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Abstract

This paper is concerned with reduction of the order of finite-dimensional stabilizing controllers for a class of distributed
parameter systems. Since the middle of the 1980’s, the design method of finite-dimensional stabilizing controllers of Sakawa
type has been generalized for a wider class of parabolic distributed parameter systems with boundary control and/or boundary
observation. The controller of Sakawa type consists of two kinds of observers: one is an observer of Luenberger type and the
other is an estimator for residual modes. Especially, the latter is called residual mode filter (RMF), and it plays an essential
role in the design of finite-dimensional stabilizing controllers when the order of RMF is “sufficiently large”. The purpose of
this paper is to propose the design method containing low order RMF. An approach based on stability radius is employed.

Key words: Distributed parameter system; finite-dimensional controller; residual mode filter; stability radius; semigroup.

1 Introduction

In the control theory of distributed parameter systems,
the system described by the following evolution equation
with output equation has been used for a long time.

ż(t) =−Az(t) +Bu(t), t > 0, z(0) = z0, (1)

y(t) =Cz(t), t > 0, (2)

where −A is the infinitesimal generator of a C0-semi-
group on a real Hilbert space H with inner product
⟨ · , · ⟩ and norm ∥ · ∥. B : Rm → H and C : H → Rp

are bounded linear operators. z(t) ∈ H is the state
variable, u(t) ∈ Rm the input variable, and y(t) ∈ Rp

the output variable. For systems (1)–(2), the sta-
bilization problem by finite-dimensional controllers
have been investigated by many researchers (see e.g.
[17,6,22,15,1,9,12,18,7,11,8] and the references therein).
Generally, when one constructs a finite-dimensional
model for an infinite-dimensional system and applies
a finite-dimensional controller to the original infinite-
dimensional system, spillover phenomenon may occur

⋆ This research is supported by KAKENHI (Grant-in-Aid
for Scientific Research (C), No. 15K04999), Japan Society for
the Promotion of Science. The material in this paper was not
presented at any conference. Corresponding author H. Sano.

Email address: sano@crystal.kobe-u.ac.jp (Hideki
Sano).

due to the influence of unmodeled modes. Sakawa first
introduced two kinds of finite-dimensional observers
for linear diffusion systems to reduce the influence of
unmodeled modes for the closed-loop system with the
finite-dimensional controller [17]. Then, Balas called
one of them the residual mode filter (RMF), and clar-
ified that the RMF plays an essential role for the con-
struction of finite-dimensional stabilizing controllers
[1] 1 . Furthermore, Sano and Kunimatsu showed that
the method could be extended to infinite-dimensional
systems with Aγ-bounded output operators [18]. In
those papers, by choosing the order of the RMF “suf-
ficiently large”, the closed-loop stability was assured.
Independently of Sakawa’s work [17], Curtain gave a
design method for finite-dimensional stabilizing con-
trollers for linear parabolic systems with unbounded
control and observation [6], in which Schumacher’s de-
sign method [22] for the case with bounded control and
observation was extended to the unbounded case. Since
there was no upper bound on the order of controller
in both works [22,6], they used the perturbation result
of Weinstein-Aronszajn determinant [13] to make the
controller design feasible. After that, Fuentes and Balas
applied the perturbation theory of operators to obtain
the lowest order of RMF [11]. Also, in [8], the method

1 For nonlinear distributed parameter systems, Balas also
introduced nonlinear RMFs to construct finite-dimensional
stabilizing controllers [2].
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of LQG-balancing was developed for model reduction of
a class of infinite-dimensional systems, and the method
was successfully applied to construct robust controllers.

In this paper, we consider the problem of reducing
the order of RMFs in finite-dimensional controllers of
Sakawa type, under the assumption that the eigenvalues
and eigenfunctions of the state operator are completely
known. As a technical tool, we use stability radius the-
ory [16,4], and the approach is different from that of [11].
First of all, we survey the Sakawa’s design method [17]
and then give the modified version using the stability ra-
dius. But, to calculate stability radius, we need the value
of H∞-norm of a transfer function whose realization is
described by infinite-dimensional operators in a Hilbert
space. From the computational point of view, we need
to prepare a family of approximate finite-dimensional
operators and then to calculate the H∞-norm of their
transfer functions. However, it is not assured that they
converge to the value of H∞-norm of the original trans-
fer function. The purpose of this paper is to justify the
convergence and to propose an algorithm to reduce the
order of RMFs. In addition, the case where the bounded
output operator is replaced by an Aγ-bounded out-
put operator is discussed. Finally, we give a numerical
example to demonstrate the validity of the theory.

