

PDF issue: 2025-12-05

## Longitudinal oscillation of a liquid sheet by parallel air flows

Oshima, Ippei Sou, Akira

#### (Citation)

International Journal of Multiphase Flow, 110:179-188

## (Issue Date)

2019-01

## (Resource Type)

journal article

#### (Version)

Accepted Manuscript

#### (Rights)

© 2018 Elsevier Ltd. All rights reserved.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

### (URL)

https://hdl.handle.net/20.500.14094/90008110



## **Longitudinal Oscillation of a Liquid Sheet**

## by Parallel Air Flows

Ippei Oshima\*1, Akira Sou\*2

\*1 Ph. D. Student, Graduate School of Maritime Sciences, Kobe University, Kobe-shi, Hyogo-ken, 658-0022, Japan, E-mail: 134w102w@stu.kobe-u.ac.jp.

\*2 Professor, Graduate School of Maritime Sciences, Kobe University, Kobe-shi, Hyogo-ken, 658-0022, Japan, E-mail: sou@maritime.kobe-u.ac.jp.

Keywords: Gas turbine, Air-blast atomizer, Liquid sheet, Visualization, Lip thickness, Longitudinal wavelength

#### **Abstract**

A liquid fuel sheet injected into the combustor of gas turbine engines is deformed and atomized by the complex interactions between the liquid sheet and air flows. Aiming at improving the control technology of a fuel spray, the oscillation phenomenon and the primary break-up process of a planar liquid sheet with air flows have been studied for many years. Based on the previous studies, we propose a new correlation on the longitudinal wavelength  $\lambda_{Lon}$ 

given by 
$$\frac{\lambda_{Lon}}{D_{Liv}} = \frac{c}{\sqrt{MR_{Liv}}}$$
 and that on the oscillation frequency  $f_{Lon}$  of a liquid sheet given by  $f_{Lon} = \frac{c'V_G}{\sqrt{\rho_L/\rho_G}\sqrt{D_LD_{Liv}}}$ 

where  $MR_{Lip}$  is the lip momentum ratio defined in this study. In addition to previous visualization experiments of a planar liquid sheet and parallel air flows with various densities of gas and liquid, gas and liquid velocities, liquid sheet thicknesses and lip thicknesses, we carry out an additional experiment with various gas velocities and liquid viscosities to cover all the effects of fluid properties, injector geometries including gas and liquid boundary layers on the deformation and the atomization characteristics of the oscillating liquid sheet. Image analysis is conducted to obtain  $f_{Lon}$ . As a result, we confirm that liquid viscosity does not affect  $f_{Lon}$  and  $\lambda_{Lon}$  of the liquid sheet in a wide range of liquid Reynolds number. Finally, we verify the validity of the correlations of  $\lambda_{Lon}$  whose constant c is 14.3 and  $f_{Lon}$  whose constant c' is 0.095.

#### 1. Introduction

A gas turbine engine has been used for aircraft propulsion and power generation. An air-blast atomizer, in which an injected liquid sheet is atomized by high-speed air flows, is often used in gas turbines [1]. In spite of the importance of the fuel spray characteristics in a gas turbine combustor, the atomization phenomenon of the liquid film discharged from the injector has not been understood yet because of the complex multi-phase and multi-scale phenomena and the difficulty in observing the high-speed atomization process.

Therefore, the atomization and deformation process of a simple planar liquid sheet induced by air flows has been investigated. Squire [2] performed theoretical and experimental study about a flapping liquid film in a stationary

gas at sub atmospheric ambient pressures  $P_a$  and concluded that his theoretical prediction of the longitudinal wavelength  $\lambda_{Lon}$  of the liquid sheet oscillation agreed with his measured result. Stapper et al. [3] visualized a plane liquid sheet and proposed a deformation pattern map of a liquid sheet. Yoshida et al. [4] investigated the effects of the gas injection angle on the gas flow field and the droplet sizes. Fernandez et al. [5] carried out an experiment using water and kerosene as a liquid and measured the longitudinal oscillation frequency  $f_{Lon}$  of the liquid sheet. Dejean et al. [6] investigated the effects of liquid and air thicknesses on  $f_{Lon}$ . Villedieu et al. [7] performed numerical simulations using the SLOSH code, and compared the numerical and experimental results of gas velocity profile and break-up length. Li-zi et al. [8] proposed a break-up model and predicted the droplet sizes theoretically using Kelvin-Helmholtz (K-H) instability theory [9-10] without taking into account the effects of injector geometries.

Ligaments and bags are generated during the primary atomization of the liquid sheet. By knowing the longitudinal and transversal wavelengths of the liquid sheet, we can predict the characteristics of primary atomization, such as the sizes of ligaments and bags. The bag break-up generates small droplets, and the ligament break-up generates large droplets. Therefore, the longitudinal and transversal wavelengths are required to develop a break-up model based on the detailed break-up process.

The fabrication technology determines the minimum thickness of an atomizer lip. Excessively reducing the lip thickness may causes the destruction of the lip in the engine operation, while increase in the lip thickness strongly affects the initial deformation and the characteristics of primary atomization of the liquid fuel sheet, which may finally influence fuel spray diameter. Hence, in this study we clarify the effect of the lip thickness on the initial deformation characteristics of the liquid sheet.

The effects of fluid properties of gas and liquid and injector geometries as well as gas and liquid velocities and ambient pressures on  $f_{Lon}$  and  $h_{Lon}$  have been discussed [5, 6, 11, 12]. Lozano et al. [11] investigated the effects of liquid and air thicknesses on  $h_{Lon}$  of the planar liquid sheet, and proposed a correlation based on their experimental result. The present authors [12] investigated the effects of fluid properties and velocities of gas and liquid on the oscillating characteristics of the liquid sheet by two-dimensional numerical simulations. We clarified that the oscillation of a liquid sheet is suppressed by the atomizer lip which forms a wake in its downstream, and proposed a correlation on  $h_{Lon}$ . Villermaux [13] and Marmottant & Villermaux [14] reported the importance of boundary layer on  $h_{Lon}$ . In the previous studies, however, the effects of fluid properties and injector geometries on  $h_{Lon}$  and  $h_{Lon}$  are discussed separately, and there are no correlations of  $h_{Lon}$  and  $h_{Lon}$  for the air-blast atomizer which takes into account the effects of both fluid properties and injector geometries. Thus, new correlations on  $h_{Lon}$  and  $h_{Lon}$  for the air-blast atomizer which takes into account the both effects must be developed. The present authors [15] conducted visualization experiments of a planar liquid sheet and air flows with various liquid densities  $h_{Lon}$  gas densities  $h_{Lon}$  liquid velocities  $h_{Lon}$  and  $h_{Lon}$  However, the empirical correlations are not based on physical background and did not take into account the liquid velocity boundary layer.

