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Harmonic Bayesian Prediction under «-divergence

Yuzo Maruyama, Takeru Matsuda and Toshio Ohnishi

Abstract—We investigate Bayesian shrinkage methods for con-
structing predictive distributions. We consider the multivariate
normal model with a known covariance matrix and show that
the Bayesian predictive density with respect to Stein’s harmonic
prior dominates the best invariant Bayesian predictive density,
when the dimension is greater than or equal to three. Alpha-
divergence from the true distribution to a predictive distribution
is adopted as a loss function.

Index Terms—Bayesian predictive density, harmonic prior,
minimaxity

I. INTRODUCTION

Let X ~ Ng(p,vgI) and Y ~ Ng(p,v,I) be indepen-
dent d-dimensional multivariate normal vectors with common
unknown mean p. We assume that d > 3 and that v, and
v, are known. Let ¢(-,0%) be the probability density of
Ny4(0,0%1). Then the probability density of X and that of
Y are ¢(x — p,v,) and @(y — w, vy), respectively.

Based on only observing X = x, we consider the problem
of obtaining a predictive density p(y|z) for Y that is close to
the true density ¢(y — 4, vy). In most earlier papers on such
prediction problems, a predictive density p(y |x) is evaluated
by

DKL {¢(y — M 'Uy) H ﬁ(y|x)}

Py — p,vy) (D
= — log ———F———d
/l;d ¢(y ,u7vy) Og ﬁ(y‘x) ?

which is called the Kullback-Leibler divergence loss (KL-div
loss) from ¢(y — p,vy) to p(y | ). The overall quality of
the procedure p(y | x) for each yu is then summarized by the
Kullback-Leibler divergence risk

RKL{(b(y - Mvvy) H ﬁ(y‘ )}

= [ D0ty =m0 101 ol — ).

Aitchison [1] showed that the Bayesian solution with respect
to a prior 7(u) under KL-div loss given by (1) is the Bayesian
predictive density

belule) = [ oy =wu)rlnla)an
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where m(p|x) = (@ — p, vy )m(p) /max(x, v,) is the posterior
density corresponding to 7 (x) and

P — p,v)m(p)dp
Rd

my(z,v) =

is the marginal density of X ~ Ng(u,vI) under the prior
().

For prediction problems in general, many studies suggest
the use of the Bayesian predictive density rather than plug-in
densities of the form

¢y — ix), vy),

where fi(x) is an estimated value of u. Liang and Barron [2]
showed that the Bayesian predictive density with respect to
the uniform prior

mo(p) =1, 3)
which is given by

elyla) = [ o= po)molnladn

= ¢(y_ Ty Vg +Uy>

is best invariant and minimax. Although using the best in-
variant Bayesian predictive density is generally a good default
procedure, it has been shown to be inadmissible in some cases.
Specifically, Komaki [3] showed that the Bayesian predictive
density with respect to Stein’s [4] harmonic prior

4)

mu(p) = [l =42

dominates the best invariant Bayesian predictive density py (y |
x), that is,
R {d(y — psvy) || Bo(y|-)}
— Rin{¢(y — p,0y) [| Pu(y|-)} = 0.
George et al. [5] extended Komaki’s [3] result to general
shrinkage priors including Strawderman’s [6] prior.
From a more general viewpoint, the KL-div loss given by

(1) is in the class of a-divergence loss (a-div loss) and defined
by

Do Aoy — pvy) [l Dy |2)}
= _ Bl N 5)
B /Rd fa (qﬁ(y — i, Uy)) oy — y)dy,

where
{4/(1 — o)} {1 — 2421 o < 1,
fa(2) =1 zlog 2, a=1, (6)
—log 2, a=—1.
When o = —1, we have

D1 {o(y — p,vy) [ D(y[2)} = D {&(y — p,vy) [l By [2)}
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where Dy, is given by (1). When a = 0, we have fy(z) =
4(1 — 2'/?) and

Do {¢(y — p,vy) || ly|x)}
_ 512001 2) — V2 (1 — w. v 2
2/Rd {p (ylz) — o (y — 1, y)} dy,

where /Do {¢(y — p,vy) || p(y|x)}/2 is the Hellinger dis-
tance between p(y|z) and ¢(y — i, vy). As in the Kullback-

Leibler divergence risk given by (2), the overall quality of
the procedure p(y | ) for each p is summarized by the «-
divergence risk

Ro{o(y — p,vy) [| B(y|-)}
= [ Datoly =) 1ty )} oo = )i

Here, following Cichocki and Amari [7], we provide a brief
review of KL-div and «-div from an information-theoretic
viewpoint. The a-div was originally proposed by Chernoff
[8] and has been extensively investigated and extended by
Amari [9], [10], [11] and other researchers. Recall that the
most well-known divergences belong to the class of Csiszar’s
f-divergences [12] and/or the class of Brégman divergences
[13]. The KL-div given by (1) is known as the only divergence
belonging to the intersection of the two classes. The a-div can
be derived from the f-divergence and as shown by Amari [10]
using some tricks also from Brégman divergence [13]. Hence,
following KL-div as the first choice, a-div seems the second
choice among a class of most well-known divergences. In this
paper, we will consider statistical decision theory of Bayesian
predictive density under a-div loss for general o € (—1,1)
and robustness of minimaxity over o € [—1,1].

Corcuera and Giummole [14] showed that a Bayesian pre-
dictive density under a-div loss is

Pr(y] 75 a) o
{W¢37ymww@uwdﬂmm%la
for —1<a<1, o
exp (/Rd{log Oy — p,vy) } ol — :“,Uw)ﬂ'(u)d,u>
for a = 1.

By (7), in the prediction problem under a-div loss with o = 1
from the Bayesian point of view, the Bayesian solution is the
normal density

Pr(ylz; 1) = ¢y — /lfr(x)7vy)7

where [i,(x) is the posterior mean given by

fir(z) = / pr(p|x)dp = x4+ v,V logm(z, vy)
R

with V, = (9/0x1,...,0/0xq). In general, the Bayesian
prediction problem under @ = 1 reduces to the estimation
problem under the KL-div loss in the case of the exponential
family density. This is because the exponential family density
is closed under the calculation in (7) with @ = 1, as pointed
out in Yamagimoto and Ohnishi [15].

As demonstrated in Maruyama and Strawderman [16], the
a-div loss in the case of o = 1 is written as

() — oyl
Di{o(y — p,vy) || 6y — fin(2),0y)} = W’

and hence the prediction problem under o = 1 reduces to the
estimation problem of x under the quadratic loss. Stein [17]
showed that

Ex [|ln(X) — p])?]
A,mi (X, v,)
my*(X,ve) |

where A, = 2% | 9%/022. Hence the risk difference under
a =1 is expressed as

Ri{o(y — m,vy) [ oyl 1)}
= Ri{o(y — p,vy) [ D=y |5 1)}

=dv, + 42 Ex

(3
o 2? Agmy/* (X, v,)
Uy m}r/g(X7 Uy) .
Under the KL-div loss or a-div loss with a« = —1, [5]

showed that the risk difference is given by

R_i{o(y — p,vy) || Pu(y ] —1)}
= R_1{o(y — p,vy) | D= (y |5 —1)}

Ve Azm}r/Q(Z, v)
=2 By -2
v, my “(Z,v)

where py(y|xz; —1) is given by (4), Z ~ Ng(p,vI) and v, =
Vg Vy / (V3 +vy). From this viewpoint, [5] and Brown ef al. [18]
considered the prediction problem under a-div loss in two
extreme cases o = +1 and found a beautiful relationship of
risk differences for two cases via A, {m(z,v)}/? for some
v. Under both risks Ry and R_;, any shrinkage prior of the
satisfier of the superharmonicity

9
dv

)

Auml/2(2,0) <0 for {Vv € (Vs,vy) for a = —1,
v =1, fora =1,

(10)
implies an improvement over the best invariant Bayesian pro-
cedure. As in [17], the superharmonicity of 7(p), A m(p) <
0, implies the superharmonicity of m,(z,v), A,m,(z,v) <
0. Further the superharmonicity of mg(z,v) implies the
superharmonicity of {m(z,v)}'/2. Hence the harmonic
prior my(p) = ||p||~(4=2) gives the superharmonicity of
{mx(z,0) /2.

