncertainty effect that the probability

p would have on the optimal policy rate, we consider two cases: p = 0.01 (low uncertainty)

and p = 0.4 (high uncertainty). We note that setting p = 0.01 would be virtually equivalent to

assuming that rH is an “absorbing state” in which it is highly unlikely that the natural rate will

return to rL (Eggertsson and Woodford, 2003; Christiano et al., 2011).

As shown in Fig. 3, imposing a higher value of p makes the irreversible policy more history

dependent, as is already indicated in Fig. 2. In other words, the risk of reversing the current

policy decision in the future deters the central bank from controlling the interest rate in a

flexible manner, delaying the timing of liftoff from the ZLB compared to the case of pure

discretion (Fig. 3b). On the other hand, under interest rate smoothing, the timing of liftoff is

the same as that under pure discretion, while changes in the interest rate are more smoothed.

This illustrates the essential difference between the irreversible policy and the (conventional)

interest-rate smoothing policy. The timing of liftoff is delayed in the irreversible policy because

the interest rate cannot return to the ZLB right after liftoff, which makes the central bank

more conservative. Interest-rate smoothing, on the other hand, does not constrain the direction
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Figure 3: Nominal and real interest rates under different policy regimes. (a) rH is nearly an

absorbing state: p = Prob(rnt = rL|rnt−1 = rH) = 0.01. (b) There is a reasonable probability of

the natural rate returning to rL from rH: p = 0.4.

of policy shifts, so the timing of liftoff naturally coincides with that of the pure discretionary

policy. However, since the (absolute) size of increment is penalized, the rate at which interest

rate increases is slower for the interest-rate smoothing policy than the irreversible policy after

liftoff. In passing, we note that interest rate is unchanged between periods 1 and 2 under interest

rate smoothing, but this is simply because we use discrete values for interest rates with grid

size 0.5 (see, description below Eq. (5)) to illuminate the characteristic of each policy regime.

This exercise illustrates an important property that irreversibility under uncertainty acts

as a commitment device at the ZLB. Because the irreversible policy is more inertial than the

pure discretionary policy, the behavior of the interest rate mimics that of optimal commitment

at least to some extent (see, Fig. S1 in Supplementary Information (SI) for the responses of

inflation and output). The introduction of an irreversibility constraint could thus reduce social

loss, but the strict irreversibility constraint considered in this section may not be a desirable
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choice. Rather, a more flexible policy constrained by an aversion to policy reversals would

further reduce social loss if we could tune the degree of reversal aversion. We will address this

issue in the next section.

5 General case: An infinite-horizon model with an arbitrary de-

gree of reversal aversion

Now let us consider a general model in which the time horizon is infinite. In this section, we

introduce a penalty term in the central bank’s objective function to allow for an arbitrary degree

of reversal aversion. This specification incorporates policies under a strict policy irreversibility

constraint and pure discretion as two polar cases.

5.1 Model

5.1.1 Structure of the model

As in Section 4, we borrow the standard new Keynesian framework with the ZLB:

xt = Etxt+1 − σ(it − Etπt+1 − rnt ), (19)

πt = βEtπt+1 + κxt, (20)

rnt = ρrr
n
t−1 + εt, (21)

it ≥ 0. (22)

Here, the natural rate is assumed to follow an AR(1) process whose disturbance εt is given

by an i.i.d. random variable with mean zero and variance σε. β, σ, κ and ρr are parameters

satisfying 0 < β < 1, σ > 0, κ > 0 and |ρr| < 1, respectively.

The social loss function is given by

L = Et
∞∑
j=0

βj(π2
t+j + λxx

2
t+j), λx ≥ 0, (23)

This loss function (23) is obtained in a micro-founded general equilibrium model with sticky

prices (Calvo, 1983) within which the forward-looking IS curve (19) and the new Keynesian

Phillips curve (20) are also derived (Woodford, 2003; Yun, 2005; Walsh, 2017).

