

PDF issue: 2025-04-30

Improved Fc epsilon RI-Mediated CD203c Basophil Responsiveness Reflects Rapid Responses to Omalizumab in Chronic Spontaneous Urticaria

Oda, Yoshiko ; Fukunaga, Atsushi ; Washio, Ken ; Imamura, Shinya ; Mizuno, Mayuko ; Hatakeyama, Mayumi ; Ogura, Kanako ; Nishigori,…

<mark>(Citation)</mark> Journal of Allergy and Clinical Immunology: In Practice,9(3):1166-1176

(Issue Date) 2021-03

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights)

© 2020 American Academy of Allergy, Asthma & Immunology. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

(URL)

https://hdl.handle.net/20.500.14094/90008237

2	omalizumab in chronic spontaneous urticaria
3	Yoshiko Oda, M.D., Atsushi Fukunaga, M.D., Ph.D.*, Ken Washio, M.D., Ph.D., Shinya
4	Imamura, M.D., Mayuko Mizuno, M.D., Mayumi Hatakeyama, M.D., PhD., Kanako Ogura,
5	M.D., Ph.D., and Chikako Nishigori M.D., Ph.D.
6	
7	Division of Dermatology, Department of Internal Related, Kobe University Graduate School of
8	Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
9	
10	*Correspondence: Atsushi Fukunaga, M.D., Division of Dermatology, Department of Internal
11	Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe
12	650-0017 Japan. Tel: +81-78-382-6134; Fax: +81-78-382-6149. E-mail: atsushi@med.kobe-
13	u.ac.jp
14	
15	E-mail addresses
16	Yoshiko Oda, yoda0320@med.kobe-u.ac.jp
17	Atsushi Fukunaga, atsushi@med.kobe-u.ac.jp
18	Ken Washio, washio@med.kobe-u.ac.jp

Improved FccRI-mediated CD203c basophil responsiveness reflects rapid-responses to

19	Mayuko Mizuno, mayukosumi@yahoo.co.jp
20	Shinya Imamura, shinyaimamura1987@yahoo.ne.jp
21	Mayumi Hatakeyama, mayumi12010@yahoo.co.jp
22	Kanako Ogura, kanakoogura0115@gmail.com
23	Chikako Nishigori, chikako@med.kobe-u.ac.jp
24	Abstract word count: 223/250
25	Manuscript word count: 4187/3500
26	Number of tables: 1 table and 2 supplementary tables
27	Number of figures: 6 figures and 6 supplementary figures
28	
29	Funding: This work was supported in part by a Grant-in-Aid for Scientific Research (C) (JSPS
30	KAKENHI Grant Numbers 15K09742 and 16K19722) from the Ministry of Education, Culture,
31	Sports, Science, and Technology, Japan (to A.F. and K.W.).
32	
33	Disclosure of potential conflicts of interest: The authors declare that they have no relevant
34	conflicts of interest in relation to this work.

37	(Kobe University; No. 180186).
38	
39	Abstract
40	Background: Omalizumab is effective in chronic spontaneous urticaria (CSU) patients
41	although its mechanism of action is poorly understood. Several studies reported that decreased
42	FceRI-mediated histamine release and/or responsiveness was characteristic of basophils in CSU
43	patients. However, few studies have focused on the relationship between changes in basophil
44	responsiveness via FcERI after omalizumab treatment and the therapeutic effect in CSU
45	patients.
46	Objective: To assess basophil responsiveness via FccRI stimulation, as well as FccRI
47	expression and IgE binding on blood basophils from CSU patients before and after omalizumab
48	treatment and its possible association with the clinical response.
49	Methods: We analyzed 34 CSU patients treated with omalizumab who were categorized as fast
50	responders (FRs) (n=20) and non or slow responders (N/SRs) (n=14). CD203c expression
51	induced by FceRI stimulation, and IgE and FceRI expressions on blood basophils from CSU
52	patients before and after omalizumab treatment were analyzed. Basophil responsiveness via
53	FceRI stimulation was observed in vitro using basophils pre-treated with omalizumab.

IRB approval status: The study protocol was approved by the Institutional Review Board

54	Results: FRs had increased CD203c responsiveness after treatment with omalizumab compared
55	with N/SRs. This improvement of basophil responsiveness via FceRI stimulation in FRs was not
56	observed in peripheral blood basophils pre-incubated with omalizumab in vitro, suggesting
57	omalizumab does not directly affect circulating pre-existing abnormal basophils.
58	Conclusion: Increased basophil responsiveness via FceRI after omalizumab treatment is
59	associated with the therapeutic effect and mechanism of action of omalizumab.

60 Highlights box

61 What is already known about this topic?

- 62 Basophil functional abnormalities such as the low-responsiveness of basophils via FccRI were
- 63 reported in chronic spontaneous urticaria. Moreover, several studies reported increased FccRI-
- 64 mediated histamine release after omalizumab treatment.

65 What does this article add to our knowledge?

- 66 Improvement of attenuated basophil responsiveness via FccRI stimulation in chronic
- 67 spontaneous urticaria is associated with rapid clinical effectiveness and the mechanism of action
- 68 of omalizumab might be due to improved responsiveness of newly circulating basophils.

69 How does this study impact current management guidelines?

- 70 Changes in basophil responsiveness via FccRI stimulation in some patients with chronic
- 71 spontaneous urticaria before and after omalizumab treatment suggest the importance of basophil
- 72 status as an action point of omalizumab treatment.
- 73
- 74 Key words: chronic spontaneous urticaria, omalizumab, CD203c, basophil activation test
- 75
- 76 Abbreviations used
- 77 ASST: autologous serum skin test
- 78 BAT: basophil activation test

- 79 BHRA: basophil histamine release assay
- 80 CSU: chronic spontaneous urticaria
- 81 DLQI: dermatology life quality index
- 82 FccRI: high-affinity IgE receptor
- 83 FRs: fast responders
- 84 GRs: good responders
- 85 HCs: healthy controls
- 86 IgE: immunoglobulin E
- 87 MFI: mean fluorescence intensity
- 88 N/PRs: non or partial responders
- 89 N/SRs: non or slow responders
- 90 Syk: spleen tyrosine kinase
- 91 UAS: urticaria activity score
- 92 UCT: urticaria control test

93 Introduction

94	Chronic spontaneous urticaria (CSU) is characterized by the spontaneous appearance of wheals,
95	angioedema, or both for > 6 weeks and is associated with known (autoreactivity) or unknown
96	causes ¹ . Although the pathophysiology of CSU is unclear, basophils have been increasingly
97	recognized as having critical roles and some investigators have described an association
98	between disease pathophysiology and basophil function and number in CSU.
99	Several reports documented that circulating basophils from patients with CSU released less
100	histamine than healthy controls (HCs) when stimulated with anti-IgE antibody or anti-high-
101	affinity IgE receptor (FccRI) antibody ^{2,3,4,5} . Furthermore, reduced CD63 expression on basophils
102	after anti-FceRI stimulation was reported in a subgroup of CSU patients compared with HC
103	basophils ⁶ . In our previous study ⁷ , basophils from CSU patients had attenuated upregulation of
104	the activation marker CD203c against IgE and FceRI antibodies compared with basophils from
105	HCs, and the attenuated basophil responsiveness in patients with CSU was associated with the
106	severity of disease and a relatively shorter disease duration. In addition, Huang et al. reported
107	that basophil non-responders (< 10% of total histamine release to IgE) and basopenics
108	(histamine concentrations < 5ng/mL blood leukocytes) have more severe, but shorter disease
109	compared to responders ⁸ .