Because of the relationship given by (8), (9) and (10),
it is of great interest to find the corresponding link via
A {mx(z,v)}/? for a-div loss with general a € (—1,1) so
that the superharmonicity of {m (z,v)}'/? implies minimax-
ity or equivalently the improvement over the best invariant
Bayesian procedure, which is the motivation of this paper.
In other words, we are interested in a kind of robustness
of the minimaxity result via superharmonicity uniformly for
a € [-1,1], where the theory under two extreme cases
a = =1 has been already established. To our knowledge,
decision-theoretic properties seem to depend on the general
structure of the problem (the general type of problem (location,
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scale), and the dimension of the parameter space) and on the
prior in a Bayesian-setup, but not on the loss function, as
Brown [19] pointed out in the estimation problem.

In this paper, we investigate the risk difference, diff Ry v,
in the case of a-div loss, defined by

diﬁRa,U,w =R, {¢(y - M ’Uy) || ﬁU<y | " a)}
— R, {¢(y - uavy) H ﬁﬂ(y|'; a)} .
In (11), pr(y | z;a) is given by (7) and py(y | z; ) is the
Bayesian predictive density under the uniform prior (3), the
form of which will be derived in (16) of Section II. As a
generalization of [2]’s result, p,(y | x;a) for general a €
(—1,1) is best invariant and minimax, as shown in Appendix
A. Further, analyzing diff R, v, », we provide some asymptotic
results (Theorem 2.4) and a non-asymptotic decision-theoretic
result (Theorem 3.2).
Asymptotic results We show not only somewhat expected
relationship

(1)

lim diﬁ'Ro“U’ﬂ— - diﬁRl,U,ﬂ?

a—1-0

lim  diffRegr = diffR_1y.0,

a——140
where diff Ry . and diff R_; . are given in (8) and (9)
respectively, but also the asymptotic relationship for general
a€ (—1,1),

(12)

lim
Vg [Vy—=+0

diff Ro,v,x = dif Ry v 7. (13)
Hence, the asymptotic situation v, /v, — 0 corresponds to
the case o — 1 and A, {m(z,v)}'/? plays an important
role for general « € (—1,1).

Non-asymptotic result We particularly  investigate a
decision-theoretic property of the Bayesian predictive
density with respect to 7w (1) = | ~=? under a-div
loss with general o € (—1,1). We show that, the Bayesian
predictive density with respect to my(p) = |[lul|~(¢=2
dominates the best invariant Bayesian predictive density
with respect to my(p) = 1 if

d+2
if
Vo _ d(lJrOz)Q 11—«
vy 2 d+21—-{k—-2/(1-a)}
(1 - a) d 2k(k— 1)
where & is the smallest integer larger than 2/(1 — «).
The organization of this paper is as follows. In Section II, we
derive the exact form of p,(y|x; ), propose a general suffi-
cient condition for diff R, y » > 0, where diff R, v~ is given
by (11), and demonstrate the asymptotic relationship described
in (12) and (13). In Section III, we propose the non-asymptotic
result under the harmonic prior 7y (1) = ||| ~(*~2) described
above. Some technical proofs are given in Sections A-D of
Appendix.

is a positive integer,

otherwise,

II. A GENERAL SUFFICIENT CONDITION FOR MINIMAXITY
A. Bayesian predictive density under o-divergence loss
As in (7), the Bayes predictive density under a-div loss is
Pr(y|z; )

Ve (14)
o {/ ¢($—u,vggwﬁ(y—u,vy)ﬂ(mdu} ,
Rd

where
l-«a
b=
Clearly, it follows from o € (—1,1) that 0 < 5 < 1. Let
_ 1
Tt Bog /vy

Since the relation of completing squares with respect to p, for
¢ (x — p,v2) 9P (y — 1, vy), is given by

1 B
— = — pll?* + =y — pl?
Vg Uy

1 1—7
_ L (|x BN (TP M)
(% Y

x

= (Ll G a2

Vg

vz + (1 =)yl 11—~
- + [lz)l* + —lylI?
v v
L {1 2 2
= §|Iu —{yz+ (1 =yHI"+ A =y — =z
= L=zt =P + 8Ly — o)
VY vy ’
we have the identity,
¢($ — M vz) ¢5(y - vay)
= AP Y (v + (1 — )y — 1, va)
X d)ﬂ(y - ZL’,’Uy/’Y).

Under the uniform prior 7 (1) = 1, we have, from (15),

/]Rd (b (x - :U’7UI) (bﬁ(y — M, UU)T(U(M)dM

= P2GP (y — 2,0, /)

in (14). Therefore the Bayesian predictive density under the
uniform prior is

(15)

Po(ylz;e) = ¢y —,vy/7) = by — w0y + Pog),  (16)

which is the target predictive density so that the risk difference

diff R, v,» = Ra {0(y — 1, vy) || o (] o)}
- R()I {¢(y - ,Ll,,Uy) || Zaﬂ'(y|7 Oé)}

is going to be investigated in this paper. As shown in Appendix
A, pu(y | ;) for general a € (—1,1) is best invariant
and minimax, which is regarded as a generalization of [2]’s
minimaxity result. Hence p,(y|z; ) with diff R, v » > 0 for
all ¢ € R? is minimax.

The exact form of Bayes predictive density p(y | x; )
for (14) with normalizing constant, which is regarded as a
generalization of Theorem 1 of [3] as well as Lemma 2 of
[5], is provided as follows.

Theorem 2.1: The Bayes predictive density under 7(u) is

1/8
ma " (yx + (1 —7)y,v "
O+ Q=) 5y ), 17)
EZ1 Mgy ($+§Z17U17):|

Pr(y|m;0) =

where Z; ~ Ng(0,I) and

&= (1—7)(v,/7)"2 (18)
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Proof: By (14), (15) and (16), we have

Pr(y]zs ) oc o(y—x, vy /7)mE P (vz + (1 =)y, v27). (19)

The normalizing constant of (19) is
[ oty =z, )mi/?
Rd
o(z1, )m? (24 (1= )(wy/9) 221,007 ) d2a
R4

= By, [mYP (@ + €20,007)]

(yr + (1 =)y, vey)dy

where the first equality is from the transformation, z; =
(V)2 (y = w). u

B. A general sufficient condition for minimaxity

In the following, as a generalization of the Bayes predictive
density, we consider

flyz + (1 =7)y)
EZ1 [f(x + EZI)]

where f : R? — R, is general. As in the proof of Theorem
2.1, [psly | z;a)dy = 1 follows. Also ps(y | x;a) is
nonnegative for any y € R? and hence p;(y|z; @) is regarded
as a predictive density.