5.1.2 Central bank with policy reversal aversion

To capture an arbitrary level of policy reversal aversion, here we introduce a penalty term in

the periodic loss function:

Lt = π2
t + λxx

2
t + λirF (δt−1,∆it), (24)
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where F (δt−1,∆it) is given by

F (δt−1,∆it)

=
δt−1(1 + δt−1)

2
× [min(∆it, 0)]2 − δt−1(1− δt−1)

2
× [max(∆it, 0)]2.

(25)

Eq. (25) simply states that the penalty term F can take one of the following three forms

depending on the sign of the policy shift in period t− 1, δt−1:

F (δt−1,∆it) =


[max(∆it, 0)]2 if δt−1 = −1,

0 if δt−1 = 0,

[min(∆it, 0)]2 if δt−1 = 1.

(26)

Note that the central bank is not penalized if there was no policy shift in the last period (i.e.,

δt−1 = 0). If the central bank cut (raised) the policy rate in the previous period, then it

would be penalized if it raises (cuts) the policy rate in the current period. The penalty term

thus effectively introduces a “soft” irreversibility constraint, allowing us to capture an arbitrary

degree of reversal aversion by tuning the weight parameter λir. Clearly, the solution to the

problem under a strict irreversibility constraint will be recovered if λir is large enough, in which

case our formulation is equivalent to the well-known penalty function method for solving a

constrained optimization problem (cf., Luenberger and Ye, 2016, Ch. 13). By contrast, setting

λir = 0 recovers the standard new Keynesian model with the ZLB (Eggertsson and Woodford,

2003; Jung et al., 2005; Adam and Billi, 2007; Nakov, 2008). We also consider an absolute-value

penalty term in section Appendix B.

We formulate the central bank’s problem as the Bellman equation of the form

V (St) = min
it≥0

π(St)
2 + λxx(St)

2 + λirF (δt−1,∆it) + βEtV (St+1),

s.t. x(St) = Etx(St+1)− σ(it − Etπ(St+1)− rnt ),

π(St) = κx(St) + βEtπ(St+1),

(27)

where St denotes the state of the economy given by St ≡ [it−1, δt−1, r
n
t ]>. In the following, we

solve the problem by using a value function iteration method (cf., Miranda and Fackler, 2004).

Details about the numerical algorithm are provided in Appendix.

5.1.3 Model parameters

The baseline parameter values are listed in Table 3. The parameter for the intertemporal

elasticity of substitution for consumption σ is set at 1 following Adam and Billi (2007). The

coefficient on the output gap in the Phillips curve and the weight on the output gap in the

loss function are specified as κ = 0.024 and λx = 0.003, respectively, following Rotemberg and
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Table 3: Baseline parameter values

Parameter Value Description

β 0.996 Subjective discount factor

i∗ 1.5/4 Nominal interest rate at the steady state

σ 1 Intertemporal elasticity of substitution for consumption

κ 0.024 Slope of the Phillips curve

ρr 0.6 Persistence of natural rate shocks

σε 0.233 Standard deviation of natural rate shocks

λx 0.003 Weight on output gap

λir 0.0016 Degree of policy-reversal aversion (optimized)

λ∆ 0.0008 Degree of interest rate smoothing (optimized)

Woodford (1998). As for the parameters related to the natural rate of interest, we set ρr = 0.6

and σε = 0.233 so that we can avoid using extrapolation in approximating the value function.

Note that the calibrated value of ρr(= 0.6) lies in between those of Woodford (2003) (i.e., 0.35)

and Nakov (2008) (i.e., 0.65). The discount factor is set at β = 0.996 to ensure that the steady-

state real interest rate is 1.5% annually, given that the targeted rate of inflation is zero. The

key parameter of the model, namely the weight on the penalty term λir, is set at 0.0016 since

this turns out to minimize the social loss as we will show below. For discretionary policy under

these parameter configurations, the average fraction of time periods during which the policy

rate hits the ZLB is 8.87%.