2 Sakawa’s design method and its modification

2.1 System description

To explain the existing result [17,1] briefly for system
(1)–(2), we consider the case where the operator A is
defined by

Af =

∞∑
i=1

λi⟨f, ϕi⟩ϕi, f ∈ D(A),

D(A) =

{
f ∈ H ;

∞∑
i=1

λ2i ⟨f, ϕi⟩
2
< +∞

}
, (3)

where {λi, i ≥ 1} is a sequence of real numbers such that
λ1 < λ2 < · · · < λi < · · · , limi→∞ λi = ∞, and {ϕi, i ≥
1} is a complete orthogonal system in H. From the def-
inition, it is clear that the operator A is self-adjoint on
H. By using Hille-Yosida’s theorem [24,10], we see that
−A generates the C0-semigroup e−tA whose expression
is given by e−tAf =

∑∞
i=1 e

−λit⟨f, ϕi⟩ϕi, t ≥ 0, f ∈ H.

2.2 Partitioned system

In order to derive a finite-dimensional model for system
(1)–(2), we use the orthgonal projection Pk defined by

Pkf =
∑k

i=1 ⟨f, ϕi⟩ϕi. Here, using the operators Pl and
Pn (n > l), we decompose system (1)–(2) as follows:
First, we decompose the state variable z(t) as z(t) =

z1(t) + z2(t) + z3(t), where z1(t) := Plz(t), z2(t) :=
(Pn − Pl)z(t), z3(t) := (I − Pn)z(t). Then, the state
space H has the expression

H =

dim=l︷︸︸︷
PlH ⊕

dim=n−l︷ ︸︸ ︷
(Pn − Pl)H ⊕

dim=∞︷ ︸︸ ︷
(I − Pn)H .

Accordingly, system (1)–(2) is expressed as follows (e.g.
[1]):
ż1(t) = −A1z1(t) +B1u(t), z1(0) = Plz0,

ż2(t) = −A2z2(t) +B2u(t), z2(0) = (Pn − Pl)z0,

ż3(t) = −A3z3(t) +B3u(t), z3(0) = (I − Pn)z0,

y(t) = C1z1(t) + C2z2(t) + C3z3(t),

(4)

where A1 := PlAPl, B1 := PlB, C1 := CPl, A2 :=
(Pn−Pl)A(Pn−Pl),B2 := (Pn−Pl)B,C2 := C(Pn−Pl),
A3 := (I − Pn)A(I − Pn), B3 := (I − Pn)B, C3 :=
C(I −Pn). In the above, the operator A3 is unbounded,
whereas all the other operators are bounded 2 .

Hereafter, we identify the finite-dimensional Hilbert
space PlH with the Euclidean space Rl with respect
to the basis {ϕ1, ϕ2, . . . , ϕl}. In this way, each element
in PlH is identified with an l-dimensional vector, and
the operators A1, B1, and C1 are identified with ma-
trices with appropriate size. Similarly, each element in
(Pn − Pl)H is identified with an (n − l)-dimensional
vector, and the operators A2, B2, and C2 are identified
with matrices with appropriate size.

2.3 Finite-dimensional controllers with RMFs

For the decomposed system (4), we consider the finite-
dimensional system

{
ż1(t) = −A1z1(t) +B1u(t),

η(t) = C1z1(t),
(5)

as a finite-dimensional model of system (1)–(2). For the
model, we set the following assumption.

Assumption 1 (i) The integer l (≥ 1) is chosen such
that the eigenvalues of the matrix −A1, σ(−A1) contains
all unstable eigenvalues of the operator −A. (ii) The pair

2 The projections have been widely used. For example,
Byrnes et al. solved the output regulation problem for a class
of infinite-dimensional systems [3]. Christofides and Daou-
tidis applied approximate inertial manifolds to the stabiliza-
tion problem of semilinear distributed parameter systems [5].
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(−A1, B1) is controllable and the pair (C1,−A1) is ob-
servable (see e.g. [25] for the definitions and the related
theorems).

Remark 1 The second assumption (ii) can be relaxed
as (ii’) The pair (−A1, B1) is stabilizable and the pair
(C1,−A1) is detectable.