By the definition of the a-div loss given by (5), the risk
difference between py and py is written as

diff Ro v, s

= Ro{o(y — m,vy) || Doyl )}
—R{qby fsvy) || Dy a)}

ST Lot
o) \ 18 o (y |z ) \ P
{<> (2ize )

2L

Prlylz;a) = Pu(y|a;e)  (20)

— 1y Vg )P(Y — H,Vy)

Then we have the following result.
Theorem 2.2:

1) The risk difference diff R,y given by (21) is written by
E[p(W,Z)] where W ~ Ng(p,v7), Z ~ Ng(0,1), W
and Z are independent, and

Ay P2 8 A o(w + tzit f)
plw,2) = BQfﬁfl(w)/o et
where

o(u;t; f) = {Ez, [f(tZ1 +w)]}*"?, (23)

for Z1 ~ Ny(0, I).
2) A sufficient condition for diff R, ; > 0 for Vu € R? is

Ayo(uit; /) <0 YueR?, 0<VE<E

Proof: Part 2 easily follows from Part 1 and, in the
following, we show Part 1.
By (15), (16), and (20), the integrand of (21) is rewritten as

() - Giar))

X ¢(y - M,Uy)d)(l' - /,L,Uz)

_ L a-p)ir2 { (Ezl [f(z+¢2) )“ _ 1}

flyz + (1 =7)y)
X ¢(yr + (1 =)y — p,vay)o(y —

By the change of variables, w = yz + (1 — v)y and z =
—(v/vy)/?(y — x), where Jacobian of the matrix below is

(7/vy)42,
g (1=

(ZZU> - (('Y/Uy)l/2ld —(v/vy)1/21d> (5)

the risk difference is expressed as

T, vy /)

7(1—[3)d/2 W + 62, + 2) o

T b | (1, [JOV B D) 1]
7(1*B)d/2 s

= Sy Bw W) P Ha(&W) —g(0:W)}]

B 7(1—B)d/2 8 €9 .
= mEW [f(W)l /0 ﬁg(t’ W)dt

where ¢ = (1 — ) (v,/7)"/? as in (18), W ~ Ng(p, voyI),
Zy ~ Ng(0,1), Z ~ Ng(0,1) and

(24)

g(tiw) = Bz [Ez, [f(w+ {21+ ZD]]

In the following, Ez, [f] = Ez [f(w+t{Z1 + z})] for
notational simplicity. Then we have

0
9t w)
_ 0 -1
~ Bz | (B2 11| 2
= (BB [(Ba, 11 B2, [ + 279 ug])
= (B=1)Ez [{Ez, [/I}*" (B, |21V f]
+27Ez, [Vuf)).
In (25), we have
" _ o1 1
B ZiVufl = Bn | 17Va] = (B2 8uf] oo

= tEz, [Auwf] = tALEz, [f]

where the second equality follows from the Gauss divergence
theorem. Similarly we have

(8= 1)Ez [{Bz [/}’ 27 Ez, [Vu /)]

— (3= 1Bz | (B2, )" 2* B2, 9.1

8- VB, [(Bs, Y2 27V, 1]
%EZ R SAT

Y [An (2 1]

= 187 [ A (B 1Y)

27
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where the fourth equality follows from the Gauss divergence
theorem. By (25), (26) and (27), we have

Sraltiw) = 15z [ (B2, A1}

(28)
+(8 = V{Ez 1Y DBz 1]
Recall the formula of Laplacian for a function h(u),
Ayht(u)  Ayh(u)
i)~ h(w + (a —1)||Vylogh(uw)|? (29)
for a # 0. Then, in (28), we have
AuAEz [+ (B= 1) {Ez /1Y AuBz, [f]
__(B=1)
{Ez [/1}'7
AwEZl [f]
< (2822 (5 090w B 11112
__2B-1)
{Ez )7 (30)
AwEz, [ﬂ _ 2)
(el iz )19 052, 11
28-1) Ay {Ez [/}

{Ez Y77 (8/2{Ex £}
A1) Ay { Bz, [}
IR
By (24), (28) and (30), we completes the proof. [ |

Remark 2.1: In the previous version of this article as well
as [5], not only the Stein identity but also the heat equation

% (u,v) = %Auqﬁ(u,v),

was efficiently applicable for deriving a nice expression of
the risk difference, like Part 1 of Theorem 2.2. It seemed
to us that the heat equation was an additional necessary tool
for investigating the Stein phenomenon of predictive density.
But it is not true, the heat equation is no longer necessary.
As seen in the proof of Theorem 2.2, only the Stein identity
or the Gauss divergence theorem is the key, as in the Stein
“estimation” problem.

The superharmonicity of f implies the superharmonicity of
Eyz, [f(tZ1 + u)]. Furthermore, using the relationship (29), we
see that the superharmonicity of Ez, [f(tZ; + u)] implies the
superharmonicity of

o(ut; f) = {Ez, [f(tZ1 + w)]}*?

for 8 € (0, 1). Hence, for Part 2 of Theorem 2.2, we have the
following corollary.

Corollary 2.1: Suppose f : R* — R, is superharmonic.
Then the predictive density ps(y|x; ) given by (20) as

flyz+ (1 —=7)y)
EZI [f(l‘ + ng)]

pr(yle;a) = pu(ylz; a),

dominates py(y|z; «).
In Section III, we will investigate the properties of the
Bayesian predictive density p,(y|x;«) where

F(u) = {max(u,v,7)}"?

is assumed in Theorem 2.2 and Corollary 2.1. Actually in this
case, Corollary 2.1 is not useful since the superharmonicity
of {my(u,v,v)}/? for B € (0,1) is very restrictive. Recall
the relationship given by (29). For example, the superhar-
monicity of m,(u,v,y) does not imply the superharmonicity
of {my(u,v,v)}'/?. Hence, in Section III, we will seriously
consider the superharmonicity of

o(u; t;m/P) = {EZ1 [{mﬂ(tzl + u,vx’Y)}l/ﬁ}}

Further, when 1/8 = 2/(1 — «) is not an integer,
Ez, [{ma(tZ1 +u,v,7)}*/#] in Part 2 of Theorem 2.2 is
not tractable for our current methodology in Section III.
Thus we propose a variant of Theorem 2.2 with f(u) =
{my (u,v,7y)}/?, for a non-integer 1/43 as follows. Let « be
the smallest integer among integers which is strictly greater
than 1/0,

B/2

k=min{n € Z|n>1/5}.
Then k — 1 < 1/8 < k. From Jensen’s inequality, we have
Ez, |:m}r/6(w +&(Z1+ 2), Uz’)’)}
= Bz, [{mis(w+&(Zy + 2),0,7)}/ )]
< {Ez, [m§(w+€(Zy + 2), 0}/,
since 0 < 1/(Bk) < 1 and hence

Ro{o(y — p,0y) || Bu(y|5 )}
— Ro{d(y — i, vy) || P (y ]+ )}

€1y

(1-p8)d/2
>r T
B —p)
B—1
mE(W +&6(Z1 4+ Z),v,7y) |
B
T » Yo

Applying the same technique starting (24) through (30) to the
lower bound above, we have a variant of Part 2 of Theorem
2.2.