5.2 Results

5.2.1 Policy function

In the presence of an aversion to policy reversals, the optimal policy rate under discretion is

expressed as a nonlinear function of the previous interest rate it−1, the sign of previous policy

shift δt−1 and the current natural rate rnt :

it = i(it−1, δt−1, r
n
t ). (28)

An important point is that, even under discretionary policy with no intrinsic economic iner-

tia, the current policy rate is largely affected by the previous policy decision, leading to the

emergence of an endogenous policy inertia. This suggests the possibility that the determina-

tion of the interest rate under discretionary policy would exhibit a history dependence, a key

characteristic of optimal commitment policy.
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Figure 4: Policy function for interest rate. Black solid line denotes a pure discretionary policy

without reversal aversion (i.e., λir = 0). Blue circle, green dashed and red diamond respectively

denote irreversible policies when the sign of policy shift in the previous period is −1, 0 and 1.

We set it−1 = i∗ = 1.5/4 (vertical dotted line).

For comparison, let us first consider a situation in which the penalty for policy reversals is

prohibitively high so that the central bank virtually faces an irreversibility constraint as in the

previous section. With our parameter configurations, we find that the central bank will never

reverse the direction of policy shifts implemented in the previous period if λir ≥ 10. In Fig. 4a,

the policy functions for irreversible policies and a pure discretionary policy are shown against

the natural rate of interest. If δt−1 = −1 (denoted by blue circles), i.e., the policy rate was

reduced in the previous period, then the central bank facing an irreversibility constraint cannot

increase the current policy rate even if a large positive shock (in terms of the departure from

the steady state level i∗) hits the economy. The converse is true for δt−1 = 1 (red diamonds),

in which the policy rate was increased in the previous period and therefore the central bank

cannot cut the current policy rate in the face of a large negative shock.

An interesting property of the policy function with reversal aversion is that the interest rates

with δt−1 = 1 (red diamonds) and 0 (green dashed) for a given positive shock are lower than

that under pure discretion. Note that if δt−1 = 0 or 1, the central bank would not be penalized

by increasing the interest rate at t, and it would therefore be able to fully absorb a positive

shock to the natural rate. Nevertheless, it can be optimal not to fully respond to a positive

shock, because the higher the current interest rate, the more likely that the interest rate would

need to be cut in the future. This property illustrates the emergence of a “conservative” or

precautionary behavior of the central bank stemming solely from reversal aversion.

Fig. 4b shows the policy functions when reversals are optimally penalized (i.e., λir = 0.0016).
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While the policy rate is not strictly irreversible, the optimal response to a positive natural rate

shock is weaker when there was an interest rate cut in the previous period (i.e., δt−1 = −1,

blue circles) than when the interest rate was kept unchanged (i.e., δt−1 = 0, green dashed)

or increased (i.e., δt−1 = 1, red diamonds). This illustrates how such a “soft” irreversibility

constraint works while keeping the flexibility of pure discretion to some extent. In fact, since

the policy response is weaker when δt−1 = 1, the current inflation and output gap accordingly

exhibit slightly larger values than in the case of pure discretion (Fig. S2b).

5.2.2 Impulse response

Here, we consider the following two different scenarios for impulse response analysis. In the

first scenario, the natural rate drops significantly in period 1 so that the nominal interest rate

hits the ZLB, and then the natural rate reverts to its steady state value in period 2. We call

this scenario a temporal liquidity trap. In the second scenario, the natural rate drops in period

1 as in the first scenario, and it stays at the low level in period 2 and then reverts to its steady

state in period 3. We call this situation a prolonged liquidity trap. In both scenarios, we assume

δ0 = 0 and that shocks are not persistent (i.e., ρr = 0) to extract the endogenous persistence

coming from the policy regime itself. As before, we also examine an interest-rate-smoothing

policy, but the weight on the smoothing term, denoted by λ∆, is now determined such that the

social loss is minimized.