Under (ii) of Assumption 1 (or (ii’) of Remark 1), we can
choose a matrix F1 such that −A1 − B1F1 is Hurwitz,
and we can choose a matrix G1 such that −A1−G1C1 is
Hurwitz (e.g. [25]). Here, we consider the observer-based
controller
ẇ1(t) = (−A1 −G1C1)w1(t) +G1y(t) +B1u(t),

w1(0) = w10,

u(t) = −F1w1(t).

(6)

The control law (6) works as a stabilizing controller for
the finite-dimensional model (5), however, it is not as-
sured for the original system (1)–(2). For that reason, we
use an RMF (7) together with the control law (6). Then,
the whole controller is described as follows (see Fig. 1):{

ẇ2(t) = −A2w2(t) +B2u(t), w2(0) = w20,

ŷ2(t) = C2w2(t),
(7)

ẇ1(t) = (−A1 −G1C1)w1(t) +G1(y(t)− ŷ2(t))

+B1u(t), w1(0) = w10,

u(t) = −F1w1(t).

(8)

Then, the following result is well-known.

Distributed Parameter
System

RMF

Observer-Based
Controller

u(t) y(t)

y(t)
2

>

Fig. 1. Closed-loop system.

Theorem 2 [17,1] Suppose that Assumption 1 is satis-
fied and let another integer n be chosen such that n > l.
Then, the control consisting of (7)–(8) becomes a finite-
dimensional stabilizing controller for system (1)–(2), if
the integer n is chosen sufficiently large.

Remark 3 In [18], Theorem 2 was extended to the sys-
tem whose output operator was Aγ-bounded.

2.4 Modification of Theorem 2

Let us introduce new variables e1(t) := z1(t) − w1(t)
and e2(t) := z2(t)−w2(t). Then, the closed-loop system
consisting of system (1)–(2) and the controller (7)–(8) is
written as

ξ̇(t) = (A+ BKC)ξ(t), ξ(0) = ξ0, (9)

where the state ξ(t) := [e1(t)
T , e2(t)

T , z1(t)
T , z2(t)

T ,

z3(t)]
T belongs to the real Hilbert space Z := Rl ×

Rn−l ×Rl ×Rn−l × (I − Pn)H, and the operators A,
B, C, and K are defined by

A =



−A1 −G1C1 −G1C2 0 0 0

0 −A2 0 0 0

B1F1 0 −A1 −B1F1 0 0

B2F1 0 −B2F1 −A2 0

B3F1 0 −B3F1 0 −A3


,

B =



−G1

0

0

0

0


, C =

[
0 0 0 0 C3

]
, K = 1. (10)

Then, we have the following modified result for Theorem
2:

Theorem 4 Suppose that Assumption 1 is satisfied and
let another integer n be chosen such that n > l. Then,
the operatorA defined by (10) generates an exponentially
stable C0-semigroup etA with norm bound ∥etA∥L(Z) ≤
Me−νt, t ≥ 0 on Z, where M ≥ 1 and ν > 0 are some
constants independent of the integer n. If the integer n
is chosen such that the inequality

∥C(·I −A)−1B∥∞ := sup
ω∈R

∥C(jωI −A)−1B∥ < 1 (11)

is satisfied, the control law (7)–(8) becomes a finite-
dimensional stabilizing controller for system (1)–(2).
Especially, when the integer n is chosen sufficiently
large, the inequality (11) is always satisfied, that is,
the control law (7)–(8) works as a finite-dimensional
stabilizing controller for system (1)–(2).

Proof. The proof of the first assertion follows by us-
ing techniques similar to those in [18]. The remainder of
the proof is due to the result with respect to the stabil-
ity radius [16,4]. As shown in [16,4], the stability radius
rc(A;B, C) of the closed-loop system (9) is calculated as

rc(A;B, C) = 1

supω∈R ∥G(jω)∥
=

1

∥G(·)∥∞
,
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where G(jω) := C(jωI − A)−1B. Therefore, when
rc(A;B, C) > ∥K∥ = 1, i.e., the condition (11) holds, the
second conclusion of the theorem immediately follows.

