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Transport Process Chemical Engineering 

Transport Process Chemical Engineering (TPCE) is a significant contribution to chemical 

engineering education.  The author Emeritus Professor Kunio Kataoka of Kobe University, Kobe, 

Japan is eminently qualified having taught this subject for 35 years to both undergraduate and 

graduate students.  TPCE should serve as a supplemental text for both undergraduate and 

graduate students.   While undergraduate students may have been exposed to vector and tensor 

analysis in a mathematics course, the study of transport processes is likely their first exposure to 

practical situations where these concepts are required.  This exposure can be quite daunting. 

Graduate students may benefit by reviewing the more practical aspects and as a second source for 

the more advanced topics.   

The text considers microscopic and macroscopic balances of heat, mass, and momentum 

transfer both separately and simultaneously.  The chapters typically begin with a generalized 

mathematical treatment which is subsequently simplified for special cases.  The limits of the 

simplifying assumptions are clearly specified.  Each chapter contains examples with detailed 

solutions, problems including an answer so that the students may know if their approach is correct, 

and problems without an answer leaving the students on their own.   

It is my experience based on 40 years of teaching that students react to complex materials 

in different ways.  Some respond quite well to one author’s presentation while others find that 

same presentation virtually incomprehensible.  The latter group may, however, respond quite well 

to the same material presented in a somewhat different manner by another author.  On another 

topic the response of the same groups may be totally reversed.  To emphasize this point, a 

respected faculty colleague recently told me that he always tries to have two sources whenever he is 

preparing a new lecture.   

The text is in English and should, therefore, be useful to chemical engineering students 

worldwide.  It is particularly significant that Professor Kataoka has chosen to make the text 

available to all interested parties free-of-charge on the following web sites   

Kobe University (https://doi.org/10.24546/90008260 )   

Kansai Chemical Engineering Company (https://www.kce.co.jp/en/library). 

Emeritus Professor Dr. Douglas P. Harrison 
Department of Chemical Engineering 
Louisiana State University 
Baton Rouge, LA 
The United States of America 



 
 

PREFACE 
 
 
  This book has been organized as a textbook of the three-year sequential course for students of 
chemical engineering from the junior up to the first-year graduate level.  
 

It is well known that in 1960, Professor R. B. Bird, Professor W. E. Stewart, and Professor E. N. 
Lightfoot of the University of Wisconsin united fluid flow, heat transfer, and mass transfer into a 
single concept with the publication of “Transport Phenomena.”  

I believe that their concept remains unaltered and still alive. 
I have 35 years’ teaching experience as a faculty member of the Chemical Engineering Department 
of Kobe University, Kobe, Japan. Since 1968, in particular, I have had the privilege of lecturing for 
this three-year course from the junior introductory to the first-year graduate advanced course.  
 

Besides I have a fortunate experience of teaching as an invited professor the fundamentals of 
chemical engineering by using their book “Transport Phenomena” at Louisiana State University for 
the short term from 1978 to 1979.  Some thoughtful comment and advice received from Professor 
R. B. Bird during that term were invaluable and still remain as a concept of the author’s educational 
standard for this book.   
 

This is intended to serve as a textbook for an integrated understanding of fluid mechanics, 
thermodynamics, heat transfer, and mass transfer from a viewpoint of process engineers. Radiation 
is not included because the author thought that a brief summary of radiation transfer consistent with 
the rest of the text was too difficult. I hope that this book will be useful not only as a reference but 
also as a textbook to be used either by a class or for self-study. 
 

The objective of the book is to present all the subjects of transport processes rearranged in the 
developing sequence from the fundamentals to practical application. 

 
Where this book is used for college instruction in chemical engineering, the whole PART I and 

Chapter 20 of PART II are suitable for undergraduate courses; Chapters 11 through 16 of PART II 
for graduate studies. The remaining part Chapters 17 through 19 are intended, in particular, for 
those who expect to do a lot of academic research in those areas. 

Chapter 2 of the book presenting basic definitions of physical transport properties is followed by 
Chapter 3 simply and qualitatively explaining the fundamentals of fluid flow such as the generation 
of turbulent motion. Chapter 4 introduces a control volume approach for macroscopic balances of 
momentum, energy and mass, which give us very important fundamental equations practically 
applicable to various chemical equipment designs. These three chapters are essential for 
undergraduate courses. 

Chapter 5 introduces the microscopic shell balance of momentum, energy and mass, where 
undergraduate and/or graduate students study how to construct the respective basic differential 
equations such as the Navier-Stokes equation of motion. They must first learn a little vector and 
tensor analysis for mathematical generalization. 

Chapter 6 provides several applications of those fundamental differential equations. The first two 
examples deal with simple momentum equations for Newtonian fluids to be followed by two 
non-Newtonian examples which may be appropriate for graduate course. The remaining parts 
giving four examples on heat and mass transfer may also be useful for both course students. In 
every examples, starting by the very difficult partial differential equations, we will study how to 
simplify them into very simple ordinary differential equations.  

Chapters 7 through 10 deal with interphase transfer of momentum, heat and mass, where they 
will study learn “the film theory” and should learn how practically important it is to define 
interphase transfer coefficients. Therefore these chapters are the most importance as the primary 
theme for the undergraduate course because most of chemical engineering processes can be 
modeled by the control volume approach using the interphase transport concepts. Students will 

ⅰ 



study how to design various chemical apparatuses from the concept of interphase transfer 
coefficients. At the end of Chapter 9, the measuring principle of fluid velocities based on the 
convective heat transfer around a circular cylinder is arranged for graduate-level researchers.   

In Part II, Chapters 11 through 13 deal with distillation and humidification processes, both of 
which proceed with simultaneous heat and mass transfer accompanied by phase transformation. In 
Chapter 11, undergraduate students will study very simple and useful basic ideas of distillation from 
a viewpoint of equilibrium stage model. Chapter 12 provides graduate students with the advanced 
concept of simultaneous heat and mass transfer, where the heat and mass transfer analysis of packed 
column distillation can be challenged by means of a unique control volume approach. In Chapter 13, 
undergraduate and/or graduate students will study how to practically design chemical equipment 
using air-water system such as air-conditioner, cooling tower, and evaporative cooler and condenser 
from a viewpoint of simultaneous heat and mass transfer. Chapter 14 on ionic mass transfer is 
arranged especially for graduate students, which will be useful for experimental research on 
liquid-phase mass transfer. Chapter 15 deals with condensation and boiling heat transfer. Chapter 16 
provides the advanced analysis of diffusion processes accompanied with chemical reactions. 
Because of the very difficult analytical analysis, a computer-aided numerical analysis may be 
utilized at present. Chapter 17 provides the fundamental aspect of turbulent transport phenomena 
for graduate students as well as researchers. This will be able to provide various fundamental 
knowledges as the background useful for the advanced academic research on transport processes. 
The following Chapters 18 and 19 will give the advanced transport aspects of fluid flow to graduate 
students. Finally Chapter 20 provides practical consideration of agitating equipment for 
undergraduate course. Because of the very complicated mixing phenomenon, the useful practical 
design concept should be studied using a dimensional analysis from a viewpoint of transport 
processes. 

 
I would like to emphasize that it is getting more and more important to investigate various 

chemical engineering process and equipment from a viewpoint of transport phenomena. I believe 
that it must effectively lead to process development, intensification, and technological innovation.  
  If the various mathematical approaches introduced in this book based on differential equations 
are difficult to solve analytically, the computer-aided numerical analysis may be utilized as an 
appropriate tool at the present time.    

 
My friend, Emeritus Professor Dr. D. P. Harrison of Louisiana State University who was the 

chairman of Department of Chemical Engineering during my stay at LSU read the whole 
manuscript from his stand of reaction engineering and gave me many helpful suggestions. 

 
  In closing, I would like to express my gratitude to all the faculty members and students of 
Department of Chemical Science and Engineering, Kobe University and to The Society of Chemical 
Engineers, Japan. In addition, Dr. H. Noda, the President of Kansai Chemical Engineering Co., Ltd., 
gave me a lot of support and advice from a viewpoint of practical engineering.  I would like to 
appreciate his kind encouragement and valuable comments 
 
 I would be very happy if many chemical engineering students will be encouraged by taking an 
interest in this book. 
 

KUNIO  KATAOKA 
*Emeritus Professor  
Dept. of Chemical Science & Engineering 
Kobe University 

*Top Supervisor 
Engineering Dept. 
Kansai Chemical Engineering Co., Ltd. 

 
 

Kobe 
September 2020 
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PART Ⅰ 
 
 

CHAPTER 1 
 

INTRODUCTION 
 

 

1.1 What Do We Study in TRANSPORT PROCESS  
CHEMICAL ENGINEERING? 

 

  In order to understand what and how we will study, let us consider a process producing methane 

from heavy oil (higher hydrocarbons) as an example of chemical plants. 

  Figure 1 shows the flow sheet diagram. The heavy oil is usually withdrawn as one of the bottom 

products from a distillation plant 1 of crude oil. The process consists of gasification, purification, 

and methanation. 

 

 
Fig.1.1-1. Example of process flow diagram of a chemical plant 

 

  Heavy oil, oxygen, and steam are fed through heat exchangers 2 and 3 to the gasification reactor 

4 where the higher hydrocarbons undergo complete reaction to produce CO and H2 without solid 

catalyst. The outlet gas from the reactor 4 is cooled, passes through a soot separator 6, and enters a 

sulfur removing equipment 7.  The gas from the separator 7 consists of CO, H2, and small amount 

of CO2.  The gas is divided and fed into two sections: purification and methanation sections.  In 

the purification section, the gas is fed through a saturator 8 to a water-gas shift reactor 10.  The 

reactor consists of a fixed bed of solid catalyst particles through which the gas undergoes the 

reaction CO + H2O → CO2 + H2  in the presence of nickel based catalyst.  The reaction is 



reversible and exothermic.  The shifted gas is cooled by a contact cooler and heat exchanger 11, 

and led to a CO2 absorber 12, where CO2 is removed from the shifted gas by water or some sort of 

alkaline solution.  The absorber is a column filled with some sort of device or packed with small 

solids of varying shapes to increase the interfacial area between the trickling liquid and the 

flowing-up gas.  The gas leaving the absorber is hydrogen rich gas.  On the other hand, the rest of 

the gas produced in the gasification process is mixed with the hydrogen rich gas from the 

purification process, and fed to a series of methanation reactors 14.  The reactors are a fixed bed of 

nickel catalyst particles through which the reaction CO + 3 H2 → CH4 + H2O takes place.  The 

methane rich gas leaving the methanation reactors contains steam.  The product of methane rich 

gas is obtained after removing steam by condenser 15.  A certain fraction of the product gas is fed 

back to the methanation reactors 14 by a compressor 16. 

  As a prerequisite to the design of industrial equipment, an understanding of the fundamental 

properties and characteristics of individual operations is required.  This plant offers examples of 

various momentum, energy, and mass transfer processes which will be studied in this course. 

 

  In the design of pipelines, we need to know 

1) mechanical energy losses of the flowing fluids (or pressure drops) 

2) power of pumps, compressors, and blowers and optimal pipe diameters required to attain the 

desired flow rates 

The mechanical energy balance (the modified Bernoulli equation) for calculation of the power 

requirement and the concept of friction factor, equivalent length, and friction loss factor for 

calculation of the pressure drops at the individual sections will be studied in this course. 

 

  In the design of heat exchangers, we need to know 

1) pressure drops of shell- and tube-side streams 

2) heat transfer area (i.e. the size of exchangers) required to attain the desired rate of heat transfer. 

The energy balance for calculation of the discharge fluid temperatures and the concept of heat 

transfer coefficient will be studied to size the heat exchangers in this course. 

 

In the design of gas absorbers, we need to know 

1) operating conditions (liquid-gas flow ratio, temperature, pressure, etc.) 

2) height of absorption columns required to attain the desired separation efficiency 

3) diameter of absorption columns to attain the desired gas-liquid contact condition 

Phase equilibrium should be studied in thermodynamic course. The concept of mass transfer 

coefficient will be studied for determination of mass transfer area i.e. the height of an absorption 

column in this course. 

 

Although the above example does not have a distillation process, distillation is one of the most 

popular unit operations. Many distillation columns are encountered in the oil refinery plants. In the 

design of distillation columns, we need to know 

1) operating conditions (feed rate, reflux-ratio, temperature, pressure, liquid-gas flow ratio, etc.) 

2) column structures (trayed column, packed column) suitable for the feed mixture properties 

3) number of trays, height of packing section suitable for the desired separation efficiency 

4) column diameter for attaining the desired gas-liquid contact condition 

Phase equilibrium is also very important for distillation process engineering since the most 

popular design procedure is the equilibrium-stage model. 

  

After learning the fundamentals of engineering calculation based on the equilibrium stage model 

for the practical design of distillation equipment, we try to understand the distillation processes 

from a viewpoint of heat and mass transfer. 

 

2             Introduction 



  In the design of reactors, we need to know 

1) operating conditions (temperature, pressure, feed composition, etc.)  

2) size of reactors required to obtain the desired conversion and product yield 

3) selection of suitable catalyst 

The reaction kinetics (reaction rate, chemical equilibrium, etc.) should be studied in  

another course. The flow patterns and heat- and mass-transfer characteristics should also be 

considered because actual rate of reaction depends on mass transfer of reactants as well as 

temperature and pressure. 

 

  In the design of dust separators, we need to know 

1) minimum size of collectable particles 

2) collection efficiency 

The underlying theory on particle mechanics should be studied with the fluid mechanics. 

 

  The main problem in the design of such chemical engineering processes is to determine the size 

of equipment: to calculate how much contacting area is necessary for the required rate of heat or 

mass transfer. 

  Most flows in chemical engineering equipment are turbulent. Of particular importance are the 

mixing effects of turbulence on heat/mass transfer and chemical reaction. The phenomenological 

understanding of turbulent flows in this course will be helpful to the reader in the design of new 

equipment and the improvement of equipment efficiency. 

  Unfortunately, no general approach to the solution of problems on the turbulent transport 

phenomena is available. Accurate quantitative predictions cannot be made without relying heavily 

on empirical data. Recently many trials have been made for the computer-aided modeling of the 

turbulent transport mechanism but those levels are beyond the concept of this course. 

 

  The Transport Process Chemical Engineering is one of the most basic and most important 

scientific areas constituted for the understanding of individual operations from an engineering 

viewpoint. 
 

 

1.2 Concepts and Definitions 
 

(I) Two Viewpoints for Transport Science 

    Lagrangian and Eulerian Viewpoints 
  There are two different viewpoints for representation of physical fields.  In the Lagrangian 

approach, the physical variation can be described for a particular element of interest as it moves.  

The coordinates describe the time-dependent position of the moving element.  This viewpoint is 

mainly used in particle and rigid-body dynamics.  On the other hand, in the Eulerian viewpoint, 

the physical variation is described on a given stationary line or plane of interest.  In Transport 

Science, therefore, fluid can be regarded as a continuum medium.   

  The Eulerian viewpoint is more useful for description of the physical variation in flowing 
fluids.  This approach gives the value of a fluid variable at a given position at a given time such 

as the fluid velocity distribution on the cross section of a flow passage. 

 
(II) Units 

The International Standard system of units (Systeme International), or the so-called “SI units” 

will be used in this course.  The basic units are mass in kilogram, (kg), length in meters, (m), 

and time in seconds, (s).  The unit of force is newton, (N), which is easily defined using the 

simplest form of Newton’s law of motion: 𝑭 = 𝑚 𝒂.  One newton 1 N is the force required to 
accelerate a mass of 1 kg at a rate of 1 m/s

2
.  The unit of energy or work is joule, (J), which can 
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be easily understood as the product of displacement and force component in its direction.  

Basically, degrees Kelvin, (K), will be used as the unit of absolute temperature, but degrees 

Cerlsius, (℃), will be also used for convenience. 

Another useful consideration in dealing with units is the concept of the molar units.  In 

processes including chemical reactions, kilogram moles, (kmol), may be much more convenient 

for mass than kilograms. 

 
(III) Three Categories of Physical Quantities 
  The physical quantities encountered in this course fall into one of three categories: (1) scalars 

such as time, temperature, density, and energy; (2) vectors such as velocity, acceleration, 

momentum, heat-flux and mass-flux; and (3) tensors such as shear stress or momentum-flux and 

rate of strain.  Vectors have three components whereas tensors have nine components. 

  In rectangular coordinates, for example, a velocity vector is expressed as 

𝒗 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) (1.2-1) 

And a stress tensor is given by 

𝝉 =  [

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

] (1.2-2) 

 

 

[Example 1.1-E1]  Force Balance from the Lagranrian Viewpoint 

  As an example of Lagrangian methods, let us consider a problem for the trajectory of 

a flying ball of mass 𝑚 shown below. The position (x, y) of the ball is a function of time𝑡. 
  The velocity 𝒗 at time t can be decomposed as 

𝒗 =  
𝑑𝑥

𝑑𝑡
 𝒊 + 

𝑑𝑦

𝑑𝑡
 𝒋         

 (1.2-3) 

where 𝒊 and 𝒋 are unit vectors in the x- and y-directions, respectively. 

The external forces acting on the ball are gravitational force 𝑚 𝑔 and the resistance 

force 𝑹 = 𝑅𝑥𝒊 + 𝑅𝑦𝒋 exerted by air.   

Applying Newton’s second law of motion to the ball: 

𝑚 
𝑑2𝑥

𝑑𝑡2 = − 𝑅𝑥  (1.2-4) 

𝑚 
𝑑2𝑦

𝑑𝑡2 = − 𝑅𝑦 − 𝑚 𝑔 (1.2-5) 

 

 

 
Fig.1.2-1. Equation of motion of a flying ball 

 

If the resistance force is known as a function of velocity, the above set of equations 

can be solved.  The solution will be given by 
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𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡) (1.2-6) 

Eliminating the variable t, the trajectory is expressible as 

𝑓(𝑥, 𝑦) = 0  (1.2-7) 

  This approach is applicable, for example, to calculation of the trajectories of liquid 

droplets in spray dryers and solid particles in sedimenting centrifuges. 

 
(IV) Transport Intensity 

   There are two solid plates in which heat is transferred at the same rate.  The transport area of 

one plate is double as much as that of the other plate.  For this case, the heat transport intensity 

(called “heat-flux”) of the former plate is half as much as that of the latter plate. 

flux =  
a quantity of interest transferred

(are)(time)
 (1.2-8) 

rate =  
a quantity of interest transferred

time
 (1.2-9) 

 

For example, there are two copper electrodes in an electrolytic solution of copper 

sulfate, one of the electrodes (anode) has active surface much larger than the other one 

(cathode). In an electrolytic reaction occurring at some potential difference (emf) 

between the electrodes, the cathode has a deposition of copper ions while the anode 

releases copper ions at the same rate. In spite of the same ionic mass transfer rates at 

the two electrodes, the ionic mass flux due to the copper deposition on the cathode 

becomes much larger than the mass flux releasing copper ions from the anode. In this 

case, the resistance to mass transfer near the cathode becomes predominant. 

 
(V) Fluid Forces 
(5-1) Body Force and Surface Force 

   Body force such as gravitational force is proportional to the system’s mass.  Surface force 

such as pressure and friction force is proportional to the acting surface area and usually given in 

terms of orthogonal components, tangent and normal to the surface.  They are called tangential 

and normal forces, respectively. 

(5-2) Static Pressure 

   A fluid deforms continuously when it is subjected to shear stresses.  In the case of an 

element of stationary fluid, stress acts normal to the surface of the fluid element.  This normal 

stress, in the absence of motion, is called static pressure.  In fluid flow, a normal stress generally 

consists of static pressure and additional normal stress due to the fluid motion. 

   For example, one component of normal stress is expressible as 

𝜎𝑥𝑥 = 𝑝 + 𝜏𝑥𝑥 (1.2-10) 
The pressure and stresses have units of N/m

2
.  Pascal (1 Pa = 1 N/m

2
) is often used for the 

unit of pressure. 

(5-3) Hydrostatics 

     For both compressible and incompressible fluids, static pressure varies with vertical height as 

       
𝑑𝑝

𝑑𝑦
=  𝜌 𝑔 (1.2-11) 
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Fig.1.2-2. Hydrostatics of a water tank 

 

    Let us consider a tank filled with water.  What is the static pressure at a position ℎ below the 

free surface of water?  Water can be considered as an incompressible fluid: 𝜌 = const.  
 

 Integrating Eq.(1.2-11) with respect to 𝑦 gives 
 

    𝑝 −  𝑝0 = ∫ 𝑑𝑝 =  ∫ 𝜌 𝑔 𝑑𝑦 =  𝜌 𝑔 ℎ
ℎ

0

𝑝

𝑝0
 (1.2-12) 

where 𝑝0 is a pressure at the free surface and usually atmospheric pressure. 

 
[Problem 1.2-P1] 

  Manometers are a device for measuring pressure difference between two points.  A 

fluid of density 𝜌 is flowing through a circular pipe.  The U-tube manometer which 

has a manometer fluid with density 𝜌𝑚 has two pressure taps at point A and B, 

respectively.  Determine the pressure difference 𝑝𝐴 − 𝑝𝐵 by the manometer reading ℎ. 

 
[Problem 1.2-P2] 

  The cylindrical water tank (diameter 𝐷) shown below has a nozzle at the bottom 

corner. Water is discharged due to the gravity in the following rule: 

𝑣 = 𝑐 √2 𝑔 ℎ 

where 𝑣 is (cross-sectional are-averaged) velocity of water issuing the nozzle (nozzle 

outlet diameter 𝑑) and ℎ the water surface height at time 𝑡 from the nozzle level. The 

coefficient in front of the square-root is an assumed constant (usually 0.95). At the 

beginning, the water height is ℎ0.  

How long does it take until the water level arrives at the nozzle height ℎ𝑁? 

  

 
Fig.1.2-P2.  Water discharge from a tank 
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CHAPTER 2 
 

FUNDAMENTAL LAWS OF  
MOMENTUM, ENERGY AND MASS TRANFER 

 
 

All materials are generally composed of molecules. However any theory that would 

predict the individual behaviors of these many molecules would be very difficult, far 

beyond our abilities at the present level. Most engineering work is usually concerned 

with the macroscopic behavior considering a fluid as a continuous distribution of 

matter or a continuum. Therefore we can use the continuum approach in this course.  

We postulate that velocity, density, pressure, temperature, mass concentration, 

momentum-flux, energy-flux, mass-flux etc. behave as continuum functions. An exact 

derivation of these laws of molecular transport can be made by non-equilibrium 

thermodynamics 
 

 

2-1  Viscosity (Newton’s Law of Viscosity) 
 

The viscosity can be understood with the aid of very simple flow problem. There is a 

fluid --- either a gas or a liquid --- contained between two large parallel plates a small 

distance ∆𝑌 apart, which extend indefinitely in the x- and z-directions.  

 

 
Fig.2.1-1. Momentum transfer across fluid layer between two parallel plates 

 

Initially, the fluid and two plates are at rest, but at time 𝑡 = 0 the upper plate is set 

in motion in the positive x-direction at a constant velocity ∆𝑉 by a force 𝐹. 

As time proceeds, the fluid distant from the upper plate gains velocity (momentum), 

and finally the steady-state linear velocity profile is attained. In Transport Science, we 

interpret that the x-directed momentum 𝜌 𝑣𝑥 diffuses in the y-direction. If F is acting 

on a definite area 𝐴 of the upper plate, we can get the following empirical relation 

between 𝐹 and ∆𝑉: 
𝐹

𝐴
= − 𝜇 

∆𝑉

∆𝑌
    (2.1-1) 

The constant of proportionality 𝜇 is known as the viscosity of the fluid. Even in steady 

state the x-momentum 𝜌 𝑣𝑥 is steadily transferred in the y-direction to maintain the 



linear velocity distribution: 
𝑣𝑥

∆𝑉
= 1 − 

𝑦

∆𝑌
 (2.1-2) 

  In a differential form, Eq.(2.1-1) is expressible as 

𝜏𝑦𝑥 = − 𝜇 
𝑑 𝑣𝑥

𝑑𝑦
 (2.1-3) 

  This is a form of Newton’s law of viscosity for one-dimensional flow. This law states 

that local shear stress 𝜏𝑦𝑥 at y is proportional to local velocity gradient 𝑑 𝑣𝑥 𝑑𝑦⁄  at y. 

The subscript yx indicates that the shear stress is in a plane perpendicular to y and 

parallel to x or that that the x-momentum diffuses in the y-direction. Since the 

dimensions of the shear stress is the same as those of momentum flux, it can be 

considered that local momentum-flux is proportional to local gradient of momentum 

per unit volume:  

𝜏𝑦𝑥 = − 𝜈 
𝑑 𝜚 𝑣𝑥

𝑑𝑦
 (2.1-4) 

  Here 𝜈 =  𝜇 𝜚⁄  is called “kinematic viscosity,” which has the same units as diffusivity, 

i.e. m2/s in SI units. The kinematic viscosity can be considered as molecular diffusivity 

for momentum. 

  Fluids are classified as Newtonian or non-Newtonian, depending on the relation of 

the shear stress with the rate of strain. The fluids which do not obey the Newton’s law 

of viscosity are called “non-Newtonian fluid”. All kinds of gases and simple liquids 

belong to Newtonian fluid. Polymer solutions and their melts, emulsions, slurries, and 

pastes often behave as non-Newtonian fluids. Some models for non-Newtonian fluids 

will be described in Section 2.5. 

  The units of viscosity can be obtained as follows: 

𝜏𝑦𝑥 (=) 
𝑀 𝐿 𝑇−2

𝐿2  (=) 
𝑀 𝐿 𝑇−1

𝐿2 𝑇
 (=)

𝑁

𝑚2  (2.1-5) 

The units of shear stress become the same as that of pressure.  

𝜇 (=) 
𝜏𝑦𝑥

(𝑑𝑣𝑥 𝑑𝑦)⁄
 (=) 

𝑀 𝐿−1 𝑇−2

(𝐿 𝑇) 𝐿−1⁄
 (=) 

𝑀

𝐿 𝑇
 (=) 

𝑘𝑔

𝑚 𝑠
 (2.1-6) 

𝜈 (=) 𝜇 𝜚⁄  (=) 
𝐿2

𝑇
 (=) 

𝑚2

𝑠
 (2.1-7) 

where 𝑀, 𝐿, 𝑇 are characteristic dimensions of mass, length and time, respectively. 

1 kg/m s (= Pa s) = 10 poise (= g/cm sec) = 1,000 centipoise (= cP). 

 

  General form of Newton’s law of viscosity is listed given in terms of rectangular, and 

cylindrical coordinates in Table 2.1-1. 

 
Table 2.1-1 Newton’s law of viscosity 

[Rectangular coordinates(𝑥, 𝑦, 𝑧)] 

𝜏𝑥𝑥 = − 𝜇 [2 
𝜕 𝑣𝑥

𝜕𝑥
− 

2

3
 (𝛻 ∙ 𝒗)]  𝜏𝑦𝑦 = − 𝜇 [2 

𝜕 𝑣𝑦

𝜕𝑦
− 

2

3
 (𝛻 ∙ 𝒗)]   

  𝜏𝑧𝑧 = − 𝜇 [2 
𝜕 𝑣𝑧

𝜕𝑧
− 

2

3
 (𝛻 ∙ 𝒗)]  𝜏𝑥𝑦 = 𝜏𝑦𝑥 = − 𝜇 [

𝜕 𝑣𝑥

𝜕𝑦
+

𝜕 𝑣𝑦

𝜕𝑥
] 

𝜏𝑦𝑧 = 𝜏𝑧𝑦 = − 𝜇 [
𝜕 𝑣𝑦

𝜕𝑧
+

𝜕 𝑣𝑧

𝜕𝑦
]  𝜏𝑧𝑥 = 𝜏𝑥𝑧 = − 𝜇 [

𝜕 𝑣𝑧

𝜕𝑥
+

𝜕 𝑣𝑥

𝜕𝑧
] 

 (∇ ∙ 𝒗) = 
𝜕𝑣𝑥

𝜕𝑥
+ 

𝜕𝑣𝑦

𝜕𝑦
+ 

𝜕𝑣𝑧

𝜕𝑧
 

[Cylindrical coordinates (𝑟, 휃, 𝑧)] 

𝜏𝑟𝑟 = − 𝜇 [2 
𝜕𝑣𝑟

𝜕𝑟
− 

2

3
 (𝛻 ∙ 𝒗)]   𝜏𝜃𝜃 = − 𝜇 [2 (

1

𝑟
 
𝜕𝑣𝜃

𝜕𝜃
+ 

𝑣𝑟

𝑟
) − 

2

3
 (𝛻 ∙ 𝒗)] 

𝜏𝑧𝑧 = − 𝜇 [2 
𝜕𝑣𝑧

𝜕𝑧
− 

2

3
 (𝛻 ∙ 𝒗)]    𝜏𝑟𝜃 = 𝜏𝜃𝑟 = − 𝜇 [𝑟 

𝜕 

𝜕𝑟
 (

𝑣𝜃

𝑟
) + 

1

𝑟
 
𝜕𝑣𝑟

𝜕𝜃
] 

𝜏𝜃𝑧 = 𝜏𝑧𝜃 = − 𝜇 [
𝜕𝑣𝜃

𝜕𝑧
+ 

1

𝑟
 
𝜕𝑣𝑧

𝜕𝜃
]   𝜏𝑧𝑟 = 𝜏𝑟𝑧 = − 𝜇 [

𝜕𝑣𝑧

𝜕𝑟
+ 

𝜕𝑣𝑟

𝜕𝑧
] 

 (∇ ∙ 𝒗) =  
1

𝑟
 
𝜕 

𝜕𝑟
 (𝑟 𝑣𝑟) +

1

𝑟
 
𝜕𝑣𝜃

𝜕𝜃
+ 

𝜕𝑣𝑧

𝜕𝑧
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[Problem 2.1-P1]  There are a pair of concentric cylinders, the outer one of which is rotated at a 

speed of 20 RPS (rotation per second) and the inner one is at rest. The annular space is filled with 

50% aqueous solution of glycerin which has viscosity of 5 cP or 0.0005 Pa s. Both cylinders are 

500 mm long and the annular gap width is 2.5 mm. 