Theorem 2.3: Assume 1/ is not a positive integer. Let x
be the smallest integer greater than 1/3. A sufficient condition
for diff Ry y » > 0 is

Ay {Ez, [mE(tZy + w07} <0,
VueRY 0<Vt<¢

where Z; ~ Ny(0, ) and

k—1/6+1
()= "M e 12, 32)
C. Asymptotics of the risk difference
In this subsection, using Theorem 2.2 with f = m}r/ o , we

investigate asymptotics of the risk difference

diff Ro v, = Ra {o(y — N7Uy) | Po(y|-5a)}
— Ro{o(y — ,“avy) | Dr(y]5 )}
where py(y|x; «) and p(y|z; ) are given by (16) and (17),

respectively. In the following theorem, we relate diff R, v~ to
diff R_1 v~ given in (9) and diff Ry , » given in (8).
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Theorem 2.4:

D lim diff Ryu» = diff R_1 o 5.
a——1+0

2) hrln dif Ro,v,x = diff Ry v x-
a—1—
3) lim ydlﬂRa um = —dlﬂ"RLUm.
Vg [Vy—+0 Vg Vg
Proof: [Part 1] Let v, = v,vy/(vg+vy). When o — —1
or equivalently 5 — 1, we have

1 M 2
’yﬁizv—andfzﬁ Y =V, — Vs
14+v, /vy vy Vg + Uy
and hence
9y (1-0)d/2 )
g {malw e} 2 (33)

which are parts of p(w, z) given by (22). Further, in o(t; u)
given by (23), we have

Ez, [mﬂ (tZl + u, Ua:'Y)] = Mg (uv VpY + t2)

(34)

— mg(u, v, + t2).
By (33) and (34), we have o(t;u) — m}rﬂ(u,v* +t?) and
Ez[p(w, Z)]

'Uz*'U* A 7'r N t2
%4/ / 1m (u, v, + )¢(u7w,t2)dudt
u /2 2
R (u, vy + 12)

‘ﬂ'

= 2/ / me (0. + 5) d(u — w, s)duds.
R ﬂ (u,vs + )

(35)

By (35), we have
Ew,z[p(W, Z)]

%2/ dw b(w - p,v.)

Vg — Vs 1/2
/ / —Aumr (U, v: + 5) o(u — w, s)duds
Rd mTr (u, ve + 8)

:2/ ds
0

_Au }r/z *
X{/ 177/1 (0 +S)¢(u—u,v*+8)dU}
]Rd

ma ?(u, v, + 5)
:2/ Ey

B A.my? (Z,v)
my/?(Z,v)
where Z ~ Ng(u,vI). The last equality follows from [5]’s
result which was already explained in (9) of Section I. Hence
we have

)

lim diff Ry u,» = dif R_1 v x.

a——1+0

[Parts 2 and 3] Consider the asymptotic situation where
(1—-a)vg/vy =0 < B(vg/vy) = 0 v — 1.

Note that Ez[p(w, Z)] is rewritten as the product p; (w)ps(w)
where
9(1-6)d/2

pr(w) = T{mw(w vay) PP,

Since &2 is rewritten as

1—7)2 1—7)° 2
62 —_ ( r}/) Uy _ ( r}/) ,Uy,y: &62'}/, (36)
v v Uy
we have
2
pr(w) = 22O (w0, v) O
Uy
and )
- _ ol 1/-1
%1_)ml p(w) = 2% {m(w,v,)} . 37
When v — 1, we have €2 — 0 by (36) and hence
. T —Ayo(Vsiu)
Bim pa(w) = limy {/Rd 1) O W 8)du
Auo(V's;u)
= /Rdgg% (92/5_1(\/5;@ O(u — w)du,
(38)

where d(-) is the Dirac delta function. By (38) and

B/2
lim o(v/s;u) = {/ m/B (uy + umz'y)é(ul)dul}
5— R4

y—1
= m;ﬂ(u,vw),

we have
: _(_ 1/2 1/2—1/8
%1_>ml p2(w) = ( Ayym (w,vm)) my (w,v,).(39)
By (37) and (39), we have

liy Ez[p(w, 2)] = lim p1 (w)pa(w)

0 AP (w, v,)
Uy ‘}r/ (w) ’UI) ’
which implies that

lim dif Ry » = diff Ry ¢ »
a—1 Y T

’Ug Awm}r/Q(W 'Uz)
=2—F 1/2

Uy (W, vz)

and

lim ¥ dif Ry v, = vldiﬁRl,U,W
Vg

Ve [Vy—0 Vg

=2uv,F

—Aymi (W, v,)
m71r/2 (M/u Uz) '

|
Therefore the asymptotic situation v, /v, — 0 corresponds to

the case o — 1 and A {m(z,v)}'/? plays an important role
for general o € (—1,1).
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III. IMPROVEMENT UNDER THE HARMONIC PRIOR
Under the harmonic prior my () = ||| ~(@=2), let

my(w,v) = ¢(w — p, v)mu (p)dp.

Rd
Let v be an integer larger than or equal to 2. The superhar-
monicity related to Ez, [m4(tZ1 + u,v)] with Z; ~ N4(0,1)
is as follows.
Theorem 3.1: Let ¢ € (0,1) and Z; ~ Ng4(0,1I). Let v be
an integer larger than or equal to 2. Then, we have

Au{Ez, [m4(tZy +u,v)]}" <0, VueR,

when 12
(d+2)(1—c)
<t<{ | —F—-—"— . 4
0= _( dv(v —1) (40)
Proof: See Section B in Appendix. ]

When 1/ is an integer larger than or equal to 2, namely,
a=0,1/3,1/2,3/5,2/3,...,
B8=1/2,1/3,1/4,1/5,1/6,...,

let v = 1/8, v = v,y and ¢ = 1/2 in Theorem 3.1 and
compare (40) in Theorem 3.1 with 0 < ? < &% = 202y /v,
in Theorem 2.2. If

B2, (d+2)(1—-¢)
VY = Uz
Uy dv(v —1)
or equivalently
Vg d+2 d+2

v, ~d(l+a) 2d(1-p)

my(w, v,y) satisfies the sufficient condition of Theorem 2.2
and we have the following result of the Bayesian predictive
density with respect to Stein’s harmonic prior 7y(p) =
l|2]|~(@=2), which is given by

1/B
my (v + (1 =)y, va) o
02 LU0 (g ),
Ez, |:mH (x+€Zlvv$fY)
Theorem 3.2: Suppose 2/(1 — «/) is an positive integer for
€ (—1,1). Suppose
Vg d+2

v, Sdi+a) “D

Pu(ylz;a) =

Then, under a-div loss, the Bayesian predictive density py(y |
x; ) with respect to the harmonic prior 7y (1) = ||| ~(¢=2)
dominates the best invariant Bayesian predictive density py (y |
zia) = ¢y — z,vy/7).
Remark 3.1: For any d > 3 and « € (—1,1), we have
d+2 1
-_— > .
dl+a) ™ 2
Note that, in most typical situations,
v 1
vy 2
is easily assumed as follows. Suppose that we have a set of
observations z1, ..., Z, from Ny(u,o2I). An unobserved set
Tptls-- -, Tntm from the same distribution is predicted by

using a predictive density as a function of zy,...,z,. From

sufficiency,

e=n1Yy " @i ~ Na(p, o1 /n),

y=m" Zi:l Tpyi ~ Ng(p,o?1/m)

and clearly v, /v, = m/n in this case. Since, m is typically
1 or 2 whereas n is relatively large, the condition (41) is
satisfied.