Figure 5 plots impulse responses for the scenario of a temporal liquidity trap. Three points

are worth mentioning. First, although the interest rate is raised in period 2 for all the examined

regimes, the pace of increasing the interest rate is slower under the optimal discretionary policy

with reversal aversion than under pure discretion (Fig. 5c). This is intuitive because raising

the nominal interest rate in period 2 is penalized due to the reversal aversion term in the loss

function. Second, the presence of reversal aversion slightly mitigates the sharp drops in the

output gap and inflation that we see under pure discretion at t = 1 (Fig. 5a, b). This is

because, with reversal aversion, private agents know that the central bank’s incentive to raise

the interest rate in period 2 will be partially suppressed, which leads them to expect a higher

inflation rate and output gap. We obtain similar results in the second scenario, namely a

prolonged liquidity trap (Fig. S3). Third, the discretionary policy with reversal aversion and

the interest-rate-smoothing policy reduce the deflationary bias at the risky steady state. As is

discussed by Hills, Nakata and Schmidt (2019) and Nakata and Schmidt (2019a), the risk of

hitting the ZLB in the future would keep current inflation lower than the deterministic steady-

state level even when the nominal interest rate is well above the ZLB (Figs. 5 and 6). The

discretionary policy with reversal aversion and the interest-rate-smoothing policy would reduce

the deflationary bias and thus improve welfare by lowering the probability of returning to the
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Figure 5: Impulse responses to a temporal −3% natural rate shock. We set ρr = 0 to remove

exogenous policy inertia.

ZLB after liftoff, as we will see in Section 5.3.

Although policy irreversibility can be socially beneficial when the interest rate is at the ZLB

by creating an endogenous policy inertia, there is also a cost of not being able to promptly

respond to shocks. For instance, it is optimal under the commitment policy to fully absorb a

positive natural rate shock as long as the interest rate is not constrained by the ZLB (Fig. 6).

However, even for positive shocks, an aversion to policy reversals would prohibit the central bank

from raising the interest rate enough to completely offset the shocks, because doing so increases

the likelihood that the interest rate would need to be cut in the future. This conservative

policy creates an additional volatility of inflation and output and increases the social loss.

Consequently, reversal aversion can be socially beneficial only in an environment in which the

ZLB is relevant and thereby some extent of policy inertia is required. This gives us a trade-off

between the benefit of creating an endogenous policy inertia at the ZLB and the cost of excess

volatility caused by reversal aversion. In fact, we show in section 5.3.1 that there is an optimal
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Figure 6: Impulse responses to a temporal 3% natural rate shock. We set ρr = 0.6.

degree of reversal aversion at which the social loss is minimized.

5.2.3 Simulated path

Figure 7 illustrates sample simulated paths of the interest rates for λir = 0 (pure discretion),

λir = 10 (strict irreversible policy) and λir = 0.0016 (optimal irreversible policy). We note

that the bandwidth within which the interest rate fluctuates becomes narrower as the penalty

weight λir increases. It turns out that the average variance of the interest rate is 0.945 for

λir = 0.0016 and 1.271 for λir = 0. This is intuitive because even in a “normal” circumstance

in which the central bank can shift the interest rate freely in the desired direction, it exhibits

a more conservative behavior in that the size of the policy shift is smaller than that under

pure discretion. This reflects the fact that the central bank with reversal aversion internalizes

the influence that the current policy shift would have on the chance that the direction of a

policy shift would need to be reversed in the future. Simulated paths of the interest rates under

alternative regimes will be discussed in section Appendix B.
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Figure 7: Simulated path of nominal interest rate.

5.3 Welfare consequence of policy reversal aversion

The current general equilibrium framework allows us to ask to what extent a central bank’s

policy reversals should be penalized. If policy reversals should not be penalized to flexibly react

to economic shocks, then the desired value of λir will be zero. By contrast, if penalizing policy

reversals would increase social welfare, then the optimal value of λir will take a positive value.

As discussed above, a central bank with reversal aversion internalizes the possible influence of

a current policy change on the future reversal probability. Searching for an optimal value of λir

is therefore essentially equivalent to finding the optimal extent of internalization or forward-

lookingness of the central bank.

To find the optimal weight, we define the relative welfare gain from reversal aversion as

W ≡
(
Ldisc

Lir
− 1

)
× 100, (29)

where Lir and Ldisc denote the unconditional welfare losses under discretion with and without

reversal aversion, respectively. Our computation of the unconditional losses is based on Eq. (23),

in which we generate 1,000 paths for the inflation rate and the output gap with length 1,200

periods, and the simulated unconditional losses are averaged over the 1,000 runs. The initial

200 periods are discarded in each run to eliminate the influence of the initial conditions, where

we set δ0 = 0.
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Figure 8: Welfare gain from reversal aversion. The welfare gain, defined by Eq. (29), is maxi-

mized at λ∗ir = 0.0016.