110	CSU patients have unique features related to basophil number as well as basophil
111	function and responsiveness in the circulating blood. Rorsman first described a reduction of
112	peripheral blood basophils in CSU patients9. Subsequently, basopenia was reported to be
113	correlated with urticaria activity ^{10,11} . Furthermore, basophils were reported to be present in skin
114	lesions of urticaria at levels higher than in non-lesion skin ¹² . These findings suggest basopenia
115	may reflect the recruitment of basophils to skin tissues. Although basophil migration was
116	investigated in previous studies ^{13,14} , the recruitment pathway remains unknown.
117	Omalizumab is a recombinant humanized anti-IgE monoclonal antibody that
118	selectively binds to the C3 domain of IgE, thereby blocking the binding of IgE to high-affinity
119	receptors on effector cells, and inhibiting IgE-mediated cellular responses ¹⁵ . Omalizumab has
120	been approved for use in patients with CSU who remain symptomatic despite H1 antihistamine
121	treatment. Although omalizumab binds to free IgE, which lowers free IgE levels and causes
122	FceRI receptors on basophils and mast cells to be internalized and degraded, the mechanism of
123	action in CSU is not understood completely ^{16,17} . Several reports demonstrated changes in
124	basophil number and function after treatment with omalizumab. Furthermore, the numbers of
125	circulating blood basophils increased after omalizumab treatment ¹⁸ in parallel with clinical
126	improvement ^{19, 20} . With respect to basophil function, Gericke et al. reported increased anti-IgE-
127	induced histamine release from blood basophils of CSU patients treated with omalizumab

128	compared with baseline value ¹⁸ . In contrast, it was reported that CD63-based basophil
129	"releasability" by IL-3 coincubation after stimulation with anti-IgE antibody was decreased
130	after omalizumab treatment compared with baseline values ²¹ .
131	Many reports have described pre-treatment biomarkers to predict the efficacy of
132	omalizumab in CSU. Palacios et al. reported a lack of basophil CD203c upregulation in serum,
133	which might reflect a lack of autoantibodies to IgE and/or FccRI but which correlated with a
134	higher clinical response ²² . Similarly, Deza et al. showed that a higher rate of positive autologous
135	serum skin test (ASST) was associated with insufficient therapeutic effect ²³ . Gericke et al.
136	showed that a positive basophil histamine release assay (BHRA) or ASST as an indicator of
137	serum autoreactivity was predictive of a slow response to treatment with omalizumab ²⁴ .
138	Additionally, baseline levels of basophil FccRI expression were significantly lower in non-
139	responders to omalizumab ²³ and higher in fast responders than in slow responders ²⁵ .
140	Omalizumab responsiveness was also predicted by total serum IgE levels ²⁶ and changes in total
141	serum IgE levels ²⁷ . Furthermore, Altrichter et al. observed that reduced serum IL-31 was
142	associated with omalizumab responses ²⁸ . However, few studies have focused on the relationship
143	between baseline and/or altered basophil responsiveness via FceRI, as well as IgE and FceRI
144	expression on basophils and the omalizumab therapeutic effect in CSU patients.

145	Therefore, the current study analyzed the expression of CD203c via FccRI stimulation,
146	as well as IgE and FccRI expression on basophils from CSU patients before and after
147	omalizumab treatment and its possible association with the clinical response. Moreover, we
148	examined these parameters as a potential predictor of responses to omalizumab therapy. In
149	addition, we performed an in vitro study using FR basophils pre-treated with omalizumab
150	whether omalizumab could affect basophil reactivity in short term incubation.

151 Material and Methods

152 Study population

153 Thirty-four patients with CSU who remained symptomatic despite H1-antihistamines (even up

154 to two times the recommended dose in Japan) and who were treated with omalizumab were

155 enrolled at the Dermatological Institute of Kobe University Hospital. CSU was defined as

- 156 recurrent wheals occurring for more than 6 weeks without an identifiable cause. Omalizumab
- 157 300 mg was injected subcutaneously at least three times at 4 weeks intervals. Clinical variables

158 were evaluated using the Urticaria Control Test (UCT), which is an outcome instrument to

- 159 retrospectively assess urticaria control with a recommended cutoff value of 12 for controlled
- 160 disease²⁹. It was reported that UCT has a strong correlation with Dermatology Life Quality
- 161 Index (DLQI)³⁰ and 7-day Urticaria Activity Score (UAS7)³¹. UCT scores were measured at day

162 0, and on weeks 4, 8, and 12 of treatment (i.e., before the 1st, 2nd, 3rd and 4th injections).

- Patients were categorized into FRs (n = 20) and N/SRs (n = 14) (Fig. E1) (Table I) based on the
- 164 following criteria: FRs with UCT scores \geq 12 up on week 4 (Fig. E2, A, see in this article's
- 165 Online Repository); and N/SRs with UCT scores < 12 up on week 4 (Fig. E2, B, see in this
- 166 article's Online Repository). UAS7 could be measured in some patients and the data was
- 167 presented in Fig. E2, C, D, see in this article's Online Repository. In addition, we classified
- 168 patients into good responders (GRs) (n = 26) and N/PRs (n = 7) based on UCT scores on week

169	12 after treatment of omalizumab (Fig. E1, Table EI, see in this article's Online Repository):
170	GRs with UCT scores \geq 12 up on week 12 and N/PRs with UCT scores $<$ 12 on week 12. One
171	patient was followed-up a clinical course up to 4 weeks but could not follow up until 12 weeks.
172	Therefore, this patient was excluded from the GRs vs. N/PRs dataset. All study participants
173	provided oral consent for this study after verbal and written explanations.
174	Basophil activation test
175	Whole blood was taken just before the first and second omalizumab administration using blood
176	collection tubes containing ethylenediaminetetraacetic acid (EDTA) and assays were performed
177	within 24 hours of blood sampling. The Allergenicity Kit (Beckman Coulter, Fullerton, CA,
178	USA) was modified and used for the quantification of basophil CD203c expression as
179	previously described ⁷ . Basophils were stimulated with anti-IgE antibody (clone: E124-2-8D)
180	(0.1 µg/ml) (Beckman Coulter, Fullerton, CA, USA), VioBlue conjugated anti-IgE antibody
181	(clone: MB10-5C4) (1.1 μ g/ml) (Miltenyi Biotec, Bergisch Gladbach, Germany) or biotinylated
182	anti-FceRI antibody (clone: CRA1) (16 µg/ml) (BioAcademia, Osaka, Japan). Basophils
183	incubated with phosphate-buffered saline (PBS) were used as a negative control.
184	Briefly, blood was stained with reagents consisting of CRTH2-FITC, CD203c-PE, and
185	CD3-PC7 to identify basophils, and were then mixed with the respective stimulant or PBS at
186	37°C for 15 minutes. Biotinylated antibodies against CRA1 were then coupled with APC