In order to prove the third assertion, we use the Hille-
Yosida’s theorem [24,10]. Since the operatorA generates
the C0-semigroup etA with norm bound ∥etA∥L(Z) ≤
Me−νt, t ≥ 0 on Z, we have ∥(jωI − A)−1∥L(Z) ≤ M

ν

for all ω ∈ R, which implies that ∥(·I −A)−1∥∞ ≤ M
ν ,

where M ≥ 1 and ν > 0 are some constants indepen-
dent of the integer n. Here, noting that ∥B∥ = ∥G1∥ does
not depend on n and that ∥C∥ = ∥C3∥ → 0 as n → ∞,
we have ∥C(·I − A)−1B∥∞ ≤ ∥C∥∥(·I − A)−1∥∞∥B∥ ≤
∥C3∥∥G1∥M

ν → 0 as n → ∞. Therefore, it follows that

there exists an integer n1 such that ∥C(·I−A)−1B∥∞ < 1
for all n ≥ n1. In other words, for all n ≥ n1, the control
law (7)–(8) works as a finite-dimensional stabilizing con-
troller for system (1)–(2). The proof is thus complete. 2

Remark 5 The version without RMF for Theorem 4 has
been given in [9]. Note that in [9] finite-dimensional sta-
bilizing controllers are not always obtained by increasing
the integer l.

In Theorem 4, we note that the algorithm needs itera-
tion of infinite times to check the condition (11), since it
contains the infinite-dimensional operators A3, B3, and
C3. In Section 3, we discuss whether or not it is possi-
ble to approximate the operators A3, B3, and C3 of the
theorem by finite-dimensional operators. Moreover, in-
stead of (2), we discuss the case with unbounded output
operator such as

y(t) = C̃(A+ c)γz(t), 0 < γ < 1, (12)

where A is the unbounded operator defined by (3), C̃ :
H → Rp is a bounded linear operator, and c is a constant
chosen such that λ1+c > 0. Here, note that, by using the
fractional power of the operator, parabolic distributed
parameter systems with boundary observation are for-
mulated as system (1) and (12) (see e.g. [15]). Such a
formulation allows for the study of a much broader class
of distributed parameter systems.

3 Main result

By using the orthogonal projection Pk defined in Section
2, we decompose the state variable z(t) as z(t) = z1(t)+
z2(t) + z3a(t) + z3b(t), where z1(t) := Plz(t), z2(t) :=
(Pn − Pl)z(t), z3a(t) := (PN − Pn)z(t), z3b(t) := (I −
PN )z(t), N > n > l. Note that z3a(t) + z3b(t) = z3(t).
Also, the space H is expressed as

H =

dim=l︷︸︸︷
PlH ⊕

dim=n−l︷ ︸︸ ︷
(Pn − Pl)H ⊕

dim=N−n︷ ︸︸ ︷
(PN − Pn)H ⊕

dim=∞︷ ︸︸ ︷
(I − PN )H︸ ︷︷ ︸

=(I−Pn)H

.

Then, the infinite-dimensional operators A3, B3, and C3

are equivalently expressed as follows:

A3 =

[
A3a 0

0 A3b

]
, B3 =

[
B3a

B3b

]
, C3 =

[
C3a C3b

]
,

where A3a := (PN − Pn)A(PN − Pn), B3a := (PN −
Pn)B, C3a := C(PN − Pn), A3b := (I − PN )A(I − PN ),
B3b := (I−PN )B,C3b := C(I−PN ). Here, note that the
operators A3a, B3a, and C3a are identified with matrices
with appropriate size. Then, the operators A, B, and C
are expressed as

A =

−A1 −G1C1 −G1C2 0 0 0 0

0 −A2 0 0 0 0

B1F1 0 −A1 −B1F1 0 0 0

B2F1 0 −B2F1 −A2 0 0

B3aF1 0 −B3aF1 0 −A3a 0

B3bF1 0 −B3bF1 0 0 −A3b


,

B =



−G1

0

0

0

0

0


, C =

[
0 0 0 0 C3a C3b

]
. (13)

Further, we set the truncated operators as

AN =

−A1 −G1C1 −G1C2 0 0 0

0 −A2 0 0 0

B1F1 0 −A1 −B1F1 0 0

B2F1 0 −B2F1 −A2 0

B3aF1 0 −B3aF1 0 −A3a


,

BN =



−G1

0

0

0

0


, CN =

[
0 0 0 0 C3a

]
. (14)

Now, let us define two transfer functions as follows:

G(jω) = C(jωI −A)−1B, (15)

GN (jω) = CN (jωI −AN )−1BN . (16)
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The following theorem, remarks, and algorithm are our
main result in this paper.