5.3.1 Optimal degree of policy irreversibility

The welfare gain from reversal aversion against λir is presented in Fig. 8. It is important to

note that there is no welfare gain from reversal aversion in an environment in which there is no

ZLB, i.e., the ZLB constraint is ignored (red dotted line in Fig. 8). In our model the natural

rate is the only source of economic fluctuations, which could be fully offset if there were no

ZLB (a phenomenon called “divine coincidence” (Blanchard and Galí, 2007)). Penalizing policy

reversals in the absence of the ZLB therefore just worsens welfare by prohibiting the central

bank from absorbing the natural rate shocks.

Fig. 8 confirms that the benefit of penalizing policy reversals could arise only when there is

a chance that the policy rate would hit the ZLB, in which case the natural rate shock would

affect the real economy under any kind of policy regime. As shown in Fig. 8, an increase in the

weight λir has a non-monotonic impact on the relative welfare gain. For a small value of λir,

the benefit of penalizing the central bank exceeds the cost of inhibiting flexible policy making,

but the relative balance between the benefit and the cost is reversed when λir is large enough.

It turns out that there is a unique maximizer λ∗ir at which the social loss is minimized. We now

define optimal irreversible policy as follows:

Definition. Optimal irreversible policy is a discretionary monetary policy with the relative

weight on reversal aversion λir in Eq. (24) equal to λ∗ir.

We also compare the welfare gains under various policy regimes, such as optimal commitment
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Figure 9: Relationship between welfare gain from reversal aversion and the frequency of hitting

ZLB under pure discretion. Each dot represents a simulation of 10,000 periods for λir = 0.0016.

policy, simple interest rate rules and interest rate smoothing, in section Appendix B. In the

following sections we will examine the detailed mechanisms behind the optimality of reversal

aversion.

5.3.2 Frequency of ZIRPs

Because the natural rate is the only source of economic fluctuations in our model, the optimal

value of λir should be 0 if the ZLB were absent. The benefit of assigning a positive weight on

the penalty term thus depends on the extent to which the ZLB constrains monetary policy. In

fact, our numerical simulations suggest that there is a strong positive correlation between the

welfare gain and the frequency of hitting the ZLB under pure discretion for a given value of λir

(Fig. 9). This implies that the more frequently the central bank is likely to be trapped by the

ZLB, the higher the welfare gain from penalizing policy reversals. It should be noted that the

frequency of hitting the ZLB in Fig. 9 is independent of the degree of reversal aversion.

While the welfare benefit of policy reversal aversion is attributed to the distortions stemming

from the ZLB, the frequency of interest rate hitting the ZLB would also be affected by the degree

of reversal aversion. This suggests that there is an endogeneity in the relationship between the

frequency of hitting the ZLB and the desirable degree of reversal aversion. Basically, with other

things being equal, imposing a higher weight on the penalty term makes the central bank more

conservative, and thereby the chance that the policy rate reaches the ZLB will be lowered. This
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Figure 10: Frequency of zero interest rate policies (ZIRPs). (a) Interval time between two

consecutive ZIRPs (left scale) and duration of a ZIRP (right scale). For a given λir, the average

is taken over 1,000 simulations with length 10,000 periods. (b) Probability that the interest

rate returns to the ZLB within four periods of liftoff.

is reflected by a positive relationship between λir and the average interval time between ZIRPs

(see, bars in Fig. 10a). The average interval between ZIRPs is given by the average number of

periods between the end of a ZIRP and the beginning of the following ZIRP.