In the present study, we examine the oscillation phenomenon of a liquid sheet based on the previous researches and propose a new correlation on  $\lambda_{Lon}$  and that on  $f_{Lon}$  of an oscillating liquid sheet induced by air flows by focusing on the gas and liquid boundary layers. Then, we carry out an additional visualization experiment of a

planar liquid sheet and parallel air flows with various liquid viscosities  $\mu_L$  and gas velocities  $V_G$  to cover all the effects of fluid properties and the injector geometries on the deformation and atomization characteristics of the oscillating liquid sheet. Finally, the validities of the proposed correlations on  $\lambda_{Lon}$  and  $f_{Lon}$  are verified through the comparison of measured and estimated results.

# 2. Proposal of the correlations on the longitudinal wavelength and the oscillation frequency of the liquid sheet oscillation

In this section, firstly, we review some of the previous correlations on  $\lambda_{Lon}$ . Then, by taking into account the effect of the lip, we propose a new empirical correlation for an air-blast atomizer.

Some of the major correlations on  $\lambda_{Lon}$  of the oscillating liquid column and sheet are summarized in Table 1, where  $\delta_G$  is the gas boundary layer thickness,  $\sigma$  the surface tension,  $\rho$  the density, V the inlet velocity, D the thickness, and the subscripts G, L and Lip are gas, liquid and lip, respectively. In the table, MFR is the momentum flux ratio defined by

$$MFR = \frac{\rho_G V_G^2}{\rho_L V_L^2} \tag{1}$$

and MR is the momentum ratio defined by

$$MR = \frac{\rho_G V_G^2 D_G}{\rho_L V_L^2 D_L} \tag{2}$$

These correlations were proposed through the theoretical, experimental, or numerical studies under various operating conditions and fuel injector designs [2, 11-14].

The viscous effect on the shear instability is generally small at high Reynolds number. Under low Reynolds number condition, in contrast, the gas viscous effect on the shear instability becomes effective because the ratio of the viscous diffusion timescale to the instability development timescale becomes small [16]. The effect of surface tension  $\sigma$  or gas boundary layer thickness  $\delta_G$  at the interface for the liquid-gas coaxial jet on  $\lambda_{Lon}$  is individually taken into account in some correlations [13, 14]. Based on the inviscid linear instability analysis of a liquid sheet, Squire [2] takes surface tension effect into account in his correlation of  $\lambda_{Lon}$ . In contrast, surface tension effect on  $\lambda_{Lon}$  was not considered under the high Weber number or the thick boundary layer layer conditions [11, 12, 14]. Lozano et al. [11] proposed the following empirical correlation on  $\lambda_{Lon}$  through the experiments for various  $D_G$  and  $D_L$ :

$$\frac{\lambda_{Lon}}{\sqrt{D_L D_G}} = \frac{20.39}{\sqrt{MR}} \tag{3}$$

By inserting eq. (2) into eq. (3), we can derive the following equation:

$$\frac{\lambda_{Lon}}{D_L} = \frac{20.39}{\sqrt{MFR}} \tag{4}$$

which indicates that  $\lambda_{Lon}$  depends not on  $D_G$  but on  $D_L$ , if MFR is the key parameter. However, the effects of fluid properties of gas and liquid on  $\lambda_{Lon}$  were not investigated systematically in the previous studies, and we cannot understand the reason why the dominant length scale is  $D_L$  within various dominant length scales including  $D_{Lip}$ ,  $\delta_G$  and  $\delta_L$ . Based on the numerical simulations with various  $V_G$ ,  $V_L$ ,  $\rho_L$ ,  $\rho_G$ ,  $\mu_L$  and  $\mu_G$  with constant  $D_L$  and  $D_{Lip}$ , the

present authors [12] proposed the following correlation on  $\lambda_{Lon}$  under the limited condition of constant  $D_L$  and  $D_{Lip}$ :

$$\lambda_{Lon} \propto \frac{1}{\sqrt{MFR}} \tag{5}$$

These correlations suggest that MFR is dominant for  $\lambda_{Lon}$  [11, 12].

Then, we discuss about which length scale should be used to non-dimensionalize  $\lambda_{Lon}$ . Some researchers use the boundary layer thickness  $\delta$  at the gas-liquid interface to normalize  $\lambda_{Lon}$  [13, 14]. We derive the following correlation on  $\lambda_{Lon}$  normalized by  $\delta$ :

$$\frac{\lambda_{Lon}}{\delta} \propto \frac{1}{\sqrt{MFR}} \tag{6}$$

We reported through a number of numerical simulations that a wake is formed downstream of the lip, which decreases the gas velocity gradient at the liquid sheet interface [12]. The result shows that the boundary layer thickness  $\delta_G$  of the gas flow at the gas-liquid interface can be presented by the lip thickness  $D_{Lip}$ , and we can neglect the liquid boundary layer thickness  $\delta_L$  because the formation of a liquid boundary layer requires much longer time than the deformation of a liquid sheet, which was clarified by Marmottant et al. [14]. Based on these considerations, eq. (6) can be rewritten as

$$\frac{\lambda_{Lon}}{\delta} \sim \frac{\lambda_{Lon}}{D_{Lip}} \propto \frac{1}{\sqrt{MFR}} \tag{7}$$