 
 
Fig.2.1-P1. Velocity distribution in an annular gap between coaxial cylinders 

 

 The radii of the cylinders are 𝑅𝑖 = 25 mm and 𝑅𝑜 = 27.5 mm, respectively. The radial 

distribution of circumferential velocity can be expressed as 

𝑣𝜃 =  
𝑅𝑖 𝑅𝑜

𝑅𝑜
2− 𝑅𝑖

2  𝑅𝑜  𝜔𝑜 (
𝑟

𝑅𝑖
− 

𝑅𝑖

𝑟
) (2.1-P1) 

What is the torque required to maintain the steady rotation? 

 

[Problem 2.1-P2]  There are two concentric cylinders, the outer one of which is rotated 

at a rate of 10 RPS. The radii of the cylinders are 0.04 m and 0.05 m, respectively. The 

lengths of the cylinders are about 0.75 m. The annulus between the cylinders is filled 

with a liquid whose viscosity is unknown. The torque 𝑇𝑞 = 5.53 × 10−3  N-m is 

necessary to keep the inner cylinder at rest. What is the viscosity of the fluid? 

 
[Problem 2.1-P3]  The velocity distribution in laminar flow through a circular annulus is 

expressed as 
𝑣𝑧

𝑉
= 

2

𝐴
[1 − (

𝑟

𝑅𝑜
)
2

+ 𝐵 ln
𝑟

𝑅𝑜
] (2.1-P2) 

where 𝑉 = average velocity (constant) 

      𝐵 = (𝑟 ∗2− 1) ln 𝑟 ∗⁄  

      𝑟 ∗ =  𝑅𝑖 𝑅𝑜⁄   
Calculate the shear stresses on the inside surface of the outer tube and the outside surface of the 

inner tube. 

 
 

 

2.2  Thermal Conductivity (Fourier’s Law of Heat Conduction) 
 

Similarly to the definition of viscosity, we can define thermal conductivity. There are two very 

large parallel plates a small distance ∆𝑌 apart, which contain a slab of either solid or fluid between 

them. Initially the slab has a uniform temperature 𝑇0. At time 𝑡 = 0, the upper surface has a step 

change in temperature from 𝑇0 to a higher constant temperature 𝑇1. As time proceeds, thermal 
energy diffuses in the y-direction and ultimately a linear temperature profile is attained in steady 

state. The slab material is stationary. The slab is so thin that we can neglect the effect of natural 

convection due to density change. We can also neglect the effect of radiative transport. 

  

Thermal Conductivity (Fourier’s Law of Heat Conduction)             9 
                  7 



 
Fig.2.2-1. Energy transfer in a slab put between two large parallel plates 
 

  We get the following relation between the rate of heat flow 𝑄 through the slab and the 

temperature difference ∆𝑇 =  𝑇1 − 𝑇0: 
𝑄

𝐴
=  − 𝜅 

∆𝑇

∆𝑌
  (2.2-1) 

The constant of proportionality 𝜅 is known as the thermal conductivity of the material. In a 
differential form, the above equation can be written as 

𝑞𝑦 = −  𝜅 
𝑑𝑇

𝑑𝑦
  (2.2-2) 

This is Fourier’s law of heat conduction for one-dimensional heat flow. This law states that local 

heat-flux 𝑞𝑦 is proportional to local gradient of temperature 𝑑𝑇 𝑑𝑦⁄ . The subscript y indicates the 

direction of heat flow. 

  For the case of constant density and heat capacity, the above equation can be rewritten as 

𝑞𝑦 = − 𝛼 
𝑑 (𝜌𝐶𝑝𝑇)

𝑑𝑦
 (2.2-3) 

This states that local heat-flux (or local enthalpy-flux) is proportional to local gradient of enthalpy 

per unit volume. Here 𝛼 =  𝜅 𝜚𝐶𝑝⁄  is called “thermal diffusivity”, which has the same units as 

those of mass diffusivity. 

The units of thermal conductivity and diffusivity can be obtained as follows: 

𝑞𝑦 (=) 
𝑀 𝐿 𝑇−2𝐿

𝐿2𝑇
 (=) 𝐽 𝑚2𝑠 (=)𝑊 𝑚2⁄⁄  (2. 2-4) 

𝜅 (=) 
𝑞𝑦

(− 𝑑𝑇 𝑑𝑦)⁄
 (=) 

𝑀 𝐿
𝑇−2𝐿

𝐿2𝑇

𝑡 𝐿⁄
 (=) 

𝑀 𝐿2𝑇−2

𝐿 𝑇 𝑡
 (=) 𝐽 𝑚 𝑠 𝐾 (=) 𝑊 𝑚 𝐾⁄⁄   (2.2-5) 

𝛼 (=) 𝜅 𝜌𝐶𝑝 (=) 
𝑀 𝐿 𝑇−2𝐿 𝐿𝑇𝑡⁄

(𝑀 𝐿3)(𝑀 𝐿2𝑇−2 𝑀 𝑡)⁄⁄
 (=) 

𝐿2

𝑇
 (=) 𝑚2 𝑠⁄⁄     (2.2-6) 

where 𝑡 is the characteristic dimension of temperature. General forms of Fourier’s law of heat 

conduction are listed in Table 2.2-1. 
 
Table 2.2-1  Fourier’s law of heat conduction 

[Rectangular coordinates (𝑥, 𝑦, 𝑧)] 

𝑞𝑥 = − 𝜅 
𝜕𝑇

𝜕𝑥
,    𝑞𝑦 = − 𝜅 

𝜕𝑇

𝜕𝑦
,   𝑞𝑧 = − 𝜅 

𝜕𝑇

𝜕𝑧
 

[Cylindrical coordinates (𝑟, 휃, 𝑧)] 

𝑞𝑟 = − 𝜅 
𝜕𝑇

𝜕𝑟
,   𝑞𝜃 = − 𝜅 

1

𝑟

𝜕𝑇

𝜕휃
,   𝑞𝑧 = − 𝜅 

𝜕𝑇

𝜕𝑧
 

 

[Problem 2.2-P1]  There are a pair of very large steel plates which are parallel placed 2 mm 

apart and contain mercury between them. The upper plate is kept at 303 K and the lower plate at 

285 K. Mercury has a thermal conductivity of 8.4 W/m K. What is the steady-state heat-flux ?  
Assume that mercury is stationary. 

 

[Problem 2.2-P2]  A window has a glass plate (area 𝐴 =  1 m
2
, thickness 𝛿 = 3 mm, thermal 

conductivity 𝜅 = 0.814vW/m K). The inside surface is kept at 15 C and the outside surface at 5 C. 
What is the heat loss through the glass plate ? 
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[Problem 2.2-P3]  Consider a hollow cylinder, then outside surface of which is kept at 𝑇𝑜 and 

the inside surface of which at 𝑇𝑖   (𝑇𝑖 > 𝑇𝑜). The steady temperature distribution is given by 

𝑇 =  𝑇𝑜 + 
𝑇𝑖− 𝑇𝑜

ln(𝑅𝑖 𝑅𝑜⁄ )
ln(𝑟 𝑅𝑜⁄ )       𝑅𝑖 < 𝑟 <  𝑅𝑜 (2.2-P1) 

The hollow cylinder has thermal conductivity 𝜅. Calculate the heat-flux on the outside surface. 
 
 

2.3  Diffusivity (Fick’s Law of Diffusion) 
 

  Diffusion is similar to, but more complicated than the molecular transport of momentum and 

thermal energy because we have to deal with mixtures in which the velocities of the individual 

species are different. The mass center may move as the diffusion process proceeds. The mixture 

velocity must be evaluated by averaging the velocities of all of the species present. 

  Let us first consider two definitions of concentration for n-component mixture: the mass 

concentration of species i (the mass of species i per unit volume of mixture) 𝜌𝑖; the molecular 

concentration of species i (the number of moles of species i per unit volume of mixture) 𝐶𝑖 =
 𝜌𝑖/𝑀𝑖 . 

Here 𝑀𝑖 is the molecular weight of species i.   
  The mass and molar densities of the mixture are respectively given by 

𝜌 =  ∑ 𝜌𝑖
𝑛
𝑖=1    and   𝑐 =  ∑ 𝐶𝑖

𝑛
𝑖=1   (2.3-1) 

Therefore the mass and mole fractions are given by 

𝜔𝑖 = 𝜌𝑖 𝜌⁄     and   𝑥𝑖 = 𝐶𝑖 𝑐⁄  
Now consider the averaging of the velocities of species. The absolute velocity of species i is 

denoted by 𝑣𝑖 with respect to stationary coordinate axes.  
The mass-average velocity  

𝑣 =  ∑ 𝜌𝑖𝑣𝑖
𝑛
𝑖=1 /∑ 𝜌𝑖

𝑛
𝑖=1  (2.3-2) 

This implies the velocity of mass center which corresponds to 𝑣 for pure fluid.  

The molar-average velocity 𝑣∗ is defined as 

𝑣∗ =  ∑ 𝐶𝑖𝑣𝑖
𝑛
𝑖=1 /∑ 𝐶𝑖

𝑛
𝑖=1  (2.3-3) 

This is the velocity of the mixture averaged with respect to the number of molecules.  

Then two different diffusion velocities can be defined relative to these average velocities, that is, 

relative to the local motion of the fluid stream: 𝑣𝑖 − 𝑣 and 𝑣𝑖 − 𝑣∗. 

The diffusion flux of a given species is a vector quantity denoting the amount of the species that 

passes through a unit cross section normal to the average velocities. 

For simplicity, we restrict our discussion to a binary system of species A and B. 

  The mass flux relative to the mass average velocity is defined as 

𝑗𝐴 =  𝜌𝐴 (𝑣𝐴 − 𝑣) (2.3-4) 

Similarly the molar flux relative to the molar-average velocity is 

𝐽𝐴 = 𝐶𝐴 (𝑣𝐴 − 𝑣∗) (2.3-5) 

Figure 2.3-1 shows time-dependent composition profiles spreading due to molecular diffusion from 

a line source. 

 

  From a viewpoint of thermodynamics, the driving force of the molecular diffusion is the 

chemical potential. For a homogeneous ideal solution at constant temperature and pressure, the 

chemical potential is defined by 

𝜇𝑐 = 𝜇0 + 𝑅 𝑇 ln 𝐶𝐴 (2.3-6) 
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Fig.2.3-1. Composition profiles expressed with light and shade, spreading with molecular 
diffusion from a line source 

 
The molar diffusion in y-direction occurs owing to the gradient of chemical potential: 

𝑣𝐴𝑦 − 𝑣∗
𝑦 = − 𝑢𝐴  

𝑑 𝜇𝑐

𝑑𝑦
 (2.3-7) 

where 𝑢𝐴 is the “mobility” of component A, or the resulting velocity of the molecule A under the 
influence of a unit driving force. From the above equation 
𝑑 𝜇𝑐

𝑑𝑦
= 

𝑅 𝑇

𝐶𝐴
 
𝑑𝐶𝐴

𝑑𝑦
 (2.3-8) 

Then the y-component of molar flux is given by 

𝐽𝐴𝑦 = 𝐶𝐴(𝑣𝐴𝑦 − 𝑣∗
𝑦) =  − 𝑢𝐴 𝑅 𝑇 

𝑑 𝐶𝐴

𝑑𝑦
=  − 𝐷𝐴𝐵  

𝑑 𝐶𝐴

𝑑𝑦
 (2.3-9) 

This is Fick’s law in a binary mixture for one-dimensional diffusion relative to the molar-average 

velocity. Here the constant of proportionality 𝐷𝐴𝐵 is called the “diffusivity” of component A 
diffusing through component B. 

(In addition to concentration gradients, there are many other physical conditions which will produce 

a chemical potential gradient: temperature gradients, pressure gradients, etc.  Our discussion will 

be restricted to the ordinary diffusion resulting from the concentration gradients.) 

  Under isothermal, isobaric conditions, the molar density 𝑐 is constant. 
Then 

𝐽𝐴𝑦 = −  𝑐 𝐷𝐴𝐵  
𝑑 𝑥𝐴

𝑑𝑦
 (2.3-10) 

𝐶𝐴(𝑣𝐴𝑦 − 𝑣∗
𝑦) =  − 𝑐 𝐷𝐴𝐵  

𝑑 𝑥𝐴

𝑑𝑦
 (2.3-11) 

For the binary system,  

𝑣∗
𝑦 = (𝐶𝐴 𝑣𝐴𝑦 + 𝐶𝐵 𝑣𝐵𝑦) 𝑐⁄  (2.3-12) 

Therefore 

𝐶𝐴𝑣
∗
𝑦 = 𝑥𝐴(𝐶𝐴 𝑣𝐴𝑦 + 𝐶𝐵 𝑣𝐵𝑦) (2.3-13) 

Substituting this relation 

𝐶𝐴 𝑣𝐴𝑦 = 𝐶𝐴 𝑣
∗
𝑦 − − 𝐷𝐴𝐵  

𝑑 𝐶𝐴

𝑑𝑦
 =  𝑥𝐴(𝐶𝐴 𝑣𝐴𝑦 + 𝐶𝐵 𝑣𝐵𝑦) − 𝐷𝐴𝐵  

𝑑 𝐶𝐴

𝑑𝑦
 (2.3-14) 

The terms 𝐶𝐴 𝑣𝐴𝑦 and 𝐶𝐵 𝑣𝐵𝑦 imply the y-component molar fluxes of component A and B 

relative to stationary coordinates. They are denoted by 𝑁𝐴𝑦 and 𝑁𝐵𝑦. 

Finally we obtain 

𝑁𝐴𝑦 = 𝑥𝐴(𝐶𝐴 𝑣𝐴𝑦 + 𝐶𝐵 𝑣𝐵𝑦)  −   𝑐 𝐷𝐴𝐵  
𝑑 𝑥𝐴

𝑑𝑦
 (2.3-15) 
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 This equation states that local molar flux at a plane fixed in the stationary coordinates consists of 

the bulk motion of the binary mixture (first term) and the molecular diffusion (second term) being 

proportional to local gradient of concentration or mass of component A per unit volume. 

  In an analogous fashion, the Fick’s law can be expressed in terms of mass flux: 

𝑗𝐴𝑦 = − 𝐷𝐴𝐵  
𝑑 𝜌𝐴

𝑑𝑦
= − 𝜌𝐷𝐴𝐵  

𝑑 𝜔𝐴

𝑑𝑦
 (2.3-16) 

𝑛𝐴𝑦 = 𝜔𝐴(𝑛𝐴𝑦 + 𝑛𝐵𝑦) − 𝜌𝐷𝐴𝐵  
𝑑 𝜔𝐴

𝑑𝑦
 (2.3-17) 

The subscript y indicates the direction of diffusion.  

General forms of Fick’s law relative to the average velocity 𝑣∗ are listed in Table 2.3-1 . 

 
Table 2.3-1  Fick’s law of molecular diffusion based on average velocity 

[Rectangular coordinates (𝑥, 𝑦, 𝑧)] 

𝑗𝑥 = − 𝐷𝐴𝐵  
𝜕𝐶𝐴

𝜕𝑥
,    𝑗𝑦 = −𝐷𝐴𝐵  

𝜕𝐶𝐴

𝜕𝑦
,   𝑗𝑧 = − 𝐷𝐴𝐵  

𝜕𝐶𝐴

𝜕𝑧
 

[Cylindrical coordinates (𝑟, 휃, 𝑧)] 

𝑗𝑟 = − 𝐷𝐴𝐵  
𝜕𝐶𝐴

𝜕𝑟
,   𝑗𝜃 = − 𝐷𝐴𝐵  

1

𝑟

𝜕𝐶𝐴𝐵

𝜕휃
,   𝑗𝑧 = − 𝐷𝐴𝐵  

𝜕𝐶𝐴𝐵

𝜕𝑧
 

 
 It is noted that the Fick’s law has the same functional form as the Fourier’s law. 

 The units of mass flux, concentration, and diffusivity are 

𝐽𝐴𝑦 , 𝑁𝐴𝑦 (=)
𝑀

𝐿2𝑇
 (=) 

𝑘𝑚𝑜𝑙 𝑜𝑓 𝐴

𝑚2𝑠
 (2.3-18) 

𝐶𝐴 (=)
𝑀

𝐿3  (=) 
𝑘𝑚𝑜𝑙 𝑜𝑓 𝐴

𝑚3    𝑥𝐴 (=) 
𝑘𝑚𝑜𝑙 𝑜𝑓 𝐴

𝑘𝑚𝑜𝑙 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒
   𝜌𝐴 (=) 

𝑘𝑔 𝑜𝑓 𝐴

𝑘𝑔 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒
    

𝑗𝐴𝑦 , 𝑛𝐴𝑦 (=) 
𝑘𝑔 𝑜𝑓 𝐴

𝑚2𝑠
   𝜔𝐴 (=) 

𝑘𝑔 𝑜𝑓 𝐴

𝑘𝑔 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒
   𝐷𝐴𝐵 (=) 

𝐽𝐴𝑦

(𝑑𝐶𝐴 𝑑𝑦⁄ )
 (=) 

(𝑀 𝐿2𝑇)⁄

(𝑀 𝐿3/𝐿)⁄
 (=) 

𝐿2

𝑇
 (=) 𝑚2 𝑠⁄  

 

Diffusion is confusion? The phenomenon of diffusion is so difficult that we will understand its 

fundamental aspect with simplified models in this course. 

 
 

2.4  Similarity among Molecular Transports of Momentum, 
Energy, and Mass  (Prandtl number and Schmidt number)   

 

  For constant physical property fluid (𝜌, 𝐶𝑝:  constant), one-dimensional transports of momentum, 

energy, and mass can be rewritten as 

𝜏𝑦𝑥 = − 𝜈 
𝑑(𝜚 𝑣𝑥)

𝑑𝑦
 (2.4-1) 

𝑞𝑦 = − 𝛼 
𝑑(𝜚𝐶𝑝𝑇)

𝑑𝑦
 (2.4-2) 

𝐽𝐴𝑦 = − 𝐷𝐴𝐵  
𝑑 𝐶𝐴

𝑑𝑦
 (2.4-3) 

  All these equations state the following common rule: 

(Flux of a quantity of interest) = (Diffusivity)(Gradient of the quantity per unit 
volume) 
 
  The ratio of the momentum to the energy diffusivity is called “Prandtl number”: 𝑃𝑟 = 𝜈 𝛼⁄ . 

If this dimensionless parameter is 1.0, heat and momentum diffuse through the fluid at the same 

rate. 

The ratio of the momentum to the mass diffusivity is called “Schmidt number”: 𝑆𝑐 =  𝜈/𝐷𝐴𝐵. 

If 𝑆𝑐 = 1.0, mass and momentum also diffuse at the same rate. The ratio of the Prandtl to the 

Schmidt number, called “Lewis number”, is also sometimes used: 𝐿𝑒 =  𝑃𝑟 𝑆𝑐⁄ =  𝐷𝐴𝐵 𝛼⁄ . 
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[Problem 2.4-P1]  Compare Prandtl number of liquid mercury at 373 K with Prandtl number of 
low pressure hydrogen gas at 10 mmHg and 10 K. Discuss heat transfer in fluid at very low Prandtl 

numbers. The hydrogen gas has very low viscosity whereas the mercury has very large thermal 

conductivity. 
 
[Problem 2.4-P2]  Compare Schmidt number of very viscous polymer fluid with Schmidt 

number of an electrolytic solution. The polymer solution (density 𝜌 = 1,200 𝑘𝑔 𝑚3⁄ ) has viscosity 

of 10 Pa s and diffusivity of 10
-4

 m
2
/s whereas the electrolytic solution (density 𝜌 =

1,100 𝑘𝑔 𝑚3⁄ ) has viscosity of 10
-3

 Pa s and diffusivity of 10
-9

 m
2
/s. Discuss mass diffusion at very 

high Schmidt numbers taking into account the difference in flow condition. 
 

 

2.5   Non-Newtonian Fluids 
 
  As studied in Section 2.1, Newton’s law of viscosity states that the momentum flux (shear stress) 

in a usual fluid flow is proportional to velocity gradient (rate of strain). However Newton’s law of 

viscosity does not always predict the shear stress in all fluids. In general, the relation between shear 

stress and the rate of shearing strain can be expressed by 

𝜏𝑦𝑥 = − 휂 
𝑑𝑣𝑥

𝑑𝑦
 (2.5-1) 

In the case of usual Newtonian fluids, 휂 can be regarded as a proportional constant, i.e. 

viscosity 휂 =  𝜇. As shown in Fig.2.5-1, however, there are various industrial materials 

having 휂 as a function of either 𝑑𝑣𝑥 𝑑𝑦⁄  or 𝜏𝑦𝑥 and they are referred to as 

non-Newtonian fluids.  
There are numerous empirical models proposed but the subject of non-Newtonian flow is beyond 

the objective of this course.  

 
Fig.2.5-1. Schematic picture of momentum-flux against velocity gradient for non-Newtonian 
fluids  

 

As slightly simpler representative example, the following two-parameter models are available: 

(1)  The Bingham model  

𝜏𝑦𝑥 = − 𝜇0  
𝑑𝑣𝑥

𝑑𝑦
+ 𝜏0    if 𝜏𝑦𝑥 > 𝜏0 (2.5-2) 

𝑑𝑣𝑥

𝑑𝑦
= 0                if 𝜏𝑦𝑥 < 𝜏0 (2.5-3) 

This model states that when the shear stress 𝜏𝑦𝑥 is smaller than the yield stress  𝜏0, the fluid 

behaves like a rigid body but it flows like a Newtonian fluid when 𝜏𝑦𝑥 >  𝜏0.  

(2) The Power law model 
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𝜏𝑦𝑥 = −𝑚 |
𝑑𝑣𝑥

𝑑𝑦
|
𝑛−1 𝑑𝑣𝑥

𝑑𝑦
 (2.5-4) 

This equation reduces to Newton’s law of viscosity with 𝑚 =  𝜇 when 𝑛 = 1.  The behavior of 

fluid is pseudo-plastic when 𝑛 < 1 and dilatant when 𝑛 > 1.  
The laminar flow of a Bingham plastic (ideal plastic) fluid in a circular pipe will be studied in the 

later section.  
 
 
Nomenclature 
  

𝐴 surface area of two parallel plates, [m2] 

𝐶𝐴 concentration of component A, [kmol/m3] 

𝐶𝑝 heat capacity, [J/kg K] 

𝑐 total molar density, [kmol/m3] 

𝐷𝐴𝐵 diffusivity, [m2/s] 

𝐹 shear force, [N] 

𝑗𝐴, 𝐽𝐴 molar flux relative to mass-average and molar-average velocity, [kg/m2s] or [kmol/m2s]  

𝑛𝐴, 𝑁𝐴 mass flux, molar flux in stationary coordinates, [kg/m2s] or [kmol/m2s]   

𝑃𝑟 Prandtl number, [ - ] 

𝑄 heat transfer rate, [W] 

𝑞𝑟, 𝑞𝜃 , 𝑞𝑧 heat flux in cylindrical coordinates 

𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧 heat flux in rectangular coordinates 

𝑟, 휃, 𝑧 cylindrical coordinates, [m, - , m] 

𝑆𝑐 Schmidt number, [ - ] 

𝑡 time, [s] 

𝑣𝑖 mass velocity, [m/s] 

𝑣∗ molar velocity, [m/s] 

𝑣𝑟 , 𝑣𝜃 , 𝑣𝑧 velocity component in cylindrical coordinates 

𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  velocity component in rectangular coordinates, [m/s] 

𝑥, 𝑦, 𝑧,  rectangular coordinates, [m] 

𝑥𝑖 mole fraction, [ - ] 

∆𝑇 constant temperature difference given to the upper plate, [K] 

∆𝑉 constant velocity given to the upper plate, [m/s] 

∆𝑌 distance between two parallel plates, [m] 

𝛼 thermal diffusivity, [m2/s] 

𝜅 thermal conductivity, [W/m K] 

μ viscosity, [kg/m s]  

𝜇𝑐 chemical potential, [J/mol] 

𝜈 kinematic viscosity or momentum diffusivity, [m2/s] 

𝜌 density, [kg/m3] 

𝜏𝑥𝑥, 𝜏𝑦𝑥, 𝜏𝑧𝑥 , − − momentum flux or shear stress, [N/m2] or [kg/s2m] 

𝜏0 yield stress, [N/m2] 

𝜔 mass fraction, [ - ] 
 

Subcripts 
A component A 

w wall 

 
  

Nomenclature                   15 



 
 
 

CHAPTER 3 
 

VISCOUS FLOW  
(LAMINAR AND TURBULENT FLOWS) 

 
 

3.1 Laminar and Turbulent Flows in a Circular Pipe   
 

When a fluid moves through a system, either one of two different types of fluid flow may occur. 

As shown in Fig.3.1-1, suppose that water flows steadily through a transparent pipe, and a 

threadlike stream of dye is injected into it. If the velocity of water is small enough, the dye will flow 

in parallel, straight lines. When the velocity exceeds a certain critical value, it is noted that the dye 

introduced is instantly mixed across the entire cross section of the pipe and the entire mass of water 

becomes colored. 

  The first type of flow is called laminar; the fluid particles move along streamlines in a laminated 

form. In laminar flow, momentum, energy, and mass are transferred in the transverse direction due 

to molecular effect only. 

  The second type is called turbulent; the fluid particles move irregularly with violent eddy motion. 

Therefore momentum, energy, and mass can be radially transferred much more rapidly for turbulent 

flow than for laminar flow.  

 

 
Fig.3.1.1. Characteristics of laminar and turbulent flow (Reynolds’ experiment) 
 

In 1883, this systematic experiment was first conducted by Osborne Reynolds
1)

, who suggested 

the dimensionless parameter 𝑅𝑒 =  𝑉 𝐷 𝜌 𝜇⁄  as the criterion for predicting the type of flow. Here 

𝑉 is the average velocity in the pipe, 𝐷 the pipe diameter, 𝜌 the density, and 𝜇 the viscosity of 
the fluid. This parameter called the Reynolds number, is a basic parameter in the study of fluid 

motion. In pipe flow, the transition from laminar to turbulent flow may occur at about 𝑅𝑒 = 2,100 

for commercial pipes. 

  For laminar pipe flow the velocity profile is parabolic. The theoretical curve is expressible as 

𝑣𝑧 = 𝑣𝑚𝑎𝑥[1 − (𝑟 𝑅⁄ )2] (3.1-1) 

This analytical approach will be studied in Chapter 6. 



[Problem 3.1-P1]  A viscous liquid (𝜇 = 0.05 kg/m s, 𝜌 = 1050 kg/m
3
) is flowing in a 50 mm 

ID circular tube. The distribution of axial velocity is described as 

𝑣𝑧 = 𝑣𝑧𝑚𝑎𝑥[1 − (𝑟 𝑅⁄ )2]  where the maximum velocity 𝑣𝑧𝑚𝑎𝑥 = 0.5  m/s and the pipe radius  

𝑅 = 0.025 m. Calculate the friction force acting over 5 m of the inside surface of the tube, the flow 

rate, and the Reynolds number. 
 
                                           

 

 

3.2 Generation of Turbulent Motion  
(Transition to Turbulent Flow) 

 

  As shown in Fig.3.2-1, when the fluid flow rate is increased, the parabolic velocity profile for 

laminar flow has an increase in maximum velocity accompanied with an increase in velocity 

gradient near the pipe wall.  

Let us consider a fluid particle moving along the streamlines near the pipe wall.  

As shown in Fig. 3.2-2, the fluid velocity near the pipe wall becomes larger on the upper side than 

on the lower side of the fluid particle. The friction force for acceleration is exerted on the upper side 

whereas the friction force for deceleration is exerted on the lower side. As a result, these forces 

cause angular acceleration for the rotating motion. 
 

 
 
Fig.3.2-1. Instability of laminar flow in a circular pipe 
 

 
Fig.3.2-2. Generation of turbulent motion in a viscous parallel flow 
 

Therefore, when the flow rate or the velocity gradient near the wall exceeds some critical value, 

the fluid particle undergoes a strong rotating angular acceleration due to the steep velocity gradient, 

so that eddy motion is generated by rotation of the fluid particle. This rotating condition is realized 

when the velocity difference 𝑣1 − 𝑣2 between two vertical positions becomes large. This is a 
qualitative understanding of an origin of turbulence or a transition to turbulent flow. 

1. Reynolds, O., Trans. Roy. Soc. (London), 174A, 935 (1883) 
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  In turbulent flow, the velocity at a fixed position in the fluid fluctuates randomly about its 

time-averaged value. This unsteady fluctuating motion comes from such a complicated eddy motion, 

which gives a very large effect of mixing due to the transverse-directed interchange of fluid 

particles.  