187	streptavidin (BD, Franklin Lakes, NJ, USA) at 4°C for 30 minutes. Erythrocytes were lysed and
188	after washing twice with PBS, cells were resuspended in 0.3 mL PBS 0.1% formaldehyde and
189	evaluated 500 basophils by flow cytometry (FACS verse, BD Biosciences, San Jose, CA, USA).
190	Flow cytometry results were analyzed by FlowJo software (FlowJo, LLC, Ashland,
191	OR, USA). Results of antibody stimulation were expressed as a proportion of CD203c ^{high}
192	basophils. The proportion of CD203c ^{high} basophils was determined using a threshold defined as
193	the expression level above which only 5% of basophils in the negative control sample
194	fluoresced ³² . Changes in basophil responsiveness via FccRI stimulation after omalizumab
195	treatment compared with before treatment were calculated as followed. After/before treatment
196	ratio of basophil CD203c responsiveness was defined as CD203c ^{high} basophil (%) stimulated
197	with each antibody after treatment /CD203 c^{high} basophil (%) stimulated with each antibody
198	before treatment.
199	Measurement of IgE and FcERI levels on basophils
200	Basophils were incubated with VioBlue conjugated anti-IgE antibody (clone: MB10-5C4;
201	(Miltenyi Biotec) and biotinylated anti-FccRI antibody (clone: CRA1; BioAcademia) and
202	analyzed by flow cytometry using the same method as for IgE and FccRI levels on basophils
203	and FlowJo analysis using the same method as for basophil activation after anti-IgE or CRA1

antibody stimulation. IgE and Fc ϵ RI levels were evaluated as the mean fluorescent intensity

205	(MFI).	Changes	in IgE	and FcER	I levels or	i basophils	after	omalizumab	treatment	compared
	()	0	0							

- 206 with before treatment were calculated as follows: Δ IgE expression (Δ FceRI expression): IgE
- 207 levels (FccRI levels) on basophils before treatment after treatment.

208 In vitro study using basophils pre-treated with omalizumab

- 209 Whole blood obtained from two CSU patients before omalizumab administration using blood
- 210 collection tubes containing EDTA was incubated for 1, 12 or 24 hours at room temperature with
- 211 30 µg/mL omalizumab (Novartis Pharma, Tokyo, Japan)³³. Samples with/without omalizumab
- 212 preincubation were measured for CD203c expression after stimulation with anti-IgE antibody
- 213 (clone: E124-2-8D, MB10-5C4). Results of antibody stimulation were expressed as the
- 214 proportion of CD203c^{high} basophils and IgE levels on basophils were expressed as the MFI, and
- 215 sequential changes were investigated.

216 Serum total IgE levels and basophil counts

- 217 Serum total IgE levels were measured by immunoglobulin E-radioimmunosorbent test.
- 218 Numbers of blood basophils (/µl) were assessed by an automated analyzer in the laboratory of
- 219 the Kobe University Graduate School of Medicine.
- 220 Changes in total serum IgE levels and basophil counts on basophils after omalizumab
- treatment compared with before treatment were calculated as follows: Δtotal serum IgE
- 222 (Δbasophil counts): total serum levels (basophil counts) after treatment before treatment.

223 Statistical analysis

- 224 The non-parametric Mann–Whitney U-test, unpaired t-test and Fischer's exact test were used to
- assess differences between GRs and N/PRs. Kruskal-Wallis result with Dunn test was used for
- 226 comparing three groups of nonparametric variables. To assess correlations between two factors,
- 227 adjusted r_s (Spearman's rank correlation coefficient) values were calculated. All statistical
- analyses were carried out using GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA).
- 229 Two-sided *p*-values < 0.05 were considered statistically significant.

230 Results

231 Study population

232 CSU patients were categorized into two subgroups based on UCT scores 4 weeks after

233	omalizumab treatment.	Twenty out of 34	patients (58.8%) who achieved	significant clinical
			•	/	

- improvement (UCT scores \geq 12) were classified as FRs and the remaining fourteen (41.1%)
- who did not achieve significant clinical improvement (UCT scores < 12) were classified as
- 236 N/SRs (Fig. E1, see in this article's Online Repository). The baseline clinical characteristics of
- these subgroups are described in Table I. They exhibited no significant differences regarding
- sex, age, disease duration, serum IgE levels, and basophil counts. Additionally, there were no
- 239 significant differences regarding the ASST positive rate in contrast to a previous study²⁴. There
- 240 were no differences among the two groups with respect to baseline UCT, UAS7, or DLQI score.
- 241 In addition, although we divided CSU patients into GRs and N/PRs based on UCT scores on
- 242 week 12 after treatment of omalizumab. There were no differences in serum IgE and ASST
- 243 when comparing GRs and N/PRs (Table EI, see in this article's Online Repository). However, it
- 244 was noted that one patient among N/PRs did not have data of total serum IgE before treatment
- and the patient was excluded from the GRs vs. N/PRs dataset (Table EI).
- 246 Baseline basophil responsiveness via FccRI stimulation

247 Although several studies described biomarkers for therapeutic responses to

248 omalizumab^{22,23,26,27,28}, few studies have focused on basophil responsiveness via FccRI as a

- 249 predictor of the therapeutic response to omalizumab. Therefore, we analyzed the baseline
- 250 expression of the activation marker CD203c with or without anti-IgE and/or FccRI stimulation
- 251 in CSU patients. The expression of CD203c on peripheral blood basophils from CSU patients in
- the steady state without anti-IgE and/or FccRI stimulation was similar between FRs and N/SRs
- 253 (Fig. E3, see in this article's Online Repository). There were no differences in the percentage of

254 CD203c^{high} basophils stimulated with anti-IgE (E124-2-8D, MB-105C4) and FccRI (CRA1)

- antibody between groups (Fig. 1A-C). Thus, basophil responsiveness via FccRI stimuli did not
- 256 predict the treatment response with omalizumab.
- 257 Furthermore, we classified patients with CSU into two groups based on the baseline
- 258 proportion CD203c^{high} basophils after anti-IgE stimulation as in the previous report⁷ (14 non-
- responders [<10% CD203c^{high} basophil] and 20 responders [>10% CD203c^{high} basophil]) (Fig.
- 260 E4, see in this article's Online Repository). However, there were no differences in fast or good
- 261 effectiveness of omalizumab between non-responders and responders.