Here, we discuss about the length scales in momentums of gas and liquid. The momentum of a thin liquid film which exchanges the momentum with the surrounding air flow is clearly given by  $\rho_L V_L^2 D_L$  because not the liquid shear layer whose thickness is  $\delta_L$  along the gas-liquid interface but the entire liquid sheet oscillates whose thickness is  $D_L$ , while the dominant momentum of gas phase should not be  $\rho_G V_G^2 D_G$  because not all the air flows injected from the injector but the air flow in the velocity boundary layer of the wake whose thickness is as large as the lip thickness  $D_{Lip}$  interacts with the liquid sheet. Therefore, we define the dominant momentum of gas phase as  $\rho_G V_G^2 D_{Lip}$ , and propose a new dimensionless number, the lip momentum ratio  $MR_{Lip}$ , which has a similar formulation with MR but using  $D_{Lip}$  as follows:

$$MR_{Lip} = \frac{\rho_G V_G^2 D_{Lip}}{\rho_I V_L^2 D_L} \tag{8}$$

By replacing MFR in eq. (7) with  $MR_{Lip}$ , we introduce the following dimensionless correlation on  $\lambda_{Lon}$  based on the conclusions that (i)  $D_{Lip}$  should be used to normalize  $\lambda_{Lon}$ , and (ii) the exchange of gas and liquid momentums is governed not by MFR but by  $MR_{Lip}$ :

$$\frac{\lambda_{Lon}}{D_{Lip}} = \frac{c}{\sqrt{MR_{Lip}}} \tag{9}$$

where c is the constant.

Since the liquid sheet is atomized within an extremely short distance from the injector, it is not easy to measure  $\lambda_{Lon}$  from experimental images. On the other hand, it is easy to measure the oscillation frequency  $f_{Lon}$  of the liquid sheet. The  $\lambda_{Lon}$  and  $f_{Lon}$  are determined physically far upstream of the point where the first wave appears. Even at the downstream point, the effect of  $V_G$  on wave velocity is 3~4 % [17]. That is why we ignore the acceleration of liquid sheet by the air flow in this study. Therefore, the oscillation frequency  $f_{Lon}$  of the liquid sheet can be given

$$V_L = f_{Lon} \lambda_{Lon} \tag{10}$$

Finally, we derive the following correlation on f<sub>Lon</sub> from eqs. (9) and (10):

$$f_{Lon} = \frac{c'V_G}{\sqrt{\rho_L/\rho_G}\sqrt{D_LD_{Lip}}}$$
(11)

where c' is the constant. The validity of the correlation on f<sub>Lon</sub> is examined in this study.

#### 3. Experimental Setup and Condition

Experiments with a planar air-blast atomizer were carried out with various fluid properties and injectors to understand the deformation and atomization characteristics and to examine the validity of the proposed correlations. Figures 1(a) and (b) show the experimental apparatus for atmospheric pressure test and that for high ambient pressure test, respectively. We used the same experimental rigs which were used by Yoshida et al. [4]. Filtered kerosene or water at room temperature was injected into the atmosphere or high ambient pressure through an injector, and filtered water with T<sub>L</sub> = 283, 288, 323 K was also injected into the atmosphere to examine the effect of liquid viscosity μ<sub>L</sub>. In the followings, unless otherwise noted, liquid temperature T<sub>L</sub> was 288±5 K. The liquid was injected using a pump (Fuji Techno Industries, Co., HYSA-20) and liquid flow rate was adjusted by the rotation controller (Mitsubishi Electric Co., GM-S). The maximum error in measured V<sub>L</sub> was 1 %. In the experiment of high water temperature, water in the liquid tank was heated by a heater (Kashima Co. Ltd., WPS-110, 1000W maximum) with a temperature controller. The heated water was injected continuously to warm up the piping system before the visualization test, so that hot water at the stable temperature of 323 K ±2 K was injected from the injector. We measured the temperature of injected water by a thermometer just after the injection. The air flow was injected from a blower (Kawasaki Heavy Industries, Ltd., GR91) or a compressor (Maximum discharge pressure was 1 MPa). The gas flow rate was controlled using a valve, and was measured using a manometer at the atmospheric pressure test rig and was measured using a flow meter at the high ambient pressure test rig. The maximum error in measured V<sub>G</sub> was 2%.

Figures 2(a) and (b) show the side and bottom views of the injector exit. We performed backlight high-speed photographing via a high-speed camera (Vision Research Inc., Phantom v7.3) and a metal-halide lamp (Kyowa Co. Ltd., MID-25FC). The spatial resolution of the images was 90  $\mu$ m / pixel, and the acquisition rate was 6,504  $\sim$  8,000 frames per second. Table 2 shows the entire experimental conditions, and Table 3 shows fluid properties of liquids at liquid temperature  $T_L$ =283, 288 and 323 K. Physical property of water is based on the database [18]. Physical property of kerosene was referred from the article [19]. When the temperature of pure water is changed from 283 to 323 K, liquid viscosity  $\mu_L$  becomes less than half of the original value. On the other hand, the change in surface tension by the temperature variation from 283 K to 323 K is only 8 %. That is why the effect of the difference in surface tension is smaller than that of the difference in viscosity. Since air-blast atomizers are operated under high Weber number condition, the effect of surface tension on  $\lambda_{Lon}$  is not considered in the previous studies [11, 13, 14] and in this study.

Lip thickness  $D_{Lip}$  was 0.2 or 0.4 mm, and liquid sheet thickness  $D_L$  was 0.2 or 0.5 mm, and air channel width  $D_G$  was fixed to 3.0 mm. The ranges of gas velocity  $V_G$  were 15 <  $V_G$  < 75 m/s and liquid inflow velocity  $V_L$  was

varied within  $0.7 < V_L < 3.8$  m/s. Ambient pressure  $P_a$  was varied from 0.1 to 0.4 MPa. As shown in Fig. 3, we measured oscillation frequency  $f_{Lon}$  by FFT analysis of the time histories of the luminosity at the white rectangle region where the first waves were passing through. The frequency resolution was 25.4 Hz.