 

 
Fig.3.2-3. Velocity fluctuations in turbulent flow 

 

When the flow rate goes beyond a certain critical value, the laminar shear flow near the wall 

becomes unstable due to the rotational moment causing eddy motion, and then the transition to 

turbulent flow occurs.  

 

 
 
Fig.3.2-4. Characteristics of turbulent flow in a circular pipe 

 

For turbulent pipe flow, therefore, the distribution of time-averaged velocity is much flatter in the 

main flow region and very steep near the pipe wall.  

A semi-empirical equation of the time-averaged velocity distribution is given by 

�̅�𝑧 = 𝑣𝑚𝑎𝑥 [1 − (𝑟 𝑅⁄ )]1 7⁄  (3.2-1) 
This expression known as the “1/7

th
 power law gives a good approximation for the Reynolds 

number range 104 to 105. It should be kept in mind that this law cannot describe precisely the 

turbulent structure of the flow field. 

  The Reynolds number is a product of a characteristic velocity, a characteristic length, and the 

density of the fluid divided by its viscosity. The result is a dimensionless number which represents 

the ratio of the inertial to the viscous forces in the fluid. The critical Reynolds number depends, in 

general, upon the surface condition of the inside wall of the pipe. 

 

𝑅𝑒 =  
𝑉 𝐷 𝜌

𝜇
[−] =  

inertial force

viscous force
   (3.2-2) 

 

 

[Problem 3.2-P1]  Obtain a relation between the mean (flow-area-average) velocity 𝑣𝑧 and the 

maximum velocity 𝑣𝑧𝑚𝑎𝑥 for turbulent flow inside a circular pipe using the 1/7
th

 power law. 
 

[Problem 3.2-P2]  An aqueous solution of sodium hydroxide is flowing at a volumetric flow rate 

of 50 m
3
/h in a circular pipe of inside diameter of 100 mm. The density and viscosity of the solution 
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at 50 C (= 323 K)b are 1,510 kg/m
3
 and 0.025 kg/m s, respectively. Calculate the Reynolds number.. 

Is the flow turbulent?  
 

[Problem 3.2-P3]  A viscous liquid (𝜇 = 50 cp. = 0.05 kg/m s, 𝜌 = 1,050 kg/m
3
) is flowing in a 

50 mm ID circular tube. The velocity distribution is described by the following equation: 

𝑣𝑧 = 𝑣𝑧𝑚𝑎𝑥 [1 − (𝑟 𝑅⁄ )2]  

where 𝑣𝑧 is the axial velocity in m/s and 𝑟 the radial coordinate in m. The maximum velocity 

𝑣𝑧𝑚𝑎𝑥 = 0.5 m/s and the pipe radius 𝑅 = 0.025 m. Calculate the friction force acting over 5 m of 
the inside surface of the tube, the flow rate, and the Reynolds number. 

Answer: 25.12 N, 4.91 m
3
/s, and Re = 262.5. 

 

[Problem 3.2-P4]  In the above problem, the velocity gradient on the inner wall of the pipe is 

given for laminar flow in a term of average velocity by 
𝑑𝑣𝑧

𝑑𝑟
|
𝑟=𝑅

= − 
4 𝑣𝑎𝑣

𝑅
  

If the critical Reynolds number 𝑅𝑒𝑐𝑟 is given as 2,100, what is the critical velocity gradient?  
Answer: - 320 (1/s) 
 
Nomenclature 
  

𝐷 characteristic length or pipe diameter, [m] 

𝑟, 휃, 𝑧 cylindrical coordinates, [m, - , m] 

𝑅 pipe radius, [m] 

𝑉 characteristic velocity, [m/s] 

𝑣𝑧  axial velocity component in pipe flow, [m/s] 

𝑦 distance from pipe wall 

𝜏𝑞 torque, [Nm] 

𝑅𝑒 Reynolds number, [ - ] 
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CHAPTER 4 
 

MACROSCOPIC BALANCES:  
CONTROL VOLUME APPROACH 

 
 

4.1 Principles of Momentum, Energy, and Mass Conservation 
 

  In this course, the laws of conservation of momentum, conservation of energy, and conservation 

of mass may be stated for a general control volume as follows: 

(
𝑟𝑎𝑡𝑒 𝑜𝑓

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚
𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

) = (
𝑟𝑎𝑡𝑒 𝑜𝑓

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚
𝐼𝑁

) −  (
𝑟𝑎𝑡𝑒 𝑜𝑓

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚
𝑂𝑈𝑇

) +  (
𝑠𝑢𝑚 𝑜𝑓 𝑒𝑥𝑦𝑡𝑒𝑟𝑛𝑎𝑙

𝑓𝑜𝑟𝑐𝑒𝑠 𝑎𝑐𝑡𝑖𝑛𝑔
𝑜𝑛 𝑠𝑦𝑠𝑡𝑒𝑚

) (4.1-1) 

(
𝑟𝑎𝑡𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
) = (

𝑟𝑎𝑡𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦

𝐼𝑁
) −  (

𝑟𝑎𝑡𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦
𝑂𝑈𝑇

)+  (

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘
𝑑𝑜𝑛𝑒 𝑏𝑦 𝑡ℎ𝑒

𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑠
) (4.1-2) 

(
𝑟𝑎𝑡𝑒 𝑜𝑓
𝑚𝑎𝑠𝑠

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
) = (

𝑟𝑎𝑡𝑒 𝑜𝑓
𝑚𝑎𝑠𝑠
𝐼𝑁

) −  (
𝑟𝑎𝑡𝑒 𝑜𝑓
𝑚𝑎𝑠𝑠
𝑂𝑈𝑇

) (4.1-3) 

(
𝑟𝑎𝑡𝑒 𝑜𝑓

𝑚𝑎𝑠𝑠 𝑜𝑓 𝐴
𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

) = (
𝑟𝑎𝑡𝑒 𝑜𝑓

𝑚𝑎𝑠𝑠 𝑜𝑓 𝐴
𝐼𝑁

) −  (
𝑟𝑎𝑡𝑒 𝑜𝑓

𝑚𝑎𝑠𝑠 𝑜𝑓 𝐴
𝑂𝑈𝑇

)+  (

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑜𝑓 𝑚𝑎𝑠𝑠 𝑜𝑓 𝐴 𝑏𝑦
ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠

𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

) (4.1-4) 

 
 
Fig.  4.1-1. Shell balances of momentum, energy, and mass of component A over a control 
volume 
 
 

4.2 Macroscopic Mass Balance 
 

  The mass balance should be set up over a control volume shown in Fig.4.2-1. 

  The mass present at 𝑡 in some arbitrary small volume within the control volume is 𝜌Δ𝑉. 

Therefore the mass of the control volume at 𝑡 is 

𝑚 = ∫ 𝜚 𝑑𝑉
𝑉

 (4.2-1) 

where density 𝜌 =  𝜌(𝑥, 𝑦, 𝑧, 𝑡). 



  Accumulation of mass in time Δ𝑡 is the difference between the mass in the control volume at 𝑡 

and that at 𝑡 +  Δ𝑡: 

∫ 𝜚 𝑑𝑉
𝑉

|
𝑡+Δ𝑡

 − ∫ 𝜚 𝑑𝑉
𝑉

|
𝑡
= 

𝑑 

𝑑𝑡
 ∫ 𝜚 𝑑𝑉

𝑉
∙ Δ𝑡   (4.2-2) 

 

 
Fig.4.2-1. Macroscopic mass balance 
 

  The mass can be transferred by velocity component normal to the surface, so the velocity 

component 𝑣𝑛 into the control volume can be expressed as 

𝑣𝑛 = − (�⃗⃗� ∙ �⃗⃗� ) =  −𝑣 cos 𝛼 (4.2-3) 

where �⃗⃗�  is the outward directed unit vector normal to the surface at that point and 𝛼 is the angle 

between �⃗⃗�  and �⃗⃗� .  

  The rate of mass transferred = (mass)/(unit time) = (mass/unit volume)(length/unit time)(area) 

This is the net rate of mass in over the whole surface of the control volume = ∫ 𝜌 𝑣𝑛𝑑𝑆
𝑆

 

Then application of the principle of mass conservation yields 
𝑑 

𝑑𝑡
 ∫ 𝜌 𝑑𝑉

𝑉
= − ∫ 𝜌  (�⃗⃗� ∙ �⃗⃗� ) 𝑑𝑆

𝑆
 (4.2-4) 

This is the macroscopic mass balance.  

 

  For a simpler flow system shown below 
𝑑𝑚

𝑑𝑡
= 𝜌1 〈𝒗𝟏〉𝑆1 − 𝜌2 〈𝒗𝟐〉𝑆2 (4.2-5) 

Introducing the symbol of mass flow rate 

 𝑤 =  𝜌 〈𝑣〉𝑆 =  − ∫ 𝜌 (�⃗⃗� ∙ �⃗⃗� ) 𝑑𝑆
𝑆

 (4.2-6) 

to get the unsteady-state macroscopic mass balance: 

 
 

Fig.4.2-2. Simpler pipe system with a single inlet and a single exit 
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𝑑𝑚

𝑑𝑡
= − ∆𝑤 (4.2-7) 

For steady state 

∆𝑤 = 0    or  𝑤2 = 𝑤1  (4.2-8) 
 

[Problem 4.2-P1]  A pipe system shown is carrying water through section 1 at an average 
velocity of 0.3 m/s in steady state. The diameter at section l is 0.3 m. The same flow passes through 

section 2 where the diameter is 0.1 m.  Find the average velocity at section 2. 

 

 
Fig.4.2-P1.  Mass balance in a horizontal pipe accompanied with contraction of cross section 

 
 
 

4.3 Macroscopic Momentum Balance 
 

   
Fig.4.3-1 Control volume for macroscopic momentum balance  

 

Consider a small surface element of area ∆𝑆 of a control volume, through which momentum 

𝜌 �⃗⃗�  is entering or leaving. The rate of momentum entering or leaving through ∆𝑆 may be written 
as 

(𝜌 �⃗⃗� ) 𝑣𝑛 𝑑𝑆 =  (𝜌 �⃗⃗� )[− (�⃗⃗� ∙ �⃗⃗� )𝑑𝑆] (4.3-1) 

Here the minus sign is necessary since the unit vector �⃗⃗�  is outward directed. Therefore the net rate 
of momentum in over the whole surface of the control volume is 

− ∫ 𝜌 �⃗⃗�   (�⃗⃗� ∙ �⃗⃗� )𝑑𝑆
𝑆

 (4.3-2) 

Since the momentum in a small volume element ∆𝑉  is 𝜌 �⃗⃗�  ∆𝑉 , the rate of momentum 
accumulation in the control volume is 
𝑑 

𝑑𝑡
 ∫ 𝜌 �⃗⃗�  𝑑𝑉

𝑉
 (4.3-3) 

The sum of external forces acting on the system is ∑ �⃗⃗�  . 

  Applying the principle of momentum conservation, 

  
𝑑 

𝑑𝑡
 ∫ 𝜌 �⃗⃗�  𝑑𝑉 = 

𝑉
− ∫ 𝜌 �⃗⃗�   (�⃗⃗� ∙ �⃗⃗� )𝑑𝑆

𝑆
+ ∑ �⃗⃗�  (4.3-4) 

This is the macroscopic momentum balance corresponding to Newton’s second law of motion. Note 
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that the force term  ∑ �⃗⃗�  comprises viscous forces ∑𝑭𝒇
⃗⃗ ⃗⃗ , pressure force −∫ 𝑝 �⃗⃗�  𝑑𝑆

𝑆
, and 

gravitational force 𝑚 �⃗⃗�  acting on the fluid. 
For steady state the left side of the above equation is zero 

−∫ 𝜌 �⃗⃗�  (�⃗⃗� ∙ �⃗⃗� )𝑑𝑆
𝑆

+ ∑ �⃗⃗� = 0 (4.3-5) 

For turbulent pipe flow the following approximation may be employed for cross-sectional 

averaging. 
〈𝑣〉  ≅  〈𝑣2〉/〈𝑣〉 (4.3-6) 

For turbulent pipe flow, therefore, the force acting on the pipe wall is given by 

𝑭′⃗⃗  ⃗ =  − 𝑭𝒇
⃗⃗ ⃗⃗  ⃗ =  𝑤1〈𝒗𝟏〉⃗⃗⃗⃗ ⃗⃗ ⃗⃗ − 𝑤2〈𝒗𝟐〉⃗⃗⃗⃗ ⃗⃗ ⃗⃗ − 𝑝1𝑆1𝒏𝟏⃗⃗ ⃗⃗  −  𝑝2𝑆2𝒏𝟐⃗⃗ ⃗⃗  + 𝑚 �⃗⃗�  (4.3-7) 

 

Note that the unit vectors are outward directed. 

For an incompressible flow in a straight pipe (inside diameter 𝐷, length 𝐿) inclined by 휃, the 
friction force acting on the inside surface of the pipe is given by the following familiar equation of 

force balance: 

𝐹′ = (𝑝0 − 𝑝𝐿)
𝜋

4
𝐷2 + 

𝜋

4
𝐷2𝐿 𝜌𝑔 cos 휃 =  𝜏𝑤 𝜋𝐷𝐿 (4.3-8) 

This result indicates that the net force acting downstream on the cylindrical fluid column by virtue 

of the pressure difference and gravitational acceleration is balanced by the friction force the pipe 

wall exerts. The above equation is valid whether the flow is laminar or turbulent. 

 

[Example 4.3-E1]  Consider the problem of finding the force exerted on a horizontal 90 degree 

pipe bend. Water at 20℃ is flowing at a rate of 700 kg/s for cooling in an oil refinery. The pipeline 
is 300 mm ID steel pipe. A diagram of the pipe bend and the quantities relating to the analysis are 

shown in Figure 4.3-E1. 

[Solution]  Actually there will be a small pressure drop caused by viscous force acting on the 

piped bend wall. At this point, however, we assume negligibly small pressure drop between sections 

“1” and “2”. The first step is to choose as the control volume the region bounded by two planes “1” 

and “2” normal to the streamliners and the inner wall of the bend. Assuming turbulent flow (almost 

flat velocity distribution), the overall momentum balance may be written, term by term, as 

 

 
 

Fig.4.3-E1 Force acting on 90 degree bend 
 

− ∫ 𝜌�⃗⃗�  (�⃗⃗� ∙ �⃗⃗� )𝑑𝑆
𝑆

= − ∫ 𝜌�⃗⃗�  (�⃗⃗� ∙ �⃗⃗� )𝑑𝑆
𝑆1

− ∫ 𝜌�⃗⃗�  (�⃗⃗� ∙ �⃗⃗� )𝑑𝑆
𝑆2

=  𝑤1𝒗𝟏⃗⃗⃗⃗ −  𝑤2𝒗𝟐⃗⃗⃗⃗   (4.3-E1) 

There is a sign difference because 𝛼 (the angle between �⃗⃗�  and �⃗⃗�  ) is 180 degree at the inlet “1” 
and 0 degree at the outlet 2”. 

For the macroscopic mass balance 

𝑤1 =  𝑤2 = 𝑤 = 𝑐𝑜𝑛𝑠𝑡 
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And volumetric flow rate           𝑄1 = 𝑄2 = 𝑄 = 𝑐𝑜𝑛𝑠𝑡 
Therefore for steady state, Eq.(4.3-4) becomes 

𝑤 (𝒗𝟐⃗⃗⃗⃗ −  𝒗𝟏⃗⃗⃗⃗ ) =  ∑ �⃗⃗�  (4.3-E2) 

where 𝒗𝟏⃗⃗⃗⃗ = 𝑄(− 𝒏𝟏⃗⃗ ⃗⃗  )/𝑆  and 𝒗𝟐⃗⃗⃗⃗ = 𝑄 𝒏2⃗⃗ ⃗⃗  /𝑆 
Then 

∑ �⃗⃗� = (
𝑄

𝑆
) (𝒏𝟐⃗⃗ ⃗⃗  + 𝒏𝟏⃗⃗ ⃗⃗  )𝑤 (4.3-E3) 

Since the pipeline is horizontal, we do not have to consider the gravitational effect. The total force 

on the fluid is made up of the pressure force 𝑭𝒑
⃗⃗ ⃗⃗   and the force exerted by the bend𝑭𝒃

⃗⃗ ⃗⃗ . 

𝑭𝒑
⃗⃗ ⃗⃗  =  −𝑝 𝑆 (𝒏𝟏⃗⃗ ⃗⃗  + 𝒏𝟐⃗⃗ ⃗⃗  ) (4.3-E4) 

Here we used the assumption of equal pressure at sections “1” and “2”. Recall that the force sought 

is the reaction to 𝑭𝒃 and has components equal in magnitude and opposite in sense to 𝑭𝒃. 

𝑭𝒃
⃗⃗ ⃗⃗ = (

𝑄

𝑆
)𝑤(𝒏𝟏⃗⃗ ⃗⃗  +  𝒏𝟐⃗⃗ ⃗⃗  ) + 𝑝 𝑆 (𝒏𝟏⃗⃗ ⃗⃗  +  𝒏𝟐⃗⃗ ⃗⃗  ) =  (

𝑤𝑄

𝑆
+  𝑝 𝑆) (𝒏𝟏⃗⃗ ⃗⃗  +  𝒏𝟐⃗⃗ ⃗⃗  ) (4.3-E5) 

It remains to insert the numerical values: 

𝑭𝒃
⃗⃗ ⃗⃗ =  [

 (700
𝑘𝑔

𝑠
)
2

(1000
𝑘𝑔

𝑚3)(0.0707 𝑚2)
+ (1 ×

105 𝑁

𝑚2 )(0.0707 𝑚2)]  × (𝒏𝟏⃗⃗ ⃗⃗  + 𝒏𝟐⃗⃗ ⃗⃗  ) = 1.4 ×  104(𝒏𝟏⃗⃗ ⃗⃗  +  𝒏𝟐⃗⃗ ⃗⃗  ) N 

The force acting on the bend 𝑭′𝒃⃗⃗⃗⃗⃗⃗ =  − 𝑭𝒃
⃗⃗ ⃗⃗ . 

 

 

 

[Problem 4.3-P1]  Water 20℃  is flowing at a rate of 𝑄 = 5 ×  10−2  𝑚3 𝑠⁄  through a 

horizontal convergent pipe shown below. The upstream pressure is 𝑝1 = 2 × 105 Pa. Calculate 

the pressure 𝑝2 at the end of the converging section and the force acting on the convergent section. 
Assume the friction loss negligibly small in the converging section.  
 

  

Fig.4.3-P1 Fluid force acting on the wall of a horizontal convergent pipe 

 
 

4.4 Macroscopic Energy Balance 
 

  In this section, we shall deduce a macroscopic balance of energy in general form from the 

beginning to get the first law of thermodynamics. This deductive part may be skipped in case of 

time limitation. 
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Fig.4.4-1 Control volume for macroscopic energy balance 

 

Energy associated with mass can be classified: potential energy 𝐸𝑝, kinetic energy 𝐸𝑘, and 

internal energy 𝐸𝑢. 

Strictly speaking, the rate of the total energy 𝐸𝑇 = 𝐸𝑝 + 𝐸𝑘 + 𝐸𝑢 accumulation in the control 

volume is given by 
𝑑 

𝑑𝑡
 ∫ 𝜌 𝐸𝑇 𝑑𝑉

𝑉
 (4.4-1) 

 The net rate of energy in over the whole surface of the control volume is 

∫ 𝐸𝑇 𝜌 𝑣𝑛𝑑𝑆 =  − ∫ 𝐸𝑇 𝜌(�⃗⃗� ∙ �⃗⃗� ) 𝑑𝑆
𝑆𝑆

 (4.4-2) 

To get the mass of fluid inside the control volume, some of the fluid should be compressed into the 

control volume. To do work on the surroundings, the boundary of the control volume should be 

expanded. This is called “flow work”. The flow work required to add a unit mass to the control 

volume can be written as (pressure) (specific volume) 𝑝 𝑉𝑠  like piston work. Therefore the flow 

work is  

𝑊𝑓 = −  ∫ 𝑝 𝑉𝑠 𝜌(�⃗⃗� ∙ �⃗⃗� ) 𝑑𝑆
𝑆

 (4.4-3) 

  According to thermodynamics, enthalpy is expressed as 𝐻𝑒 = 𝐸𝑢 + 𝑝 𝑉𝑠. Hence the net rate of 
energy transferred across the boundary with mass becomes 

− [∫ 𝐸𝑇 𝜌(�⃗⃗� ∙ �⃗⃗� ) 𝑑𝑆
𝑆

+ ∫ 𝑝 𝑉𝑠 𝜌(�⃗⃗� ∙ �⃗⃗� ) 𝑑𝑆
𝑆

] =  − ∫ (𝐻𝑒 + 𝐸𝑘 + 𝐸𝑝)𝜌(�⃗⃗� ∙ �⃗⃗� ) 𝑑𝑆
𝑆

 (4.4-4) 

The thermal energy not associated with mass crossing the boundary per unit volume is 𝑄 (thermal 
energy into the system is regarded positive). Finally applying the principle of energy conservation 

we get 
𝑑 

𝑑𝑡
 ∫ 𝜌 𝐸𝑇 𝑑𝑉

𝑉
= − ∫ (𝐻𝑒 + 𝐸𝑘 + 𝐸𝑝)𝜌(�⃗⃗� ∙ �⃗⃗� ) 𝑑𝑆

𝑆
+ 𝑄 − 𝑊 (4.4-4) 

This is a general form of macroscopic energy balance. 

 

<Simplification of the macroscopic energy balance> 
  For a flow system having a single fluid entrance (at plane “1” with cross-sectional area 𝑆1) and a 

single exit  (at plane “2” with cross-sectional area 𝑆2), the macroscopic energy balance reduces to 

 
𝑑 

𝑑𝑡
 ∫ 𝜌 𝐸𝑇 𝑑𝑉 =  − ∫ (𝐻𝑒1 + 𝐸𝑘1 + 𝐸𝑝1)𝜌1(𝒗𝟏⃗⃗⃗⃗ ∙ 𝒏𝟏⃗⃗ ⃗⃗  )𝑑𝑆1 𝑆1𝑉

 

− ∫ (𝐻𝑒2 + 𝐸𝑘2 + 𝐸𝑝2)𝜌2(𝒗𝟐⃗⃗⃗⃗ ∙ 𝒏𝟐⃗⃗ ⃗⃗  )𝑑𝑆2 + 𝑄 − 𝑊
𝑆2

 

= (𝐻𝑒1+ 𝐸𝑘1 + 𝐸𝑝1)𝜌1〈𝑣1〉𝑆1 − (𝐻𝑒2 + 𝐸𝑘2 + 𝐸𝑝2)𝜌2〈𝑣2〉𝑆2 + 𝑄 − 𝑊  

                                                       =  − ∆[(𝐻𝑒 + 𝐸𝑘 + 𝐸𝑝)𝑤] + Q – W (4.4-5) 

Here 〈 〉 means cross-sectional area-averaged value and 𝑤 =  𝜌〈𝑣〉𝑆 is mass flow rate. 

  Strictly speaking, the above simplification is valid only when the density and other quantities 
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𝐻𝑒 , 𝐸𝑘 , 𝐸𝑝, 𝐸𝑇 do not vary very much across the cross section at planes “1” and “2”. Especially for 

the kinetic energy term, the flow should be turbulent, which has nearly flat velocity profiles. 

Usually the kinetic energy and potential energy in the constant gravitational field can be written as 

(1 2) 𝜌𝑣2 +  𝜌 𝑔 ℎ.⁄   

Finally the above equation becomes 
𝑑𝐸𝑇𝑜𝑡 

𝑑𝑡
= − ∆ [(𝐻𝑒 + 

1

2
 〈𝑣〉2 + 𝑔 ℎ)𝑤] + 𝑄 − 𝑊 (4.4-6) 

Here 𝐸𝑇𝑜𝑡 = ∫ 𝜌 𝐸𝑇 𝑑𝑉 =  ∫ 𝜌(𝐸𝑢 + 𝐸𝑘 + 𝐸𝑝)𝑑𝑉
𝑉𝑉

   

This is a form of the first law of thermodynamics applied to a flow system, which may be regarded 

as the starting equation for dealing with energy-related chemical engineering applications.  

Dividing through by constant mass flow rate 𝑤 at steady state: 

− ∆ (𝐻𝑒 + 
1

2
 〈𝑣〉2 + 𝑔 ℎ) + 𝑄𝑚 − 𝑊𝑚 = 0 (4.4-7) 

Here 𝑄𝑚 is the heat added per unit mass of the fluid into the system and 𝑊𝑚 is the amount of 

work done per unit mass of the fluid on the surroundings. 

  This equation can be further simplified into a convenient form. 

For ideal gases ( 𝑝 𝑉 = (1 𝑀) 𝑅 𝑇⁄  ) 

∫ 𝐶𝑝 𝑑𝑇 + ∆ 
1

2
 〈𝑣〉2 + 𝑔 ∆ℎ =  𝑄𝑚 − 𝑊𝑚

𝑇2
𝑇1

 (4.4-8) 

For incompressible fluids (𝜌 = 𝑐𝑜𝑛𝑠𝑡, 𝐶𝑣 = 𝐶𝑝) 

The enthalpy change is given as 

 ∆𝐻𝑒 =  ∆𝐸𝑢 + ∆(𝑝 𝑉𝑠) =  ∆𝐸𝑢 + 𝑉𝑠∆𝑝 =  ∆𝐸𝑢 + (1 𝜌)⁄ ∆𝑝 (4.4-9) 

Then  

∫ 𝐶𝑝 𝑑𝑇 + 
𝑝2− 𝑝1

𝜌
+ ∆ 

1

2
 〈𝑣〉2 + 𝑔 ∆ℎ =  𝑄𝑚 − 𝑊𝑚

𝑇2
𝑇1

 (4.4-10) 

The above equation is usually applied for a flow system accompanied with heat input or output. 

 

 
 

4.5 Mechanical Energy Balance 
 

The equation of mechanical energy balance called “Bernoulli equation” is very important and 

useful for practical applications to various piping designs. 

For a flow system without heat exchange (𝑄𝑚 = 0) 

∆𝐻𝑒 =  ∆𝐸ℎ + ∆(𝑝𝑉𝑠) = 𝑇 ∆𝑆 + 𝑉𝑠∆𝑝 (4.5-1) 
The presence of friction renders the process irreversible owing to the frictional heating. That is, 

𝑇 ∆𝑆 =  𝑄𝑚 + 𝐹𝑟𝑚  Therefore  ∆𝐻𝑒 = 𝑄𝑚 + 𝐹𝑟𝑚 + 𝑉𝑠∆𝑝. (4.5-2) 

where 𝐹𝑟𝑚indicates the thermal energy generation transformed from mechanical energy. 

   Substituting this into the steady-state energy balance equation 

∫ 𝑉𝑠 𝑑𝑝 + ∆ 
1

2
 〈𝑣〉2 + 𝑔 ∆ℎ =  − 𝐹𝑟𝑚 − 𝑊𝑚

𝑝2

𝑝1
 (4.5-3) 

This is a generalized form of “Bernoulli equation” which is applicable to both ideal gases and 

incompressible fluids. Here 𝐹𝑟𝑚 is the rate of mechanical energy loss per unit mass due to the 
frictional effect. This indicates that a part of mechanical energy is irreversibly converted to thermal 

energy due to viscous dissipation. The mechanical energy loss 𝐹𝑟𝑚 is often called “friction loss”. 
For steady-state isothermal case with no additional heat input, the rate of thermal energy produced 

by viscous dissipation becomes equal to the rate of heat removed from the control volume. 

For ideal gases (𝑉𝑠 = (𝑅 𝑇 𝑀⁄ )(1 𝑝⁄ )  
𝑅 𝑇

𝑀
ln

𝑝2

𝑝1
+ ∆ 

1

2
 〈𝑣〉2 + 𝑔 ∆ℎ =  − 𝐹𝑟𝑚 − 𝑊𝑚 (4.5-4) 

For incompressible fluids (𝑉𝑠 = 1 𝜌⁄ = 𝑐𝑜𝑛𝑠𝑡) 
𝑝2− 𝑝1

𝜌
 + ∆ 

1

2
 〈𝑣〉2 + 𝑔 ∆ℎ =  − 𝐹𝑟𝑚 − 𝑊𝑚 (4.5-5) 
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 For laminar flow the kinetic energy term ∆(1 2)〈𝑣〉2⁄  should be replaced by ∆〈𝑣〉2 because the 

parabolic velocity distribution gives the relation:  〈𝑣3〉 〈𝑣〉 = 2 〈𝑣〉2⁄ . 

 

[PROBLEM 4.5-P1]  Ideal gas (molecular weight 𝑀 = 29) is in isothermal turbulent flow at 

temperature 𝑇 = 298 K (= 25℃) through a straight horizontal pipe with cross section 𝑆 = 3.14 ×
 10−2 𝑚2. The absolute pressures at reference planes “1” and “2” are 𝑝1 = 1.013 × 105 𝑃𝑎 (=
1 𝑎𝑡𝑚) and 𝑝2 = 0.87 × 105 𝑃𝑎, respectively. The mass flow rate measured is 𝑤 = 0.15 𝑘𝑔 𝑠⁄ .  

Evaluate 𝐹𝑟21 = 𝑤 𝐹𝑟𝑚21 in 𝑘𝑔 𝑚2/𝑠3 from the length 𝐿 = 20 𝑚 of pipe between “1” and “2”. 