Theorem 6 Suppose that Assumption 1 is satisfied.
Then, the operator AN defined by (14) generates a C0-
semigroup etAN with norm bound ∥etAN ∥ ≤Me−νt, t ≥
0 on the Euclidean space ZN := Rl×Rn−l×Rl×Rn−l×
RN−n, where M ≥ 1 and ν > 0 are some constants
independent of the integer N . Moreover, there holds

∥GN (·)∥∞ → ∥G(·)∥∞ as N → ∞,

that is, rc(AN ;BN , CN ) → rc(A;B, C) as N → ∞. Ac-
cordingly, if ∥GN (·)∥∞ < 1 is satisfied for sufficiently
large N , the control law (7)–(8) works as a finite-
dimensional stabilizing controller for system (1)–(2).

Proof. By Assumption 1, the C0-semigroup generated
by the matrix

A1 :=


−A1 −G1C1 −G1C2 0 0

0 −A2 0 0

B1F1 0 −A1 −B1F1 0

B2F1 0 −B2F1 −A2


has a norm bound ∥etA1∥ ≤ M1e

−ν1t, t ≥ 0, where
M1 ≥ 1 and ν1 > 0 are some constants independent of
the integer N . Also, the C0-semigroup generated by the
matrix−A3a has a norm bound ∥e−tA3a∥ ≤ e−λn+1t, t ≥
0. Here, noting that ∥B3aF1∥ ≤ ∥B∥∥F1∥, we see that
the first assertion holds by using a technique similar to
what was used in [18].

Next, we estimate the H∞-norm of G(jω) − GN (jω).
From (13)–(16), we have

G(jω) = C3a(jωI +A3a)
−1B3aH(jω)

+C3b(jωI +A3b)
−1B3bH(jω),

GN (jω) = C3a(jωI +A3a)
−1B3aH(jω),

by straightforward calculation, where

H(jω) :=
[
F1 0 −F1 0

]
H1(jω)


−G1

0

0

0

 ,
H1(jω) :=

jωI +A1 +G1C1 G1C2 0 0

0 jωI +A2 0 0

−B1F1 0 jωI +A1 +B1F1 0

−B2F1 0 B2F1 jωI +A2


−1

.

From these, it follows that

G(jω)−GN (jω) = C3b(jωI +A3b)
−1B3bH(jω).

By Assumption 1, it is easy to see that ∥H(·)∥∞ < +∞.
Also, noting that

∥(·I +A3b)
−1∥∞ ≤ 1

λN+1
→ 0 as N → ∞, (17)

and that ∥B3b∥, ∥C3b∥ → 0 as N → ∞, we have
|∥G(·)∥∞ − ∥GN (·)∥∞| ≤ ∥G(·) − GN (·)∥∞ → 0 as
N → ∞, which implies that the second assertion holds.

If ∥GN (·)∥∞ < 1 is satisfied for sufficiently large N ,
it follows from the second assertion that ∥G(·)∥∞ < 1.
Therefore, from Theorem 4, the third assertion holds. 2

Remark 7 When the output equation (12) is used in-
stead of (2), we obtain the same assertions as in Theorem
6, by replacing the control law (7)–(8) by{

ẇ2(t) = −A2w2(t) +B2u(t), w2(0) = w20,

ŷ2(t) = C̃2(A2 + c)γw2(t),
ẇ1(t) = (−A1 −G1C̃1(A1 + c)γ)w1(t)

+G1(y(t)− ŷ2(t)) +B1u(t), w1(0) = w10,

u(t) = −F1w1(t).

In this case, since the operators C1, C2, C3a, and C3b are
replaced as C̃1(A1 + c)γ , C̃2(A2 + c)γ , C̃3a(A3a + c)γ ,

and C̃3b(A3b+ c)
γ in the operators (13)–(14), we need to

use the following estimate instead of (17):

∥(A3b + c)γ(·I +A3b)
−1∥∞

≤
(λN+1 + c)γ + λγN+1Γ(1− γ)

λN+1
→ 0 as N → ∞, (18)

where Γ(·) is the gamma function. For the derivation of
(18), see [19].

Remark 8 Theorems 2, 4, and 6 also hold in the case
where the operator A is replaced by a Riesz-spectral oper-
ator (see e.g. [7] for Riesz-spectral operators). The fact
is shown based on the work in Curtain [6] and Sano [20].