#### 4. Results and Discussion

#### 4.1 Visualization

Time histories of the front and side views of a flapping water sheet for  $V_L$ =1.2 m/s,  $V_G$ =30 m/s,  $P_a$ =0.1 MPa,  $D_L$ =0.5 mm and  $D_{Lip}$ =0.2 mm are shown in Fig. 4. The images of the front and side views were captured individually. The red lines showing wave undulations in front and side views correspond to each other. The liquid film has a smooth interface near the exit of the injector and oscillates largely in the downstream by the K-H instability theory. In this case at about 15 mm downstream of the injector, the rapture of the liquid sheet occurs after the bag formation induced by Rayleigh-Taylor instability [20-21]. Fernandez et al. [5] concluded that deformation pattern map of a planar liquid sheet could be governed by MFR, and cellular break-up [3] occurred when MFR was below 0.50. Figure 5 shows some front views of liquid sheets of kerosene and water sorted by MFR. Flow patterns and longitudinal wavelengths of kerosene and water are different even with the same MFR. As can be seen from Fig. 5 (b), Cellular break-up does not occur at  $V_L$ =0.75 m/s and MFR=0.7. Thus, it is confirmed that deformation pattern map cannot be summarized by MFR. In the followings, we arrange flow patterns and  $f_{Lon}$  based on  $V_G$  and  $V_L$  to clarify the dominant factors on the liquid sheet atomization process.

Figure 6 shows the images of the oscillating water sheet at various  $P_a$  to examine the effects of  $\rho_G$ . The longitudinal wavelength  $\lambda_{Lon}$  of the oscillating liquid sheet decreases with increasing  $V_G$ . The density ratio  $\rho_L/\rho_G$  is smaller at higher  $P_a$ , which decreases  $\lambda_{Lon}$  based on the K-H instability.

The front views of the water sheets with  $D_{Lip}$ =0.2, 0.4 mm and  $D_L$ =0.5, 0.2 mm are shown in Figs. 7(a) and (b), respectively. The wavelength at  $D_{Lip}$ =0.4 mm is slightly longer than that for  $D_{Lip}$ =0.2 mm.

We have reported that gas and liquid viscosities do not largely affect the oscillation of a liquid sheet at several hundred of liquid Reynolds number [12]. In this study, we performed the experiment with various water temperatures  $T_L$  in order to clarify whether we can neglect the effect of  $\mu_L$ , in other word, the effect of  $\delta_L$ , on the liquid sheet oscillation under the wide range of experimental conditions. Figure 8 shows the images of the oscillating liquid sheets with  $T_L$ =283 K and 323K. When the temperature is changed from 283 to 323 K,  $\mu_L$  decreases from  $1.3 \times 10^{-3}$  to  $5.5 \times 10^{-4}$  Pa·s. The liquid sheet patterns at different  $\mu_L$  are extremely similar in spite of the large difference in  $\mu_L$ .

#### 4.2 Oscillation frequency f<sub>Lon</sub>

Figure 9 shows measured  $f_{Lon}$  with kerosene and water, by which the effects of liquid density  $\rho_L$  can be examined. Oscillation frequency  $f_{Lon}$  for kerosene is in proportion to  $V_G$ , which shows the same trend as water, and  $f_{Lon}$  of kerosene is higher than that of water at same  $V_G$ . The measured  $f_{Lon}$  shown in Fig. 9 does not depend on  $V_L$ . Figure 10 shows the side views of a water sheet. The  $\lambda_{Lon}$  increases with liquid velocity  $V_L$ . The fact indicates that wave velocity is nearly equal to  $V_L$ . The interaction between gas and liquid is promoted by increasing  $V_G$ . Squire [2] and Park et al. [22] proposed the following equation based on the inviscid linear instability theory:

$$\lambda_{Lon} \approx \frac{4\pi\sigma}{\rho_G (V_G - V_L)^2} \tag{12}$$

Villermaux [13] and Marmottant & Villermaux [14] proposed the following correlation on  $\lambda_{Lon}$ :

$$\lambda_{Lon} \sim \frac{5.6}{1.5} \frac{2\pi}{\rho_G} \sqrt{\frac{\rho_L \mu_G D_G}{V_G}} \tag{13}$$

According to eq. (12),  $\lambda_{Lon}$  is in inverse proportion to  $(V_G - V_L)^2$ . However, our experimental result shows that  $\lambda_{Lon}$  is not inversely proportional to  $V_G^2$  but  $V_G$  due to the effect of the wake of the lip. In eq. (13), the effects of  $D_G$  and  $\mu_G$  are taken into account while the effects of  $D_L$ ,  $D_{Lip}$  and  $V_L$  are not taken into account. The liquid sheet in an air-blast atomizer is thin whose thickness is of the order of 100  $\mu$ m while the liquid in a coaxial injector is thick whose thickness is of the order of 1 mm. The difference between eq. (9) and eq. (13) may be caused by the difference in the thicknesses of the liquid. From the above discussions, we can conclude that conventional theoretical analysis without the lip is not applicable to predict  $\lambda_{Lon}$ .

Figure 11 shows measured  $f_{Lon}$  for various  $P_a$ , which represents the effects of  $\rho_G$ . The result clearly shows that the higher  $\rho_G$  results in higher  $f_{Lon}$ , which agrees with the trend obtained by eq. (11). The oscillation frequencies  $f_{Lon}$  obtained by the present experiment with various  $D_L$  and  $D_{Lip}$  are presented in Fig. 12. It is clear that the smaller  $D_L$  is, the larger  $f_{Lon}$  becomes, which agrees qualitatively with Lozano's result [11]. The result also indicates that the increase in  $D_{Lip}$  decreases  $f_{Lon}$ . Measured frequencies  $f_{Lon}$  with different temperatures of 283K and 323K are shown in Fig. 13. The result for hot water agrees well with that for cold water, by which we can clearly conclude that the effect of  $\mu_L$  on  $f_{Lon}$  is ignorable.