262 Improvement in basophil responsiveness via FccRI stimulation after omalizumab

263 treatment

264	It was previously demonstrated that blood basophil histamine release tended to increase with
265	anti-IgE stimulation after omalizumab treatment compared with baseline ¹⁸ . In this study, we
266	compared CD203c responsiveness of basophils via FceRI stimulation with anti-IgE and FceRI
267	antibody before and after omalizumab treatment. The percentage of CD203chigh basophils
268	stimulated with any antibody increased in many FRs but not in most N/SRs (Fig. E5, Table EII,
269	see in this article's Online Repository). Therefore, we compared the after/before treatment ratio
270	of basophil CD203c responsiveness via FccRI between FRs and N/SRs. When peripheral blood
271	basophils were stimulated with three types of antibody, the after/before treatment ratio was
272	significantly higher in FRs than in N/SRs (Fig. 2, Fig. E5, see in this article's Online
273	Repository). Furthermore, the after/before ratio was around 1.5-2.0 for the anti-IgE antibody in
274	FRs, but around 4 for the anti-FccRI antibody (Fig. 2). These data suggest that omalizumab
275	improved basophil responsiveness via FceRI in FRs but not in N/SRs and that the improvement
276	effect was associated with the rapid therapeutic response of omalizumab. However, it was
277	needed to note that FRs included a group with improved basophil responsiveness and a group
278	with no improvement, and N/SRs included some patients with improved basophil
279	responsiveness (Fig. E5, see in this article's Online Repository).
280	Baseline IgE and FccRI levels of basophils

281	Previous reports showed that the treatment effect of omalizumab may be predicted by serum
282	IgE levels ^{26,27} . We previously reported that serum IgE levels were strongly correlated with IgE
283	or FccRI expression on basophils from CSU patients ⁷ and the correlations were also observed in
284	overall participants of this study (Fig. E6, see in this article's Online Repository). Therefore, we
285	investigated whether baseline basophil IgE expression was associated with the therapeutic
286	response. No significant difference in IgE and FccRI (CRA1) expression between FRs and
287	N/SRs was observed (Fig. 3A, B). However, when CSU patients were categorized into GRs and
288	N/PRs using the UCT score 12 weeks after omalizumab treatment, IgE expression on basophils
289	from GRs was higher than those from N/PRs, whereas there was no difference in serum IgE
290	between GRs and N/PRs (Fig. 3C, Table EI). However, it was noted that one patient among
291	N/PRs did not have data of total serum IgE before treatment and the patient was excluded from
292	the GRs vs. N/PRs dataset (Table EI). Additionally, there was no difference in FceRI (CRA1)
293	expression between GRs and N/PRs (Fig. 3D).
294	Changes in IgE and FcERI levels on basophils after omalizumab treatment
295	It is widely accepted that omalizumab neutralizes free IgE and subsequently suppresses FceRI
296	and surface IgE expression on circulating basophils ¹⁷ . Deza et al. reported that patients
297	exhibiting significant clinical improvement had a marked reduction in the levels of basophil
298	FccRI after 4 weeks ²³ . Based on these findings, we evaluated the association between changes

299	in basophil FccRI and IgE levels after omalizumab treatment and the therapeutic effect. Δ IgE
300	expression (IgE levels on basophils before treatment – after treatment) was not different
301	between FRs and N/SRs (Fig. 4A). In contrast to a previous report ²³ , there was no difference in
302	Δ FceRI (CRA1) expression between the two groups (Fig. 4B). However, Δ IgE expression was
303	higher in GRs than N/PRs (Fig. 4C), whereas there was no difference in Δ FceRI (CRA1)
304	expression between the two groups (Fig. 4D). These data indicate a more efficient inhibition of
305	IgE binding on basophils in GRs than in N/PRs following omalizumab administration.
306	Changes in serum total IgE levels and basophil counts
307	Low serum IgE levels that increased after the start of omalizumab treatment were associated
308	with insufficient clinical responses ²⁷ . Additionally, Saini et al. showed that improved basopenia
309	was associated with reduced clinical symptoms ¹⁹ . Thus, we evaluated the potential association
310	between changes in serum IgE levels and circulating basophil counts in the blood after
311	treatment with omalizumab and the therapeutic effect. When CSU patients were categorized
312	into FRs and N/SRs, no differences in Δ serum total IgE and Δ basophil counts were observed
313	between the groups (Fig. 5A, B). When CSU patients were categorized into GRs and N/PRs,
314	Δ serum total IgE and Δ basophil counts just tended to be higher with no significant difference
315	(Fig. 5C, D). However, three patients among N/PRs did not have data of total serum IgE and
316	basophil count either before or after treatment and these patients were excluded from the GRs

317	vs. N/PRs dataset (Fig. 5C, D). Therefore, the number of samples in Fig. 5C and D was not be
318	sufficient for statistical analyses, and if more samples were added, significant differences could
319	be detected as previously reported ^{19,20,27} .
320	Different effects of omalizumab on basophil responsiveness via FcERI stimulation in vivo
321	and <i>in vitro</i>
322	Finally, we investigated whether the responsiveness of basophils via FccRI improved before
323	omalizumab administration by incubating basophils from CSU patients with omalizumab in
324	vitro to clarify the mechanism of action of omalizumab. Increased basophil responsiveness via
325	FccRI after in vivo omalizumab treatment was observed for cells isolated from the two FRs used
326	in this study (Fig. 6A, B). However, improved basophil responsiveness via FceRI stimulation
327	was not observed at any time despite pre-treatment with omalizumab in vitro (Fig. 6C, D).
328	These data suggest that pre-existing circulating basophils that exhibited low responsiveness via
329	FceRI before omalizumab administration did not have improved function after in vitro
330	omalizumab treatment.

331 Discussion

332 Basophils have unique features and play a critical role in CSU. It was reported that basophils 333 from CSU patients released less histamine and/or exhibited low responsiveness when stimulated 334 via FccRI compared with basophils from HCs^{2,3,4,5,6,7}. We recently reported that the low 335 responsiveness of basophils via FccRI reflected severe disease activity in CSU7. In addition to 336 the functional abnormalities of basophils, basopenia was correlated with disease activity in 337 CSU^{10,11} and the cutaneous lesion recruitment of basophils in CSU. Although omalizumab was 338 effective in most patients with CSU who remained symptomatic despite H1 antihistamine 339 treatment, its mechanism of action in CSU is poorly understood. In the current study, we 340 focused on basophils as a predictive marker of the clinical effectiveness of omalizumab and as a 341 component of the mechanism of action of omalizumab. We classified and compared CSU 342 patients into two groups, FRs and N/SRs or GRs and N/PRs, based on the clinical efficacy of 343 omalizumab 4 or 12 weeks after treatment with omalizumab. 344 First, we focused on baseline parameters before omalizumab treatment as a pre-345 treatment predictive marker of the clinical effectiveness of omalizumab. Baseline CD203c 346 responsiveness after stimulation with anti-IgE and FccRI antibodies was not a useful pre-347 treatment predictive marker, which is similar for the CD63-based report from Aghdam et al³⁴ 348 (Fig. 1). However, baseline IgE expression on basophils from GRs before omalizumab