When 1/8 = 2/(1 — «) is not an integer, Theorem 2.3 can
be applied. Let x be the smallest integer greater than 1/4.
Suppose

(s (d + 2){1 — C(ﬁ)}vmV
ﬂQE%’Y = dr(k —1) ’

where ¢(f3) is given by (32) as ¢(8) = c({1 — a}/2) = {x —
2/(1 — &) + 1}/2, the left-hand side is the upper bound of ¢
of Theorem 2.3 and the right-hand side is the upper bound of
t of Theorem 3.1. When

v _(_2 d+21—{r—2/(1—a)}
vy ~ \l—a d 2k(Kk — 1) ’
which is equivalent to (42), my(w,v,7) satisfies the sufficient
condition of Theorem 2.3 and we have the following result.
Theorem 3.3: Suppose 2/(1 — «) is not an positive integer
for o € (—1,1). Let x be the smallest integer greater than
2/(1 — «). Suppose
ve (2 d+21—{k—2/(1-a)}
vy~ \1l—« d 2k(k — 1) '
Then the Bayesian predictive density py(y|x; ) with respect
to the harmonic prior 7y () = ||u|| (4~ dominates the best
invariant Bayesian predictive density py(y | ;) = o(y —
z,vy/7).

(42)

(43)

A. Discussion

By the definition of x, we have

1< 2 <
K — —— < K.
1

As 2/(1 — @) 1 K, the upper bound given by (43) approaches
(d+2)/{d(1+4 )} which is exactly the upper bound given by
(41) of Theorem 3.2. On the other hand, as 2/(1 —«a) { k—1,
the upper bound given by (43) approaches 0. Figure 1 gives a
graph of behavior of the upper bound of v, /v, under d = 4 for
improvement in Theorems 3.2 and 3.3. When a = —1, for any
ratio v,/ vy, minimaxity has been established by [3], which is
conformable to the limit, lim,—,_1(d + 2)/{d(1 + o)} = cc.
The undesirable discontinuity, found in Figure 1, is due to
Jensen’s inequality (31) which was not used in the proof of
Theorem 2.2.
Figure 2 gives a graph of the risk difference

diﬁRa,U,H = Ra {¢(y - /ffvvy) H ﬁU(y|'; a)}
= Ro{o(y — p,vy) [| Pu(yl50)},

for d = 4, vy, = 1 and the following 16 = 4 x 4 combinations
of o and v,

1

a=-—-,0

(44)

d+2

1
2T withb= -, 1,4,16.
d1+a) FAini

Ve =

1
2 7572’
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— —_ —
= (=] od]
L

—
o

upper bound of v, /v,
o o o :
L= [=2} oo —

o
o

N ///
1 08 06 04 02 0 02 04 06 08

o

Fig. 1. The upper bound of vz /vy in Theorems 3.2 and 3.3 in the case d = 4

For each case, diff R,  u is numerically calculated for ||u|| =
0,1,2,5,10. Details of the Monte Carlo calculation and the
meaning of error bars in Figure 2 are explained in Appendix
D and Remark 3.2 below, respectively. Note Theorem 3.2
guarantees minimaxity of py(y | ;) only when b < 1 and
2/(1—«) € Z. As in Figure 2, diff R,, , » for large || || may be
negative when o = 1/2 is large. Hence, there is a possibility
that the Bayesian predictive density py(y|x; o) with respect to
the harmonic prior 7y () = ||| ~(?=2) is not minimax when
« and v, /v, are large. This phenomenon seems related to a
recent work by Mukherjee and Johnstone [20] and hence we
make a brief comment in Remark 3.3 below.

Note, 2/(1—«) ¢ Z for a« = —1/2,2/5, and 2/(1—a) € Z
for o = 0,1/2. Since diff R, y u for b = 1 seems non-negative
even for « = —1/2,2/5, and there is little difference among
four cases with b = 1, we can naturally make a conjecture that
the upper bound of v, /v, for improvement, (d+2)/{d(1+a)},
of Theorem 3.2 is still valid even for 2/(1 — «) & Z. In order
to prove it theoretically, the methodology for appropriately
treating Ez, [{mu(tZ1 + u,v,7) /=] for 2/(1—a) ¢ Z
is needed and it remains an open problem.

Remark 3.2: In Figure 2, the numerical values of risk
differences are presented with Monte Carlo error bars. Here,
the error bar is defined as

[Lt *ST/\/T,ETJrST/\/T]
where 7' is the Monte Carlo sample size,

= _Lit--+Lr L3+ + L%
L= ——— _
T T

Namely, the probability that the true value of risk is contained
in the error bar is approximately 68% from the central limit
theorem. Therefore, even if the upper bound of the error bar
is smaller than zero, it does not immediately mean that the
risk difference is actually negative.

Remark 3.3: In Remark 3.1, we discussed the ratio v, /vy.
Here is also a remark related to the ratio v,/v,. Mukherjee
and Johnstone [21], [20] considered estimating the predictive
density under KullbackLeibler loss in an [y sparse Gaussian
sequence model. [21] explicitly expressed the first order

2 72
, and s7 = — L7.

3
N
%

minimax risk along with its exact constant and derived,
asymptotically least favorable priors and optimal predictive
density estimates. Also [21] pointed out that the future-to-
past variance ratio r vy /v, (Note that Theorem 3.2 is
stated in terms of v,/vy) is an important parameter of the
predictive estimation problem. The minimax risk increases
as r decreases: we need to estimate the future observation
density based on increasingly noisy past observations (in
relative terms, r = v, /v,), and so the difficulty of the density
estimation problem increases. In the same setting, [20] found
proper Bayes predictive density with asymptotic minimaxity
in sparse models. A big surprise is the existence of a phase
transition in the future-to-past variance ratio. For smaller r, the
natural discrete prior loses asymptotical optimality. Instead, for
smaller r, a “bi-grid” prior recovering asymptotic minimaxity
was proposed as an alternative.

In our case, Theorems 3.2 and 3.3 guarantee minimaxity
under smaller v, /v, or equivalently larger . When b is large
in most graphs of Figure 2, the risk difference, diff Ry, u,u
given by (44), is typically negative for larger ||1||. Hence there
is a possibility that the Bayesian predictive density py(y | z; o)
with respect to the harmonic prior my; () = ||| ~(*~2) is not
minimax when v,/ vy is large. However, taking the error bars
of the risk difference into account (see also Remark 3.2), we
cannot take sides whether there is a phase transition or not.

A possible direction for future research is to consider
asymptotics of the risk difference as v, /v, — oo, which
could not be successfully derived this time. If the asymptotic
expression suggests an existence of a phase transition, nat-
ural directions for future research include the derivation of
theoretical boundary of v, /v, of the phase transition and the
proposal of an alternative with minimaxity when py(y | x; )
is not minimax. The phase transition is also related to Remark
3.4 below.