The gas constant is given by 𝑅 = 8.314 ×  103 (𝑘𝑔 𝑚2 𝑠2)/𝑘𝑚𝑜𝑙 𝐾⁄ . 

 

[PROBLEM 4.5-P2]  Water flows through a turbine at an average velocity of 10 m/s at the 
entrance of flow cross section 0.1 m

2
. The static pressures are 1 MPa at the entrance and 2 MPa at 

the outlet of flow cross section 0.3 m
2
. The elevation difference between the entrance and outlet is 

10 m.  Calculate the theoretical power assuming negligibly small viscous dissipation. 

 
Fig.4.4-P2. Calculation of power obtained by water turbine  
 

[EXAMPLE 4.5-E1]  A fireboat has a circular convergent nozzle shown below. A jet of water 

(𝜌 = 1,000 𝑘𝑔/𝑚3 ) issues from the nozzle at an average velocity of 100 𝑚/𝑠 . Assuming 

negligible friction loss and gravitational effect, determine the static pressure 𝑝1 at plane “1” and 
the horizontal component of the force required to keep the nozzle stationary. This nozzle is placed 

on an angle of 30 degree with the horizontal. The nozzle exit diameter is 80 mm and the diameter of 

the upstream pipe is 150 mm. 

 
 
Fig.4.5-E2. Circular convergent nozzle 
 

Solution:  Assuming turbulent flow with incompressible fluid, the mechanical energy balance can 

be applied to this system as 
1

2
〈𝑣2〉

2 −
1

2
〈𝑣1〉

2 + 
𝑝2− 𝑝1

𝜌
= 0 (4.5-E1) 

where 𝑔 ∆ℎ = 0, 𝐹𝑟𝑚21 = 0 and 𝑊𝑚 = 0 are assumed.  
Then for steady-state flow of incompressible fluid, the upstream pressure is given by 
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𝑝1 = 
1

2
 𝜌 (〈𝑣2〉

2 − 〈𝑣1〉
2) + 𝑝2 (4.5-E2) 

𝑤 =  𝜌〈𝑣2〉𝑆2 =  𝜌〈𝑣1〉𝑆1 = 𝑐𝑜𝑛𝑠𝑡 (4.5-E3) 

At the nozzle exit the pressure 𝑝2 becomes atmospheric pressure. 

Therefore  

〈𝑣1〉 = (𝑆2 𝑆1)〈𝑣2〉 =  (80 150)⁄ 2 (100 𝑚 𝑠⁄ ) = 28.4 𝑚/𝑠⁄  (4.5-E4) 
Then 

𝑝1 = (1 2)(1000 𝑘𝑔 𝑚3)[(100 𝑚 𝑠⁄ )2 − ⁄ (28.4 𝑚 𝑠⁄ )2] + 1.013 × 105 𝑃𝑎⁄   

= 4.70 ×  106 𝑃𝑎 = 4.70 𝑀𝑃𝑎 (4.5-E5) 

At the nozzle exit the pressure becomes atmospheric pressure. 

The mass flow rate is calculated as 

𝑤 =  𝜌〈𝑣〉𝑆 = (1000 𝑘𝑔 𝑚3)(100 𝑚 𝑠)(𝜋 4⁄ )(0.08 𝑚)2 = 502.7 𝑘𝑔 𝑠⁄⁄⁄  (4.5-E6) 

Applying the momentum balance to this system with 𝑚𝑡𝑜𝑡𝑔 = 0 assumed, 

�⃗⃗� =  −(𝒗𝟐⃗⃗⃗⃗ 𝑤 − 𝒗𝟏⃗⃗⃗⃗ 𝑤) − (𝑝2𝑆2𝒏𝟐 + 𝑝1𝑆1𝒏𝟏) (4.5-E7) 
The force acting on the nozzle in the direction of nozzle axis is given by 

𝐹 =  −(502.7 𝑘𝑔 𝑠)(100 𝑚 𝑠⁄ − 28.4 𝑚 𝑠) − (1.013 × 105  𝑘𝑔 𝑚 𝑠2)⁄⁄⁄   

× (𝜋 4⁄ )(0.08 𝑚)2 + (4.70 × 106  𝑘𝑔 𝑚 𝑠2)(𝜋 4⁄ )(0.15 𝑚)2⁄   

= 4.66 ×  104  𝑘𝑔 𝑚 𝑠2 =  4.66 ×  104 𝑁⁄  (4.5-E8) 

The horizontal force required to keep the nozzle stationary is 

𝐹𝑥 = 𝐹 cos 30° = (4.66 ×  104) √3 2 =⁄ 4.04 ×  104 𝑁 (4.5-E9) 

 

[EXAMPLE 4.5-E2]  To measure the friction loss of a glove valve, we use a horizontal pipeline 

with a constant cross section shown. We use water (density 𝜌𝑤) as the flowing fluid and mercury 

(density 𝜌𝑚) as the manometer fluid. Determine the friction loss when the manometer reading is ℎ. 

Assume that the friction losses in the sections 𝑙1 and 𝑙2 are small compared with that of the valve.  
Solution: Use the macroscopic mechanical energy balance for incompressible, isothermal flow 

between the pressure taps 
𝑝2− 𝑝1

𝜌𝑤
+ ∆

1

2
 〈𝑣〉2 + 𝑔 ∆ℎ =  − 𝐹𝑟𝑚 − 𝑊𝑚 (4.5-E10) 

Since 〈𝑣1〉 = 〈𝑣2〉 , ∆
1

2
 〈𝑣〉2 = 0 for a pipe with constant cross section. 

∆ℎ = 0 for a horizontal pipeline. There is no power equipment in the system  𝑊𝑚 = 0 
 

 
Fig.4.5-E2. Determination of friction loss for a globe valve 
 

From the force balance of the stationary fluids in the manometer  

𝑝1 − 𝑝2 = (𝜌𝑚 − 𝜌𝑤)𝑔 ℎ (4.5-E11) 
Then we get the friction loss 

𝐹𝑟𝑚 = 
𝜌𝑚− 𝜌𝑤

𝜌𝑤
 𝑔 ℎ (4.5-E12) 
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[EXAMPLE 4.5-E3]  Pitot tube for velocity measurement  
One of the most common, traditional devices for measuring velocity distributions in a flowing 

stream is the pitot tube. As shown in Fig.4.5-E3, it consists of two concentric tubes, the inner one of 

which is open at the end and the outer one is sealed at the same end of the inner tube. The side wall 

of the outer tube near the front tip has several small drilled holes. 

Both tubes are filled with the flowing fluid and connected to the opposite ends of a manometer. 
The pitot tube is placed to confront the opening of the inner tube (impact-tube opening) with 
the velocity to be measured. As the fluid impinges on the impact-tube opening, its kinetic 
energy is converted to pressure energy (sometimes called dynamic pressure).  
  Along a streamline the mechanical energy balance with an assumption of incompressible 
fluid is applicable over the short distance of the approaching flow from 1 to 2: 
1

2
 𝑣2 − 0 + 

𝑝𝑠− 𝑝𝑡

𝜌
= 0   or 

𝑣 =  √
2 (𝑝𝑡− 𝑝𝑠)

𝜌
 (4.5-E13) 

where the impact pressure (1 2⁄ ) 𝜌 𝑣2 is the difference between the static pressure 𝑝𝑡  at the 
impact-tube opening and the static pressure 𝑝𝑠 of the stream. The pressure acting on the side 
holes of the outer tube is approximately equal to  𝑝𝑠 because the streamlines near the side 
wall are almost parallel to the side wall.  
The relation of manometer reading ℎ with the velocity 𝑣 is 
 

𝑣 =  √
2 (𝜌𝑚− 𝜌)𝑔 ℎ

𝜌
 (4.5-E14) 

where 𝜌𝑚 is the density of manometer fluid. The pitot tube responds slowly to changing 
velocities owing to inertia effect, so it can measure only the time-averaged velocity in the 
turbulent flow. 

 
 
Fig.4.5-E3. Pitot tube 

 
 

[PROBLEM 4.5-P3]  The following table is some experimental data for a Pitot tube traverse 
for the flow of water (temperature 20℃) inside a circular tube of 60 mm ID. The manometer 
fluid is carbon tetra chloride (density 𝜌𝑚 = 1,600 kg/m3). 

Calculate the local velocities and plot those data to obtain the power-law expression for the 
velocity distribution.  What is the Reynolds number? 
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Position of Pitot tube 
Radial distance from 
the pipe axis  (mm) 

Manometer 
readings (mm) 

 

0.0 375 
2.0 364 
5.0 357 

10.0 330 
15.0 300 
20.0 268 
25.0 225 
27.0 202 
28.0 168 
29.0 140 
29.5 119 
29.8 93 

 

[EXAMPLE 4.5-E4]  As shown in Fig.4.5-P1, let us consider an orifice-flowmeter installed in the 

straight section of a horizontal circular tube (inside diameter 𝐷1).  

 

 
Fig.4.5-E4. Orifice flowmeter 
 

The orifice circular plate has a hole in the middle, the sharp edge of which has a very short straight 

section of diameter 𝐷0. The following mechanical energy balance of a constant density fluid flow is 
set up over the region between planes “1” and “2” located at the two pressure taps under a condition 

of no work effect and no potential energy change: 
〈𝑣𝑧2〉

2 

2
− 

〈𝑣𝑧1〉
2 

2
+ 

𝑝2− 𝑝1

𝜌
+  𝜍 

1

2
 〈𝑣𝑧2〉

2 = 0 (4.5-E15) 

where 𝜍 is called “friction loss factor” (dimensionless). The last term gives the friction loss caused 

by an abrupt change in the cross-sectional flow area A1 → A2. Usually for highly turbulent flow, 

the flow cross-sectional area is changed from A0 to A2. Here the A2 indicates the flow 

cross-sectional area at the most-contracted position.  

The minimum flow area is called “Vena-contracta.” Owing to a complicated flow pattern, only for 

simplicity, the so-called contraction coefficients 𝛼1  are assumed to be unity in front of the first 

term. The contraction coefficient is defined as 

𝛼 =  𝐴2 𝐴0⁄   

, which is varied with 𝑚 = 𝐴0 𝐴1⁄ . Therefore 〈𝑣𝑧2〉 =  〈𝑣𝑧1〉 𝐴1 𝐴2⁄  
According to the continuity condition,  

𝐴1〈𝑣𝑧1〉 = 𝐴2 〈𝑣𝑧2〉. For engineering convenience, the discharge coefficient 𝐶𝑑  is introduced 
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instead of making 𝛼2 to be unity, and then 〈𝑣𝑧1〉 =  𝐶𝑑𝑚 〈𝑣𝑧2〉. The discharge coefficient of a 
given installation varies mainly with the Reynolds number. After all, the average velocity at the 

most-contracted position can be obtained as 

〈𝑣𝑧2〉 =  
1

√1− 𝐶𝑑
2𝑚2

 √
2(𝑝1− 𝑝2)

𝜌
 (4.5-E16) 

Then the velocity at the hole of the orifice is given by 

〈𝑣𝑧〉0 = ( 𝜉𝐶𝑑 √1 − 𝐶𝑑
2𝑚2⁄ )√2(𝑝1 − 𝑝2) 𝜌⁄  (4.5-E17) 

As a result, the volumetric flow rate is given by the following equation: 

𝑉 =  〈𝑣𝑧〉0𝐴0 = 𝐶𝑐  𝐴0√2(𝑝1 − 𝑝2) 𝜌⁄  (4.5-E18) 

Here 𝐶𝑐 is the correction coefficient taking into account the effect of 𝜉𝐶𝑑 √1 − 𝐶𝑑
2𝑚2⁄ . 

Even for liquid flows, the calibration of flowmeters is necessary. 

For compressible fluids, deviation from isentropic conditions is significant, and the calibration of 

orifice flowmeters to be used with gases must be carried out by means of the gasometer system. 

 

 
 

4.6 Thermal Energy Balance for non-Isothermal System 
 

  For non-isothermal flow system, kinetic and potential energy effects are negligibly small 

compared with thermal energy term. For many practical problems of heat transfer, therefore, the 

energy balance reduces to  

∆𝐻𝑒 =  𝑄𝑚 − 𝑊𝑚 (4.6-1) 

Hence the friction loss term can be neglected except when the mechanical energy loss should be 

determined. If the system does not have a pump or other work-producing device (e.g. turbine and 

mixing stirrer), the enthalpy balance equation reduces to the following simple form: 

∆𝐻𝑚 = 𝑄𝑚 (4.6-2) 
 
 

[EXAMPLE 4.6-E1] Consider an incompressible fluid like water flowing through the pipeline 
shown below, which comprises a pump and a heat exchanger connected by a circular pipe with 

constant cross-sectional area. 

(Ⅰ) pump: Consider the subsystem including the pump and the short horizontal pipe length 

between planes “1” and “2”. The energy balance becomes  

− ∆ (𝐻𝑚 + 
1

2
 〈𝑣〉2 + 𝑔 ℎ) + 𝑄𝑚 − 𝑊𝑚 = 0 (4.6-E1) 

The mechanical energy balance is 

∫ 𝑉𝑠 𝑑𝑝 + ∆ 
1

2
 〈𝑣〉2 = − 𝐹𝑟𝑚 − 𝑊𝑚

𝑝2

𝑝1
 (4.6-E2) 

Since we do not have a heat exchanger in this subsystem, the term 𝑄𝑚 is generally small compared 

with the work done on the pump 𝑊𝑚. The term ∆𝐻𝑒 in Eq.(4.4-9) is the enthalpy change of the 
fluid as it passes through the pump. Pumps for liquids and gases are usually designed so that 

entering and leaving velocities are equal, i.e. ∆(1 2⁄ )〈𝑣〉2 = 0 
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Fig.4.6-E1. Macroscopic energy balance for a simple pipeline system 
 

For incompressible fluid 

∆𝐻𝑚 = ∫ 𝑉𝑠 𝑑𝑝 + 𝐹𝑟𝑚 = 
𝑝2− 𝑝1

𝜌

𝑝2

𝑝1
+ 𝐹𝑟𝑚21 (4.6-E3) 

The power required for the pump is given by 

− 𝑊𝑚 = 
𝑝2− 𝑝1

𝜌
+ 𝐹𝑟𝑚21 (4.6-E4) 

The pipe section is so short that the friction loss 𝐹𝑟𝑚21 can often be neglected. 

(Ⅱ) heat exchanger:  Typical heat exchangers are so designed that there is no shaft work and 

negligibly small difference in elevation between the entrance and exit. Then 

𝑊𝑚 = 0 and ∆ℎ = 0 

For incompressible fluid, kinetic energy balance is also negligibly small. The friction loss term 𝐹𝑟𝑚 
becomes important only when the power requirement is calculated by using the mechanical energy 

balance. Then 

∫ 𝑉𝑠 𝑑𝑝 =  − 𝐹𝑟𝑚
𝑝2

𝑝1
  or  

𝑝3− 𝑝2

𝜌
= − 𝐹𝑟𝑚32 (4.6-E5) 

Regarding the total energy balance 

∫ 𝐶𝑝 𝑑𝑇 + 
𝑝3− 𝑝2

𝜌

𝑇3
𝑇2

= 𝑄𝑚 (4.6-E6) 

The pressure change term is small compared with the enthalpy change due to the heat transfer. For 

constant heat capacity 

𝑄𝑚 = 𝐶𝑝 (𝑇3 − 𝑇2)   i.e.   𝑄 = 𝑤 𝐶𝑝 (𝑇3 − 𝑇2) (4.6-E7) 

This equation indicates that the incompressible fluid gets an increase in enthalpy equal to the rate of 

heat input. For example, in the case when another hot fluid is supplied into an annular space of 

double-tube exchanger at flow rate 𝑤′ 
𝑄 = 𝑤′𝐶𝑝

′(𝑇′
3 − 𝑇′

2) =  𝑤 𝐶𝑝 (𝑇3 − 𝑇2) (4.6-E8) 

where 𝑇′3 and 𝑇′2 are the inlet and outlet temperatures of the hot fluid. This is the fundamental 
heat balance equation for the design of heat exchangers. 

(Ⅲ)  pipe:  Since this subsystem having a change in elevation is adiabatic, the term 𝑄𝑚 is zero. 

There is no shaft work: 𝑊𝑚 = 0. The incompressible fluid does not have any velocity change 

through the pipe with constant cross-sectional area, i.e. 〈𝑣〉4 = 〈𝑣〉3. 

The mechanical energy balance becomes 
𝑝4 − 𝑝3

𝜌
+ 𝑔 (ℎ4 − ℎ3) =  − 𝐹𝑟𝑚43    (4.6-E9) 

Summing up those three equations, the overall mechanical energy balance becomes 
𝑝2− 𝑝1

𝜌
+

𝑝3− 𝑝2

𝜌
+ 

𝑝4− 𝑝3

𝜌
+ 𝑔(ℎ4 − ℎ3) =  −(𝐹𝑟𝑚21 + 𝐹𝑟𝑚32  +  𝐹𝑟𝑚43) − 𝑊𝑚  (4.6-E10) 

Finally we get 
𝑝4− 𝑝1

𝜌
+  𝑔(ℎ4 − ℎ3) + ∑𝐹𝑟𝑚 = − 𝑊𝑚 (4.6-E11) 
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  This can be considered as a mechanical energy balance equation applied between planes “1” and 

“4” and implies that the work done on the fluid − 𝑊𝑚 required to keep a given constant flow rate 
should be equal to the sum of differences in flow work and potential energy and the total friction 

loss (mechanical energy loss) due to viscous dissipation over the whole length of the pipeline. 

This is the design equation of piping. The required power of pump is given by 

𝑃𝑤 = −𝑤 𝑊𝑚 (4.6-E12) 
 

 

 [EXAMPLE 4.6-E2]  We want to cool dry oxygen gas of 𝑊𝑜 kg/s from 𝑇𝑖 to 𝑇𝑜 𝐾 by means 

of horizontal double-pipe heat exchanger shown. The cross sectional area of the inner pipe is 𝑆  𝑚2. 

If we supply coarse liquid nitrogen as the cooling medium into the annular space at its saturation 

temperature, nucleate boiling occurs on the outer surface of the inner pipe. Its latent heat of 

vaporization is 𝜆𝑁   𝐽 𝑘𝑔⁄ . The pressures at the inlet and outlet of the inner pipe are 𝑝𝑖 and 𝑝𝑜 𝑃𝑎, 

respectively. Calculate the rate of energy removed by the coarse liquid nitrogen across the pipe wall. 

Assume turbulent flow of ideal gas with constant heat capacity of oxygen 𝐶𝑝𝑂   𝐽 𝑘𝑚𝑜𝑙 𝐾⁄ . 

 
Fig.4.6-E1. Energy balance for cooling dry oxygen by liquid nitrogen 

 

Solution: The macroscopic energy balance between the inlet and exit of the inner pipe is 

− ∆ (𝐻𝑚 + 
1

2
 〈𝑣〉2 + 𝑔 ℎ) + 𝑄𝑚 − 𝑊𝑚 = 0 (4.6-E13) 

For an ideal gas with constant capacity 

Δ𝐻𝑚 = ∫ 𝐶𝑝𝑚 𝑑𝑇 =  
1

𝑀
 

𝑇𝑜
𝑇𝑖

∫ 𝐶𝑝𝑂  𝑑𝑇 = 
𝑇𝑜
𝑇𝑖

𝐶𝑝𝑂

𝑀
 (𝑇𝑜 − 𝑇𝑖)       𝐽 𝑘𝑔⁄  (4.6-E14) 

From the mass balance 𝜌𝑖〈𝑣𝑖〉𝑆𝑖 = 𝜌𝑜〈𝑣𝑜〉𝑆𝑜 = 𝑊𝑜. 
The perfect gas law is 
1

𝜌
= 

1

𝑀
 
𝑅 𝑇

𝑝
 (4.6-E15) 

Then 

Δ
1

2
〈𝑣〉2 = 

1

2
(𝑊𝑜 𝑆⁄ )2[(𝑅𝑇𝑜 𝑀 𝑝𝑜⁄ )2 − (𝑅𝑇𝑖 𝑀 𝑝𝑖⁄ )2]     𝐽 𝑘𝑔⁄  (4.6-E16) 

𝑊𝑚 = 0 and Δℎ = 0    
Therefore 

𝑄  𝑘𝐽 𝑠 =  𝑊𝑜 𝑄𝑚 =  (𝑊𝑜𝐶𝑝𝑂 𝑀⁄ )(𝑇𝑜 − 𝑇𝑖) + 
1

2
 𝑊𝑜(𝑊𝑜 𝑆⁄ )2⁄ [(𝑅𝑇𝑜 𝑀 𝑝𝑜⁄ )2 − (𝑅𝑇𝑖 𝑀 𝑝𝑖⁄ )2]

 (4.6-E17) 

On the other hand, the coarse liquid nitrogen should be fed at a rate of 𝑄 𝜆𝑁⁄    𝑘𝑔 𝑠⁄ . 
 

 

[PROBLEM 4.6-P1]  Mineral oil (𝜌 = 850  𝑘𝑔 𝑚3⁄ , 𝐶𝑝 = 2.3 𝑘𝐽 𝑘𝑔 𝐾,⁄   𝜇 = 0.03 𝑃𝑎 𝑠 and 

𝜅 = 0.143  𝑊 𝑚 𝐾⁄ ) is flowing at an average velocity 〈𝑣〉 = 0.4 𝑚 𝑠⁄  in a 25 mm ID circular 

steel pipe. The pipe wall is heated from outside at constant heat flux 𝑞𝑤 = 80 𝑊 𝑚2⁄  (based on 

the inside wall area). Calculate the Reynolds number. How many degrees does the average 

temperature rise per unit pipe length? 
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[PROBLEM 4.6-P2]  A basic solution is to be fed to an absorption column operating at pressure 
of 0.4 MPa at a rate of 0.001 m

3
/s from a storage tank. The physical properties of the basic solution 

can be assumed to be approximately equal to those of water. As a result of calculation, the total 

friction loss of this system is given by 𝐹𝑟𝑚 = 18 𝐽 𝑘𝑔⁄ . Calculate the power of pump required for 

the given feed rate when 30 mm ID pipe is used for the pipe line. Assume turbulent flow. 

 

[PROBLEM 4.6-P3]  Mineral oil (𝜌 = 800  𝑘𝑔 𝑚3⁄ , 𝐶𝑝 = 2.1 𝑘𝐽 𝑘𝑔 𝐾⁄  ) is transferred at a rate 

of 10 ton/h from a tank to a hydrogen plant. On the pipeline there is a heat exchanger to heat the oil 

from 308 K to 321 K. The pressure drop between the entrance and exit of the exchanger is 5 kPa.  

Determine the friction loss in m
2
/s

2
 and the heat transfer rate in J/h of the exchanger. The pressures 

at the inlet (suction side) and outlet (discharge side) of the pump are 0.08 MPa and 1.8 MPa, 

respectively.  Determine the power of pump in kW. 
 
 

4.7 Macroscopic Mass Balance of Individual Components 
 

  Even when the total mass is conserved, an individual species is not, in general, conserved under 

processes including chemical reaction. By applying the principle of mass conservation to the control 

volume having a homogeneous chemical reaction, the mass balance of component A can be written 

as 
𝑑 

𝑑𝑡
 ∫ 𝐶𝐴 𝑑𝑉 =  − ∫ 𝐶𝐴 (�⃗⃗� ∙ �⃗⃗� ) 𝑑𝑆 + ∫ 𝑟𝐴 𝑑𝑉

𝑉𝑆𝑉
 (4.7-1) 

where 𝐶𝐴 is the mass concentration of component A and 𝑟𝐴 is the reaction rate indicating the rate 
of mass generation per unit volume of component A. 

 

[EXAMPLE 4.7-E1]  A typical distillation plant shown below (Fig. 4.7-E1) comprises a 

distillation column, a total overhead condenser, and a partial bottom reboiler. The feed of mixture 𝐹 

of A and B, which is to be separated into fractions, is introduced to the column. Some of the less 

volatile component B is condensed from the vapor going up the column, and at the same time, some 

of the more volatile component A is vaporized from the liquid going down the column. These phase 

transformations take place due to the giving and receiving of latent heat between A and B 

components. 

 
Fig.4.7-E1. Distillation plant 
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  The liquid reaching the bottom is partially vaporized in a reboiler heated by steam. The vapor is 

sent back to the bottom of the column to provide the upflowing vapor in the stripping section 

(section below the feed stage). The remainder of the bottom liquid, which has high concentration of 

the less volatile component B, is withdrawn as the bottom product. On the other hand, the vapor 

reaching the top is completely condensed by an overhead condenser cooled by water. Some fraction 

of the condensate is returned by a reflux pump to provide the downflowing liquid (internal reflux 

liquid) in the rectifying section (section above the feed stage). The distillation process cannot 

proceed without the intimate contact of vapor with the internal reflux liquid. 
 

The remainder of the condensate , which has high concentration of the more volatile component A, 

is withdrawn as the overhead product. The column fed with 𝐹 kmol/h of mole fraction 𝑥𝐹 of 

component A produces 𝐷 kmol/h of overhead product of mole fraction 𝑥𝐷 and 𝑊 kmol/h of 

bottom product of mole fraction 𝑥𝑊.  
  For steady-state operation, the overall mass balances can be written as 

Total mass balance:  𝐹 = 𝐷 + 𝑊 (4.7-E1) 

Mass balance of component A:  𝐹 𝑥𝐹 = 𝐷 𝑥𝐷 + 𝑊 𝑥𝑊 

The reflux liquid: 𝐿𝑅 = 𝑉𝑡 − 𝐷  

where 𝑉𝑡 is the vapor rate from the column top to the overhead condenser. (4.7-E2) 

 

[EXAMPLE 4.7-E2]  Consider a flow system (gas absorption column) in which a gas stream is in 
contact with a liquid stream. The system, as shown in Fig.4.7-E2, has a single entrance and a single 

exit. The cross-sectional area 𝑆 is constant. The gas stream contains component A soluble into the 
liquid.  

The macroscopic mass balance of component A in gas phase is 
𝑑 

𝑑𝑡
 ∫ 𝐶𝐴 𝑑𝑉 =  𝐶𝐴1〈𝑣1〉𝑆 − 𝐶𝐴2〈𝑣2〉𝑆 − 𝑊𝐴𝑖 + ∫ 𝑟𝐴 𝑑𝑉

𝑉𝑉
 (4.7-E3) 

Here 〈𝑣1〉 and 〈𝑣2〉 are the “superficial velocities” at the entrance and exit (the average velocities 

the gas would have in the column if the column were occupied with the gas only) and 𝑊𝐴𝑖 is the 

rate of mass transfer of component A across the gas-liquid contacting interface to the liquid.  

  At steady state with no chemical reaction 
(𝐶𝐴1〈𝑣1〉 − 𝐶𝐴2〈𝑣2〉)𝑆 =  𝑊𝐴𝑖 (4.7-E4) 

 
Fig.4.7-E2. Gas absorption column 
 

Similarly the macroscopic mass balance in the liquid phase at steady state with no chemical reaction 
(𝐶′𝐴1〈𝑣′1〉 − 𝐶′𝐴2〈𝑣′2〉)𝑆 =  𝑊𝐴𝑖 (4.7-E5) 

Where the prime denotes the liquid phase.  Here 〈𝑣′1〉 and 〈𝑣′2〉 are the superficial velocities 
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(the average velocities the liquid would have in the column if the column were occupied with the 

liquid only.). 

 

[PROBLEM 4.7-P1]  Nitrogen gas is flowing in a pipe of porous wall, through which hydrogen 

gas is injected from outside into the pipe at a rate of 𝑚𝐻 kg/m
2
 s. At the entrance (𝐿 = 0) to the 

porous pipe, the flow rate of nitrogen is 𝑤𝑁 kg/s. he molecular weights of N2 and H2 are 𝑀𝑁 and 

𝑀𝐻, respectively. Obtain the expressions for the total mass flow rater as a function of pipe length 𝐿 

and the gas composition in mole fraction at a position 𝐿 downstream of the porous pipe.  

 
Fig.4.7-P1. Nirogen gas stream with hydrogen gas injected through porous pipe wall 
 
 
Nomenclature 
  

𝐶𝐴 molar concentration of component A, [kmol/m3] 

𝐶𝑝 heat capacity, [J/kg K]   

𝐷 pipe inside diameter, [m] or overhead product in distillation column, [kmol/s] 

𝐸𝑘 , 𝐸𝑝, 𝐸𝑢 kinetic, potential, internal energy, [J/kg] 

�⃗⃗�  external force vector, 

𝐹 feed rate in distillation column, [kmol/s] 

𝐹𝑟 friction loss or mechanical energy loss, [J/kg] 

𝑔 gravitational acceleration, [m/s2] 

𝐻𝑒 enthalpy, [J/kg] 

ℎ height, [m] 

𝐿 pipe length, [m] 

𝐿𝑅 reflux liquid rate in distillation column, [kmol/s] 

𝑚 mass of control volume, [kg] 

�⃗⃗�  unit vector 

𝑝 pressure, [Pa] 

𝑄 volumetric flow rate, [m3/s] or heat input from surroundings, [J/s] 

𝑟𝐴 reaction rate, [kmol/m3s]  

𝑆 surface area, [m2] or entropy, [J/kg K] 

𝑡 time, [s] 

�⃗⃗�  velocity vector 

𝑉 volume, [m3] 

𝑉𝑠 specific volume, [m3/kg] 

𝑉𝑡 vapor flow rate at top of distillation column, [kmol/s] 

𝑣 velocity, [m/s] 

𝑊 work done by fluid on surroundings, [W] or bottom product in distillation column, [kmol/s] 

𝑤 mass flow rate, [kg/s] 

𝑥𝐹 , 𝑥𝐷, 𝑥𝑊 mole fraction of more-volatile component of feed, overhead product, and bottom product, [ - ] 

𝜌 density, [kg/m3] 

𝜏𝑤 wall shear stress, [N/m2] 
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CHAPTER 5 
 

MICROSCOPIC DIFFERENTIAL BALANCES 
 
 

5.1 Differential Balances of Mass and Momentum 
 (Equations of Continuity and Motion)  
 

  In this section, we shall set up the equations of conservation of mass and momentum in general 

form (Bird et al., 1960). Once we have developed these general equations, we can start with them 

and simplify them to fit the problem at hand. 
 