349	treatment was higher than that in basophils from N/PRs (Fig. 3C). This difference was not
350	observed between FRs and N/SRs (Fig. 3A). These observations suggested that higher IgE
351	expression on basophils might predict a significant therapeutic effect 12 weeks after
352	omalizumab treatment, even if the therapeutic effect was insufficient 4 weeks after treatment. In
353	contrast to previous reports ²⁵ , there were no differences in baseline FccRI expression on
354	basophils between FRs and N/SRs before omalizumab treatment (Fig. 3B). This difference may
355	be related to differences in the definition of treatment response. In addition, a good predictor of
356	N/PRs was found on surface IgE (Fig. 3C), but not serum IgE (Table EI). However, serum IgE
357	strongly correlated with surface IgE on basophils (Fig. E6, see in this article's Online
358	Repository), and the difference of results between the previous studies ^{26,27} that serum IgE was a
359	good baseline predictor of omalizumab treatment efficacy and this study may be dependent on
360	the small number of samples in this study.
361	Next, we investigated changes in basophil parameters and IgE after omalizumab
362	treatment to determine their contribution to the mechanism of action of omalizumab in CSU.
363	Regarding changes in basophil parameters, the after/before treatment ratios of basophil
364	responsiveness (CD203c response) were significantly higher in FRs compared with N/SRs (Fig.
365	2), suggesting that the improvement of low responsiveness in circulating basophils via FceRI
366	was related to the rapid therapeutic effect of omalizumab. In addition, the after/before ratio was

367	around 1.5-2.0 for the anti-IgE antibody in FRs, but around 4 for the anti-FccRI antibody. It has
368	been reported that during treatment with omalizumab, spleen tyrosine kinase (Syk) expression
369	increases in peripheral blood basophils, offsetting the functional effects mediated by the drug-
370	induced reduction in cell surface density of FccRI and its bound IgE ³⁵ . Basophils which
371	recovered functionally after omalizumab treatment might promote Syk signal more strongly
372	when stimulated with anti- FccRI than when anti-IgE.
373	CD203c upregulation after anti-IgE stimulation was demonstrated to be earlier than
374	CD63 upregulation ³⁶ . In addition, Ebo et al mentioned that up-regulation of CD203c does not
375	per se indicate histamine release ³⁷ and CD203c is not a degranulation marker like CD63. Thus,
376	increased CD203c response to the IgE concentration after treatment of omalizumab observed in
377	current study does not mean an increase in histamine release. Aghdam et al reported that when
378	CD63 expression on basophils was used as a biomarker in the omalizumab responder, no
379	significant increase after stimulation of the anti-IgE antibody was observed in non-responders
380	after omalizumab treatment, contrary no increase in responders ³⁴ . This difference between our
381	study might be due to differences in the markers between CD203c and CD63 or to the definition
382	of responder and non-responder. Indeed, Agdham et al. evaluates disease activity in six
383	months. ³⁴ Contrary, we evaluate the effectiveness in one month and three months.

384	The reduction of IgE expression on basophils 4 weeks after omalizumab treatment
385	was larger in GRs compared with N/PRs (Fig. 4C). Regarding the changes in serum IgE,
386	increased serum IgE levels 4 weeks after omalizumab treatment tended to be higher in GRs than
387	in N/PRs (Fig. 5C). These differences were not observed between FRs and N/SRs (Fig. 4A,
388	5A). Based on these results related to IgE, the larger reduction of IgE expression on basophils
389	and the higher increase of serum IgE levels 4 weeks after omalizumab treatment suggested that
390	good clinical responses were achieved 12 weeks after omalizumab treatment, even if they were
391	not achieved 4 weeks after treatment. Moreover, these data imply that omalizumab efficiently
392	inhibited the binding of IgE to basophils by binding to free serum IgE in GRs compared with
393	N/PRs, which was the cause of the increase in apparent serum IgE levels in GRs.
394	Whether this improvement of basophil responsiveness by omalizumab treatment acts
395	directly on low responsive circulating basophils before omalizumab treatment is an important
396	issue related to the mechanism of action of omalizumab in CSU. Finally, we investigated
397	whether omalizumab acted directly on circulating basophils in FRs before treatment in vitro. An
398	improvement of basophil responsiveness via FccRI stimulation was not observed at any time
399	despite in vitro omalizumab treatment (Fig. 6C, D). These data indicate that in FRs, the
400	functions of pre-existing basophils that exhibited low responsiveness via FccRI stimulation
401	before omalizumab treatment could not be improved. In contrast, in vivo treatment with

402	omalizumab in these cases improved basophil responsiveness via FccRI stimulation and induced
403	a rapid and good clinical response (Fig. 6A, B). These differences between in vitro and in vivo
404	omalizumab treatment suggest that newly circulating basophils, possibly from skin tissue or
405	bone marrow, maintained normal function in the blood under the state of low IgE binding to
406	their surface by the efficient formation of an immune complex with omalizumab and serum IgE.
407	Indeed, it was reported that the life span of mature basophils is approximately 60–70 hours ³⁸ . A
408	recent review proposed that basophils in CSU patients are mildly activated, persistently release
409	a small amount of histamine, and are involved in the earliest stages of the cascade of CSU
410	pathogenesis ³⁹ .
411	This study includes limitations about grouping. The main focus of this study was to
412	observe differences in basophil responsiveness between FRs and other groups (N/SRs) at 4
413	weeks after treatment. However, because we considered that the comparison of FRs and N/SRs
414	alone was not enough to evaluate scientific fairly, we added the comparison data of GRs and
415	N/PRs using another classification method. It would be ideal if the NRs could be independent
416	for comparison but the number of NRs is overwhelmingly small as in the existing reports and a
417	larger-scale research is needed for this comparison. Additionally, we used only one
418	concentration antibody to stimulate the basophils and might have missed a curve shift of
410	hasophil reactivity

420	In summary, improvement of attenuated basophil responsiveness via FcERI stimulation
421	in patients with CSU was associated with the rapid clinical effectiveness of omalizumab.
422	However, further research is needed to elucidate the role of basophils in the mechanism of
423	action of omalizumab in CSU. Although this study had some limitations, including a small
424	number of cases, it highlights the importance of basophil status as an action point of
425	omalizumab in CSU.
426	
427	Acknowledgments
428	This work was supported in part by a Grant-in-Aid for Scientific Research (C) (JSPS
429	KAKENHI Grant Number 15K09742 and 16K19722) from the Ministry of Education, Culture,
430	Sports, Science, and Technology, Japan (to A.F. and K.W.). We thank Edanz Group

431 (www.edanzediting.com/ac) for editing a draft of this manuscript.