In contrast, the relationship between λir and the duration time of a ZIRP is not monotonic

(see, solid line in Fig. 10a). The duration of a ZIRP is defined as the number of periods during

which the interest rate is kept at the ZLB. On one hand, a higher value of λir makes the central

bank less aggressive, as mentioned above, which would make it more likely to keep the policy

rate at zero once it reaches the ZLB. This effect would extend the average duration time of

a ZIRP. On the other hand, the frequency of hitting the ZLB decreases with λir because the

policy rate hits the zero floor only when there are infrequent yet large negative shocks. If this

happens, such a large negative shock is expected to quickly revert to the steady state in the

succeeding periods, as long as it is stationary, which would lead the central bank to exit from

the ZLB shortly. Due to these two opposite effects, the average duration time of a ZIRP exhibits

an inverse U-shaped curve.

English et al. (2015) argue that there might be a substantial probability that the Federal

funds rate will return to the effective lower bound (ELB) within one year of liftoff. They show,

based on a small-scale macro model of the US economy, that the probability of returning to

the ELB within one year of liftoff can be up to 40%, depending on the policy rule that the

Fed would employ. Their result is roughly consistent with the case of λir = 0 in our model,
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where the probability of returning to the ZLB within four quarters of liftoff is about 35%

(Fig. 10b). Indeed, our result suggests that the reversal-aversion policy with λir > 0 will reduce

the probability of returning to the ZLB to a large extent compared with a simple discretionary

policy.

5.4 Alternative policy regimes

Next, we compare the welfare performance of optimal irreversible policy with those of different

policy regimes, namely optimal commitment policy, the Taylor rule, interest rate smoothing and

a simple interest-rate rule with price-level targeting. We investigate price-level targeting based

on the argument put forth by Eggertsson and Woodford (2003) and Fujiwara et al. (2013) that

introducing a price-level target into a policy rule can be effective when the nominal interest rate

is constrained by the ZLB.

We specify the Taylor rule and a simple rule with price-level targeting as follows:

• Taylor rule with interest rate smoothing :

it = max{0, ρiit−1 + (1− ρi)(φππt + φxxt)}, (30)

where we set φπ = 1.5 and φx = 0.5. For ρi, we examine two values: ρi = 0 and 0.5.

• Simple rule with price-level targeting :

it = max{0, φp(pt − p∗) + φxxt}, (31)

where φp = 1.5 and φx = 0.5. pt and p∗ denote the logarithms of the price level and its

target value, respectively.

Within a discretionary regime, we also examine a different specification of the penalty term

F in the loss function (24). Instead of penalizing the squared value of ∆it, we consider the

following absolute-value penalty F abs.

• Absolute value penalty :

F abs(δt−1,∆it) =


|max(∆it, 0)| if δt−1 = −1,

0 if δt−1 = 0,

|min(∆it, 0)| if δt−1 = 1.

(32)

Then, monetary policy is delegated to a central bank whose loss function is given by

Labs
t = π2

t + λxx
2
t + λabs

ir F abs(δt−1,∆it), (33)

where the optimal weight on the penalty term turns out to be λabs
ir = 0.0008.
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Table 4: Welfare losses under alternative policy regimes

Policy regime Welfare loss

Optimal commitment 0.0033

Pure discretion 0.0197

Optimal irreversible policy, λir = 0.0016 0.0169

Optimal irreversible policy, λabs
ir = 0.0008 0.0168

Interest rate smoothing, λ∆ = 0.0008 0.0122

Taylor rule, ρi = 0 0.1712

Taylor rule with smoothing, ρi = 0.5 0.1365

Simple rule with price-level targeting 0.0851

Note: The values of λir, λabs
ir and λ∆ are optimized.

Table 4 summarizes the social losses under the examined regimes. It turns out that the

optimal irreversible policy yields a lower loss compared to the Taylor rules and a simple rule with

price-level targeting, but the optimized interest rate smoothing outperforms all the examined

policies other than the optimal commitment policy. As we saw above, interest rate smoothing

can incorporate policy inertia by making the previous interest rate a current state variable

through the penalization of ∆it
2. Our result suggests that minimizing the squared deviation of

∆it independently of sgn(∆it−1) may be more efficient than penalizing policy reversals for the

purpose of reducing the social loss.