#### 4.3 Validation of correlations of $f_{Lon}$ and $\lambda_{Lon}$

Finally, we verify the validity of correlations on  $f_{Lon}$  and  $\lambda_{Lon}$  using the measurement data. By using a least squares method, we fit the experimental result to our correlation. Figure 14 shows the relationship between measured  $\sqrt{\rho_L/\rho_G}\sqrt{D_LD_{Lip}}f_{Lon}$  and  $V_G$  for all the experimental data. The result confirms that the effects of fluid properties and injector geometries on  $f_{Lon}$  can be correlated well by eq. (11) with c' = 0.095 whose asymptotic standard error (ASE) is 1.2 %. Hence, we can obtain the following correlation.

$$\sqrt{\rho_L/\rho_G}\sqrt{D_L D_{Lip}} f_{Lon} = 0.095 V_G \tag{14}$$

At high  $V_G$ , measured  $f_{Lon}$  obtained at the atmospheric pressure test rig becomes slightly higher than that obtained at the high ambient pressure test rig because of the spatial constraint in the high ambient pressure test rig. Hence, measured  $f_{Lon}$  for  $V_G > 40$  m/s in the atmospheric pressure test is slightly larger than the prediction.

Figure 15 shows the comparison between our measured result and the prediction using the correlation eq. (3) proposed by Lozano et al. [11]. Their correlation overestimates the wavelength and cannot appropriately take into account the effect of the injector geometry. Figure 16 shows the relationship between measured  $\lambda_{Lon}/D_{Lip}$  and  $1/\sqrt{MR_{Lip}}$  for all the experimental data. These results agree well with the newly proposed correlation given as equation (9) with c=14.3 and ASE=1.7%, which confirms the validity of the proposed correlation on  $\lambda_{Lon}$ . From the results, the dimensionless relation between  $\lambda_{Lon}$  and MR<sub>Lip</sub> by considering dominant fluid properties and injector geometries is given as follows:

$$\frac{\lambda_{Lon}}{D_{Lip}} = \frac{14.3}{\sqrt{MR_{Lip}}} \tag{15}$$

From this study, it is found that  $f_{Lon}$  and  $\lambda_{Lon}$  depend on lip thickness, and it is important to pay attention to the lip thickness in the design of an air-blast atomizer.

#### 5. Conclusions

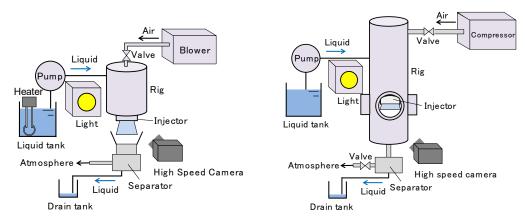
The longitudinal oscillation of a planar liquid sheet induced by air flows with various liquid densities  $\rho_L$ , gas densities  $\rho_G$ , liquid velocities  $V_L$ , gas velocities  $V_G$ , liquid viscosities  $\mu_L$ , liquid sheet thicknesses  $D_L$  and lip thicknesses  $D_{Lip}$  was investigated. Firstly, we proposed the new correlations on the longitudinal wavelength  $\lambda_{Lon}$  and frequency  $f_{Lon}$  based on the previous studies. Then, we visualized the planar oscillating liquid sheet with parallel air flows, and obtained the additional experimental data with various  $V_G$  and  $\mu_L$  to cover all the effects of fluid properties and injector geometries on the deformation and atomization characteristics of the oscillating liquid sheet. Finally, the correlations on  $\lambda_{Lon}$  and  $f_{Lon}$  were verified using our entire measurements. As a result, we obtained the following conclusions.

- (1) Deformation pattern map of a liquid sheet with air flows cannot be summarized by MFR.
- (2) The effects of  $\mu_L$  on  $f_{Lon}$  and  $\lambda_{Lon}$  are ignorable under the present experimental condition.
- (3) We proposed the lip momentum ratio  $MR_{Lip}$  as a new dominant dimensionless number based on the lip thickness  $D_{Lip}$ , since the thickness of the gas velocity boundary layer at the downstream of the lip depends on  $D_{Lip}$ .
- (4) We derived the correlation on  $\lambda_{Lon}$  given by  $\frac{\lambda_{Lon}}{D_{Lip}} = \frac{14.3}{\sqrt{MR_{Lip}}}$  and that on  $f_{Lon}$  given by  $f_{Lon} = \frac{0.095V_G}{\sqrt{\rho_L/\rho_G}\sqrt{D_LD_{Lip}}}$ , whose validities were verified through the comparison between measured and estimated results.

#### Acknowledgements

Visualizations experiments were performed using the experimental apparatus at Japan Aerospace Exploration Agency (JAXA). Present authors would like to express gratitude to Associate Senior Researcher, Dr. Kazuaki Matsuura, of JAXA for his warm support and kind comments.

#### References


- [1] Lefebvre A. H. Airblast Atomization: Progress in Energy and Combustion Science 1980;6:233-261.
- [2] Squire H. B. Investigation of the Instability of a Moving Liquid Film: British Journal of Applied Physics 1953;4(6):167-169.
- [3] Stapper B. E., Samuelsen G. S. An Experimental Study of the Breakup of a Two-dimensional Liquid Sheet in the Presence of Co-flow Air Shear: 28th AIAA Aerospace Sciences Meeting;1990-0461, 1990.
- [4] Yoshida K., Ide K., Matsuura K., Iino J., Kurosawa Y., Hayashi S., and Ohta Y. Airblast Spray Characteristics of Planar Liquid Films in Longitudinal Gas-Phase Shear Layers at Various Ambient Pressure Conditions: Proceedings of the 12th International Conference on Liquid Atomization and Spray Systems (Heidelberg, Germany), 2012.