                                                                                              
 

 

5.1-1 Differential mass balance (Equation of continuity)1) 

  Let us consider a differential mass balance over a stationary differential control volume ∆𝑥∆𝑦∆𝑧 

shown in Fig.5.1-1. 

 
Fig.5.1-1. Differential control volume in rectangular coordinate system 
 

  Generally the fluid is flowing through all six faces of the control volume. The fluid is 

homogeneous, but the density changes with temperature and pressure.  

The rate of mass transfer) can be written as 

(rate of mass in) = (mass transferred)/(unit time)  

= (mass/unit volume)(length/unit time)(area) 
  Therefore, as shown in Fig.5.1-2, mass is transferred across the pair of ∆𝑦∆𝑧  faces 

perpendicular to the x-axis by 𝑣𝑥  only. Hence the rate of mass in through the face at x is 

𝜌|𝑥𝑣𝑥|𝑥∆𝑦∆𝑧 and the rate of mass out through the face at 𝜌|𝑥+∆𝑥𝑣𝑥|𝑥+∆𝑥∆𝑦∆𝑧. Similar expressions 
can be obtained for the remaining two pairs of faces. 

  The masses of the control volume at time 𝑡 and 𝑡 + ∆𝑡 are 𝜌|𝑡∆𝑥∆𝑦∆𝑧 and 𝜌|𝑡+∆𝑡∆𝑥∆𝑦∆𝑧, 
repectively. Therefore the mass accumulation per unit time is given by 

(
𝜌|𝑡+∆𝑡 − 𝜌|𝑡

∆𝑡
) ∆𝑥∆𝑦∆𝑧 

1. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, Wiley, New York, Chapt.3 (1960) 



 
Fig. 5.1-2 Mass flow rate transferred across planes 𝒙 and 𝒙 + ∆𝒙 of control volume  
 

  Then applying the principle of mass conservation, the following equation yields 

(
𝜌|𝑡+∆𝑡− 𝜌|𝑡

∆𝑡
) ∆𝑥∆𝑦∆𝑧 =  [𝜌|𝑥𝑣𝑥|𝑥 − 𝜌|𝑥+∆𝑥𝑣𝑥|𝑥+∆𝑥]∆𝑦∆𝑧  

  [𝜌|𝑦𝑣𝑦|𝑦 − 𝜌|𝑦+∆𝑦𝑣𝑦|𝑦+∆𝑦
] ∆𝑧∆𝑥 − [𝜌|𝑧𝑣𝑧|𝑧 − 𝜌|𝑧+∆𝑧𝑣𝑧|𝑧+∆𝑧]∆𝑥∆𝑦  (5.1-1) 

Dividing through by the volume ∆𝑥∆𝑦∆𝑧 and taking the limit as ∆𝑡, ∆𝑥, ∆𝑦, ∆𝑧 go to zero, we get 
𝜕𝜌

𝜕𝑡
= − (

𝜕 𝜌𝑣𝑥

𝜕𝑥
+ 

𝜕 𝜌𝑣𝑦

𝜕𝑦
+ 

𝜕 𝜌𝑣𝑧

𝜕𝑧
) (5.1-2) 

This is the equation of continuity in general form. 

This equation can be written in vector notation: 
𝜕𝜌

𝜕𝑡
= − ∇ ∙ 𝜌�⃗⃗�  (5.1-3) 

This equation describes the rate of change in density at a fixed position from the Eulerian view 

point. That is, if the right side of the equation is expanded, we get 
𝜕𝜌

𝜕𝑡
+ 𝑣𝑥

𝜕 𝜌

𝜕𝑥
+ 𝑣𝑦

𝜕 𝜌

𝜕𝑦
+ 𝑣𝑧

𝜕 𝜌

𝜕𝑧
= − 𝜌 (

𝜕 𝑣𝑥

𝜕𝑥
+ 

𝜕 𝑣𝑦

𝜕𝑦
+ 

𝜕 𝑣𝑧

𝜕𝑧
) (5.1-4) 

The left side describes the rate of change in density observed by following the fluid motion from the 

Lagrangian viewpoint. Therefore if the fluid is at rest, all terms vanish. The derivative of the 

left-hand side is called the substantial derivative.  

In engineering problems, we very frequently assume the fluid density to be constant as 

incompressible fluid. For constant density fluids, all the left-side terms vanish, and then the right 

side becomes zero: 
𝜕 𝑣𝑥

𝜕𝑥
+ 

𝜕 𝑣𝑦

𝜕𝑦
+ 

𝜕 𝑣𝑧

𝜕𝑧
= 0 (5.1-5) 

This is a very important form of the equation of continuity. In vector form it can be written as 

∇ ∙ 𝒗 ⃗⃗  ⃗ = 0 (5.1-6) 
General forms of the equation of continuity are listed in Table 5.1-1. 
 

Table 5.1-1 Equation of continuity for fluid with constant density 

(1) rectangular coordinates 
𝜕 𝑣𝑥

𝜕𝑥
+ 

𝜕 𝑣𝑦

𝜕𝑦
+ 

𝜕 𝑣𝑧

𝜕𝑧
= 0  

(2) cylindrical coordinates 
1

𝑟
 
𝜕 𝑟𝑣𝑟

𝜕𝑟
+ 

1

𝑟
 
𝜕 𝑣𝜃

𝜕𝜃
+ 

𝜕 𝑣𝑧

𝜕𝑧
= 0  

 
5.1-2  Differential momentum balance  (Navier-Stokes equation)1) 
 Following the procedure established in the differential equation of continuity, let us apply the 

principle of momentum conservation to the same differential control volume. (see Fig.5.1-1). 
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Since momentum is a vector, the conservation equation can be resolved into its three orthogonal 

scalar momentum equations. 

Consider the x momentum of each term. The x-momentums of the control volume at time 𝑡 and 

𝑡 +  ∆𝑡  are (𝜌𝑣𝑥)|𝑡∆𝑥∆𝑦∆𝑧  and (𝜌𝑣𝑥)|𝑡+∆𝑡∆𝑥∆𝑦∆𝑧 , respectively. Then the accumulation of 

x-momentum per unit time (i.e. the rate of x-momentum accumulation) becomes 

(
(𝜌𝑣𝑥)|𝑡+∆𝑡−(𝜌𝑣𝑥)|𝑡

∆𝑡
) ∆𝑥∆𝑦∆𝑧 (5.1-7) 

In general, momentum may be transferred into and out of the control volume by two mechanisms: 

by convection (i.e. by virtue of fluid motion) and by diffusion (i.e. by virtue of molecular motion). 

 
Fig.5.1-3 Control volume for differential momentum balance 
 

First let us consider the convective transport of the x-momentum. Assuming the momentum flux to 

be uniform on each face, the rate of the x-momentum entering the face at 𝑥  by 𝑣𝑥|𝑥  is 
(𝜌𝑣𝑥𝑣𝑥)|𝑥∆𝑦∆𝑧, and similarly the rate of the x-momentum leaving the face at 𝑥 + ∆𝑥 by 𝑣𝑥|𝑥+∆𝑥 

is (𝜌𝑣𝑥𝑣𝑥)|𝑥+∆𝑥∆𝑦∆𝑧. The 𝜌𝑣𝑥 has dimensions of momentum per unit volume, the 𝑣𝑥∆𝑦∆𝑧 has 

dimensions of volume per unit time, and then the 𝜌𝑣𝑥𝑣𝑥|𝑥∆𝑦∆𝑧 has dimensions of momentum 

transferred per unit time (that is, the rate of momentum transferred). 

 
Fig.5.1-4 Convective transport of x-momentum across faces at 𝒚 and 𝒚 + ∆𝒚  

 
Across the face of area ∆𝑧∆𝑥 at 𝑦, as shown in Fig.5.1-4, the x-momentum (𝜌𝑣𝑥)|𝑦 can be 

transferred by the velocity component 𝑣𝑦|𝑦 perpendicular to the face. The rate of the x-momentum 

entering the face at 𝑦 by 𝑣𝑦|𝑦 is (𝜌𝑣𝑥𝑣𝑦)|𝑦∆𝑧∆𝑥 and the rate of the x-momentum leaving the 

face 𝑦 + ∆𝑦  by 𝑣𝑦|𝑦+∆𝑦
 is (𝜌𝑣𝑥𝑣𝑦)|𝑦+∆𝑦

∆𝑧∆𝑥 . Therefore the net rate of the x-momentum 
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transferred across all six faces by convection becomes 

 [(𝜌𝑣𝑥𝑣𝑥)|𝑥 − (𝜌𝑣𝑥𝑣𝑥)|𝑥+∆𝑥]∆𝑦∆𝑧 + [(𝜌𝑣𝑥𝑣𝑦)|𝑦
− (ρ𝑣𝑥𝑣𝑦)|𝑦+∆𝑦

] ∆𝑧∆𝑥 + [(𝜌𝑣𝑥𝑣𝑧)|𝑧 − (𝜌𝑣𝑥𝑣𝑧)|𝑧+∆𝑧]∆𝑥∆𝑦

 (5.1-8) 

 Next let us consider the diffusion (molecular transport) of x-momentum assuming the momentum 

flux to be uniform on each face. The rate of x-momentum entering the face at 𝑥 by diffusion is 

𝜏𝑥𝑥|𝑥∆y∆z, and the rate of x-momentum leaving the face at 𝑥 + ∆𝑥 is also  𝜏𝑥𝑥|𝑥+∆𝑥∆y∆z. Note 

that 𝜏𝑥𝑥 is the normal stress in the x direction on the face perpendicular to the x axis. Similarly the 

rate of x-momentum entering the face at 𝑦  by diffusion is 𝜏𝑦𝑥|𝑦∆z∆x , and the rate of 

x-momentum leaving the face at y + ∆𝑦 is 𝜏𝑦𝑥|𝑦+∆𝑦
∆z∆x.  

Recall that 𝜏𝑦𝑥 is the flux of x-momentum through a face perpendicular to the y axis. In other 

word, 𝜏𝑦𝑥 is the shear stress on the face normal to the y axis and acting in the x direction. 

Therefore the net rate of x-momentum transferred across all six faces by diffusion becomes 

(𝜏𝑥𝑥|𝑥 − 𝜏𝑥𝑥|𝑥+∆𝑥)∆𝑦∆𝑧 + (𝜏𝑦𝑥|𝑦 − 𝜏𝑦𝑥|𝑦+∆𝑦
)∆𝑧∆𝑥 + (𝜏𝑧𝑥|𝑧 − 𝜏𝑧𝑥|𝑧+∆𝑧)∆𝑥∆𝑦 (5.1-9) 

 

 
Fig.5.1-5 Molecular transport of x-momentum by diffusion in y direction and pressure force 

 
Pressure is a scalar, but the pressure force is a vector perpendicular to the acting face. The net 

effect of the x-directed pressure forces is  
(𝑝|𝑥 − 𝑝|𝑥+∆𝑥)∆𝑦∆𝑧 (5.1-10) 
The gravitational force acts on the mass center of the control volume as body force. The 

x-component of the gravitational force is 𝜌𝑔𝑥∆𝑥∆𝑦∆𝑧. 

Substituting all the foregoing contributions into the equation of momentum conservation law, and 

dividing the resulting equation by ∆𝑥∆𝑦∆𝑧, we get 
(𝜌𝑣𝑥)|𝑡+∆𝑡− (𝜌𝑣𝑥)|𝑡 

∆𝑡
=   

 − [
(𝜌𝑣𝑥𝑣𝑥)|𝑥+∆𝑥− (𝜌𝑣𝑥𝑣𝑥)|𝑥

∆𝑥
+ 

(𝜌𝑣𝑥𝑣𝑦)|
𝑦+∆𝑦

− (𝜌𝑣𝑥𝑣𝑦)|
𝑦

∆𝑦
+ 

(𝜌𝑣𝑥𝑣𝑧)|𝑧+∆𝑧− (𝜌𝑣𝑥𝑣𝑧)|𝑧

∆𝑧
] −   [

𝜏𝑥𝑥|𝑥+∆𝑥− 𝜏𝑥𝑥|𝑥

∆𝑥
+

 
𝜏𝑦𝑥|

𝑦+∆𝑦
− 𝜏𝑦𝑥|

𝑦

∆𝑦
+ 

𝜏𝑧𝑥|𝑧+∆𝑧−  𝜏𝑧𝑥|𝑧

∆𝑧
] − 

 𝑝|𝑥+∆𝑥− 𝑝|𝑥 

∆𝑥
+ 𝜌𝑔𝑥 (5.1-11) 

Taking the limit as ∆𝑡, ∆𝑥, ∆𝑦, ∆𝑧 go to zero, we obtain the x-component of the equation of 
motion in general form: 

𝜕 

𝜕𝑡
(𝜌𝑣𝑥) =  − (

𝜕𝜌𝑣𝑥𝑣𝑥

𝜕𝑥
+ 

𝜕𝜌𝑣𝑥𝑣𝑦

𝜕𝑦
+ 

𝜕𝜌𝑣𝑥𝑣𝑧

𝜕𝑧
) − (

𝜕𝜏𝑥𝑥

𝜕𝑥
+ 

𝜕𝜏𝑦𝑥

𝜕𝑦
+ 

𝜕𝜏𝑧𝑥

𝜕𝑧
) − 

𝜕𝑝

𝜕𝑥
+  𝜌𝑔𝑥 (5.1-12) 

The remaining two can be written by analogy. 
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In vector symbolism, these equations can be combined into one vector equation: 
𝜕𝜌�⃗⃗� 

𝜕𝑡
= − ∇ ∙ 𝜌�⃗⃗� 𝒗 ⃗⃗  ⃗ − ∇ ∙ �⃗� ⃗ −  ∇𝑝 +  𝜌�⃗⃗�  (5.1-13) 

 One of the most advantageous points of vector equation is that vector equation is valid for any 

orthogonal coordinate system. The above vector equation is also valid for cylindrical and spherical 

coordinates. The tedious transformation from rectangular to curvilinear coordinates is not discussed 

here. Keep in mind that these equations are valid for both Newtonian and non-Newtonian fluids. 

In order to determine velocity distributions, the relation between stresses and velocity gradients 

should be plugged into the 𝜏- term of the equation of motion. 
For simplicity, we assume Newtonian fluid with constant density and viscosity, and rewrite the 

equation of motion with the aid of the equation of continuity as follows: 
𝜕 

𝜕𝑡
(𝜌𝑣𝑥) + (

𝜕𝜌𝑣𝑥𝑣𝑥

𝜕𝑥
+ 

𝜕𝜌𝑣𝑥𝑣𝑦

𝜕𝑦
+ 

𝜕𝜌𝑣𝑥𝑣𝑧

𝜕𝑧
) =  𝜌 (

𝜕𝑣𝑥

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑥

𝜕𝑧
)  

𝜕𝜏𝑥𝑥

𝜕𝑥
+ 

𝜕𝜏𝑦𝑥

𝜕𝑦
+ 

𝜕𝜏𝑧𝑥

𝜕𝑧
= − 𝜇 (

𝜕2𝑣𝑥

𝜕𝑥2 + 
𝜕2𝑣𝑥

𝜕𝑦2 + 
𝜕2𝑣𝑥

𝜕𝑧2 ) 

Then the x-component of the equation of motion becomes 

𝜌 (
𝜕𝑣𝑥

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑥

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑥
+  𝜇 (

𝜕2𝑣𝑥

𝜕𝑥2 + 
𝜕2𝑣𝑥

𝜕𝑦2 + 
𝜕2𝑣𝑥

𝜕𝑧2 ) +  𝜌𝑔𝑥 (5.1-14) 

The remaining two can be written by analogy. 

These equations for constant physical properties can be combined by the following vector 

equation: 

ρ [
𝜕�⃗⃗� 

𝜕𝑡
+ (�⃗⃗� ∙ ∇)�⃗⃗� ] =  − ∇𝑝 +  𝜇∇2�⃗⃗� +  𝜌�⃗⃗�  (5.1-15) 

This is well known as the Navier-Stokes equation. The differential operator ∇2 is called the 

Laplacian operator.  

These equations derived in this section are tabulated in rectangular and cylindrical coordinates in 

Table 5.1-1.  

Only for simplification and convenience, the equation of change for spherical coordinate system is 

omitted from the table. If we wish to rewrite these equations in spherical coordinates, we should 

obtain the relations between (𝑥, 𝑦, 𝑧)and (𝑟, 휃, 𝜙)  with the relations between 

(𝑣𝑥, 𝑣𝑦 , 𝑣𝑧) and (𝑣𝑟 , 𝑣𝜃 , 𝑣𝜙). However wen will not have to wade through the details of this tedious 

process. 
 

Table 5.1-2 Equation of motion (Navier-Stokes equation) for a Newtonian fluid with constant 

density and viscosity 
(1) rectangular coordinates 

x:  𝜌 (
𝜕𝑣𝑥

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑥

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑥
+  𝜇 (

𝜕2𝑣𝑥

𝜕𝑥2 + 
𝜕2𝑣𝑥

𝜕𝑦2 +
𝜕2𝑣𝑥

𝜕𝑧2 ) +  𝜌 𝑔𝑥 

y:  𝜌 (
𝜕𝑣𝑦

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑦

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑦

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑦

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑦
+  𝜇 (

𝜕2𝑣𝑦

𝜕𝑥2 + 
𝜕2𝑣𝑦

𝜕𝑦2 +
𝜕2𝑣𝑦

𝜕𝑧2 ) +  𝜌 𝑔𝑦 

z:  𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑧

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑧

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑧
+  𝜇 (

𝜕2𝑣𝑧

𝜕𝑥2 + 
𝜕2𝑣𝑧

𝜕𝑦2 +
𝜕2𝑣𝑧

𝜕𝑧2 ) +  𝜌 𝑔𝑧 

(2) cylindrical coordinates 

r: 𝜌 (
𝜕𝑣𝑟

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝑟

𝜕𝜃
− 

𝑣𝜃
2

𝑟
+ 𝑣𝑧

𝜕𝑣𝑟

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑟
+  𝜇 [

𝜕 

𝜕𝑟
(
1

𝑟

𝜕 

𝜕𝑟
(𝑟𝑣𝑟)) + 

1

𝑟2

𝜕2𝑣𝑟

𝜕𝜃2 − 
2

𝑟2

𝜕𝑣𝜃

𝜕𝜃
+

𝜕2𝑣𝑟

𝜕𝑧2 ] +  𝜌 𝑔𝑟 

𝜌 (
𝜕𝑣𝜃

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝜃
+ 

𝑣𝑟𝑣𝜃

𝑟
+ 𝑣𝑧

𝜕𝑣𝜃

𝜕𝑧
) =  − 

1

𝑟
 
𝜕𝑝

𝜕𝜃
+  𝜇 [

𝜕 

𝜕𝑟
(
1

𝑟

𝜕 

𝜕𝑟
(𝑟𝑣𝜃)) + 

1

𝑟2

𝜕2𝑣𝜃

𝜕𝜃2 + 
2

𝑟2

𝜕𝑣𝑟

𝜕𝜃
+

𝜕2𝑣𝜃

𝜕𝑧2 ] +  𝜌 𝑔𝜃 

z:  𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑧
+  𝜇 [

1

𝑟

𝜕 

𝜕𝑟
(𝑟 

𝜕𝑣𝑧

𝜕𝑟
) + 

1

𝑟2

𝜕2𝑣𝑧

𝜕𝜃2 + 
𝜕2𝑣𝑧

𝜕𝑧2 ] +  𝜌 𝑔𝑧 
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5.2 Differential Balance of Energy (Equation of energy)
1)

  
 

 As aforementioned in macroscopic energy balance, the energy associated with mass consists of 

potential, kinetic and internal energies. In general, non-isothermal processes accompanied with fluid 

motion take place undergoing various work effects such as viscous dissipation, pressure work and 

gravitational work. At this stage, it is too difficult to derive a general form of energy equation. In 

this section, therefore, we shall develop the differential equation of thermal energy transfer written 

for incompressible fluid with constant physical properties. This equation is widely used in 

non-isothermal system with moderate change in temperature and velocity. 

 The following assumptions are made: 

(1) incompressible fluid with constant heat capacity and thermal conductivity 

(2) negligible kinetic- and potential-energy effects 

(3) negligible work done by static pressure force 

(4) negligible work done by viscous normal and shear forces 

(5) negligible work done by gravitational force 

(6) negligible radiative heat transfer 

 

 
Fig.5.2-1 Enthalpy balance for convective and conductive transport 
 
                                                                                              

 

 

 Let us apply the principle of energy conservation to the differential control volume ∆𝑥∆𝑦∆𝑧 

shown in Fig.5.2-1. The thermal energy can be written in a form of enthalpy 𝜌𝐶𝑝𝑇 for fluids 
having constant properties. 

 The accumulation rate of thermal energy is 
(𝜌𝐶𝑝𝑇)|𝑡+∆𝑡− (𝜌𝐶𝑝𝑇)|𝑡

∆𝑡
 ∆𝑥∆𝑦∆𝑧 (5.2-1) 

In general, thermal energy may be transferred into the control volume by convection and 

conduction (diffusion). 

(1) Convective transport: 

First let us consider the convective effect. The x-component of velocity 𝑣𝑥 brings in thermal 

energy 𝜌𝐶𝑝𝑇 across the face ∆𝑦∆𝑧 at a rate of (𝜌𝐶𝑝𝑇)|𝑥𝑣𝑥|𝑥∆𝑦∆𝑧. Similarly the rate of 

thermal energy brought out is (𝜌𝐶𝑝𝑇)|𝑥+∆𝑥𝑣𝑥|𝑥+∆𝑥∆𝑦∆𝑧. Therefore the net rate of thermal 
energy transferred across all six faces by convection becomes 

1. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, Wiley, New York, Chapt.10 (1960) 
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[(𝜌𝐶𝑝𝑇𝑣𝑥)|𝑥 − (𝜌𝐶𝑝𝑇𝑣𝑥)|𝑥+∆𝑥]∆𝑦∆𝑧 + [(𝜌𝐶𝑝𝑇𝑣𝑦)|𝑦 − (𝜌𝐶𝑝𝑇𝑣𝑦)|𝑦+∆𝑦
] ∆𝑧∆𝑥 + [(𝜌𝐶𝑝𝑇𝑣𝑧)|𝑧 −

 (𝜌𝐶𝑝𝑇𝑣𝑧)|𝑧+∆𝑧]∆𝑥∆𝑦 (5.2-2) 

(2) Conductive transport: 

Next let us consider the conductive effect. The rate of thermal energy entering the face ∆𝑦∆𝑧 

at 𝑥 by conduction is 𝑞𝑥|𝑥∆𝑦∆𝑧, and the rate of thermal energy leaving the face ∆𝑦∆𝑧 at 

𝑥 + ∆𝑥 is 𝑞𝑥|𝑥+∆𝑥∆𝑦∆𝑧. Note that 𝑞𝑥 is the heat flux through a face perpendicular to the 
x-axis. 

Therefore the net rate of thermal energy transferred across all six faces by conduction becomes 

[𝑞𝑥|𝑥 − 𝑞𝑥|𝑥+∆𝑥]∆𝑦∆𝑧 + [𝑞𝑦|𝑦 − 𝑞𝑦|𝑦+∆𝑦
] ∆𝑧∆𝑥 + [𝑞𝑧|𝑧 − 𝑞𝑧|𝑧+∆𝑧]∆𝑥∆𝑦   (5.2-3) 

After substituting all the foregoing contributions into the equation of energy conservation law, 

and dividing through the resulting equation by ∆𝑥∆𝑦∆𝑧 , if the limit is taken as 

∆𝑡, ∆𝑥, ∆𝑦, ∆𝑧 → 0, we get 
𝜕(𝜌𝐶𝑝𝑇)

𝜕𝑡
 =  − [

𝜕(𝜌𝐶𝑝𝑇𝑣𝑥)

𝜕𝑥
+

𝜕(𝜌𝐶𝑝𝑇𝑣𝑦)

𝜕𝑦
+ 

𝜕(𝜌𝐶𝑝𝑇𝑣𝑧)

𝜕𝑧
 ] −  (

𝜕𝑞𝑥

𝜕𝑥
+ 

𝜕𝑞𝑦

𝜕𝑦
+ 

𝜕𝑞𝑧

𝜕𝑧
) 

 

 (5.2-4) 

In vector symbolism 
𝜕(𝜌𝐶𝑝𝑇)

𝜕𝑡
+ (∇⃗⃗ ∙ 𝜌𝐶𝑝𝑇 �⃗⃗� ) + (∇⃗⃗ ∙ �⃗⃗� ) = 𝟎 (5.2-5) 

The vector equation is also valid for cylindrical coordinates.  

The above equation is rewritten for incompressible fluid with the aid of the equation of 

continuity and the Fourier’s law of conduction as 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑥

𝜕𝑇

𝜕𝑥
+ 𝑣𝑦

𝜕𝑇

𝜕𝑦
+ 𝑣𝑧

𝜕𝑇

𝜕𝑧
) =  𝜅 (

𝜕2𝑇

𝜕𝑥2
+ 

𝜕2𝑇

𝜕𝑦2
+ 

𝜕2𝑇

𝜕𝑧2
) (5.2-6) 

In vector symbolism 

𝜌𝐶𝑝 [
𝜕𝑇

𝜕𝑡
+ (�⃗⃗� ∙ �⃗⃗� )𝑻] =  𝜅 ∇2𝑇 (5.2-7) 

 

The vector equation is valid for all kinds of orthogonal coordinate systems. These equations 

are listed in Table 5.2-1, except for spherical coordinates. Note that since the rate of energy 

transfer depends on the fluid velocity, it is necessary to solve the hydrodynamic problem 

before the temperature distribution is calculated. 
 

Table 5.2-1 Equation of energy for a Newtonian fluid of constant 𝜌 and 𝜅 
(1) rectangular coordinates 

𝜌𝐶𝑝 (
𝜕𝑇
𝜕𝑡

+ 𝑣𝑥
𝜕𝑇
𝜕𝑥

+ 𝑣𝑦
𝜕𝑇
𝜕𝑦

+ 𝑣𝑧
𝜕𝑇
𝜕𝑧

)  =  𝜅 (
𝜕

2
𝑇

𝜕𝑥
2
+ 

𝜕
2
𝑇

𝜕𝑦
2
+ 

𝜕
2
𝑇

𝜕𝑧
2
) 

(2) cylindrical coordinates 

𝜌𝐶𝑝 (
𝜕𝑇
𝜕𝑡

+ 𝑣𝑟
𝜕𝑇
𝜕𝑟

+ 
𝑣휃

𝑟
𝜕𝑇
𝜕휃

+ 𝑣𝑧
𝜕𝑇
𝜕𝑧

)  =  𝜅 (
1
𝑟

𝜕 
𝜕𝑟

(𝑟 
𝜕𝑇
𝜕𝑟

) + 
1

𝑟2

𝜕
2
𝑇

𝜕휃
2
+ 

𝜕
2
𝑇

𝜕𝑧
2
) 

 
 

5.3 Differential Balances of Mass (Equations of mass transport)
1) 

 
 

 In this section, we shall develop the equation of mass A in a binary mixture A and B setting up the 

mass balance over the same differential control volume. For convenience, we use the following form 

of Fick’s law written in terms of mass concentration in place of molar concentration: 

𝑛𝐴𝑥 = 𝜔𝐴(𝑛𝐴𝑥 + 𝑛𝐵𝑥) −  𝜌 𝐷𝐴𝐵
𝜕𝜔𝐴

𝜕𝑥
 (5.3-1) 

where 𝜔𝐴 = 𝜌𝐴 𝜌 =⁄  mass fraction, 𝜌𝐴 = mass density of component A in kg of A/m3, 𝜌 = total 

mass density in kg of (A+B)/m3, and 𝑛𝐴𝑥 = x-component of mass flux of species A in kg of A/m2/s.  

 This equation indicates that the mass flux in a stationary coordinate system consists of both 

convection (first term) and diffusion (second term). 