Remark 3.4: In the same problem setting, Ghosh ef al. [22]
considered minimaxity of the empirical Bayes predictive den-
sity given by

pr(y|z; ) = d(y — {6-(2) }, vy + Buz),

where

5 () = (1 _ T(”56”2/U>> )

]| /vq

They showed that the predictive density p(y |x; 7) dominates
the best equivariant predictive density

pu(ylz;a) = oy — 2, vy + fog)

if the following two conditions on 7 are satisfied;

{T(t) € (0,2(d - 2))

45
7(t) is differentiable nondecreasing in ¢. )

In the estimation problem, this type of the sufficient condition,
(45), for improvement on the best equivariant procedure is
known as Baranchik condition [23]. Interestingly there is no
restriction on v, /v, in (45), or equivalently there is no phase
transition in [20]’s sense.
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=-1/2

d—+2
d(l + «)

vy = 1

[

6
d(1l + «)
2 T 2 T T

[12ll

Fig. 2. Risk differences for o = —1/2,0,2/5,1/2

APPENDIX A
MINIMAXITY OF py(y|z; @)

In this section, we show that

po(ylzsa) = oy —z,vy/7) = ¢y — , vy + Bvg)

is minimax, by following Sections II and III of [2]. We start
with the definition of invariance under location shift.

Definition A.1: A predictive density p(y | =) is invariant
under location shift, if for all @ € RY and all z, y, p(y + a|
z+a)=py|z).

Hence any invariant predictive density should be of the form

pylz) =q(y — )

which satisfies

/Rd q(y)dy = 1.

d+2

d(l + «)

0.3 T

0 2 4 6 10 0 2 4 6 10
[l 2ll A2 HA‘LH d+2
Vg = U, =
- d(l + «) * d(l + «)
1.5 T T T 2 T T T
1.5 B
1k i
0.5 B
ol
. . .
0 2 4 6 10
[leell il
a=1/2
v, = 0.25 d+2 Vg = 7(1 +2
* A1+ «) * d(1+ «)
0.3 T T T 1 T T T
0.2 -
0.1} -
0
L L L
0 2 4 6 8 10
el 4o
v, =427 <
- d(1 + «)

Clearly py(y|x; ) is invariant under location shift. Note that
invariant procedures have constant risk since the risk of the
invariant predictive density q(y — ) is

Ro{d(y — p,0y) |l gy — )}

/ oz — 1, v,)
X/(/R I (W) Hy—n ’”“dy} W 46)
=/ (22, V)
( [ 5 (W) ¢<zy7vy>dzy) dz,

where 2, = x — p and 2, = y — p, which does not depend on
1. More specifically, the risk of the invariant predictive density
q(y — z) is as follows.

Lemma A.1: The risk of an invariant predictive density q(y—
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x) is
Ro{o(y — p,vy) |l gy — )}

_ ~(1=p)d/2
= 15(717—5) + 7(1—5)d/2Da {o(2,vy/7) 1] q(2)}
47)

Proof: By (46) and the definition of a-div loss,

B(L=B)Ra{dly — p,vy) Il aly — )}

=1- /d/ By — 2)¢P (y,vy) Pz, v, ) dxdy.
By the 1dent1t]1§/ (15) with = 0, we have

o) (ma 'Uw) ¢B<y’ Uy)
= I=P2 (v (1 — )y, va7) 7 (y — , vy /7),
and hence

B(1 = B)Ra{P(y — 1, vy) || a(y — )}

_ 15)d/2// 1=6(y
Rd

x ¢ (y — 2, vy /7)(yz + (1 = )y, vzy)dady.
By the change of variables,

w\ _ (vla (Q—7)1g) (=
z) \—Ia Iy Yy
where Jacobian of the matrix is 1, we have

Ro{o(y — p,vy) |l q(y — )}
__ 1 {1 H1=8)d/2

/Rd / (2,0y/7)0 (w,vw)dzdw}

ﬁu—ﬁ){lw )d/2Adq1B(Z)gbﬁ(zvvy/,y)dz}

_ ~(1=p)d/2
_ 15(717—6) +y0=P2D L (z,0,/7) || q(2)} .

|
In 47) of Lemma A.l, D, {¢(z,vy/7) || ¢(2)} is non-
negative and equals zero if and only if ¢(z) = ¢(z,vy/7).
Hence the best invariant procedure is py(y | z;a) = ¢y —
x,vy/7), where the constant risk is

1 —H(1=P)d/2
A -5)

Since the risk is constant for invariant predictive density, the
best invariant py(y | ;) is the minimax procedure among
all invariant procedures. If a constant risk procedure is shown
to have an extended Bayes property defined below, then it is,
in fact, minimax over all procedures. See Theorem 5.18 of
Berger [24] and Theorem 5.1.12 of Lehmann and Casella [25]
for the detail.

Definition A.2: A predictive procedure p.(y | z) is called
extended Bayes, if there exists a sequence of Bayes procedures
P, (y | x; ) with proper prior densities 7.(u) forc=1,...,
such that their Bayes risk differences go to zero, that is,

tim ([ Rty = o) 11501l

- [ Rotoly = o) 1 0] 500 e ) = .
Recall that
1/8
pelvlaia) o { [ 6= mu)ote - pninin
(48)
for $ = (1 —a)/2 and @ € (—1,1). Under the prior p ~

Ng(0, {cv,y}T) with the density 7.(1) = ¢ (p, cugy), we have
the identity

Oy — p1,vy) ¢ (x — 11, v2) G(p1, cvg)

_ (1t d(lfﬁ)“(ﬁ _ et A=)y cvay
1+c¢ H

1+e¢ "14c¢
cyx 1+c¢
x ¢? [y - Oy
1+cey 1+ey
and hence

{/Rd P (y — p,vy)p(z — 1, Uw)”(u)du}l/ﬁ

d(1-B)/2 L/8
1+cy
= 1
{(1+c) (v +cv))}
cyx

¢ 1+ec
-,V .
R

By (48) and (50), the Bayesian solution is

b ( ‘ )= cy 14+c
™ T,x) = - x,v
Pr Y Y 1+ cy y1+w

Furthermore, by the identity (49), the product of (1
the Bayes risk of p,_(y|z; ), is given by

L LS

X ¢ (x — p,vz) Oy — w1, vy) (1, cvgy)dadydp

:1_/w /Rd /Rddxdydud)(x—u,vm)éb(ﬂacvx’ﬁ

15[, &Y 1+e) 8o _
X ¢ (y Tr e T o O (y — p,vy)

(1-p)/2
()" L f o
R4 JRd JRA
X ¢

et (1 =)y cvny
"14c¢

(N 1+c¢
( ) b (@, 0.1+ 7))

) 6 (2,001 1 7))
(49)

(50)

— ) and

YT 1+c¢
X ¢ , Uy
1—|—ny 1+cy
_, 1+ ey d(1-8)/2
- 1+c ’

which approaches 1 — (1=)4/2 a5 ¢ goes to infinity. Hence
pu(y|z; a) is extended Bayes and hence minimax.

Y-

APPENDIX B
PROOF OF THEOREM 3.1

Recall the identity

—(d—2) _ > d/2—2 ||NH2
[l =b[| g exp dg
0 2v
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for any v > 0, where b = 1/{I'(d/2—1)2%/2~1y%/2=1}, Then
we have

Mg (w, v

~

= | d(w— p,0)|p|"Ddu
R4

> 1
_ d/2—2d
/0 g g/Rd (2m)d/2d/2
w—=pll>  Jlul?
- - d
X exp ( 2v g 2v H
o dj2—2 2
g gllw|
SN B ey (||
/o (1+ )72 eXp( 2(g + 1o

1 2
— b/ )\d/2—2 exp (_)\”U}I ) d)\7
0 2v

where the third equality is from the relation of completing
squares with respect to u

(S

lw = pll* + gll®
(g + Dl —w/(g+ DI +{g/(g + D} wl?

and the fourth equality is from the transformation A = g/(g+

1).