We find that the interest rate volatility under the Taylor rule with interest rate smoothing,

given by Eq.(30), is much smaller than that under alternative regimes (Fig. S4), but as shown

in Table 4, the Taylor rules generally lead to high welfare losses. In fact, the inflation rate

under the Taylor rule with interest smoothing turns out to be more volatile than that under

optimal interest rate smoothing (Fig. S5). The examined Taylor-type rules are less efficient

than discretionary policy even if a price-level targeting objective is included (see also Nakov

(2008)).

It is important to note that the welfare performance computed here does not take into

account the potential central bank’s loss of reputation, which could be a serious concern for

real-world central banks. As is pointed out by Blinder (2006), in reality central banks tend

to avoid policy reversals “like the plague” based on the notion that immediate policy reversals

would necessarily undermine their credibility. Given this fact, the degree of feasibility would

have to be evaluated in quantifying the desirability of a policy scheme, a task we leave for future

research.
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6 Concluding remarks

Avoiding policy reversals is a common practice of central banks, but the consequent economic

outcome and welfare effects have not been examined so far despite the recent development of

theoretical models of monetary policy. Our study contributes to the literature by revealing that

reversal aversion can be desirable for the society as long as the ZLB is relevant. This implies

that a central bank should have an aversion to policy reversals from the welfare point of view,

which provides a rationale for the widely observed phenomenon that policy reversals are rare.

There are some unsettled issues that should be addressed in future research. First, we argue

that a central bank’s policy reversal aversion would improve the social welfare measured by the

standard loss function that incorporates the volatility of inflation and output gap. Our results

thus favor delegating monetary policy to a central banker having an aversion to policy reversals

even if policy reversals per se are not relevant to welfare. On the other hand, there might be

a situation in which a benevolent central bank needs to avoid policy reversals simply because

policy reversals directly affects social welfare. For example, as the volatility of interest rates

itself would become a welfare loss when money is included in the utility function (Woodford,

2003) or there is stickiness in retail interest rate setting (Kobayashi, 2008; Teranishi, 2015),

interest rate reversals themselves could directly worsen welfare if there are some frictions in

financial markets. It would be interesting to explore in what circumstances a microfounded

model would give us a social loss function with a penalty term on interest-rate reversals.

Second, because the introduction of an irreversibility constraint would generally make it

harder to guarantee the determinacy of equilibrium, a detailed analysis on the determinacy

condition will be needed. An irreversibility condition, or more generally a penalty for policy

reversals, would occasionally constrain the direction of future policy shifts, so a necessary condi-

tion for local stability would become harder to satisfy compared to the standard models. Third,

the presence of reversal aversion may provide a microfoundation for “interest-rate smoothing.”

As mentioned in Introduction, the standard specifications of interest-rate smoothing in empiri-

cal and theoretical models allow for policy reversals and are therefore not necessarily consistent

with the widely observed reversal aversion. Instead, the prevailing gradual behavior of interest

rates may be explained, at least to some extent, by the presence of reversal aversion. More de-

tailed analysis is needed on these issues, and we hope our model will stimulate further research.

Appendix A Numerical algorithm

We solve the central bank’s optimization problem Eq. (27) by value function iteration. Since the

ZLB introduces nonlinearity into the model, unlike in a simple linear-quadratic framework, we
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need to employ an approximation technique to obtain the functional form of the value function.

We first specify the grids for the three state variables it−1, δt−1, and rnt . Let s1, s2, and s3

denote the vectors of grids for it−1, δt−1, and rnt , respectively, where the size of si is ni×1. The

whole state space S is given by a tensor product of the three grid vectors: S = s1⊗s2⊗s3. The

size of tensor S is then given by N = n1 × n2 × n3 = 129 × 3 × 30. The p.d.f. of the natural

rate is assumed to be normal and discretized into 13 values using the Gaussian quadrature.

Let V (St) and ht ≡ (xt, πt)
> denote a real-valued value function and the vector of forward-

looking variables at time t, respectively, where St ≡ [it−1, δt−1, r
n
t ]> ⊂ S. We compute the value

function V and a policy function h as time-invariant functions of S ⊂ S. The procedure is as

follows:

1. Given a particular set of grids for the three state variables, Sjt ⊂ S, and the initial guess

for functions V and h, respectively denoted by V 0 and h0, compute V 1(Sjt ), h1(Sjt ) and

a policy function i(Sjt ) as a solution to the problem (27). A cubic-spline function is used

to approximate V 0(Sjt+1) and h0(Sjt+1).