Differential Balances of Mass                             43 



 The accumulation rate of species A is 
𝜌𝐴|𝑡+∆𝑡 − 𝜌𝐴|𝑡

∆𝑡
 ∆𝑥∆𝑦∆𝑧 

The net rate of species A input due to both convection and diffusion is 

− [
𝑛𝐴𝑥|𝑥+∆𝑥 − 𝑛𝐴𝑥|𝑥 

∆𝑥
+ 

𝑛𝐴𝑦|𝑦+∆𝑦
− 𝑛𝐴𝑦|𝑦 

∆𝑦
+ 

𝑛𝐴𝑧|𝑧+∆𝑧 − 𝑛𝐴𝑧|𝑧 

∆𝑧
]∆𝑥∆𝑦∆𝑧 

The rate of generation of mass A by chemical reaction is 
𝑟𝐴 ∆𝑥∆𝑦∆𝑧 

Summing up all the contributions divided by ∆𝑥∆𝑦∆𝑧 and taking the limit as ∆𝑡, ∆𝑥, ∆𝑦, ∆𝑧 → 0, 

we get 
𝜕𝜌𝐴

𝜕𝑡
= − (

𝜕𝑛𝐴𝑥

𝜕𝑥
+ 

𝜕𝑛𝐴𝑦

𝜕𝑦
+ 

𝜕𝑛𝐴𝑧

𝜕𝑧
) + 𝑟𝐴 (5.3-2) 

 This is a general form of the equation of continuity for species A. In vector symbolism 
𝜕𝜌𝐴

𝜕𝑡
= − ∇ ∙ 𝒏𝑨⃗⃗⃗⃗  ⃗ +  𝑟𝐴 (5.3-3) 

The mass flux vector for a binary mixture can be related with fluid velocity: 

�⃗� 𝐴 + �⃗� 𝐵 = 𝜌 �⃗⃗�  (5.3-4) 

We shall get more convenient form of the equation using the following form of Fick’s law. 

𝑛𝐴⃗⃗⃗⃗ =  𝜔𝐴(�⃗� 𝐴 + �⃗� 𝐵) −  𝜌 𝐷𝐴𝐵 ∇𝜔𝐴 = 𝜌𝐴�⃗⃗�  − 𝜌𝐷𝐴𝐵∇𝜔𝐴 (5.3-5) 

Substituting this expression into Eq.(5.3-3), we get 
𝜕𝜌𝐴

𝜕𝑡
=  − 𝜌𝐴(∇ ∙ �⃗⃗� ) − (�⃗⃗� ∙ ∇)𝜌𝐴 + 𝜌𝐷𝐴𝐵∇2𝜔𝐴 + 𝑟𝐴 

That is, in rectangular coordinates 
𝜕𝜌𝐴

𝜕𝑡
= − [

𝜕𝜌𝐴𝑣𝑥

𝜕𝑥
 + 

𝜕𝜌𝐴𝑣𝑦

𝜕𝑦
+ 

𝜕𝜌𝐴𝑣𝑧

𝜕𝑧
]  

+ [
𝜕 

𝜕𝑥
(𝜌𝐷𝐴𝐵

𝜕𝜔𝐴

𝜕𝑥
) + 

𝜕 

𝜕𝑦
(𝜌𝐷𝐴𝐵

𝜕𝜔𝐴

𝜕𝑦
) + 

𝜕 

𝜕𝑧
(𝜌𝐷𝐴𝐵

𝜕𝜔𝐴

𝜕𝑧
)] + 𝑟𝐴 

For a fluid with constant 𝜌 and 𝐷𝐴𝐵 this equation can be simplified as follows. 
𝜕𝜌𝐴

𝜕𝑡
+ 𝜌𝐴(∇ ∙ �⃗⃗� ) + (�⃗⃗� ∙ ∇)𝜌𝐴 = 𝐷𝐴𝐵∇2𝜌𝐴 + 𝑟𝐴 

According to the equation of continuity for constant 𝜌, (∇ ∙ �⃗⃗� ) = 0. Therefore 

 
𝜕𝜌𝐴

𝜕𝑡
+ (�⃗⃗� ∙ ∇)𝜌𝐴 = 𝐷𝐴𝐵∇2𝜌𝐴 + 𝑟𝐴 (5.3-6) 

Dividing through by molecular weight 𝑀𝐴, we get 
𝜕𝐶𝐴

𝜕𝑡
+ (�⃗⃗� ∙ ∇)𝐶𝐴 = 𝐷𝐴𝐵∇2𝐶𝐴 + 𝑅𝐴 (5.3-7) 

where 𝐶𝐴 = 𝜌𝐴 𝑀𝐴⁄  in kmol of A/m3 and 𝑅𝐴 = 𝑟𝐴 𝑀𝐴⁄  in kmol of A/m3/s. 

 This is the diffusion equation for dilute solution at constant temperature and pressure where we 

can assume constant density and diffusivity. The equation of continuity for species A written in 

terms of molar fluxes can be obtained dividing Eq.(5.3-2) by molecular weight 𝑀𝐴,: 
𝜕𝐶𝐴

𝜕𝑡
= − (

𝜕𝑁𝐴𝑥

𝜕𝑥
+ 

𝜕𝑁𝐴𝑦

𝜕𝑦
+ 

𝜕𝑁𝐴𝑧

𝜕𝑧
) + 𝑅𝐴 (5.3-8) 

or 
𝜕𝐶𝐴

𝜕𝑡
+ (∇ ∙ �⃗⃗� 𝐴) =  𝑅𝐴  

 

 

The following tables give the diffusion equations in orthogonal coordinate systems. 

 

 

Table 5.3 – 1  The equation of continuity of component A1)  

(1) rectangular coordinates (x, y, z) 
𝜕𝐶𝐴

𝜕𝑡
+ (

𝜕𝑁𝐴𝑥

𝜕𝑥
+ 

𝜕𝑁𝐴𝑦

𝜕𝑦
+ 

𝜕𝑁𝐴𝑧

𝜕𝑧
) =  𝑅𝐴   

(2) cylindrical coordinates (𝑟, 휃, 𝑧) 
𝜕𝐶𝐴

𝜕𝑡
+ [

1

𝑟
 
𝜕 

𝜕𝑟
 (𝑟 𝑁𝐴𝑟) + 

1

𝑟
 
𝜕𝑁𝐴𝜃

𝜕𝜃
+ 

𝜕2𝑁𝐴𝑧 

𝜕𝑧2
] =  𝑅𝐴   
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Table 5.3 – 2  The equation of diffusion for constant 𝜌 and 𝐷𝐴𝐵
1) 

(1) rectangular coordinates (x, y, z) 
𝜕𝐶𝐴

𝜕𝑡
+ 𝑣𝑥

𝜕𝐶𝐴

𝜕𝑥
+ 𝑣𝑦

𝜕𝐶𝐴

𝜕𝑦
+ 𝑣𝑧

𝜕𝐶𝐴

𝜕𝑧
 =  𝐷𝐴𝐵  (

𝜕2𝐶𝐴

𝜕𝑥2 + 
𝜕2𝐶𝐴

𝜕𝑦2 + 
𝜕2𝐶𝐴

𝜕𝑧2 ) + 𝑅𝐴  

 

(2) cylindrical coordinates (𝑟, 휃, 𝑧) 
𝜕𝐶𝐴

𝜕𝑡
+ 𝑣𝑟

𝜕𝑇

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝐶𝐴

𝜕𝜃
+ 𝑣𝑧

𝜕𝐶𝐴

𝜕𝑧
 =  𝐷𝐴𝐵  (

1

𝑟

𝜕 

𝜕𝑟
(𝑟 

𝜕𝐶𝐴

𝜕𝑟
) + 

1

𝑟2

𝜕2𝐶𝐴

𝜕𝜃2 + 
𝜕2𝐶𝐴

𝜕𝑧2 ) + 𝑅𝐴  

 

                                                                             
1. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, Wiley, New York, Chapt.18 (1960) 

 
 
 
Nomenclature 
  

𝐶𝑝 heat capacity, [J/kg K]   

𝑔 gravitational acceleration, [m/s2] 

𝑁𝐴𝑥, 𝑁𝐴𝑦 , 𝑁𝑛𝐴𝑧  molar flux in rectangular coordinates, [kmol/m2s] 

𝑛𝐴𝑥, 𝑛𝐴𝑦, 𝑛𝐴𝑧  mass flux in rectangular coordinates, [kg/m2s] 

𝑝 pressure, [Pa] 

𝑞𝑟, 𝑞𝜃 , 𝑞𝑧 heat flux in cylindrical coordinates, [J/m2s] 

𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧 heat flux in rectangular coordinates, [J/m2s] 

𝑟𝐴, 𝑅𝐴 reaction rate, [kg/m3s], [kmol/m3s] 

𝑟, 휃, 𝑧 cylindrical coordinates, [m, - , m] 

𝑇 temperature, [K] 

𝑡 time, [s] 

𝑣𝑟 , 𝑣𝜃 , 𝑣𝑧 velocity component in cylindrical coordinates 

𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  velocity component in rectangular coordinates, [m/s] 

𝑥, 𝑦, 𝑧,  rectangular coordinates, [m] 

𝜇 viscosity, [kg/m s] 

𝜌 density, [kg/m3] 

𝜏𝑤 wall shear stress, [N/m2] 

𝜏𝑥𝑥, 𝜏𝑦𝑥, 𝜏𝑧𝑥 , − − momentum flux or shear stress, [N/m2] or [kg/s2m] 
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CHAPTER 6 
 

APPLICATION OF DIFFERENTIAL TRANSPORT 
EQUATIONS 

 
 

6.1  Application of the Equation of Motion (Ⅰ) 
 

In this section, we shall study how to use the differential equation of fluid motion. 

One of the most useful velocity profiles is for flow in a circular pipe. 

 
 

Fig.6.1-1 Flow development in the entrance region of a circular pipe 
 

Generally speaking, it takes a certain length 𝐿𝑒𝑛𝑡 from the entrance until the velocity profile 

becomes fully developed. At the entrance to the pipe as shown in Fig.6.1-1, the velocity profile is 

almost uniform like a plug owing to the sudden contraction of flow area. As the fluid moves down 

the pipe, a boundary layer of low-velocity fluid grows by deceleration due to the viscous force on 

the wall surface. After the edge of the boundary layer coincides with the pipe axis, the downstream 

velocity profile no longer varies with axial length 𝑧. We shall speak of the fully developed velocity 
profile as the fixed velocity distribution in the fully developed region. When the Reynolds number 

𝑅𝑒 is less than 2,100, the flow remains laminar and the fully-developed velocity profile is parabolic. 

Let us consider the laminar incompressible flow inside an inclined pipe of length 𝐿 and radius 𝑅. 

The pressure drop over the length 𝐿 is given by (𝑝0 − 𝑝𝐿). 
What coordinate system is the most appropriate for this flow system? The cylindrical coordinates are the most 

convenient to describe positions in a pipe. 

(1) What component of momentum (or the equation of motion) should be considered? We can 

assume only z-momentum to be important in laminar flow.  

Therefore z-component of the equation of motion for constant 𝜌 and 𝜇 may be written 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑧
+  𝜇 [

1

𝑟

𝜕 

𝜕𝑟
(𝑟 

𝜕𝑣𝑧

𝜕𝑟
) + 

1

𝑟2

𝜕2𝑣𝑧

𝜕𝜃2 + 
𝜕2𝑣𝑧

𝜕𝑧2
] +  𝜌 𝑔𝑧        

  (6.1-1) 

 



 
Fig.6.1-2  Laminar flow in a fully-developed region of circular pipe 
 

(2) The next step is simplification of the above equation to fit the problem at hand. We 

can easily imagine that in steady state laminar flow the fluid particles move along 

straight streamlines parallel to the pipe axis. Therefore 
𝜕𝑣𝑧

𝜕𝑡
= 0 and 𝑣𝜃 = 𝑣𝑟 = 0. 

The flow can be assumed axisymmetric, i.e. 
𝜕𝑣𝑧

𝜕𝜃
=  

𝜕2𝑣𝑧 

𝜕𝜃2 = 0 

The flow is fully developed: 
𝜕𝑣𝑧

𝜕𝑧
= 

𝜕2𝑣𝑧

𝜕𝑧2 = 0 

Therefore we can expect 𝑣𝑧 to be a function of 𝑟 only: 
𝜕 

𝜕𝑟
(𝑟 

𝜕𝑣𝑧

𝜕𝑟
) =

𝑑 

𝑑𝑟
(𝑟 

𝑑𝑣𝑧

𝑑𝑟
)  

This type of internal flow is caused by the combined effect of pressure and 

gravitational forces. We assume the static pressure to be uniform over the pipe cross 

section: 𝑝 = 𝑝(𝑧). 
The z-component of the gravitational acceleration is given by 𝑔𝑧 = 𝑔 cos 𝛽. 

Then the equation of motion becomes 

0 =  − 
𝑑𝑝

𝑑𝑧
+  𝜇 

1

𝑟
 
𝑑 

𝑑𝑟
 (𝑟 

𝑑𝑣𝑧

𝑑𝑟
) +  𝜌 𝑔 cos 𝛽 (6.1-2) 

 

Differentiate with respect to 𝑧, we get 
𝑑2𝑝

𝑑𝑧2 = 0. 

If we integrate with respect to 𝑧, we can find 
𝑑𝑝

𝑑𝑧
= 𝑐𝑜𝑛𝑠𝑡. Thus 

𝑑𝑝

𝑑𝑧
=  

𝑝𝐿− 𝑝0

𝐿
 

We get the second-order ordinary differential equation for 𝑣𝑧: 

𝜇 
1

𝑟
 
𝑑 

𝑑𝑟
 (𝑟 

𝑑𝑣𝑧

𝑑𝑟
) =  − 

𝑝0− 𝑝𝐿

𝐿
−  𝜌 𝑔 cos 𝛽 =  − 

𝑷𝟎− 𝑷𝑳

𝐿
 (6.1-3) 

 

Here the effective pressure 𝑷 is defined as 𝑷 = 𝑝 −  𝜌 𝑔 𝑧 𝑐𝑜𝑠 𝛽. If the reference plane at 

𝑧 = 0 is chosen at the position 1: 𝑷𝟎 = 𝑝0 and 𝑷𝐿 = 𝑝𝐿 −  𝜌 𝑔 𝐿 𝑐𝑜𝑠 𝛽. 

(3) Integration of the above differential equation gives 
𝑑𝑣𝑧

𝑑𝑟
= − 

𝑷𝟎− 𝑷𝑳

2𝜇𝐿
 𝑟 + 

𝐶1

𝑟
 (6.1-4) 

 

We can use the boundary condition at the pipe axis to evaluate the integration constant 𝐶1: 

B.C.1  at 𝑟 = 0   
𝑑𝑣𝑧

𝑑𝑟
= 0 (6.1-5) 

(This boundary condition states that the velocity profile becomes flat at the center of the pipe.) 
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Then  𝐶1 must be zero. Integration gives  

𝑣𝑧 = −  
𝑷𝟎− 𝑷𝑳

4𝜇𝐿
 𝑟2 + 𝐶2 (6.1-6) 

 

The other boundary condition is 

B.C.2  at 𝑟 = 𝑅   𝑣𝑧 = 0 (6.1-7) 
(This boundary condition states that the fluid does not slip on the wall surface.) 

Then 𝐶2 must be  

𝐶2 =  
𝑷𝟎− 𝑷𝑳

4𝜇𝐿
 𝑅2 (6.1-8) 

  
Substituting this expression into E.(6.1-6), we get the following equation of parabolic velocity 

distribution: 

𝑣𝑧 = 
𝑷𝟎− 𝑷𝑳

4𝜇𝐿
 𝑅2 [1 − (

𝑟

𝑅
)
2

] (6.1-9) 

 

This equation indicates that the maximum velocity occurs at the center of the pipe: 

𝑣𝑧,𝑚𝑎𝑥 =
𝑷𝟎− 𝑷𝑳

4𝜇𝐿
 𝑅2 (6.1-10) 

 
Fig. 6.1-3.  Parabolic distribution of velocity and linear distribution of shear stress in a laminar 
pipe flow 

 

(4) In general, the average velocity taken over the flow cross section is defined as the 

area-averaged value: 〈𝑣〉 =  
∫ 𝑣 𝑑𝐴
𝐴

∫ 𝑑𝐴
𝐴

.  For axisymmetric flow in a circular pipe, 

substituting the velocity distribution function into the integration, we get 

〈𝑣𝑧〉 =  
∫ 𝑣𝑧 2𝜋𝑟 𝑑𝑟
𝑅
0

∫ 2𝜋𝑟 𝑑𝑟
𝑅
0

=
𝑷𝟎− 𝑷𝑳

8𝜇𝐿
 𝑅2 (6.1-11) 

 

Note that the average velocity for laminar flow is just half of the maximum velocity. 

(5) The volumetric flow rate can be calculated  

𝑄 = ∫ 𝑣𝑧 2𝜋𝑟 𝑑𝑟
𝑅

0
= 

𝜋(𝑷𝟎− 𝑷𝑳)

8𝜇𝐿
 𝑅4 (6.1-12) 

 

This equation is known as the Hagen-Poiseuille equation which gives the relation 

between the volumetric flow rate and the effective pressure drop. If we express the 

equation in terms of the average velocity or the Reynolds number 
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𝑷𝟎 − 𝑷𝑳 = 8𝜇𝐿 〈𝑣𝑧〉 𝑅2⁄  or 𝑷𝟎 − 𝑷𝑳 = 4 
16

𝑅𝑒
 
𝐿

𝐷
 
1

2
 𝜌〈𝑣𝑧〉

2 (6.1-13) 

This result gives a very important designing formula predicting the pressure drop 

in a laminar pipe flow. 

(6) The shear stress distribution 𝜏𝑟𝑧 may now be obtained with the aid of Newton’s law 

of viscosity: 

𝜏𝑟𝑧 = − 𝜇 (
𝜕𝑣𝑧

𝜕𝑟
+ 

𝜕𝑣𝑟

𝜕𝑧
) 

In this case 𝑣𝑟 = 0 and 𝑣𝑧 = 𝑣𝑧(𝑟). Therefore  

𝜏𝑟𝑧 = − 𝜇 
𝑑𝑣𝑧

𝑑𝑟
 

Substitute the velocity distribution into the differentiation and get 

𝜏𝑟𝑧 = 
𝑷𝟎− 𝑷𝑳

2𝐿
 𝑟 (6.1-14) 

Notice that the shear stress (the momentum flux) has the linear distribution and 

the maximum value occurs at the wall of the pipe. 

𝜏𝑟𝑧,𝑚𝑎𝑥 = 𝜏𝑤 =  
𝑷𝟎− 𝑷𝑳

2𝐿
𝑅 

 (6.1-15) 

(7) For circular pipe flow, we very frequently use the following definition of friction 

factor called the Fanning friction factor: 

   𝑃0 − 𝑃𝐿 = 4 𝑓 
𝐿

𝐷
 
1

2
 𝜌〈𝑣𝑧〉

2 (6.1-16) 

   The left side term is usually considered to be static pressure drop without the 

gravitational effect. 

   Eq.(6.1-13) indicates that for laminar flow inside a circular pipe the friction factor is 

given by 

   𝑓 =  
16

𝑅𝑒
  (6.1-17) 

 

[PROBLEM 6.1-P1]  A viscous Newtonian fluid (density 𝜌 = 1,050  𝑘𝑔 𝑚3,⁄  viscosity𝜇 =
1.0 𝑝𝑜𝑖𝑠𝑒 = 0.10 𝑘𝑔 𝑚 𝑠⁄ ) is transported through a horizontal 30-mm-ID circular pipe from a 
storage tank to an agitated tank reactor shown below. The volumetric flow rate is 

2 × 10−4  𝑚3 𝑠⁄ .  The effective length of the pipeline including the contribution from both ends 

and a valve is 50 m. Determine the pressure drop between both ends of the pipeline. Calculate the 

power of the pump.  
 

 
 
Fig.6.1-P1 Design of feed-supplying pipeline for an agitated tank reactor  

 

 

6.2 Application of the Equation of Motion (Ⅱ) 
 

In this section, using the equation of motion in cylindrical coordinate system, we shall consider 

shear flow of an incompressible Newtonian fluid in an annulus between two coaxial vertical long 
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cylinders, the outer one of which is rotating with a constant angular velocity 𝜔. In steady state 
there exists stable rotating flow. 

Let us determine the velocity distribution neglecting end effects.  

The 휃-component equation of motion is the most appropriate for this problem: 

𝜌 (
𝜕𝑣𝜃

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝜃
+ 

𝑣𝑟𝑣𝜃

𝑟
+ 𝑣𝑧

𝜕𝑣𝜃

𝜕𝑧
) =  − 

1

𝑟
 
𝜕𝑝

𝜕𝜃


                                + 𝜇 [
𝜕 

𝜕𝑟
(
1

𝑟

𝜕 

𝜕𝑟
(𝑟𝑣𝜃)) + 

1

𝑟2

𝜕2𝑣𝜃

𝜕𝜃2 + 
2

𝑟2

𝜕𝑣𝑟

𝜕𝜃
+

𝜕2𝑣𝜃

𝜕𝑧2
] +  𝜌 𝑔𝜃 (6.2-1) 

All streamlines will form circles coaxial about the axis of rotation. Then the velocity 

components 𝑣𝑟 and 𝑣𝑧 are zero and the peripheral velocity 𝑣𝜃 is a function of 𝑟 alone 

because of axi-symmetry. Since these cylinders are placed vertically, 𝑔𝜃 = 0. 
 

 
 

Fig.6.2-1  Laminar shear flow in an annular space between two concentric cylinders when the 
outer cylinder is rotating. 
 

The 휃-component equation of motion then reduces to a second-order ordinary differential equation 

for 𝑣𝜃: 

0 =  
𝑑 

𝑑𝑟
 (

1

𝑟
 
𝑑 

𝑑𝑟
 (𝑟 𝑣𝜃)) (6.2-2) 

Integration with respect to 𝑟 twice gives 

𝑣𝜃 =  
𝐶1

2
 𝑟 + 

𝐶2

𝑟
 (6.2-3) 

We now have two integration constants to be evaluated by two boundary conditions: 

B.C.1  at 𝑟 =  𝑅𝑖  𝑣𝜃 = 0 

B.C.2  at 𝑟 =  𝑅𝑜 𝑣𝜃 = 𝑅𝑜𝜔 

We obtain 
𝐶1

2
= 

𝑅𝑖𝜔

𝑅𝑜−(𝑅𝑖
2 𝑅𝑜⁄ )

=  
𝑅𝑜

2

𝑅𝑜
2− 𝑅𝑖

2  𝜔  

𝐶2 = − 
𝑅𝑖𝜔

(1 𝑅𝑖)−(𝑅𝑖 𝑅𝑜
2)⁄⁄

= − 
𝑅𝑖

2𝑅𝑜
2

𝑅𝑜
2− 𝑅𝑖

2  𝜔  

 Then we get the hyperbolic velocity distribution: 

𝑣𝜃 =  
𝑅𝑖𝑅𝑜

𝑅𝑜
2− 𝑅𝑖

2  𝑅𝑜𝜔 [
𝑟

𝑅𝑖
− 

𝑅𝑖

𝑟
] (6.2-4) 

According to Newton’s law of viscosity, the shear stress 𝜏𝑟𝜃 can be written as 

𝜏𝑟𝜃 = − μ [𝑟 
𝜕 

𝜕𝑟
(
𝑣𝜃

𝑟
) + 

1

𝑟
 
𝜕𝑣𝑟

𝜕𝜃
] (6.2-5) 

In this flow system 

𝜏𝑟𝜃 = − μ 𝑟
𝑑 

𝑑𝑟
(
𝑣𝜃

𝑟
) (6.2-6) 

Substituting the velocity distribution we get 

𝜏𝑟𝜃 = −2𝜇𝜔  
𝑅𝑖

2𝑅𝑜
2

𝑅𝑜
2− 𝑅𝑖

2  
1

𝑟2 (6.2-7) 

50                         Application of Differential Transport Equations 



This equation indicates that 𝜏𝑟𝜃  is always negative, and that the 휃 -component of 

momentum transfers in the negative r-direction (inwards).  

We may need information about the torque required to turn the shaft of the outer cylinder. Recall 

that a torque �⃗⃗�  is a moment, that is, a vector product of force 𝐅   and lever arm 𝐫  from the center 

of rotation. In this system, the lever arm is the radius of the outer cylinder and the force is the shear 

force acting on the inner surface of the outer cylinder: 

𝑇𝑞 =  |�⃗⃗� |   = (2𝜋𝑅𝑜𝐿)(−𝜏𝑟𝜃)|𝑟=𝑅𝑜
∙ 𝑅𝑜 =  4𝜋𝜇𝐿𝑅𝑜

2𝜔2  
𝑅𝑖

2

𝑅𝑜
2− 𝑅𝑖

2   

= 8𝜋2𝜇𝐿𝑅𝑜
2𝑁𝑟  

𝑅𝑖
2

𝑅𝑜
2− 𝑅𝑖

2 (6.2-8) 

This result implies that the torque is proportional to the number of rotation 𝑁𝑟 (1/s) and the 
constant of proportionality is the viscosity of the fluid. This is a principle of Couette-Hatschek 

viscometers. 

 Laminar flow in this system is strongly stabilized by centrifugal forces. Thus a fluid particle near 

the outer cylinder opposes being moved inwards since the centrifugal force acting on it is greater 

than on particle nearer the inner cylinder. As a result, the flow can remain laminar up to very high 

Reynolds number. 

 
 
Fig.6.2-2. Pairs of cellular vortices between two concentric cylinders when the inner cylinder is 

rotating. 
 

On the other hand, it might be very interesting to consider the corresponding flow system in which 

the inner cylinder is rotating and the outer one is at rest. The fluid velocity increases with 

decreasing the radial distance. Hence the centrifugal forces tend to introduce instability. 

 We use a modified Reynolds number for the system: 

𝑇𝑎 =  
𝜌𝑅𝑖𝜔𝑖𝑑

𝜇
 √

𝑑

𝑅𝑖
 (6.2-9) 

 

This dimensionless parameter is sometimes called Taylor number in honor of the pioneer
1)

 in fluid 

mechanics of this system.  The curvature effect (centrifugal effect) can be taken into account 

introducing √𝑑 𝑅𝑖⁄ . When the Taylor number exceeds a certain critical value (i.e. 𝑇𝑎𝑐𝑟 = 41.2 for 

very small gap between two coaxial cylinders), there appear ring doughnut-shaped counter-rotating 

cellular vortices arrayed axially in the annular space due to the centrifugal force. The critical Taylor 

number for the onset of the cellular vortex flow depends slightly on the geometry 𝑑 𝑅𝑖⁄ . For 

example, 𝑇𝑎𝑐𝑟 = 51.4  for 𝑑 𝑅𝑖⁄ =  1 3⁄ . This vortex flow is not turbulent, but an elaborate 
laminar flow with toroidal motion. After successive transitions, the purely turbulent flow can be 
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attained at a high Taylor number. (e.g. 𝑇𝑎 > 𝑎𝑏𝑜𝑢𝑡 15,000 for relatively large gaps 𝑑 𝑅𝑖⁄ =  0.62 

to 1.14).  

This flow system has a very interesting instability scenario
2)

 with increasing Taylor number, 

beginning from the Taylor instability (laminar Taylor vortex flow) via. two sequential wave 

instabilities (wavy vortex flow, and amplitude-modulated wavy vortex flow) to the final transition 

to chaotic turbulent flow. Local time-dependent mass transfer controlled by the axial array of 

cellular vortices was observed on the inner wall of the stationary outer cylinder
2, 3) 

by using a 

diffusion-controlled electrolytic reaction. (see Chapter 14) 
                                                                             
1. 

2. 

 

3. 

 

 

6.3 Application of the Equation of Motion (Ⅲ)  

for non-Newtonian Fluid 
 

  We read in section 2.5 that there are some particular fluids which cannot be 

described by Newton’s law of viscosity. For reference, we shall study the Bingham 

plastic fluid flow in a horizontal circular pipe. 

The pressure drop over the length 𝐿 is given by (𝑝0 − 𝑝𝐿) 𝐿⁄ . 

In cylindrical coordinates, a simplified equation of the Bingham model is given by 

𝜏𝑟𝑧 = − 𝜇0  
𝑑𝑣𝑧

𝑑𝑟
+ 𝜏0  if 𝜏𝑟𝑧 >  𝜏0        (6.3-1a) 

𝑑𝑣𝑧

𝑑𝑟
= 0    if 𝜏𝑟𝑧 <  𝜏0        (6.3-1b) 

In general, the z-component equation of motion (for a horizontal pipe flow 𝑔𝑧 = 0) 

becomes in cylindrical coordinate system as follows: 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑧
− (

1

𝑟
 
𝜕 

𝜕𝑟
 (𝑟 𝜏𝑟𝑧) + 

1

𝑟
 
𝜕𝜏𝜃𝑧

𝜕𝜃
+ 

𝜕𝜏𝑧𝑧

𝜕𝑧
)    (6.3-2) 

As in section 6.1, assuming incompressible laminar flow with 𝑣𝜃 = 𝑣𝑟 = 0 , the 

equation of motion is simplified as 

 
1

𝑟
 
𝑑 

𝑑𝑟
 (𝑟 𝜏𝑟𝑧) =  

𝑝0− 𝑝𝐿

𝐿
            (6.3-3) 

Integration with respect to 𝑟 gives 

𝜏𝑟𝑧 = 
𝑝0− 𝑝𝐿

2𝐿
 𝑟 + 

𝐶1

𝑟
            (6.3-4) 

The shear stress can be expressed as 

𝜏𝑟𝑧 = − 𝜇0  
𝑑𝑣𝑧

𝑑𝑟
+ 𝜏0 = 

𝑝0 − 𝑝𝐿

2𝐿
 𝑟 + 

𝐶1

𝑟
  

B.C.1 𝜏𝑟𝑧 = 𝜏0  at 𝑟 =  𝑟0 

Therefore we can evaluate the integration constant as 

𝐶1 = 𝑟0𝜏0 − 
𝑝0− 𝑝𝐿

2𝐿
𝑟0

2  

In other words, this implies that the velocity gradient becomes zero at 𝑟 =  𝑟0.  