Lastly, by using Theorem 6, we can give an algorithm
to reduce the order of RMFs in finite-dimensional con-
trollers of Sakawa type.

Algorithm 1

Step 1. Derive a finite-dimensional model (5) that sat-
isfies Assumption 1. Let the order of the model be l.
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Step 2. Construct an observer-based controller (8) of
the order l.

Step 3. Set k = 1.

Step 4. Construct an RMF (7) of the order n− l = k.

Step 5. For GN (·) defined by (16), does ∥GN (·)∥∞ < 1
hold for sufficiently large N ? If yes, go to Step 6. If no,
k = k + 1 and then go to Step 4.

Step 6. The order of RMF is k. ¶

Remark 9 Theorem 4 assures that Algorithm 1 can be
terminated after a finite number of iterations.

Remark 10 Based on the result by Balas [1], one could
replace the observer-based controller (8) in Step 2 with
a static output feedback controller u(t) = −Q1(y(t) −
ŷ2(t)), if for the model (5) there exists a matrix Q1 such
that σ(−A1 − B1Q1C1) ⊂ {λ ∈ C ; Re(λ) < 0 }. Then,
GN (·) in Step 5, that is, AN , BN , and CN in (14) are
replaced by appropriate operators.

4 Numerical example

We consider the following linear diffusion system:
zt(t, x) = εzxx(t, x) + µz(t, x)

+b(x)u(t), t > 0, x ∈ (0, 1),

zx(t, 0) = 0, z(t, 1) = 0, t > 0,

z(0, x) = z0(x), x ∈ [0, 1],

(19)

where z(t, x) ∈ R is the temperature at time t and
at the point x ∈ [0, 1], u(t) ∈ R is the control in-
put, and, ε > 0 and µ > 0 are physical parameters.
b(x) := 1

r1[x0−r/2,x0+r/2](x) denotes the actuator influ-
ence function, where 1[ · , · ](x) denotes the characteristic
function. We first consider the following observation for
system (19):

y(t) =

1∫
0

c(x)z(t, x)dx, (20)

where c(x) := 1
r1[x1−r/2,x1+r/2](x) is the sensor influ-

ence function.

We formulate system (19)–(20) in a Hilbert space
L2(0, 1), where L2(0, 1) is the usual L2-space with in-

ner product ⟨φ,ψ⟩ :=
∫ 1

0
φ(x)ψ(x)dx, φ, ψ ∈ L2(0, 1).

Setting Lφ = −εφ′′ − µφ, we define the unbounded
operator A : D(A) ⊂ L2(0, 1) → L2(0, 1) as

Aφ = Lφ, φ ∈ D(A),

D(A) = {φ ∈ H2(0, 1) ; φ′(0) = 0, φ(1) = 0 }.

Then, A is a self-adjoint operator in L2(0, 1) and it
has the following eigenvalues and eigenfunctions: λi =
ε(i− 1

2 )
2π2 − µ, φi(x) =

√
2 cos(i− 1

2 )πx, i ≥ 1, where

{φi}∞i=1 forms a complete orthogonal system in L2(0, 1).
Note that the operator −A generates an analytic semi-
group e−tA on L2(0, 1) whose growth bound is equal
to −λ1. If −λ1 > 0, it is clear that system (19)–(20)
is unstable. Here, by defining the bounded operators
B : R → L2(0, 1) and C : L2(0, 1) → R as

Bv = bv, v ∈ R,

Cζ = ⟨c, ζ⟩, ζ ∈ L2(0, 1),

system (19)–(20) is expressed as in (1)–(2).

Next, we consider the following boundary observation
for system (19):

y(t) = zx(t, 1). (21)

In this case, by defining the unbounded operator C :
D(A) → R as Cζ = ζ ′(1), ζ ∈ D(A), we can express the
observation equation (21) as

y(t) = Cz(t). (22)

On the other hand, using techniques similar to those in
[21], we can formulate the observation equation (21) as

y(t) = C̃(A+ c)γz(t), (23)

where γ := 3
4 + ϵ′ ∈ ( 34 , 1), C̃ : L2(0, 1) → R is the

bounded operator defined by

C̃ξ = ⟨ − 1
ε (A+ c)

1
4−ϵ′h, ξ⟩, ξ ∈ L2(0, 1),

and c is a constant chosen such that λ1 + c > 0. In
the above, h ∈ H2(0, 1) is the unique solution of the
boundary value problem

(L+ c)h = 0 in (0, 1), h′(0) = 0, h(1) = 1.