- [5] Fernandez V., Berthoumieu P., and Lavergne G. Primary Atomization in Water and Kerosene Liquid Sheets at High Pressure: Proceedings of the 11th International Conference on Liquid Atomization and Spray Systems (Colorado, United States), 2009.
- [6] Dejean B., Berthoumieu P., Gajan P. Experimental Study on the Influence of Liquid and Air Boundary Conditions on a Planar Air-Blasted Liquid Sheet, Part I: Liquid and Air Thicknesses: International Journal of Multiphase Flow 2016;79:202-213.
- [7] Villedieu P., Blanchard G., Zuzio D. Numerical Simulation of Primary Atomization of a Sheared Liquid Sheet. Part2: Comparison with Experimental Results: Proceedings of the 25th ILASS-Europe (Chania, Greece), 2013.
- [8] Li-zi Q., Ran Y., Li-jun Y. Theoretical Breakup Model in the Planar Liquid Sheets Exposed to High-Speed Gas and Droplet Size Prediction: International Journal of Multiphase Flow 2018;98:158-167.
- [9] Senecal P.K., Schmidt D.P., Nouar I., Rutland C.J., Reitz, R.D., Corradini, M.L. Modeling High Speed Viscous Liquid Sheet Atomization: International Journal of Multiphase Flow 1999;25:1073–1097.
- [10] Li X., Tankin R.S., On the Temporal Instability of a Two-Dimensional Viscous Liquid Sheet: Journal of Fluid Mechanics 1991;226:425-443.
- [11] Lozano A., Barreas F., Siegler, C., Low D. The Effects of Sheet Thickness on the Oscillation of an Air-blasted Liquid Sheet: Experimental in Fluids 2005;39(1):127-139.
- [12] Oshima I., Sou A. Numerical Simulation of Liquid Sheet Deformation Caused by Air Flow: Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan 2018;16(4):319-327.
- [13] Villermaux E. Mixing and Spray Formation in Coaxial Jets: Journal of Propulsion and Power 1998;14(5):807-817.
- [14] Marmottant P., Villermaux E. On Spray Formation: Journal of Fluid Mechanics 2004;498:73–111.
- [15] Oshima I., Sou A., Kawabata R., Matsuura K. Longitudinal Wavelength of Oscillating Liquid Sheet with Air Flow: 55th AIAA Aerospace Sciences Meeting; 2017-1464, 2017.
- [16] Villermaux E. On the Role of Viscosity in Shear Instabilities: Physics of Fluids 1998;10(2):368-373.
- [17] Oshima I., Sou A., Matsuura K. Numerical and Experimental Study on Liquid Sheet Deformation by Air Flow: Proceedings of the 13th. ICLASS (Tainan, Taiwan), 2015.
- [18] The National Institute of Advanced Industrial Science and Technology in Japan. Network Database System for Thermophysical Property Data, <a href="https://tpds.db.aist.go.jp/index">https://tpds.db.aist.go.jp/index</a> en.html; 2018 [accessed 11 July 2018].
- [19] Zheng Q. P., Jasuja A. K., Lefebvre A. H. Structure of Airblast Sprays Under High Ambient Pressure Conditions: Journal of Engineering for Gas Turbines and Power 1997:119(3):512-518.
- [20] Rayleigh Lord. Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density: Proceedings of the Royal Society of London 1883;14:170-177.
- [21] Taylor G. I. The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Plane.I: Proceedings of the Royal Society of London 1950;201:192-196.
- [22] Park J., Huh K. Y., Li X., Renksizbulut M. Experimental Investigation on Cellular Breakup of a Planar Liquid Sheet from an Air-Blast Nozzle: Physics of Fluids 2004;16(3):625–632.

Table 1. Correlations on the longitudinal wavelength  $\lambda_{\text{Lon}}$  of the liquid

| Author          | Lozano et al. [11]                                               | Marmottant et al. [14]                                                                   | Squire [2]                                        |
|-----------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------|
| Characteristics | Air-blasted<br>planar liquid sheet                               | Liquid jets<br>in a coaxial air stream                                                   | Thin liquid<br>in a stationary gas                |
| Condition       | 0.5 <d<sub>L&lt;1.9 mm, 3.45<d<sub>G&lt;35 mm</d<sub></d<sub>    | $V_G >> V_L$ , large We, $D_{Lip} = 1.6 \text{ mm}$                                      | Low ambient pressures                             |
| Wavelength      | $\frac{\lambda_{Lon}}{\sqrt{D_L D_G}} = \frac{20.39}{\sqrt{MR}}$ | $\lambda_{Lon} \cong \frac{2\pi}{1.5} \left(\frac{\rho_L}{\rho_G}\right)^{1/2} \delta_G$ | $\lambda_{Lon} = \frac{4\pi\sigma}{\rho_G V_L^2}$ |

| Author          | Oshima et al. [12]                                 | Villermaux [13]                                            |  |
|-----------------|----------------------------------------------------|------------------------------------------------------------|--|
| Characteristics | 2D liquid sheet                                    | Liquid jets                                                |  |
| Gnaracteristics | with air flows                                     | in a coaxial air stream                                    |  |
| Condition       | D <sub>Lip</sub> =0, 0.4 mm, D <sub>L</sub> =0.5mm | $\rho_L \rangle \rangle_{\rho G}, V_G \rangle \rangle V_L$ |  |
| Wavelength      | $\lambda_{Lon} \propto \frac{1}{\sqrt{MFR}}$       | $\lambda_{Lon} = 3\pi (\sigma/\rho_G V_G^2)$               |  |



(a) Atmospheric pressure test rig

(b) High ambient pressure test rig

Fig. 1. Experimental set up

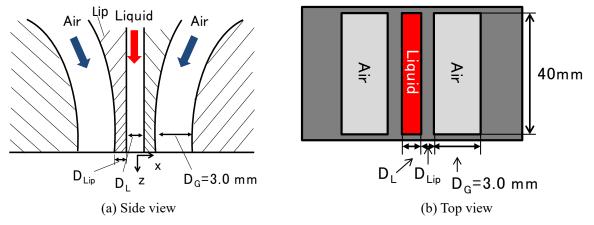



Fig. 2. Schematic of planar air-blast atomizer

Table 2. Experimental condition

| Parameter                              | Values        | Parameter                            | Values                   |  |
|----------------------------------------|---------------|--------------------------------------|--------------------------|--|
| Lin thickness D. [mm]                  | 0.2.04        | Ambient pressure Pa                  | 0.1, 0.15, 0.2, 0.3, 0.4 |  |
| Lip thickness D <sub>Lip</sub> [mm]    | 0.2, 0.4      | [MPa]                                |                          |  |
| Liquid sheet width D <sub>L</sub> [mm] | 0.2, 0.5      | Gas velocity V <sub>G</sub> [m/s]    | $15 < V_G < 75$          |  |
| Air channel width D <sub>G</sub> [mm]  | 3.0           | Liquid velocity V <sub>L</sub> [m/s] | $0.7 < V_L < 3.8$        |  |
| Liquid temperature T <sub>L</sub> [K]  | 283, 288, 323 |                                      |                          |  |