Note that mY (w, v) for a positive integer v is expressed as

my(w,v)

d/2—2 i Aillwl? ,
/ HA exp ( " 1T ax,

Du =1
where D, is v-dimensional unit hyper-cube. In the following,
d\ denotes [];_, d\; for notational simplicity. Furthermore
the subscript and superscript of [[ and ) is omitted for
simplicity if they are ¢ = 1 and ¢ = v respectively. Hence
mY (w,v) in the above is written as

_ Ai 2
mé’l(w,v):b”/D HA;UQ 2exp (—Z le” )d)\

For the calculation of
Eg, [mY(tZy + u,v)] = / mY(z 4 u,v)p(x, t*)dx
Rd'

under Z7 ~ N4(0, I), note the relation of completing squares
with respect to =z,

(A llo+ul?

v 12

ol _ 1

LIS il -l + sl

1 Sh P s s
= - )\z )
v{(z +s) A+ UH Jrz)\i—i—s”u”
(52)
where s = v/t2. Then, by (52), we have
4
2 d/QEzl[ ;(tZl +u7v)]

d/2—2 4 2
Y (S 5 Y 1 P
p, N+ s)d/2 v Ni+s) 2
Re-define u := {s/v}'/?u and let

Y(u;v, s)

“J,

YA (53)

HW ’ e JJull?
Y Nits 2

By (29), the super-harmonicity of {Ez, [m%(tZ + u,v)]}*”

with respect to u € R? is equivalent to
(S -1) IVl + A0 <0, VueR"

The integrand of i given by (53) is denoted by

CA) =C(A1,-.,N)
B H/\d/Q 2 Z)\
TN sy p< Shits >

where z = ||u||2/2 Then we have

gt == [ C

forj:l,...,dand

M /C { ZA+$+U?<ZZ>\:1/\Ji5)2}d)"

Noting z = ||lu|?/2, we have
PORY

IV = 22 ( / <<A>de)2

=22 (/C(A)Z:HdA)Q

(54)

and
d/(j A2 /g (ZAJF)Z(M
— v / ((/\)ﬁdAJr 2 / g(A)(ZAﬁS)QdA
+2w(v—1)z /g Ziﬂj o d.

(55)

In (54) and (55), the second equalities are from symmetry with
respect to A;’s.
Let

(s jas 1) = / N A+ 8¢ A,
D,

n(jml):/pl 1/\j2<1+z /\—|—s>
del,

where j; and jo are nonnegative integers. Then ||V,¢|? and
Ayt given by (54) and (55) is rewritten as
HVUQZJHQ = 21/2'Zp(17 Oa 71)25
Auw = —de(l, 07 _1) + 21/27/)(2, 07 _2)
+2v(v —1)zp(1,1,-2).

XC ]. )\2,...

(56)

Here are some useful relationships and inequalities.
Lemma B.1:

Szp(j17j27l)
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p(0,0,1) =vp(1,0,1 — 1) + sp(0,0,1 — 1), (58)

77(07 1)/7(07 07 *1) > 77(07 O)P(O, Oa 0)7 (61)
p(1705 _1) 1

> . 62

p(1,0,0) ~ vd/(d+2)+s (62)

Proof: See Section C in Appendix. ]

Applying the identity (57) to ||V,¢||? and A, given in (56),
we have

5||Vu1/)||2 = QVQ{SZP(L 0, _1)}0(17 0, _1)
=12p(1,0,-1)
x{=2n(0,1) 4+ (d —2)p(0,0,1) — (d — 2)p(1,0,0)}

and

sAL

=v(v—-1){-2n(1,0) + (d — 2)p(1,0,0) — dp(1,1,-1)}
+u{—25(0,0) + dp(1,0,0) — dp(2,0, —1)}
—dvsp(1,0,—1)

= o — 1)(d - 2)p(1,0,0) — 20{n(0,0) + (v — (1, 0)},

where the second equality of sA, % follows from (59). Then
we have

j(“”llvuw%muw)

= (v —1¢)p(1,0,-1)
x [27(0,1) — (d — 2){p(0,0,1) — p(1,0,0)}]
—2{n(0,0) + (v — 1)n(1,0)}p(0,0,0)
+ (v —=1)(d —2)p(1,0,0)p(0,0,0).

(63)

By applying (58), (60) and (61), the terms of (63) including
n(-,-), divided by 2, is

(v —c)n(0,1)p(1,0, 1)
— {n(0,0) + (v — 1)n(1,0)}p(0,0,0)
= (v —)n(0,1)p(1,0,-1) — {n(0,1) — sn(0,0)}p(0,0,0)
= (v = ¢)n(0,1)p(1,0,—1) + sn(0,0)p(0,0,0)
—n(0,1) {rp(1,0,-1) + sp(0,0, —1)}
= —cn(0,1)p(1,0,-1)
—5{n(0,1)p(0,0,—1) —n(0,0)p(0,0,0)}
<0, (64)

where the first equality follows from (60), the second equality
follows from (58) and the inequality follows from (61).

The terms of (63) not including 7(-, -), divided by (d — 2),
are rewritten as

(v =) {=p(0,0,1) + p(1,0,0)} p(1,0, 1)

+ (v —1)p(1,0,0)p(0,0,0)
— —(v— ) — Dp(1,0,0)p(1,0,~1)

— (v —¢)sp(0,0,0)p(1,0,-1)

+ (v — 1)p(1,0,0)p(0,0,0)
(v—oc)s

- {yd/(d—|—2)—|—3 - (= 1)} p(1,0,0)p(0,0,0)

1-¢s—v(v-1)d/(d+2)
= — 1,0,0)p(0,0,0
vdj(d12)+ s p(1,0,0)p(0,0,0),
which is nonpositive for s > v(v — 1)d/{(1 — ¢)(d + 2)},
where the first equality follows from (58) and the inequality
follows from (62).
By (64) and (65), we have

(S = D) IVarl? + 9Aup <0, VueR!

(65)

or equivalently
Ay {Ez, [m4(tZy + u, )]} <0, VueR,
when t < {(d + 2)(1 — ¢)v/{dv(v — 1)}}/2.

APPENDIX C
PROOF OF LEMMA B.1

Note

oo (5 1s)
sz D2
__(Z&H)?exp( Zkﬁs)'

Then, by an integration by parts, we have
1
sz / M X+ 9) (A
0

e amasel || PV / dAg A2
i=3 0
_ 0 z )\z
X(Z)\i+5)l d/2+2{3>\1€Xp (_Z§+S>}
_ _pd/2rde H )\g/2—2

1=3
d/2—2+7
)\1/ +J1

[Part of (57)]

1
8 l(z X + 5)- a2z P (‘zxi + s> .
1 .

—(d/2 -2 +j1)/ )\?/2734’]1(2 A + s)l—d/2+2

0

X exp (Z%‘F 3) dX\;

1 .
—(1—d/2+2) / AT TN ) T
0

X exp (—5%_):8) d)\l} .