References

433	1.	Zuberbier T, Aberer W, Asero R, Abdul Latiff AH, Baker D, Ballmer-Weber B, et al.
434		The EAACI/GA ² LEN/EDF/WAO guideline for the definition, classification, diagnosis
435		and management of urticaria. Allergy 2018;73:1393-414.
436	2.	Greaves MW, Plummer VM, McLaughlan P, Stanworth DR. Serum and cell bound IgE
437		in chronic urticaria. Clin Allergy 1974;4:265.
438	3.	Kern F, Lichtenstein LM. Defective histamine release in chronic urticaria. J Clin Invest
439		1976;57:1369-77.
440	4.	Eckman JA, Hamilton RG, Gober LM, Sterba PM, Saini SS. Basophil phenotypes in
441		chronic idiopathic urticaria in relation to disease activity and autoantibodies. J Invest
442		Dermatol 2008;128:1956-63.
443	5	Vonakis BM, Vasagar K, Gibbons SP Jr, Gober L, Sterba PM, Chang H, et al. Basophil
444		FcepsilonRI histamine release parallels expression of Src-homology 2-containing
445		inositol phosphatases in chronic idiopathic urticaria. J Allergy Clin Immunol.
446		2007;119:441-8.
447	6.	Rauber MM, Pickert J, Holiangu L, Möbs C, Pfützner W. Functional and phenotypic
448		analysis of basophils allows determining distinct subtypes in patients with chronic
449		urticaria. Allergy 2017;72:1904-11.
450	7.	Oda Y, Fukunaga A, Washio K, Imamura S, Hatakeyama M, Ogura K, et al. Low
451		responsiveness of basophils via FcepsilonRI reflects disease activity in chronic
452		spontaneous urticaria. J Allergy Clin Immunol Pract 2019 doi:
453		10.1016/j.jaip.2019.05.020.
454	8.	Huang AH, Chichester KL, Saini SS. Association of basophil parameters with disease
455		severity and duration in chronic spontaneous urticaria (CSU). J Allergy Clin Immunol
456		Pract 2019 doi: 10.1016/j.jaip. 2019.08.004.
457	9.	Rorsman H. Basophilic leucopenia in different forms of urticaria. Acta Allergol
458		1962;17:168-84.
459	10.	Grattan CE, Dawn G, Gibbs S, Francis DM. Blood basophil numbers in chronic
460		ordinary urticaria and healthy controls: diurnal variation, influence of loratadine and
461		prednisolone and relationship to disease activity. Clin Exp Allergy 2003;33:337-41.
462	11.	Oliver ET, Sterba PM, Saini SS. Interval shifts in basophil measures correlate with
463		disease activity in chronic spontaneous urticaria. Allergy 2015;70:601-3.
464	12.	Kay AB, Ying S, Ardelean E, Mlynek A, Kita H, Clark P, et al. Elevations in vascular
465		markers and eosinophils in chronic spontaneous urticarial weals with low-level
466		persistence in uninvolved skin. Br J Dermatol 2014;171:505-11.

467	13.	Oliver ET, Sterba PM, Devine K, Vonakis BM, Saini SS. Altered expression of
468		chemoattractant receptor-homologous molecule expressed on T(H)2 cells on blood
469		basophils and eosinophils in patients with chronic spontaneous urticaria. J Allergy Clin
470		Immunol 2016;137:304-6 e1.
471	14.	Nakashima C, Otsuka A, Kabashima K. Recent advancement in the mechanism of
472		basophil activation. J Dermatol Sci 2018;91:3-8.
473	15.	Easthope S, Jarvis B. Omalizumab. Drugs 2001;61:253-60.
474	16.	MacGlashan D Jr, Xia HZ, Schwartz LB, Gong J. IgE-regulated loss, not IgE-regulated
475		synthesis, controls expression of FcepsilonRI in human basophils. J Leukoc Biol
476		2001;70:207-18.
477	17.	Kaplan AP, Giménez-Arnau AM, Saini SS. Mechanisms of action that contribute to
478		efficacy of omalizumab in chronic spontaneous urticaria. Allergy 2017;72:519-33.
479	18.	Gericke J, Ohanyan T, Church MK, Maurer M, Metz M. Omalizumab may not inhibit
480		mast cell and basophil activation in vitro. J Eur Acad Dermatol Venereol 2015;29:1832-
481		6.
482	19.	Saini SS, Omachi TA, Trzaskoma B, Hulter HN, Rosén K, Sterba PM, et al. Effect of
483		omalizumab on blood basophil counts in patients with chronic idiopathic/spontaneous
484		urticaria. J Invest Dermatol 2017;137:958-61.
485	20.	Kishimoto I, Kambe N, Ly NTM, Nguyen CTH, Okamoto H. Basophil count is a
486		sensitive marker for clinical progression in a chronic spontaneous urticaria patient
487		treated with omalizumab. Allergol Int 2019;68:388-90.
488	21.	Jörg L, Pecaric-Petkovic T, Reichenbach S, Coslovsky M, Stalder O, Pichler W, et al.
489		Double-blind placebo-controlled trial of the effect of omalizumab on basophils in
490		chronic urticaria patients. Clin Exp Allergy 2018;48:196-204.
491	22.	Palacios T, Stillman L, Borish L, Lawrence M. Lack of basophil CD203c-upregulating
492		activity as an immunological marker to predict response to treatment with omalizumab
493		in patients with symptomatic chronic urticaria. J Allergy Clin Immunol Pract
494		2016;4:529-30.
495	23.	Deza G, Bertolín-Colilla M, Pujol RM, Curto-Barredo L, Soto D, García M, et al.
496		Basophil FceRI Expression in Chronic Spontaneous Urticaria: A Potential
497		Immunological Predictor of Response to Omalizumab Therapy. Acta Dermato
498		Venereologica 2017;97:698-704.
499	24.	Gericke J, Metz M, Ohanyan T, Weller K, Altrichter S, Skov PS, et al. Serum
500		autoreactivity predicts time to response to omalizumab therapy in chronic spontaneous
501		urticaria. J Allergy Clin Immunol 2017;139:1059-61.e1.

502	25.	Deza G, Bertolin-Colilla M, Sanchez S, Soto D, Pujol RM, Gimeno R, et al. Basophil
503		FceRI expression is linked to time to omalizumab response in chronic spontaneous
504		urticaria. J Allergy Clin Immunol 2018;141:2313-6 e1.
505	26.	Straesser MD, Oliver E, Palacios T, Kyin T, Patrie J, Borish L, et al. Serum IgE as an
506		immunological marker to predict response to omalizumab treatment in symptomatic
507		chronic urticaria. J Allergy Clin Immunol Pract 2018;6:1386-8.e1.
508	27.	Ertas R, Ozyurt K, Atasoy M, Hawro T, Maurer M. The clinical response to
509		omalizumab in chronic spontaneous urticaria patients is linked to and predicted by IgE
510		levels and their change. Allergy 2018;73:705-12.
511	28.	Altrichter S, Hawro T, Hänel K, Czaja K, Lüscher B, Maurer M, et al. Successful
512		omalizumab treatment in chronic spontaneous urticaria is associated with lowering of
513		serum IL-31 levels. J Eur Acad Dermatol Venereol. 2016;30:454-5.
514	29.	Weller K, Groffik A, Church MK, Hawro T, Krause K, Metz M, et al. Development and
515		validation of the Urticaria Control Test: A patient-reported outcome instrument for
516		assessing urticaria control. J Allergy Clin Immunol 2014;133:1365-72.e6.
517	30.	Itakura A, Tani Y, Kaneko N, Hide M. Impact of chronic urticaria on quality of life and
518		work in Japan: Results of a real-world study. J Dermatol 2018;45:963-70.
519	31.	Nakatani S, Oda Y, Washio K, Fukunaga A, Nishigori C. The Urticaria Control Test
520		and Urticaria Activity Score correlate with quality of life in adult Japanese patients with
521		chronic spontaneous urticaria. Allergology International 2018;68:279-81.
522	32.	De Week AL, Sanz ML, Gamboa PM, Aberer W, Bienvenu J, Blanca M, et al.
523		Diagnostic tests based on human basophils: more potentials and perspectives than
524		pitfalls. II. Technical issues. J Investig Allergol Clin Immunol 2008;18:143-55.
525	33.	FDA, Omalizumab Clinical Pharmacologic review, 2013. Available at:
526		http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentReso
527		urces/UCM393855.pdf
528	34.	Alizadeh Aghdam M, Knol EF, van den Elzen M, den Hartog Jager C, van Os-
529		Medendorp H, Knulst AC, et al. Response of FccRI-bearing leucocytes to omalizumab
530		in chronic spontaneous urticaria. Clin Exp Allergy. 2020;50:364-71.
531	35.	MacGlashan DW Jr, Saini SS. Syk expression and IgE-mediated histamine release in
532		basophils as biomarkers for predicting the clinical efficacy of omalizumab. J Allergy
533		Clin Immunol 2017;139:1680-2.
534	36.	Hennersdorf F, Florian S, Jakob A, Baumgärtner K, Sonneck K, Nordheim A, et al.
535		Identification of CD13, CD107a, and CD164 as novel basophilactivation markers and di
536		ssection of two response patterns in time kinetics of IgE-dependent upregulation. Cell
537		Res 2005; 15: 325-35.