Table 3. Fluid properties of liquids [17, 18]

| Liquid (T <sub>L</sub> =288 K) |           |                 |                 |           |                 |
|--------------------------------|-----------|-----------------|-----------------|-----------|-----------------|
| Water                          |           |                 | Kerosene        |           |                 |
| Density                        | Viscosity | Surface tension | Density         | Viscosity | Surface tension |
| $\rho [kg/m^3]$                | μ [mPa·s] | σ [mN/m]        | $\rho [kg/m^3]$ | μ[mPa·s]  | σ [mN/m]        |
| 999                            | 1.1       | 74              | 784             | 1.3       | 28              |

| Water           |                       |                 |                    |                       |                 |  |
|-----------------|-----------------------|-----------------|--------------------|-----------------------|-----------------|--|
|                 | T <sub>L</sub> =283 K |                 |                    | T <sub>L</sub> =323 K |                 |  |
| Density         | Viscosity             | Surface tension | Density            | Viscosity             | Surface tension |  |
| $\rho [kg/m^3]$ | μ [mPa·s]             | σ [mN/m]        | $\rho \; [kg/m^3]$ | μ [mPa·s]             | $\sigma$ [mN/m] |  |
| 1000            | 1.3                   | 74              | 988                | 0.5                   | 68              |  |

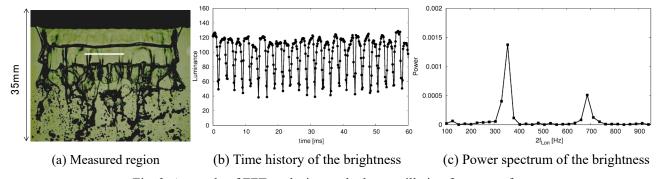



Fig. 3. A sample of FFT analysis to calculate oscillation frequency  $f_{\text{Lon}}$ 

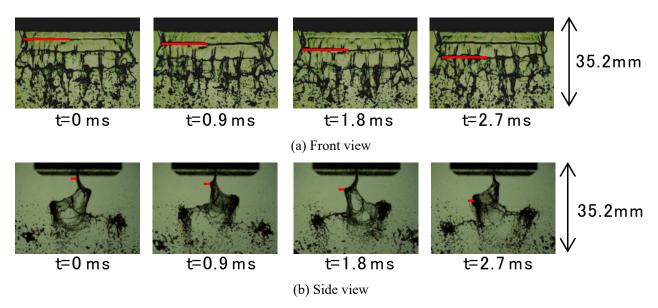



Fig. 4. High-speed images of water sheet ( $V_L$ =1.2 m/s,  $V_G$ =30 m/s, atmospheric pressure,  $D_L$ =0.5 mm,  $D_{Lip}$ =0.2 mm)

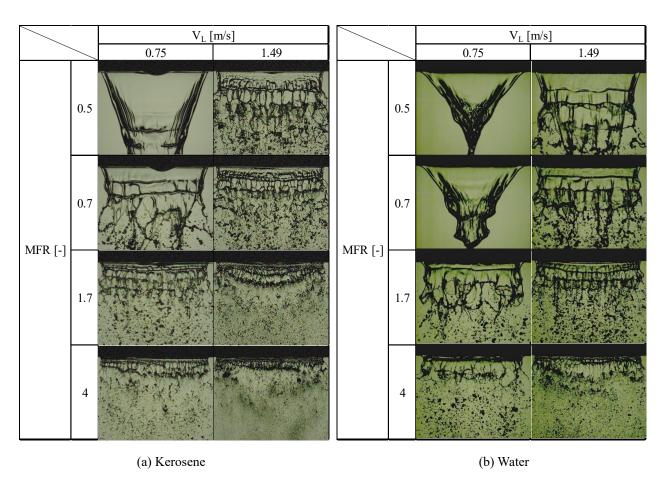



Fig. 5. Flow patterns of kerosene and water based on momentum flux ratio  $(atmospheric\ pressure,\ D_L\text{=}0.5\ mm,\ D_{Lip}\text{=}0.2\ mm)$ 

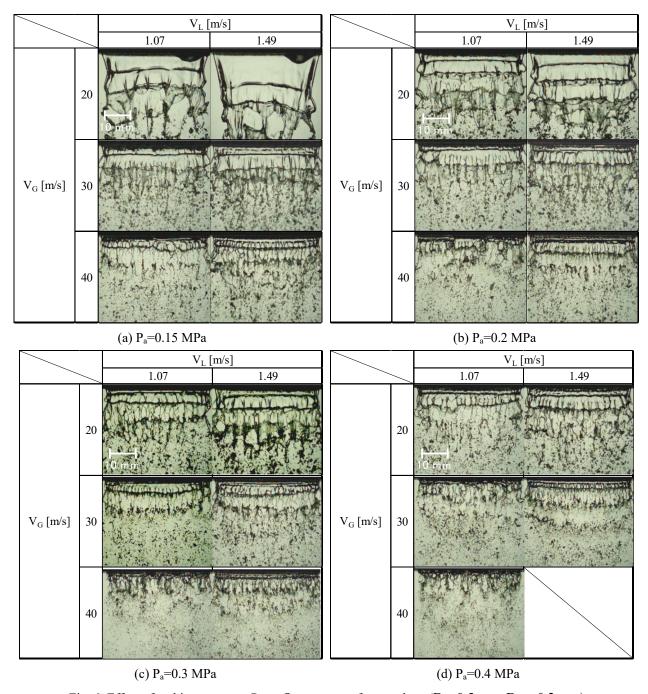
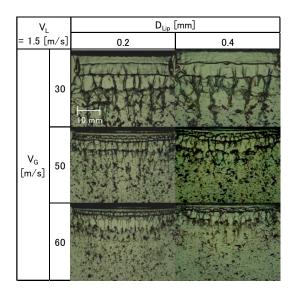
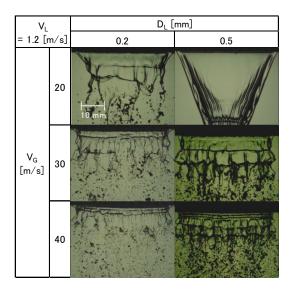