 

Then the following equation is obtained: 
𝑑𝑣𝑧

𝑑𝑟
=  −  

𝑝0 − 𝑝𝐿

2𝜇0𝐿
 𝑟 + 

𝜏0

𝜇0
− 

𝐶1

𝜇0
 
1

𝑟
 

 

Integration gives 

𝑣𝑧 = −  
𝑝0− 𝑝𝐿

2𝜇0𝐿

𝑟2

2
+ 

𝜏0

𝜇0
−

𝐶1

𝜇0
ln 𝑟 + 𝐶2   (6.3-5) 

Taylor, G.I., Phil. Trans., A223, 289m (1923), Proc. Roy. Soc. (London), A151, 494 (1935)0 

Kataoka, K., “Taylor vortices and instabilities in circular Couette flows,” Encyclopedia of Fluid Mechanics, Gulf Pub., Houston, 

ed. by N. P. Cheremisinoff, Chap. 9, pp.236 – 274 (1986) 
Kataoka, K., Doi, H., and Komai, T., Int. J. Heat Mass Transfer, 20, 50 (1977) 
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We have to solve the above ordinary differential equation by using the following 

boundary conditions: 

B.C.2   at 𝑟 = 𝑅   𝑣𝑧 = 0         (no slip condition) (6.3-6) 

Therefore  

𝐶2 =
𝑝0− 𝑝𝐿

2𝜇0𝐿

𝑅2

2
+ 

𝜏0

𝜇0
−

𝐶1

𝜇0
ln 𝑅  (6.3-7) 

Finally the velocity distribution can be expressed as 

𝑣𝑧 = −  
𝑝0− 𝑝𝐿

2𝜇0𝐿

𝑟2

2
+ 

𝜏0

𝜇0
−

𝐶1

𝜇0
ln 𝑟 + 𝐶2                 𝑟0 < 𝑟 < 𝑅    (6.3-8) 

𝑣𝑧 = −  
𝑝0− 𝑝𝐿

2𝜇0𝐿

𝑟0
2

2
+ 

𝜏0

𝜇0
−

𝐶1

𝜇0
ln 𝑟0 + 𝐶2 = 𝑐𝑜𝑛𝑠𝑡          0 < 𝑟 < 𝑟0 (6.3-9) 

where 𝐶1 = 𝑟0𝜏0 − 
𝑝0− 𝑝𝐿

2𝐿
𝑟0

2  𝐶2 =
𝑝0− 𝑝𝐿

2𝜇0𝐿

𝑅2

2
+ 

𝜏0

𝜇0
−

𝐶1

𝜇0
ln 𝑅 

The radius 𝑟0 indicates the position where shear stress becomes the threshold value 

𝜏0.  

 

 
 
Fig.6.3-1 Flow of a Bingham plastic fluid in a circular pipe 

 

As can be seen in Fig.6.3-1, the fluid flows like a Newtonian fluid in the vicinity of the 

pipe wall 𝑟0 < 𝑟 < 𝑅  but like a plug with uniform velocity in the central region 

0 < 𝑟 < 𝑟0. 
 

 

6.4 Application of the Equation of Motion (Ⅳ)  

for non-Newtonian Fluid 
 

As in Eq.(2.5-3) of section2.5, we should also take an interest in “power law model, 

which is sometimes called the Ostwald-de Waele Model.  

Some expressions of the power law are 

𝜏𝑦𝑥 = −𝑚 |
𝑑𝑣𝑥

𝑑𝑦
|
𝑛−1 𝑑𝑣𝑥

𝑑𝑦
 (6.4-1) 

𝜏𝑟𝑧 = −𝑚 |
𝑑𝑣𝑧

𝑑𝑟
|
𝑛−1 𝑑𝑣𝑧

𝑑𝑟
 (6.4-2) 

𝜏𝑟𝜃 = −𝑚 |𝑟 
𝑑 

𝑑𝑟
 (

𝑣𝜃

𝑟
)|

𝑛−1

𝑟 
𝑑 

𝑑𝑟
 (

𝑣𝜃

𝑟
) (6.4-3) 

The first equation can be used for flow inside rectangular channels, boundary layer 

flow along a flat plate, film flow along a solid wall, and so on. The second equation can 

be used for flow inside circular tubes and flow between concentric circular cylinders 

(the so-called annular flow). The third equation is for rotating flow such as tangential 

flow in annular space between two concentric rotating cylinders. 

For 𝑛 = 1, the power law model reduces to Newton’s law of viscosity with m =  μ. 
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[EXAMPLE 6.4-E1]  Consider laminar flow of non-Newtonian fluid inside a horizontal circular 
pipe. 

The power law model for this case should be of the form: 

𝜏𝑟𝑧 =  𝑚 (− 
𝑑𝑣𝑧

𝑑𝑟
)
𝑛

 (6.4-E1) 

The Navier-Stokes equation to be solved is Eq.(6.3-2): 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕휃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑧
− (

1

𝑟
 
𝜕 

𝜕𝑟
 (𝑟 𝜏𝑟𝑧) + 

1

𝑟
 
𝜕𝜏𝜃𝑧

𝜕휃
+ 

𝜕𝜏𝑧𝑧

𝜕𝑧
) 

For steady state 𝜕𝑣𝑧 𝜕𝑡⁄ = 0,   For axisymmetric flow  𝜕𝑣𝑧/ ∂θ = 0 and  𝜕𝜏𝜃𝑧 ∂θ = 0⁄ . 

In the fully-developed flow region  𝜕𝑣𝑧/ ∂z = 0 and  𝜕𝜏𝑧𝑧 ∂z = 0⁄ . 

Since all streamlines are parallel to the tube wall, 𝑣𝑟 = 0 

Then the equation becomes 
1

𝑟
 
𝜕 

𝜕𝑟
(𝑟 𝜏𝑟𝑧) =  − 

𝜕𝑝

𝜕𝑧
 (6.4-E2) 

For a horizontal tube flow 

− 
𝜕𝑝

𝜕𝑧
= 

𝑝0− 𝑝𝐿

𝐿
 (6.4-E3) 

Then the equation becomes an ordinary differential equation: 
1

𝑟
 
𝑑 

𝑑𝑟
(𝑟 𝜏𝑟𝑧) =  

𝑝0− 𝑝𝐿

𝐿
 (6.4-E4) 

Integration with respect to 𝑧 gives 

𝜏𝑟𝑧 = 
𝑝0− 𝑝𝐿

2𝐿
 𝑟 + 

𝐶1

𝑟
 (6.4-E5) 

Since 𝜏𝑟𝑧 does not become infinite at the tube axis, 𝐶1 must be zero. Then 

 𝜏𝑟𝑧 =  
𝑝0− 𝑝𝐿

2𝐿
 𝑟 (6.4-E6) 

  Note that the linear distribution of shear stress is the same in form as Eq.(6.1-14) 

for Newtonian fluid flow.  

If the power law model can be used for  𝜏𝑟𝑧, the above equation becomes 

𝑚 (− 
𝑑 𝑣𝑧

𝑑𝑟
)
𝑛

= 
𝑝0− 𝑝𝐿

2𝐿
 𝑟  or 

− 
𝑑 𝑣𝑧

𝑑𝑟
= (

𝑝0− 𝑝𝐿

2 𝑚𝐿
)
1 𝑛⁄

𝑟1 𝑛⁄  (6.4-E7) 

Integration gives 

𝑣𝑧 = − (
𝑝0 − 𝑝𝐿

2 𝑚𝐿
)
1 𝑛⁄ 𝑛

1 +  𝑛
 𝑟1+𝑛 𝑛⁄ + 𝐶2 

At 𝑟 = 𝑅, 𝑣𝑧 = 0. Therefore 

𝐶2 = (
𝑝0 − 𝑝𝐿

2 𝑚𝐿
)
1 𝑛⁄ 𝑛

1 +  𝑛
 𝑅1+𝑛 𝑛⁄  

Then the laminar velocity distribution is 

𝑣𝑧 = (
𝑝0− 𝑝𝐿

2 𝑚𝐿
)
1 𝑛⁄

𝑛

1+ 𝑛
 𝑅1+𝑛 𝑛⁄ [1 − (

𝑟

𝑅
)
1+𝑛 𝑛⁄

] (6.4-E8) 

For 𝑛 = 1, it reduces to the parabolic velocity distribution for Newtonian fluid flow. 

 

 
[PROBLEM 6.4-P1]  An incompressible fluid of density 𝜌 and viscosity 𝜇 is in laminar flow 

in a rectangular horizontal channel of width 𝑊 and height 2 𝐻, as shown. The static pressure 

decreases at a rate of (𝑝0 − 𝑝𝐿) 𝐿⁄ . 
Obtain the expression for the velocity distribution in the fully developed region. What is the ratio 

of average to maximum velocity 〈𝑣𝑧〉 𝑣𝑚𝑎𝑥⁄ ?  What is the shear stress acting on the upper wall? 

Obtain the expression of volumetric flow rate. 
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Fig.6.4-P1 Laminar flow in a rectangular channel 

 

 

[PROBLEM 6.4-P2]  A Newtonian fluid with constant 𝜌 and 𝜇 is in laminar liquid 

film flowing downward on the inside wall of a vertical, long circular tube shown below. 

The radius of the tube is 𝑅 and the film thickness is 𝛿 in the fully-developed region.  

Obtain the following steady velocity distribution in the fully-developed region: 

𝑣𝑧 = 
𝜌𝑔 𝑅2

4 𝜇
 [(1 − (

𝑟

𝑅
)
2

+ 2(1 − 
𝛿

𝑅
)
2

ln (
𝑟

𝑅
)] (6.4-P1) 

What is the Reynolds number? 

 

 
 
Fig.6.4-P2. Liquid film stream falling along inside a tube wall 

 

 

[PROBLEM 6.4-P3]  We are now in a process to design an oil line shown below. Crude 

oil at 15℃  is to be pumped through a horizontal 80 𝑚𝑚  ID smooth pipe at a 

volumetric flow rate 1 × 10−2 𝑚3 𝑠⁄ . The viscosity and density of the crude oil at 15℃ 

are 8 × 10−2  𝑘𝑔 𝑚 𝑠 ⁄ and 880 𝑘𝑔 𝑚3⁄ , respectively. If pumps with 4 ×  105 𝑃𝑎 

pressure rise are used, how far apart can they be located?  

Calculate the power of pumps, assuming that the pumps operate at an efficiency of 

100 percent. Neglect the contribution from fittings and valves to the total pressure 

drop. 
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Fig.6.4-P3 Oil line to be designed and its pressure change 

 

 

6.5 Application of the Equation of Energy (Ⅰ) 
 

 Let us consider the heat transfer problem in laminar flow inside a pipe. We assume 

constant physical properties and negligibly small viscous dissipation. The equation of 

energy written in the cylindrical coordinate system can be employed:  

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑟

𝜕𝑇

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑣𝑧

𝜕𝑇

𝜕𝑧
)  =  𝜅 (

1

𝑟

𝜕 

𝜕𝑟
(𝑟 

𝜕𝑇

𝜕𝑟
) + 

1

𝑟2

𝜕2𝑇

𝜕𝜃2 + 
𝜕2𝑇

𝜕𝑧2) (6.5-1) 

(1)  In general, this equation cannot independently solved without information of the 

velocity distribution. Let us restrict the problem to the fully-developed laminar flow 

at steady state. 

Therefore we start by noting that 𝑣𝑟 = 𝑣𝜃 = 0  and 𝜕𝑇 𝜕𝑡⁄ = 0. 

We assume axisymmetric heat transfer i.e. 𝜕𝑇 𝜕휃⁄ = 𝜕2𝑇 𝜕휃2 = ⁄ 0. 

  Then the above equation becomes 

𝜌𝐶𝑝 𝑣𝑧  
𝜕𝑇

𝜕𝑧
=  𝜅 [

1

𝑟
 
𝜕 

𝜕𝑟
(𝑟 

𝜕𝑇

𝜕𝑟
) + 

𝜕2𝑇

𝜕𝑧2
] (6.5-2) 

Usually the axial conduction (the term containing 𝜕2𝑇 𝜕𝑧2 ⁄ can be neglected relative 

to radial conduction (the first term on the right side of Eq.(6.5-2)).  

We finally obtain 
1

𝑟
 
𝜕 

𝜕𝑟
(𝑟 

𝜕𝑇

𝜕𝑟
) =  

𝑣𝑧

𝛼
 
𝜕𝑇

𝜕𝑧
 (6.5-3) 

where 𝛼 =  𝜅 𝜌𝐶𝑝⁄ . 

(2) Let us further restrict the problem to fully-developed temperature field. First we 

have to visualize that there exists, under certain heating conditions, a 

dimensionless temperature profile invariant with pipe length. 

The volumetric flow rate is given by  

𝑄 =  ∫ 𝑣𝑧 2𝜋𝑟 𝑑𝑟
𝑅

0
=  

𝜋(𝒑𝟎− 𝒑𝑳)

8𝜇𝐿
 𝑅4 (6.1-12) 

For convenience the mean fluid temperature 𝑇𝑚 is defined as 

𝜌𝐶𝑝 𝑄 𝑇𝑚 = ∫ 𝜌𝐶𝑝 𝑇 𝑣𝑧 2𝜋𝑟 𝑑𝑟
𝑅

0
 (6.5-4) 

For constant physical properties 

𝑇𝑚 = 
2

〈𝑣𝑧〉𝑅
2 ∫  𝑣𝑧𝑇 𝑟𝑑𝑟

𝑅

0
 (6.5-5) 

This temperature 𝑇𝑚 is sometimes referred to as the bulk fluid temperature or the 

cup-mixing temperature. 

The dimensionless temperature is also defined in terms of 𝑇𝑚  as 

(𝑇𝑤 − 𝑇) (𝑇𝑤 − 𝑇𝑚)⁄ . 

If it is invariant in the axial direction 
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𝜕 

𝜕𝑧
 (

𝑇𝑤−𝑇

𝑇𝑤− 𝑇𝑚
) = 0 (6.5-6) 

Differentiate it with respect to 𝑟 
𝜕 

𝜕𝑟

𝜕 

𝜕𝑧
 (

𝑇𝑤 − 𝑇

𝑇𝑤 − 𝑇𝑚
) = 0 

Changing the order of differentiation, integrating with respect to 𝑧, 
𝜕 

𝜕𝑟
 (

𝑇𝑤−𝑇

𝑇𝑤− 𝑇𝑚
)|

𝑟=𝑅
= 𝑐𝑜𝑛𝑠𝑡  (6.5-7) 

By noting that 𝑇𝑚 and 𝑇𝑤 are not a function of 𝑟, we get 

− 
𝜕𝑇

𝜕𝑟
|
𝑟=𝑅

𝑇𝑤− 𝑇𝑚
= 𝑐𝑜𝑛𝑠𝑡 (6.5-8) 

 

Let us define a heat transfer coefficient in terms of the mean temperature: 

𝑞𝑤 = ℎ (𝑇𝑤 − 𝑇𝑚) = − 𝜅 (
𝜕𝑇

𝜕𝑟
)|

𝑟=𝑅
 (6.5-9) 

Keep in mind that this is the case whether the flow is laminar or turbulent. Eqs.(6.5-4) to (6.5-9) 

are valid even for turbulent flow. This definition implies that the heat flux from the pipe wall to 

the fluid is proportional to the characteristic temperature difference. Since the temperature 

gradient at the wall (𝜕𝑇 𝜕𝑟⁄ )|𝑟=𝑅  is dependent on the flow condition, the heat transfer 
coefficient is a function of flow condition (e.g. the Reynolds number) as well as physical 

properties (e.g. the Prandtl number). 

Thus 

ℎ

𝜅
= 

− 
𝜕𝑇

𝜕𝑟
|
𝑟=𝑅

𝑇𝑤− 𝑇𝑚
= 𝑐𝑜𝑛𝑠𝑡  or  ℎ = 𝑐𝑜𝑛𝑠𝑡 (6.5-10) 

 

This indicates that the fully-developed temperature field can be observed far 

downstream of the entrance for constant heat transfer coefficient conditions. 

 In fact, most heat exchangers are designed based on constant heat transfer 

coefficient assumption. 

 Getting back to the definition of the fully-developed temperature profile 
𝜕 

𝜕𝑧
 (

𝑇𝑤 − 𝑇

𝑇𝑤 − 𝑇𝑚
) = 0 

That is 
𝜕𝑇

𝜕𝑧
=  

𝑑𝑇𝑤

𝑑𝑧
−

𝑇𝑤 − 𝑇

𝑇𝑤 − 𝑇𝑚
 
𝑑𝑇𝑤

𝑑𝑧
+ 

𝑇𝑤 − 𝑇

𝑇𝑤 − 𝑇𝑚
 
𝑑𝑇𝑚

𝑑𝑧
 

Substituting into the equation of energy 
1

𝑟
 
𝜕 

𝜕𝑟
(𝑟 

𝜕𝑇

𝜕𝑟
) =  

𝑣𝑧

𝛼
[
𝑑𝑇𝑤

𝑑𝑧
−

𝑇𝑤−𝑇

𝑇𝑤− 𝑇𝑚
 
𝑑𝑇𝑤

𝑑𝑧
+ 

𝑇𝑤−𝑇

𝑇𝑤− 𝑇𝑚
 
𝑑𝑇𝑚

𝑑𝑧
] (6.5-11) 

This equation can be solved by at least two boundary conditions: 

Case Ⅰ: constant heat flux  𝑞𝑤 = ℎ (𝑇𝑤 − 𝑇𝑚) = − 𝜅 (
𝜕𝑇

𝜕𝑟
)|

𝑟=𝑅
= 𝑐𝑜𝑛𝑠𝑡 (6.5-12) 

Case Ⅱ: constant wall temperature  𝑇𝑤 = 𝑐𝑜𝑛𝑠𝑡 (6.5-13) 

 

The first heating condition is often encountered in counter-current heat exchangers 

when the fluid capacity rates are the same for both fluids.  𝑤 𝑐𝑝 = 𝑊 𝐶𝑝 , where 

𝑤,𝑊 are the mass flow rates of the hotter and the colder fluids and  𝑐𝑝, 𝐶𝑝 the 

corresponding specific heats. 

If ℎ = 𝑐𝑜𝑛𝑠𝑡, 𝑇𝑤 − 𝑇𝑚 = 𝑐𝑜𝑛𝑠𝑡. Therefore 
𝑑𝑇𝑤

𝑑𝑧
− 

𝑑𝑇𝑚

𝑑𝑧
= 0  i.e. 

𝑑𝑇𝑚

𝑑𝑧
=  

𝑑𝑇𝑤

𝑑𝑧
=  

𝜕𝑇

𝜕𝑧
 (6.5-14) 
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The equation to be solved for constant heat flux is  
1

𝑟
 
𝜕 

𝜕𝑟
(𝑟 

𝜕𝑇

𝜕𝑟
) =  

𝑣𝑧

𝛼
 
𝑑𝑇𝑚

𝑑𝑧
 (6.5-15) 

 

The second heating condition is also encountered in heat exchangers when one of 

the two fluid streams has phase transformation such as condensation and 

evaporation.  In this case 
𝑑𝑇𝑤

𝑑𝑧
= 0 (6.5-16) 

 

The equation of energy to be solved for constant wall temperature becomes 
1

𝑟
 
𝜕 

𝜕𝑟
(𝑟 

𝜕𝑇

𝜕𝑟
) =  

𝑣𝑧

𝛼
 

𝑇𝑤−𝑇

𝑇𝑤− 𝑇𝑚
 
𝑑𝑇𝑚

𝑑𝑧
 (6.5-17) 

We shall solve these differential equations Eq.(6.5-15) and Eq.(6.5-17) in the 

following example. 

The corresponding temperature variations with pipe length for these two cases are 

shown below. 

 

 
 
Fig.6.5-1 Temperature variation along pipe axis 

 

[EXAMPLE 6.5-E1]   

 Let us solve the first case:  

Case Ⅰ: constant heat flux  𝑞𝑤 = ℎ (𝑇𝑤 − 𝑇𝑚) = − 𝜅 (
𝜕𝑇

𝜕𝑟
)|

𝑟=𝑅
= 𝑐𝑜𝑛𝑠𝑡 

We assume the fully-developed parabolic velocity distribution and substitute it 

into the equation to be solved: 
1

𝑟
 
𝜕 

𝜕𝑟
(𝑟 

𝜕𝑇

𝜕𝑟
) =  

2 〈𝑣𝑧〉

𝛼
 [1 − (

𝑟

𝑅
)
2
]

𝑑𝑇𝑚

𝑑𝑧
 (6.5-E1) 

Integrating with respect to 𝑟 

𝑟  
𝜕𝑇

𝜕𝑟
=  

2 〈𝑣𝑧〉

𝛼
 [
𝑟2

2
− 

𝑟4

4 𝑅2
]
𝑑𝑇𝑚

𝑑𝑧
+ 𝐶1 

The following boundary condition is applicable to evaluate the integration constant 

𝐶1: 

B.C.1   at 𝑟 = 0   
𝜕𝑇

𝜕𝑟
= 0.    Then 𝐶1: must be zero.  𝐶1 = 0 

Integration gives 

𝑇 =   
2 〈𝑣𝑧〉

𝛼
  [

𝑟2

4
− 

𝑟4

16 𝑅2
]
𝑑𝑇𝑚

𝑑𝑧
+ 𝐶2 
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The integration constant 𝐶2  can be evaluated from the following boundary 

condition: 

B.C.2   at 𝑟 = 𝑅   𝑇 =  𝑇𝑤.  

Thus  

𝐶2 = 𝑇𝑤 − 
2 〈𝑣𝑧〉

𝛼
 
3

16
 𝑅2

𝑑𝑇𝑚

𝑑𝑧
 

Substituting this expression, we finally obtain the following temperature profile: 

𝑇 = 𝑇𝑤 +  
2 〈𝑣𝑧〉

𝛼
  [

𝑟2

4
− 

𝑟4

16 𝑅2
− 

3

16
 𝑅2]

𝑑𝑇𝑚

𝑑𝑧
 (6.5-E2) 

According to the definition of the mean temperature 

𝑇𝑚 = 
2

〈𝑣𝑧〉𝑅
2  ∫ 𝑣𝑧𝑇 𝑟 𝑑𝑟 =  𝑇𝑤 − 

11

96
 

𝑅

0

2 〈𝑣𝑧〉

𝛼
 
𝑑𝑇𝑚

𝑑𝑧
 𝑅2 (6.5-E3) 

Then the driving force is given by 

Δ𝑇 =  𝑇𝑤 −  𝑇𝑚 =
11

96
 
2 〈𝑣𝑧〉

𝛼
 
𝑑𝑇𝑚

𝑑𝑧
 𝑅2 (6.5-E4) 

On the other hand, the temperature gradient at the wall is calculated as 

(
𝜕𝑇

𝜕𝑟
)|

𝑟=𝑅
= 

〈𝑣𝑧〉

2 𝛼
 𝑅 

𝑑𝑇𝑚

𝑑𝑧
 (6.5-E5) 

Using Eq.(6.5-E4), the heat flux becomes 

𝑞𝑤 = ℎ (𝑇𝑤 − 𝑇𝑚) = ℎ 
11

96
 
2 〈𝑣𝑧〉

𝛼
𝑅2  

𝑑𝑇𝑚

𝑑𝑧
  

Using Eq.(6.5-E5), the wall heat flux is also given by 

𝑞𝑤 =  𝜅 (
𝜕𝑇

𝜕𝑟
)|

𝑟=𝑅
=   𝜅 

〈𝑣𝑧〉

2 𝛼
 𝑅 

𝑑𝑇𝑚

𝑑𝑧
 

Solving for ℎ from these two equations,  

ℎ =  
24

11
 
𝜅 

𝑅
 

The dimensionless group called the Nusselt number becomes for laminar pipe flow 

with constant heat flux : 

𝑁𝑢 = 
ℎ 𝐷

  𝜅
= 

48

11
= 𝑐𝑜𝑛𝑠𝑡 (6.5-E6) 

The Nusselt number implies the ratio of convective to conductive heat transfer  

rate: 

𝑁𝑢 = 
ℎ Δ𝑇

 𝜅(Δ𝑇 𝐷⁄ )
 (6.5-E7) 

    The Stanton number is defined as 

𝑆𝑡 =  
ℎ

𝜚𝐶𝑝〈𝑣𝑧〉
=  

𝑁𝑢

𝑅𝑒 𝑃𝑟
 (6.5-E8) 

Then the Stanton number becomes for heat transfer with constant heat flux in 

laminar pipe flow: 

𝑆𝑡 𝑃𝑟 =  
(48 11⁄ )

𝑅𝑒
 (6.5-E9) 

 Note the similarity in form to the corresponding friction factor: 

𝑓 =  
16

𝑅𝑒
 (6.5-E10) 

 The above Nusselt number is a limiting value far downstream of the heating 

section in a pipe.  

Eq.(6.5-E6) is applicable to the thermal entry region: 
𝐿𝑒𝑛𝑡

𝐷
> 0.05 𝑅𝑒 𝑃𝑟 (6.5-E11) 

Experimental data are correlated by Sieder and Tate by the equation: 

𝑁𝑢𝑚 = 1.86 [𝑅𝑒 Pr(𝐷 𝐿⁄ )]1 3⁄  (𝜇 𝜇𝑤⁄ )0.14 (6.5-E12) 
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[PROBLEM6.5-P1]  A Newtonian fluid of constant physical properties (𝜌, 𝜇, 𝜅) is in 

laminar flow inside a rectangular horizontal channel.(see Problem 6.4-P1). Although 

the heat transfer rate depends on the fluid flow rate, the upper wall is kept at 𝑇𝑤1 and 

the lower wall is cooled at 𝑇𝑤2. ( 𝑇𝑤1 >  𝑇𝑤2 ). Both the side walls are thermally 

insulated. Therefore it can be assumed that the fluid temperature does not change in 

the transverse direction y. Obtain the temperature distribution in the vertical direction 

in the fully developed region. Using the velocity distribution obtained in Problem 

6.4-P1, calculate the enthalpy flow rate across the cross-sectional area 2 𝑊 𝐻. What is 

the heat flux required to keep the wall temperatures 𝑇𝑤1 and 𝑇𝑤2.? 

 

 
Fig.6.5-P1 Temperature distribution of fully developed laminar flow inside a rectangular 

horizontal channel. 
 
 

6.6 Application of the Equation of Energy (Ⅱ) 
 

   6.6-1 Steady Heat Conduction 

Let us consider the composite wall of blast furnace consisting of three different 

materials as an example of heat conduction in hollow cylinders. 

 
Fig.6.6-1 Temperature profile in insulating brick layers of furnace 

 

 For steady-state operation the inside surface of the fire-clay brick and the outside 

surface of steel cover are held at constant temperature 𝑇1 and 𝑇4, respectively. Since 

the steel cover has very large thermal conductivity, that is, the heat conduction 

resistance of the steel cover can be assumed negligibly small, so that the outer surface 

temperature of the insulating brick can be assumed equal to  𝑇4.  (𝑇1 > 𝑇4)  The 

60                     Application of Differential Transport Equations  



thermal conductivities of the fire-clay brick, Mullite (alumina brick), and the insulating 

brick are 𝜅1, 𝜅2, 𝜅3, respectively. Let us determine the heat loss over the height 𝐿 

from the outer surface of the furnace. 

In the equation of energy in cylindrical coordinates, all velocity components vanish. 

We can also assume the local temperature to be constant with respect to 𝑧 and 휃. 

Therefore the temperature should be a function of 𝑟 only. 

 For this problem, the equation to be solved becomes 
𝑑 

𝑑𝑟
 (𝑟 

𝑑 𝑇

𝑑𝑟
) = 0 (6.6-1) 

Integrating twice with respect to 𝑟, the general solution is obtained: 

𝑇 =  𝐶1 ln 𝑟 + 𝐶2 (6.6-2) 

These two constants of integration can be evaluated in each brick layer from the 

following boundary conditions: 

B.C.1   at 𝑟 =  𝑟1,  𝑇 =  𝑇1 

B.C.2 at 𝑟 =  𝑟2,  𝑇 =  𝑇2 

B.C.3 at 𝑟 =  𝑟3,  𝑇 =  𝑇3 

B.C.4 at 𝑟 =  𝑟4,  𝑇 =  𝑇4 

Here the temperatures corresponding to radii   𝑟2  and 𝑟3 , are unknown and 

temporarily denoted by 𝑇2 and 𝑇3, respectively. 