538	37.	Ebo DG, Bridts CH, Mertens CH, Hagendorens MM, Stevens WJ, De Clerck LS.
539		Analyzing histamine release by flow cytometry (HistaFlow):
540		a novel instrument to study the degranulation patterns of basophils. J Immunol Methods
541		2012;375:30-8.
542	38.	Siracusa MC, Comeau MR, Artis D. New insights into basophil biology: initiators,
543		regulators, and effectors of type 2 inflammation. Ann NY Acad Sci 2011;1217:166-77.
544	39.	Yanase Y, Takahagi S, Hide M. Chronic spontaneous urticaria and the extrinsic
545		coagulation system. Allergol Int 2018;67:191-4.
546		

- 547 Figure legends
- 548 Fig. 1 Comparison of the baseline proportion of CD203c^{high} basophils between fast responders
- 549 and non or slow responders.
- 550 A. Anti IgE antibody (E124-2-8D) stimulation.
- 551 B. Anti IgE antibody (MB10-5C4) stimulation.
- 552 C. Anti-FccR1 antibody (CRA1) stimulation.
- 553 Statistical analyses were performed using the Mann-Whitney U-test.
- 554
- 555 Fig. 2 Comparison of the after/before treatment ratio of basophil CD203c responsiveness
- between fast responders and non or slow responders.
- 557 A. Anti IgE antibody (E124-2-8D) stimulation.
- 558 B. Anti IgE antibody (MB10-5C4) stimulation.
- 559 C. Anti-FccR1 antibody (CRA1) stimulation.
- 560 The dotted line indicates no change (value = 1).
- 561 Statistical analyses were performed using the Mann-Whitney U-test.
- 562
- 563 Fig. 3 Comparison of baseline IgE and FccRI on basophils (MFI) between fast responders and
- non or slow responders (A, B) or good responders and non or partial responders (C, D).
- 565 A, C. IgE expression.
- 566 B, D. FccRI expression (CRA1).
- 567 Statistical analyses were performed using the unpaired *t*-test (A, C) or Mann-Whitney U-test (B,
- 568 D).
- 569 MFI, mean fluorescence intensity.
- 570
- 571 Fig. 4 Comparison of changes in IgE or FccRI levels on basophils (MFI) between fast
- 572 responders and non or slow responders (A, B) or good responders and non or partial responders
- 573 (C, D).
- 574 A, C. Δ IgE expression.
- 575 B, D. Δ Fc ϵ RI expression.
- 576 Statistical analyses were performed using the unpaired *t*-test (A, C) or Mann-Whitney *U*-test (B,
- 577 D).
- 578 MFI, mean fluorescence intensity.
- 579
- 580 Fig. 5 Comparison of changes in total serum IgE levels and circulating basophil counts between
- 581 fast responders and non or partial responders or good responders and non or partial responders
- 582 (C, D).

- 583 A, C. Δtotal serum IgE; increase of total serum IgE.
- 584 B, D. Δbasophil counts; increase of circulating basophil counts.
- 585 The dotted line indicates no change.
- 586 Statistical analyses were performed using the Mann-Whitney U-test (A) or unpaired t-test (B).
- 587 Three patients among N/PRs did not have data of total serum IgE and basophil count either
- 588 before or after treatment and these patients were excluded from the GRs vs. N/PRs dataset (Fig.
- 589 5C, D).
- 590
- 591 Fig. 6 Sequential changes in the parameters of *in vivo* omalizumab treatment (on 4 weeks of
- 592 treatment) (A, B) and *in vitro* pre-treatment basophils with omalizumab in fast responders (C,
- 593 D).
- 594 A. Urticaria control test.
- 595 B, C. CD203c^{high} basophils (%) stimulated with anti-IgE antibody (E124-2-8D).
- 596 D. CD203c^{high} basophils (%) stimulated with anti-IgE antibody (MB10-5C4).
- 597 MFI, mean fluorescence intensity.

	Fast responders $(n = 20)$	Non or slow responders (n =14)	P value
Age, years	44.9 ± 4.4 52.7 ± 5.0		.29
Female, n (%)	12 (63.1%)	9 (64.2%)	>.99
Disease duration, years	2 (0.2–33)	3 (0.2–25)	.83
Total IgE (IU/ml)	126 (22.9–2535)	185 (3–4393)	.89
Basophil counts (/µl)	18.3 (0–118)	23 (0–98)	.41
ASST positive rate, n (%)	3/9 (33.3%)	4/6 (66.6%)	.31
UCT	6.1 ± 2.8	5.5 ± 2.7	.54
UAS7	22.9 ± 2.1	21.7 ± 3.4	.76
DLQI	7.0 (2–24)	7.0 (2–17)	.80

598 Table I. Demographic characteristics based on the rapid therapeutic effect of omalizumab

599 Data are given as the mean \pm SD for age, UCT and UAS7; n (%) for sex, ASST positive rate;

600 median (range) for disease duration, serum total IgE, basophil counts, and DLQI.

601 Statistical differences between two groups were analyzed by unpaired *t*-test for age, UCT, and

602 UAS7, Fisher's exact test for female and ASST positive rate, and Mann-Whitney U-test for

603 disease duration, serum total IgE, basophil counts, and DLQI.

ASST, autologous serum skin test; UCT, urticaria control test; UAS7, 7-day urticaria activity

605 score; DLQI, dermatology life quality index.