(57) follows from integration with respect to Ag, ..
both hand side of the above equality.

., Ay in the
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[Parts of (58), (59) and (60)] The equalities (58), (59) and
(60) easily follows from symmetry with respect to A;’s.

[Part of (61)] Note that (61) is equivalent to

77(07 O)p(oa 07 O) - 77(07 1)p(0a 07 71)
= {p(o’ 0, O) - p(07 0, _1)}77(07 1)
- {77(07 1) - 77(07 0)}P(0, 0, O)

:/Dufll()g,...,)\l,)il;[gd)\i/puflg(fg,...,f,,)gd@
_/Duflg()\g,...,)\l,)i_l_[QdAi/Duj}(fg,...,{l,)i_l_[ngi

<0,
where

! 1
fl()\27~--7)‘u):/0 (1—Z)\+>C(>\1,---7)\u)d)\1
fola, &)= (14 ) & +5)((Lé,....&)
f3(a, .. .,AU) = Nt Az )

1
f4(527...,£y>=/0 C(Ers. . 6)dE.

Since both 1 — 1/ (>_ A; + s) and >_ \; + s are increasing in
each of its arguments, we have

{1—1/(Z>\i+s)} 1+Z & +s)

<

- {1_ MV +3>7,_ 2(X\/§z‘)+5}
{Al\/l +Z (A V&) -l—s}
—Z (N V&) + s,

where V is the maximum operator, i.e. A;VE; = max(\;,&;). In
the following, A denotes the minimum operator, i.e. A; A&; =
min(A;, &;). Note that a function h: RY — R is said to be
multivariate totally positive of order two (MTP2) if it satisfies

h(z1,...,z)h(y1,. ..
<h(xiVy,...

(66)

7yV)
y Ty Vy ) h(xr Ayr, ..o T AYy)

for any z,y € R”. By Lemma C.1 below, ((\1,...,A,)
is MTP2 as a function of v-variate function and hence the
inequality

CAL, - A)C(L, 62, -, 60)
<M VLAV, A VE)
XCAL AL A AL, .., A AEY)
=C(1,AaV&,....,\, V&)
X C( A, A A&y A ANE)
follows. By (66) and (67), we have

fl()\g, ce A,/)fg(gg, .. fz/)
1
S/o {{ZlZQ(AzVé-z)‘i‘S}C(l,)\Q \/fg,...,)\y\/&,)

% C(A1, Ay Asz,...,AVA5V>}dA1
= fg(/\g vgg,...,Avay)f4()\2 /\52,...,/\1,/\51,).

(67)

From Theorem C.1 below, shown by Karlin and Rinott [26],
the theorem follows.

[Part of (62)]
p(L,

By Jensen’s inequality, we have

A¢(A)

dx
100 /A1+Zz 5 Ai +5p(1,0,0)
1 (68)
p(2,0,0) p(1,1,0) =~
i ~1
o100 Vo000

Let f be a probability density given by

) = dfd_, v \d/2-1 - \d/2-2

y\v) — 2 2 - 1 H 7 )
i=2

which is clearly MTP2. Also let

91(/\17 ey /\u) = )\1,
exp (s2/{2°Ai + s})
9, S
(>" N+ 8)/
which are both increasing increasing in each of its arguments.

Hence, by so-called FKG inequality given in Theorem C.2
below,

/ gl(Al,...,Ay)g2()\1’...7)\V)f()\1’-~-’)\y)dA
D,

FOs..

7)\1/):_

Z/ g1(>\1,...7>\,,)f(>\1,...7>\,/)d)\
D

v

X/ gg(>\1,...7>\u)f(>\1,...7>\V)d)\
D,

or equivalently

fDV 91()\1, .. .,)\V)gg(Al, .. .,Au)f(Al, NP
ny g2(A17 .. .,Ay)f(Al, .. ,Ay)dA

g/ GO, A F O AN,

v

L A)dA

since go < 0. Since p(2,0,0)/p(1,0,0) is expressed as
p(2,0,0)
p(1,0,0)
o, 910,
n fDVgg(/\l,...

S A)g2(A1, - A F( A, - A)dA
aAl/)f(Alr"aAl/)dA ,

we have
p(2,0,0) d

< .
p(1,0,0) — d+2 (©9)

Similarly we have
p(1,1,0) d—2< d
p(1,0,0) d —d+2
Hence, by (68), (69) and (70), we have
p(1,0,—1) S 1
p(1,0,0) ~ wvd/(d+2)+s
Lemma C.1: Let
ol

IN

(70)

H}\d/Q 2
(>N + s)%/2
,Ay) is MTP2.

s

Then ¢(Aq, ...

)= A >

SAi+s
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Proof: Note

exp (‘fﬁ) _ exp(—2) exp (ZH) |

From the form of (, we have only to check
(Saes) (e
> (Z)\Z \/§i+s) (Z/\M@- +s)

or equivalently

(50) (6) = (S0 ve) (Shns).

We have

(Z >\i> (Z fi) - (Z Ai V fz‘) (Z A A fi)
=D NG+ NE - NV E) N AE)
i#£j
(A VEINAG)L
Without the loss of generality, assume A; > &;. Then we have
A&+ A& — (N V&N AE) — (A VE) (A A&)
= Ni&G A& — NN AE) — (A V€S

= A& — (G NG =Gl VE) — A
=N = &G — (g}
>0,
which completes the proof. ]

Theorem C.1 (Theorem 2.1 of [26]): Let f1, f2, f3 and f4
be nonnegative functions satisfying for all z,y € R”

fi(@) f2(y) < fa(z Vy)fa(z Ny).
Then

/fl(x)dx/fg(x)dx§/fg($)d$/f4(m)dx.

Theorem C.2 (FKG Inequality, e.g. Theorem 2.3 of [26]):
Let f(z) for x € R” be a probability density satisfying MTP2.
Then for any pair of increasing functions g1 (z) and g2 (x), we
have

[ @@ i@z [a@iea [ oo

APPENDIX D
NUMERICAL EXPERIMENTS

We numerically computed the risk functions of py(y|x; ),
Bayesian predictive densities with respect to the harmonic
prior, by Monte Carlo method:

1 T
Ra {qﬁ(y - /1'7/03,/) || ﬁH(?J'aa)} ~ T ZLh
t=1

L- g, (Bl
t=/ <¢(yt—u,vy) ’

where x1,---,x7 and yi,---,yr are ii.d. samples from
Na(p, vzI) and Ng(p,vyI), respectively, and f, is defined
by (6). Let

_ L e+ L 24+ ...+ 12 _
L — 1+T+ T,ands%:%_@

be the sample mean and sample variance, respectively. We
found that s2 may become large, especially when v, /v,
is large. Thus, we determined the Monte Carlo sample size
T adaptively as follows. First, we did Monte Carlo with
sample size 100. Next, if the estimated coefficient of variation
s7/(VTLr) was larger than 0.05, we continued sampling
of z; and y; until the estimated coefficient of variation
became smaller than 0.05. In computing the value of Bayesian
predictive density with respect to the harmonic prior at some
point, we used the formula (17) of Theorem 2.1 with my; (w, v)
given by (51). Here, we computed the denominator of (17) by
using Monte Carlo method with adaptively chosen sample size
N: first N was set to 10% and then increased until the estimated
coefficient of variation became smaller than 0.001.
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