Fig. 6. Effect of ambient pressure  $P_a$  on flow pattern of water sheet ( $D_L$ =0.5 mm,  $D_{Lip}$ =0.2 mm)





(a) Effect of  $D_{\text{Lip}}\left(D_L\!\!=\!\!0.5\text{ mm}\right)$ 

(b) Effect of  $D_L$  ( $D_{Lip}$ =0.2 mm)

Fig. 7. Effects of  $D_{\text{Lip}}$  and  $D_{\text{L}}$  on flow pattern of water sheet (atmospheric pressure)

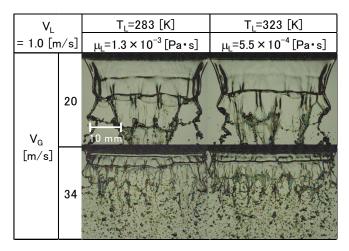



Fig. 8. Effect of  $T_L$  on flow patterns of water sheet (atmospheric pressure,  $D_L$ =0.5 mm,  $D_{Lip}$ =0.2 mm)

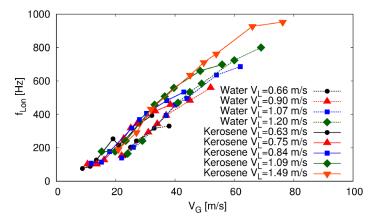



Fig. 9. Effect of  $\rho_L$  on longitudinal wavelength  $\lambda_{Lon}$  (atmospheric pressure,  $D_L$ =0.5 mm,  $D_{Lip}$ =0.2 mm)

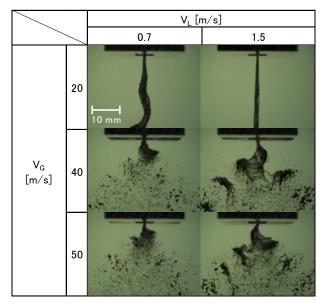



Fig. 10. Side views of water sheet to show the effect of  $V_L$  on  $\lambda_{Lon}$  (atmospheric pressure,  $D_L$ =0.5 mm,  $D_{Lip}$ =0.2 mm)

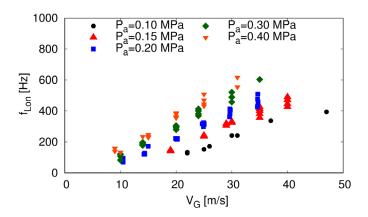



Fig. 11. Effect of gas density  $\rho_G$  on  $f_{Lon}$  (Water,  $D_L\!\!=\!\!0.5$  mm,  $D_{Lip}\!\!=\!\!0.2$  mm)

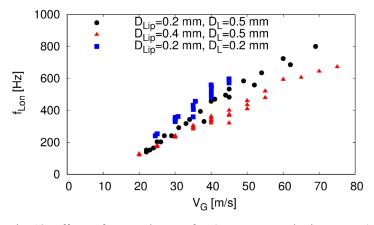
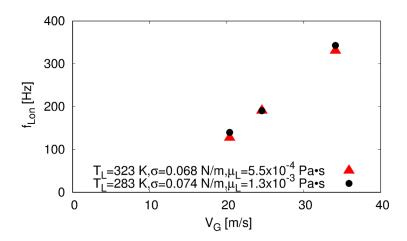




Fig. 12. Effects of  $D_{\text{Lip}}$  and  $D_{\text{L}}$  on  $f_{\text{Lon}}$  (Water, atmospheric pressure)



Fig, 13. Effect of T<sub>L</sub> on f<sub>Lon</sub> (Water, atmospheric pressure, D<sub>L</sub>=0.5 mm, D<sub>Lip</sub>=0.2 mm)

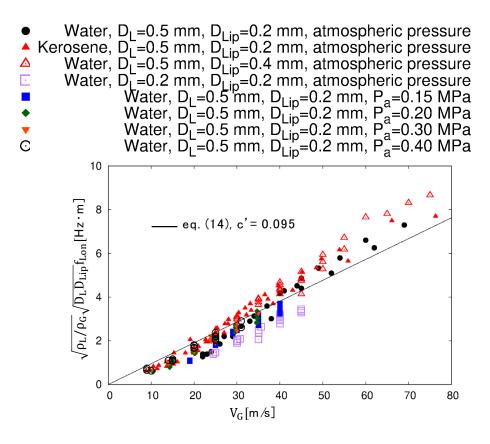



Fig. 14. Normalized frequency taking into account all experimental data

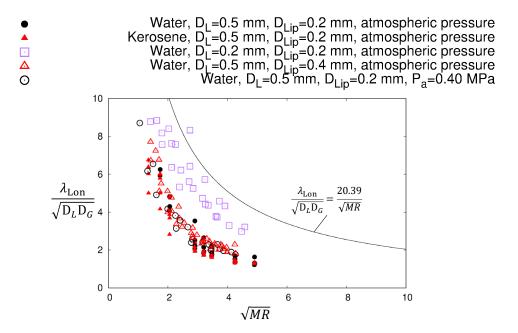



Fig. 15. Comparison of our experimental result and Lozano's correlation

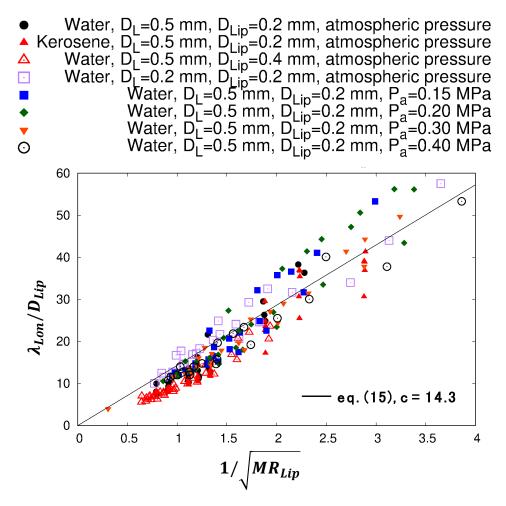



Fig. 16. Non-dimensional wavelength  $\lambda_{Lon}$  /  $D_{Lip}$  with lip momentum ratio  $MR_{Lip}$