Fig. 6, C

Fig. 6, D

1	Fig. E1 Definition of each responder to treatment.
2	Fast responders: UCT scores ≥ 12 increased at week 4.
3	Non or slow responders: UCT scores < 12 increased at week 4.
4	Good responders: UCT scores \geq 12 increased at week 12.
5	Non or partial responders: UCT scores < 12 increased at week 12.
6	
7	Fig. E2 Changes in urticaria control test scores (UCT) and urticaria activity score 7 (UAS7).
8	A, C. Fast responders.
9	B, D. Non or slow responders.
10	The dotted line indicates the cutoff value of 12.
11	
12	Fig. E3 Comparison of basophil CD203c expression in the steady state without anti-IgE and/or
13	FceRI stimulation (MFI) between fast responders and non or slow responders.
14	Statistical analysis was performed using the unpaired <i>t</i> -test.
15	MFI, mean fluorescence intensity.
16	
17	Fig. E4 The response to treatment by classifying responders and non-responders on baseline
18	basophil reactivity
19	Non-responders: <10% CD203chigh basophil to anti-IgE stimulation
20	Responders: >10% CD203c ^{high} basophil to anti-IgE stimulation
21	
22	Fig. E5 Changes in CD203c ^{high} basophils before and after treatment with omalizumab in fast
23	responders (A, C, E) and non or slow responders (B, D, F).
24	A, B. Anti IgE antibody (E124-2-8D) stimulation.
25	C, D. Anti IgE antibody (MB10-5C4) stimulation.
26	E, F. Anti-FccR1 antibody (CRA1) stimulation.
27	
28	Fig. E6 Correlation of serum total IgE (IU/ml) and basophil IgE expression as MFI in CSU
29	patients.
30	A. Basophil IgE expression
31	B. Basophil CRA1 receptor expression
32	Statistical analyses were performed using Spearman's rank correlation coefficient.

- 33 MFI, mean fluorescence intensity; CSU, chronic spontaneous urticaria.

Omalizumab

Fig. E2, A

Fig. E2, B

Fig. E2, C

Fig. E2, D

Fig. E4

	Good responders $(n = 26)$	Non or partial responders (n =7)	P value
Age, years	45.3 ± 3.6	59.4 ± 7.7	.08
Female, n (%)	18 (69%)	3 (42%)	.37
Disease duration, years	3 (0.2–33)	4 (0.5–25)	.61
Total IgE (IU/ml)	139.5 (22.9–4393)	163.2 (3–505)	.40
Basophil counts (/µl)	18 (0-98)	28 (0-73)	.47
ASST positive rate, n (%)	5/12 (41%)	2/3 (66%)	.56
UCT	6.1 ± 2.8	5.5 ± 2.0	.63
UAS7	23.0 ± 9.1	19.6 ± 12.4	.45
DLQI	7 (2–24)	5.5 (2–14)	.51

1 Table EI. Demographic characteristics based on the good therapeutic effect of omalizumab

2 Data are given as the mean ± SD for age, UCT and UAS7; n (%) for sex, ASST positive rate;

3 median (range) for disease duration, serum total IgE, basophil counts, and DLQI.

4 Statistical differences between two groups were analyzed by unpaired *t*-test for age, UCT, and

5 UAS7, Fisher's exact test for female and ASST positive rate, and Mann-Whitney U-test for

6 disease duration, serum total IgE, basophil counts, and DLQI.

7 ASST, autologous serum skin test; UCT, urticaria control test; UAS7, 7-day urticaria activity

8 score; DLQI, dermatology life quality index.

9 One patient among N/PRs did not have data of total serum IgE and basophil count before

10 treatment and the patient was excluded from the GRs vs. N/PRs dataset.

11

13 Table EII. Basophil responsiveness with stimulation before and after treatment with

	No	Age	Sex	Total	Stimulation (proportion of CD203c ^{high} basophil)					
		8-	~	IgE						(1 1 (0/)
				(IU/ml)	Anti-IgE antibody (%) (E124-2-8D)		Anti-IgE antibody (%) (MB10-5C4)		Anti- FCER I a	intibody (%)
				× /					(CRAI)	
					Before	After	Before	After	Before	After
					treatment	treatment	treatment	treatment	treatment	treatment
	1	37	М	121	9.28	60	5.68	31.3	7.14	69.3
	2	20	F	131	2.33	7.23	2.14	11.5	3.37	35.9
	3	57	F	148	52.8	79.8	72.2	72.1	32.8	81.6
	4	17	М	111	44.6	34.6	54.3	10.8	49.1	57.9
-	5	32	F	73	14.4	88.1	19.2	41.7	15	95.9
	6	49	F	294	29.7	50.5	51.4	83.8	36.9	91.5
	7	35	М	216	87.1	94.2	88.1	95.1	70.4	97
s	8	40	F	193	10	95.4	14	93	1.82	94.7
nder	9	41	F	86.9	1.53	68	1.97	2.1	1.51	89.9
spor	10	58	F	371	70	84.5	72.4	91.7	53.5	92.3
st re	11	75	М	22.9	8.03	87.4	7.13	63.1	3.85	90.2
Fas	12	39	М	17.1	77.4	72	69.6	78.1	4.99	86.4
	13	75	М	41.9	76.3	73	82.2	67	65.3	94.1
	14	45	F	88.8	5.13	93.9	3.37	86.4	1.43	85.9
	15	74	F	282	56.3	52.1	37.7	44.3	30.1	45
	16	45	М	347	91.7	85.7	93.1	87.8	61.6	94.3
	17	21	F	2535	2.67	80.3	5.83	89.6	3.69	96.9
	18	74	F	81.5	26.5	54.1	26.2	25.6	13.2	83.7
	19	20	F	n.d.	48.9	82.2	54.3	73.3	47.7	90.6
	20	59	F	n.d	5.63	93.6	3.17	50	6.52	18.5
				•				•		
	1	73	М	n.d.	42	42.6	47.4	9.11	28.4	72.3
	2	73	М	265	80.1	88.7	84.9	52	62.7	91.9
	3*	23	F	295	34	66.6	45	77	39.3	85.3
~	4	51	М	505	8.39	4.04	10.3	3.7	13.4	11.9
ders	5	63	F	<3	4.55	4.16	12.1	4.64	6.61	4.76
noq	6	49	М	<3	4.35	5.53	11.6	6.86	7.45	7.26
res	7	23	F	534	94.1	85.8	85.9	89.2	86.2	91.6
low	8*	61	F	80.2	6.38	90.7	9.21	80	7.82	96.3
Non or s	9*	36	F	1518	35	31.8	88	53.1	85.6	60.1
	10*	42	М	4392	8.37	6.52	27.6	64.1	22.3	54.6
	11*	68	F	131	7.91	49.6	6.16	38.5	2.05	69.3
	12*	38	F	185	89.1	76.4	88.7	91.3	72	73.4
	13	54	F	8.4	0.76	6.25	1.67	8.33	3.28	2.25
	14	84	F	7.4	60.8	31.9	56.9	2.78	54.5	51.3

14 omalizumab in chronic spontaneous urticaria patients

15 CD203c expression after antibody stimulation before and after treatment with omalizumab is

16 described as CD203c^{high} basophils (%). FRs, fast responders (urticaria control test (UCT) scores

17 \geq 12 up to the end of week 4 after starting treatment); N/SR, non or slow responders (UCT

18 scores < 12 up to the end of week 4 after starting treatment).

19 * Patients of the 14 N/SRs at 4 week who became GRs at week 12.