As for the derivation of (23), refer to [21] for details.
Especially, when c = µ, the solution is concretely given
by h(x) ≡ 1. Here, note that the operator C̃(A+ c)γ of
(23) is the Λ-extension of the operator C of (22) (see e.g.
[23] for the definition of Λ-extension).

Now, let ε = 0.1, µ = 1, x0 = 0.8, x1 = 0.4, r = 0.02,
and ϵ′ = 0.15. Then, we see that −A has one unsta-
ble eigenvalue. Next, by setting l = 2, we can derive
two models (−A1, B1, C1) and (−A1, B1, C̃1(A1 + µ)γ)
that satisfy Assumption 1. These models correspond to
the low order finite-dimensional models of system (19)–
(20) and system (19), (21), respectively. For each model,
we choose F1 as an optimal regulator gain and choose
G1 as an optimal filter gain (e.g. [25]). For the model
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Fig. 2. The case of distributed observation (20).

(−A1, B1, C1), we set the weights as Q = 750I2, R = 1.
As a result, −A1 −B1F1 and −A1 −G1C1 become Hur-
witz. Fig. 2 shows that Algorithm 1 can be terminated
after 2 iterations and that the order of RMF is obtained
as n− l = 2.

For themodel (−A1, B1, C̃1(A1+µ)
γ), we set the weights

as Q = 5I2, R = 1. As well, −A1 − B1F1 and −A1 −
G1C̃1(A1 + µ)γ become Hurwitz. Fig. 3 shows that Al-
gorithm 1 can be terminated after 6 iterations and that
the order of RMF is n− l = 6.

As shown in the numerical example, the convergence
speed of the case with boundary observation (21) is late
compared with that of the case with distributed observa-
tion (20). The difference is caused by the estimates (17)
and (18). In the numerical simulation, we used MAT-
LAB Control System Toolbox.

5 Concluding remarks

In this paper, we treated the problem of reducing the
order of finite-dimensional stabilizing controllers for
parabolic distributed parameter systems, using an ap-
proach based on stability radius. Here, we remark that
it is possible to express the closed-loop system as

ξ̇(t) = (A′ + B′K′C′)ξ(t), ξ(0) = ξ0, (24)

where the state ξ(t) is in the real Hilbert space Z, and
the operators A′, B′, C′, and K′ are defined by

A′ =

−A1 −G1C1 −G1C2 0 0 −G1C3

0 −A2 0 0 0

B1F1 0 −A1 −B1F1 0 0

B2F1 0 −B2F1 −A2 0

0 0 0 0 −A3
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Fig. 3. The case of boundary observation (21).

B′ =



0

0

0

0

B3


, C′ =

[
F1 0 −F1 0 0

]
, K′ = 1.

Then, we have the similar results as in Theorems 4 and
6 and Algorithm 1. Here, noting that the transfer func-
tion G′(jω) := C′(jωI−A′)−1B′ is equal to the transfer
function G(jω) defined by (15) and that K = K′ = 1,
we see that the order of RMF obtained by the algorithm
is the same for the both expression (9) and (24) of the
closed-loop system.

While we demonstrated a design method of low order
stabilizing controllers, it is not clear whether or not the
order of RMF obtained in Algorithm 1 is minimal. For
example, for the same closed-loop system, one could also
consider the following alternative:

ξ̇(t) = (Ã+ B̃K̃C̃)ξ(t), ξ(0) = ξ0, (25)
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where

Ã =

−A1 −G1C1 −G1C2 0 0 0

0 −A2 0 0 0

B1F1 0 −A1 −B1F1 0 0

B2F1 0 −B2F1 −A2 0

0 0 0 0 −A3


,

B̃ =



−G1 0

0 0

0 0

0 0

0 B3


, C̃ =

[
0 0 0 0 C3

F1 0 −F1 0 0

]
, K̃ = I2.

On the other hand, Fuentes and Balas employed the per-
turbation theory of operators to get the lowest order of
RMF [11] as stated in Section 1. The problem of com-
paring our method numerically with it remains as the
future study.

Further, the author plans to study the design method of
finite-dimension for distributed parameter systems with
input delay such as treated in [14].
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