2. Repeat step 1 for all j = 1, . . . N .

3. Stop if ‖V 1(S)− V 0(S)‖∞/‖V 0(S)‖∞ < 1.5× 10−6. Otherwise, update the functions as

V 0 ≡ V 1 and h0 ≡ h1, and go to step 1.

In our computation, convergence is reached within four hours using Matlab with Xeon 3.60GHz

and a 32GB memory.

Appendix B Robustness check

As a robustness check, we will now examine how the optimality of reversal aversion could be

affected by changing the baseline setting. We first consider the influences of varying the values

of the steady-state interest rate, i∗, and the weight on the output gap, λx. Then, we compare

the welfare gains under alternative policy regimes.

Appendix B.1 Steady-state interest rate

As discussed above, the desirability of policy reversal aversion depends heavily on the likelihood

that the ZLB constraint is binding. The most important parameter that governs the frequency

of hitting the ZLB is the steady state interest rate i∗. If i∗ is high enough, even a very large

negative shock could not cause the nominal interest rate to reach the ZLB. In contrast, a lower

i∗ itself makes it more likely for the central bank to implement a ZIRP.

30



O
pt

im
al

 d
eg

re
e 

of
 r

ev
er

sa
l 

av
er

si
on

, 

Figure 11: Optimal degree of reversal aversion. λ∗ir as a function of (a) the steady state interest

rate and (b) the weight on output gap.

Fig. 11a shows that there is a negative relationship between i∗ and λ∗ir. This is expected

from Fig. 9, which plots a positive correlation between the welfare gain and the likelihood of

being trapped at the ZLB, measured by the number of periods hitting the ZLB under pure

discretion. As a rise in i∗ reduces the frequency of reaching the ZLB, imposing a penalty on

policy reversals would become less desirable. It turns out that if the steady-state interest rate

is close to 2%, the advantage of reversal aversion would virtually disappear (i.e., λ∗ir ≈ 0).

Appendix B.2 Weight on output gap

Because the degree of reversal aversion λir is given as a weight in the loss function, its optimal

value necessarily depends on the weights on the central bank’s target variables– namely, inflation

and output. Fig. 11b plots λ∗ir as a function of the weight on output λx. It shows a positive

relationship between λx and λ∗ir; as the weight on output increases, the desirable degree of

reversal aversion also rises. This is intuitive because λ∗ir is essentially the weight on policy

reversals relative to inflation and output. λ∗ir needs to be positively correlated with λx to keep

an appropriate level of “punishment” for reversals. In addition, an increase in λx itself worsens

the trade-off between output gap and inflation rate both at and away from the ZLB (Nakata

and Schmidt, 2019a), so λir has to be larger to offset the destabilizing effect coming from a rise

in λx.
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Supplementary Information

“Optimal irreversible monetary policy”

Kohei Hasui, Teruyoshi Kobayashi, Tomohiro Sugo

(a)

(b)

Figure S1: Output gap and inflation rate under different policy regimes. (a) rH is nearly an

absorbing state: p = Prob(rnt = rL|rnt−1 = rH) = 0.01. (b) There is a reasonable probability of

the natural rate returning to rL from rH: p = 0.4.
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Figure S2: Policy functions for inflation and output gap. Black solid line denotes a pure

discretionary policy without reversal aversion (i.e., λir = 0). Blue circle, green dashed and red

diamond respectively denote irreversible policies when the sign of policy shift in the previous

period is −1, 0 and 1. We set it−1 = i∗ = 1.5/4 (vertical dotted line).
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(c) (d)

(a) (b)

Figure S3: Impulse responses to a persistent −3% natural rate shock in the infinite-horizon

model. We set ρr = 0 to remove exogenous policy inertia.
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Figure S4: Simulated paths of the nominal interest rates under alternative policy regimes.

Figure S5: Simulated paths of the output gap and inflation rate under the Taylor rule with

ρi = 0.5 and gradual interest rate smoothing.
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