 Making use of a pair of terminal temperatures 𝑇1  and 𝑇2 , the temperature 

distribution in the fire-clay brick layer can be written as 

𝑇 =  𝑇2 + 
𝑇1− 𝑇2

ln(𝑟1 𝑟2⁄ )
ln(𝑟 𝑟2⁄ )                  𝑟1 ≤ 𝑟 ≤  𝑟2 (6.6-3) 

Similarly 

𝑇 =  𝑇3 + 
𝑇2− 𝑇3

ln(𝑟2 𝑟3⁄ )
ln(𝑟 𝑟3⁄ )                  𝑟2 ≤ 𝑟 ≤  𝑟3 (6.6-4) 

𝑇 =  𝑇4 + 
𝑇3− 𝑇4

ln(𝑟3 𝑟4⁄ )
ln(𝑟 𝑟4⁄ )                  𝑟3 ≤ 𝑟 ≤  𝑟4 (6.6-5) 

For this problem, Eq.(6.6-1) implies 
𝑑 

𝑑𝑟
 (𝑟 𝑞𝑟) = 0 (6.6-6) 

By integrating, we find 

𝑟 𝑞𝑟 = 𝑟4 𝑞𝑟|𝑟=𝑟4 = 𝑐𝑜𝑛𝑠𝑡 (6.6-7) 

We now evaluate 𝑑𝑇 𝑑𝑟⁄  at the surface 𝑟 =  𝑟4  with the aid of the temperature 

distribution  
𝑑𝑇

𝑑𝑟
|
𝑟= 𝑟4

= 
𝑇3 − 𝑇4

𝑟4 𝑙𝑛 (𝑟3 𝑟4⁄ )
 

Then we get 

𝑟4 𝑞𝑟|𝑟=𝑟4 = 𝜅3  
𝑇3− 𝑇4

ln(𝑟4 𝑟3⁄ )
 (6.6-8) 

Similarly 

𝑟3 𝑞𝑟|𝑟=𝑟3 = 𝜅2  
𝑇2− 𝑇3

ln(𝑟3 𝑟2⁄ )
  (6.6-9) 

𝑟2 𝑞𝑟|𝑟=𝑟2 = 𝜅1  
𝑇1− 𝑇2

ln(𝑟2 𝑟1⁄ )
 (6.6-10) 

The above three equations are combined as 

𝑟4 𝑞𝑟|𝑟=𝑟4 = 
𝑇1− 𝑇2
1

𝜅1
ln(

𝑟2
𝑟1

)
=   

𝑇2− 𝑇3
1

𝜅2
ln(

𝑟3
𝑟2

)
=  

𝑇3− 𝑇4
1

𝜅3
ln(

𝑟4
𝑟3

)
=  

𝑇1− 𝑇4
1

𝜅1
ln(

𝑟2
𝑟1

)+ 
1

𝜅2
ln(

𝑟3
𝑟2

)+ 
1

𝜅3
ln(

𝑟4
𝑟3

) 
 (6.6-11) 

Each denominator can be interpreted as the thermal resistance of a single layer. 

The thermal resistance of the steel cover is so small that its term is omitted in the 

denominator.  

The total resistance of three layers in series is given by 

Application of the Equation of Energy (II)  (continued)        61 



𝑅𝑡𝑜𝑡𝑎𝑙 = 
1

𝜅1
ln (

𝑟2

𝑟1
) + 

1

𝜅2
ln (

𝑟3

𝑟2
) + 

1

𝜅3
ln (

𝑟4

𝑟3
) (6.6-12) 

Finally we obtain the heat loss 𝑄 from the outer surface of the furnace: 

𝑄 = 2𝜋𝑟4𝐿𝑞𝑟|𝑟=𝑟4 = 
2𝜋𝐿 (𝑇1− 𝑇4)

1

𝜅1
ln(

𝑟2
𝑟1

)+ 
1

𝜅2
ln(

𝑟3
𝑟2

)+ 
1

𝜅3
ln(

𝑟4
𝑟3

) 
 (6.6-13) 

The electrical analog for a three-layer cylinder with specified temperature is shown in 

Fig.6.6-2. 

 
Fig.6.6-2  Heat transfer resistances in series 
 

As the thickness of insulating-brick increases (as 𝑟3 𝑟2⁄  increases), the heat loss decreases. From 
an economic viewpoint, the optimum thickness can be calculated by taking into account the energy 

cost and the cost of insulating material. Obviously this approach can be extended to any number of 

layers of material. We have tacitly assumed no contact resistance between the layers of different 

materials. Even thin air gap formed in between the layers results in considerable contact resistance 

to heat transfer. 

 

[PROBLEM 6.6-P1] A cylindrical rod (radius 𝑅 m) of thermal conductivity 𝜅 W/m K is cooled 

at steady state by air of temperature 𝑇𝑎𝑖𝑟K in order to keep the rod surface at a safe 

temperature 𝑇0 K decided by the safety regulation. This rod has a uniform volume production 

of heat 𝑄𝐸 (W/m
3
) inside it.  

(a) Derive the equation of heat conduction for obtaining the temperature profile. 

(b) Obtain an expression for dimensionless temperature profile. 

(c) Confirm that the heat released from the rod surface becomes equal to the heat generation.  
 

 

6.6-2 Unsteady Heat Conduction1) 

Let us consider a problem of unsteady cooling a finite slab having a thickness of 2𝑏 in y-direction. 

The dimensions in x- and z-direction are infinitely large. The slab is initially kept at 𝑇0. At time 

𝑡 = 0, both the surfaces at 𝑦 =  ±𝑏 are instantaneously cooled to 𝑇𝑐 and kept at 𝑇𝑐. We shall find 
the time-dependent profile.  
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Fig.6.6-3. Cooling a finite slab of solid 
 

The differential equation of energy transport to be applied reduces to 
𝜕𝑇

𝜕𝑡
=  𝛼 

𝜕2𝑇

𝜕𝑦2 (6.6-14) 

We introduce the following dimensionless variables: 

Temperature  𝛩 = 
𝑇− 𝑇𝑐

𝑇0− 𝑇𝑐
 (6.6-15) 

y-directional length  휂 =  
𝑦

𝑏
 (6.6-16) 

Time  𝜏 =  
𝛼 𝑡

𝑏2  (6.6-17) 

where 𝛼 =  𝜅 𝜌𝐶𝑝⁄  is thermal diffusivity. 

Therefore the dimensionless equation and the boundary conditions become simpler as follows: 
𝜕𝛩

𝜕𝜏
 =  𝛼 

𝜕2𝛩

𝜕𝜂2 (6.6-18) 

I.C.       at  𝜏 = 0              𝛩 = 1 (6.6-19) 

B.C.1     at  휂 =  +1            𝛩 = 0 (6.6-20) 

B.C.2     at  휂 =  −1            𝛩 = 0 (6.6-21) 
Using the method of separation of variables, the following temperature function can be assumed: 

𝛩(휂, 𝜏) = 𝑓(휂)𝑔(𝜏) (6.6-22) 

Substituting the function into Eq.(6.6-18) 
1

𝑔
 
𝑑𝑔

𝑑𝜏
= 

1

𝑓
 
𝑑2𝑓

𝑑𝜂2
 (6.6-23) 

The left side is a function of 𝜏 only whereas the right side is a function of 휂 only. 

This condition can be valid only if both sides equal a constant − 𝑐2. Therefore this problem 

reduces to the following two ordinary equations: 

 
𝑑𝑔

𝑑𝜏
= − 𝑐2 𝑔 (6.6-24) 

𝑑2𝑓

𝑑𝜂2 =  − 𝑐2 𝑓 (6.6-25) 

These equations can be integrated as 

𝑓 =  𝐾1 sin 𝑐  휂 + 𝐾2 cos 𝑐  휂 (6.6-26) 

g =  𝐾3 exp(− 𝑐2𝜏) (6.6-27) 

It can be considered that the temperature profile should be symmetric about the centerline of the 

slab. Therefore 𝐾1  must be zero. From the boundary conditions, 𝑓𝜂=0 = 𝐾2 cos 𝑐 = 0  This 

suggests that 

𝑐 =  (𝑛 + 1 2⁄ )𝜋       𝑛 = 0, ±1, ±2,− − − − − − (6.6-28) 
After all, the following form of the solution can be obtained: 
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Θ = ∑ 𝐶𝑛 exp(−(𝑛 + 1 2⁄ )2𝜋2𝜏) cos(𝑛 + 1 2⁄ ) 𝜋 휂∞
𝑛=0  (6.6-29) 

The unknown constant 𝐶𝑛 should be determined by using the initial condition. 

At  𝜏 = 0   Θ = 1    →    1 =   ∑ 𝐶𝑛  cos(𝑛 + 1 2⁄ ) 𝜋 휂∞
𝑛=0  (6.6-30) 

Multiplying by cos(𝑚 + 1 2⁄ ) 𝜋 휂 𝑑휂 and then integrating from 휂 =  −1 to 휂 =  +1 

∫ cos(𝑚 + 1 2⁄ ) 𝜋 휂 𝑑휂 =  ∑ 𝐶𝑛  ∫ cos(𝑚 + 1 2⁄ ) 𝜋 휂
+1

−1
cos(𝑛 + 1 2⁄ )𝜋 휂∞

𝑛=0
+1

−1
𝑑휂 (6.6-31) 

The integration on the right becomes zero except for the case 𝑛 = 𝑚. Eq. (6.6-32) becomes 

sin (𝑚 + 1 2⁄ ) 𝜋 휂

(𝑚 + 1 2⁄ ) 𝜋 
|
𝜂= −1

𝜂= +1

= 𝐶𝑚 (
(
1
2
) (𝑚 + 1/2)𝜋 휂 + (

1
4
)𝑠𝑖𝑛 (𝑚 + 1/2) 2𝜋 휂

(𝑚 + 1/2)𝜋
)|

𝜂= −1

𝜂= +1

 

Solving for 𝐶𝑚, we get  
2 (−1)𝑚

(𝑚 + 1 2⁄ ) 𝜋 
=   𝐶𝑚 

Finally the temperature profile can be expressed as 
𝑇− 𝑇𝑐

𝑇0− 𝑇𝑐
= 2 ∑

(−1)𝑛

(𝑛+1 2⁄ )𝜋 
∞
𝑛=0 exp (−(𝑛 +

1

2
)2𝜋2 𝛼𝑡 𝑏2⁄ ) cos (𝑛 + 1 2⁄ )

𝜋𝑦

𝑏
   (6.6-32) 

This solution can be used for many unsteady-state heat conduction problems. It can be kept in 

mind that for very short times the convergence becomes slow. 
 

                                                                                              

 
 

 

[PROBLEM 6.6-P2]  A rectangular parallelepiped iron ingot with dimensions 0.3 m by 2 m by 

10 m is fixed vertically and kept uniformly at a temperature 1,050℃. The hot ingot are rapidly and 

uniformly cooled by striking water jet (40℃) on the two side surfaces of 2 m by 10 m. Owing to the 
film boiling taking place on the ingot surface, the surface temperature is assumed to be kept at 

180℃ for the cooling term. Find the time required for the center (𝑧 = 0) temperature of the ingot to 

reach 300℃. The density and thermal conductivity of the ingot can be assumed to be constant at 730 

kg/m
3
 and 49 W/m K, respectively. 



 
Fig. 6.6-P1. Cooling an iron ingot by striking water jets from two directions 
 

 

1. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, Wiley, New York, Chapt.3 (1960) 

2. Carslaw, H. S., and Jaeger, J. C., Conduction of Heat in Solid, Oxford Univ. Press, p. 101 (1959) 
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6.7  Application of the Equation of Mass Transport 
 

Let us consider the mass transfer problem on the cylindrical surface of laminar liquid jet flowing 

downward vertically through a vessel which contains the pure solute gas. 

The carbon dioxide gas contained in a large vessel is absorbed by a water jet formed with a 

sharp-edged convergent nozzle. The jet surface is smooth and free of ripples. The gas phase 

resistance is negligible since the pure CO2 gas exists surrounding the liquid jet. A small amount of 

carbon dioxide is absorbed in the short contact time (order of 10 ms), so the CO2 penetration depth 

is very small relative to the jet diameter (order of 1 mm). Therefore the problem may be treated as 

though the surface were flat. The water jet has uniform velocity distribution across the cross 

section: 𝑣𝑧 = 𝑉 = 𝑐𝑜𝑛𝑠𝑡.. A well-designed convergent nozzle can discharge such a water jet with 

uniform velocity 
 

 
 
Fig.6.7-1 Experimental apparatus for CO2 gas absorption 

 

 
 

Fig.6.7-2  Situation of CO2 gas absorbed into a falling liquid jet 
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The equation written in the rectangular coordinate system is applicable inside the liquid jet: 
𝜕𝐶𝐴

𝜕𝑡
+ 𝑣𝑥

𝜕𝐶𝐴

𝜕𝑥
+ 𝑣𝑦

𝜕𝐶𝐴

𝜕𝑦
+ 𝑣𝑧

𝜕𝐶𝐴

𝜕𝑧
 =  𝐷𝐴𝐵  (

𝜕2𝐶𝐴

𝜕𝑥2
+ 

𝜕2𝐶𝐴

𝜕𝑦2
+ 

𝜕2𝐶𝐴

𝜕𝑧2
) + 𝑅𝐴  

For steady state 𝜕𝐶𝐴 𝜕𝑡⁄ = 0. We can ignore the chemical reaction between CO2 and H2O: 

𝑅𝐴 = 0. 

All streamlines are parallel to the jet axis. Then 𝑣𝑥 =  𝑣𝑦 = 0. We can expect that 𝐶𝐴 will be 

changing both with 𝑥 and 𝑧.  However 𝜕𝐶𝐴 𝜕𝑦⁄ = 0. 

Then the above equation reduces to  

𝑣𝑧
𝜕𝐶𝐴

𝜕𝑧
 =  𝐷𝐴𝐵  (

𝜕2𝐶𝐴

𝜕𝑥2  + 
𝜕2𝐶𝐴

𝜕𝑧2 ) (6.7-1) 

The carbon dioxide is transferred in the z-direction primarily because of the convective flow of the 

jet, the diffusive contribution (the term containing 𝜕2𝐶𝐴 𝜕𝑧2⁄ ) can be neglected.  

We get the partial differential equation for 𝐶𝐴 

𝑉
𝜕𝐶𝐴

𝜕𝑧
 =  𝐷𝐴𝐵  

𝜕2𝐶𝐴

𝜕𝑥2  (6.7-2) 

The applicable boundary conditions are: 

B.C.1   at 𝑧 = 0,     𝐶𝐴 = 0 

B.C.2   at 𝑥 = 0,     𝐶𝐴 = 𝐶𝐴0  (solubility of CO2 into H2O)  

B.C.3   at 𝑥 = ∞,     𝐶𝐴 = 0 

Since the jet length between the nozzle and receiver is short (order of 50 mm), CO2 

does not penetrate very far from the surface. The third boundary condition indicates 

that the problem can be treated as if the jet were of infinite thickness moving with the 

constant velocity 𝑉. 

Let us define dimensionless variables: 

𝜙 = 
𝐶𝐴

𝐶𝐴𝑜
            휂 =  

𝑥

√4𝐷𝐴𝐵𝑧 𝑉   ⁄
 (6.7-3) 

By the method of combination of variables the partial differential equation reduces to 

the following ordinary differential equation: 

𝜙′′ + 2휂 𝜙′ = 0  (6.7-4) 

where primes ′ indicates total differentiation with respect to 휂.   

The boundary conditions become 

B.C.2         at  휂 = 0,    𝜙 = 1 (6.7-5) 

B.C.1 and 3   at  휂 =  ∞,   𝜙 = 0 (6.7-6) 

If 𝜙′ is replaced by 𝜓, the above equation becomes 

𝜓′ + 2 휂 𝜓 = 0 (6.7-7) 

Integration gives  𝜓 = 𝜙′ = 𝐶1 𝑒
−𝜂2

 

At this stage we do not have an appropriate boundary condition. 

A second integration then gives 

𝜙 = 𝐶1  ∫ 𝑒−𝜂2
 𝑑휂 + 𝐶2

𝜂

0
 (6.7-8) 

From the first boundary condition, 𝐶2 must be one. 

Application of the second boundary condition gives 

𝐶1 = − 
1

∫ 𝑒−𝜂2
 𝑑𝜂

∞
0

= − 
2

√𝜋
  

The solution to the equation at hand is given by 

𝜙 = 1 − 
2

√𝜋
 ∫ 𝑒−𝜂2

 𝑑휂 = 1 − 𝑒𝑟𝑓 휂
𝜂

0
 (6.7-9) 

or  
𝐶𝐴

𝐶𝐴𝑜
= 1 − 𝑒𝑟𝑓  

𝑥

√4𝐷𝐴𝐵𝑧 𝑉⁄
   

Here erf  𝑋 is known as the “error function”, whose definition is 

𝑒𝑟𝑓 𝑋 =  
2

√𝜋
 ∫ 𝑒−𝜉2

 𝑑𝜉
𝜉

0
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Once the concentration profile is known, the total absorption rate can be calculated. 

Note that 𝑧 𝑉⁄  is the time for fluid particle to move from the nozzle to axial distance 𝑧. 

The molecular diffusion in the x-direction can be considered to be much larger than 

convective transport in the x-direction because of the low solubility of A in B.  

Therefore the local mass flux at the surface (𝑥 = 0) can be expressed as 

𝑁𝐴𝑥|𝑥=0 = − 𝐷𝐴𝐵  
𝜕𝐶𝐴

𝜕𝑥
|
𝑥=0

= 𝐶𝐴𝑜 √
𝐷𝐴𝐵𝑉

𝜋 𝑧
 (6.7-10) 

Then the total absorption rate is 

𝑊 =  𝜋𝐷 ∫ 𝑁𝐴𝑥|𝑥=0
𝐿

0
𝑑𝑧 =  𝜋𝐷𝐿 √

4 𝐷𝐴𝐵𝑉

𝜋𝐿
 𝐶𝐴𝑜 (6.7-11) 

Let us define a mass transfer coefficient as the ratio of the mass flux to the driving 

force (characteristic concentration difference): 

𝑁𝐴𝑥|𝑥=0 = 𝑘𝐿(𝐶𝐴𝑜 − 𝐶𝐴∞) (6.7-12) 

In this case, 𝑘𝐿  is the average mass transfer coefficient on the liquid side of the 

interface. The CO2 concentration becomes approximately zero at a certain depth from 

the surface. 

The depth 𝛿 is called a thickness of liquid film where the main resistance to mass 

transfer takes place. Then at  𝑥 =  𝛿    𝐶𝐴∞ = 0 

Therefore Eq.(6.7-12) becomes  

𝑁𝐴𝑥|𝑥=0 = 𝑘𝐿𝐶𝐴𝑜 (6.7-13) 

Comparing this to the equation Eq,(6.7-11) of the total absorption rate 

𝑘𝐿 = √
4 𝐷𝐴𝐵𝑉

𝜋𝐿
 (6.7-14) 

Note that 𝐿 𝑉⁄  corresponds to the contact time 𝑡𝑐.  

Much industrial gas-liquid contacting equipment operates with short contact time. As in this 

example, diffusion from interface to bulk fluid proceeds as a transport process. This is an example 

of Higbie’s penetration theory
 1) 

indicating that the mass transfer coefficient is proportional to the 

square root of diffusivity divided by contact time. This system is often used to measure molecular 

diffusivity of CO2 into H2O. 
                                                                                   

1. Higbie, R., Trans. A.I.Ch.E., 31, 365 (1935) 

 

[EXAMPLE 6.7-E1]   

Let us consider how to measure molecular diffusivity by using this system (Fig. 6.7-1). 

The absorption rate 𝑊 can be determined from the feed rate of fresh CO2 gas to the vessel 

(absorber) from a constant-pressure source. The jet surface area 𝜋𝐷𝐿 and contact time 𝑡𝑐 = 𝐿 𝑉⁄  
can be calculated directly from measurement of jet length, diameter, and water flow rate.  

Then we determine the molecular diffusivity  

𝐷𝐴𝐵 =  
𝜋𝐿

4𝑉
 (

𝑤

𝜋𝐷𝐿 𝐶𝐴𝑜
)
2

 (6.7-E1) 

In this case, the gas-phase resistance was negligible.  

 

< Two film theory > 

 If the ambient gas-phase includes inert gas (e.g. N2) insoluble to liquid-phase, there generates 

another resistance to mass transfer on the gas side of the interface. The concentration gradient is 

formed in the gas-phase, too. 

In general, a solute is transferred at constant rate through two resistances in series from gas- to 

liquid-phase. 

We define two individual mass transfer coefficients: 

𝑁𝐴 = 𝑘𝐺(𝑦𝐴𝑏 − 𝑦𝐴𝑖) =  𝑘𝐿 (𝐶𝐴𝑖 − 𝐶𝐴𝑏) (6.7-E2) 
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Here 𝑦𝐴  and 𝐶𝐴 are mole fraction in gas-phase and molar concentration in liquid-phase of 
component A, respectively.  

Assuming equilibrium at the interface 

𝑦𝐴𝑖 = 𝐻 𝐶𝐴𝑖 (6.7-E3) 

This is known as the Henry’s law.  

 For practical purposes of process design, it is convenient to express transport rate ( mass-flux) in 

terms of the bulk phase concentrations and an overall mass transfer coefficient. The definition is 

𝑁𝐴 = 𝐾𝐺(𝑦𝐴𝑏 −  𝐻𝐶𝐴𝑏) =  𝐾𝐿 (𝑦𝐴𝑏 𝐻⁄ − 𝐶𝐴𝑏) (6.7-E4) 
The overall driving force should be used for definition of the overall mass transfer coefficients. 

However, note that we cannot use the expression as 𝑁𝐴 = 𝐾𝐺(𝑦𝐴𝑏 − 𝐶𝐴𝑏) because 𝐶𝐴 and 𝑦𝐴 
use different bases for units of concentration. For unit conversion, Henry’s constant can be used. 

That is,  𝐻𝐶𝐴𝑏 is the imaginary concentration 𝑦𝐴𝑏
∗  of gas-phase in equilibrium to 𝐶𝐴𝑏 whereas 

𝑦𝐴𝑏 𝐻⁄  is the imaginary concentration 𝐶𝐴𝑏
∗  of liquid-phase in equilibrium to 𝑦𝐴𝑏. 

Combining these equations, we get the flux equation analogous to Ohm’s law: 

𝑁𝐴 = 
𝑦𝐴𝑏 −  𝐻𝐶𝐴𝑏

1
𝐾𝐺

= 
𝑦𝐴𝑏 − 𝑦𝐴𝑖

1
𝑘𝐺

= 
𝐻𝐶𝐴𝑖 − 𝐻𝐶𝐴𝑏

𝐻
𝑘𝐿

= 
𝑦𝐴𝑖 − 𝑦𝐴𝑏

∗

𝐻
𝑘𝐿

 

Therefore the following equation can be obtained by solving for 1 𝐾𝐺⁄ : 

𝑁𝐴 = 
𝑦𝐴𝑏− 𝑦𝐴𝑏

∗

1

𝐾𝐺

= 
𝑦𝐴𝑏− 𝑦𝐴𝑖

1

𝑘𝐺

=  
𝑦𝐴𝑖− 𝑦𝐴𝑏

∗

𝐻

𝑘𝐿

=
𝑦𝐴𝑏− 𝑦𝐴𝑏

∗

1

𝑘𝐺
+ 

𝐻

𝑘𝐿

 (6.7-E5) 

That is 
1

𝐾𝐺
=

1

𝑘𝐺
+ 

𝐻

𝑘𝐿
 (6.7-E6) 

 

This states that the overall mass transfer resistance is the sum of the resistances in series of 

gas-phase and liquid-phase. 

 

Similarly 
1

𝐾𝐿
=

1

𝐻 𝑘𝐺
+ 

1

𝑘𝐿
 (6.7-E7) 

Since these two equations indicate the same meaning, either will do.  

 
[PROBLEM6.7-P1]  The diffusivity of CO2 into pure water is measured by using the falling 

liquid jet method. The vessel containing deaerated water jet surrounded by pure CO2 gas is kept at 

𝑝 = 1 𝑎𝑡𝑚 (1.013 × 105 𝑃𝑎) and 20℃. The feed rate of pure water measured by a rotameter is 

1.5 𝑚𝑙 𝑠⁄ . The diameter and length of the water jet are 1.2 𝑚𝑚 and 40 𝑚𝑚, respectively. The 

CO2 absorption rate measured by gas burette is 0.038 𝑚𝑙 𝑠⁄ .  

Henry’s law for the CO2-H2O system is given by 𝑝 = 𝐻 𝐶𝐴 , where the constant 

𝐻 = 25.5  (𝑎𝑡𝑚 𝑚3 𝑘𝑚𝑜𝑙)⁄  at 20℃. 

(1) Calculate the diffusivity of CO2 into H2O at 20℃. 

(2) The penetration thickness 𝛿 is defined as that distance 𝑥 for which 𝐶𝐴 has dropped to a 

value 0.01 𝐶𝐴𝑜:   

𝛿 = 4 √𝐷𝐴𝐵  𝑧 𝑉⁄  

Estimate the penetration thickness just above the receiver, i.e. at the lowest point of 

the water jet. 

 

[Answer: 𝐷𝐴𝐵 = 1.7 × 10-9 m2/s,   𝛿 = 2.86 × 10-2 mm]  
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Nomenclature 
  

𝐶𝐴 concentration of component A, [kg/m3]   

𝐶𝑝 heat capacity, [J/kg K]   

𝐷 pipe inside diameter, [m] 

𝐷𝐴𝐵 diffusivity, [m2/s] 

𝑓 friction factor, [ - ] 

𝑔 gravitational acceleration, [m/s2] 

𝐻 Henry’s constant, [m3/kmol] 

ℎ heat transfer coefficient, [W/m2K] 

𝐾𝐺  overall mass transfer coefficient on vapor-phase concentration basis, [kmol/m2s] 

𝑘𝐺 gas-phase mass transfer coefficient, [kmol/m2s] 

𝐾𝐿 overall mass transfer coefficient on liquid-phase concentration basis, [m/s] 

𝑘𝐿 liquid-phase mass transfer coefficient, [m/s] 

𝐿 pipe length, [m] or liquid jet length, [m] 

𝑁𝐴 mass flux of component A, [kg/m2s] or [kmol/m2s] 

𝑁𝑢 Nusselt number, [ - ] 

𝑃𝑟 Prandtl number, [ - ] 

𝑝 pressure, [Pa] 

𝑄 volumetric flow rate, [m3/s] or heat loss, [J/s] 

𝑞𝑤 wall heat flux, [W/m2] 

𝑅 pipe radius, [m] 

𝑅𝑖 , 𝑅𝑜 cylinder radius, inner and outer cylinders, [m] 

𝑅𝑒 Reynolds number, [ - ] 

𝑟, 휃, 𝑧 cylindrical coordinates, [m, - , m] 

𝑆𝑡 Stanton number, [ - ] 

𝑇 temperature, [K] 

𝑇𝑎 Taylor number, [ - ] 

𝑇𝑞 torque, [N m] 

𝑉 velocity of falling liquid jet, [m/s] 

𝑣𝑟 , 𝑣𝜃 , 𝑣𝑧 velocity component in cylindrical coordinates 

𝑊 total absorption rate, [kg/s] 

𝛼 thermal diffusivity, [m2/s] 

𝛿 penetration thickness, [m] 

𝜅 thermal conductivity, [W/m K] 

𝜇 viscosity, [kg/m s] 

𝜌 density, [kg/m3] 

𝜏𝑟𝑧 shear stress at r in pipe flow, [N/m2] 

𝜏0 yield stress, [N/m2] 

𝜔 angular velocity, [1/s] 

 
 

Brackets 
〈 〉 averaged over flow cross section  

 
Subscripts 
m bulk or mixed mean  

w wall 
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CHAPTER 7 
  

INTERPHASE MOMENTUM TRANSPORT 
 
 

7.1 Turbulent Flow Properties 
 

In laminar flow, all the streamliners have smooth curves or straight lines. Especially in steady 

laminar flow, the streamlines are at rest. However in turbulent flow all the streamlines oscillate 

irregularly in all directions. It is true that the equations of continuity and motion apply to turbulent 

flow. Since the instantaneous velocity and pressure are irregularly oscillating function, any simplest 

turbulent flow problems have not yet been solved exactly. For the purpose of application in 

engineering, other approaches have been necessary. 

Let us consider a steady turbulent flow in a circular pipe as an example. 

Suppose that we could stand at a fixed point in the flow field and observe the velocity and pressure 

at the position. The instantaneous velocity 𝑣𝑧 and pressure 𝑝 are fluctuating at random about their 

finite mean values, whereas 𝑣𝑟  and 𝑣𝜃  are fluctuating around the zero mean values. The 
oscillograms are shown in Fig.7.1-1. 
 

 
 
Fig.7.1-1. Oscillograms of fluctuating velocity and pressure for a circular pipe flow 
 

The time-averaged velocity and pressure are defined as 

𝑣�̅� = 
1

𝑡0
 ∫ 𝑣𝑧

𝑡+𝑡0
𝑡

 𝑑𝑡 (7.1-1) 

�̅�  =  
1

𝑡0
 ∫ 𝑝

𝑡+𝑡0
𝑡

 𝑑𝑡 (7.1-2) 

These are time-averages of instantaneous velocity and pressure taken over a time interval 𝑡0 from 

an arbitrary chosen reference time 𝑡. The time interval can be taken to be large compared to the 
periodic time of fluctuations.  

Then we can split up the instantaneous velocity and pressure into the time-averaged values and their 

fluctuations: 

𝑣𝑧(𝑟, 휃, 𝑧, 𝑡) =  𝑣�̅�(𝑟, 휃, 𝑧) + 𝑣𝑧
′(𝑟, 휃, 𝑧, 𝑡) (7.1-3) 

𝑝(𝑟, 휃, 𝑧, 𝑡) =  �̅�(𝑟, 휃, 𝑧) +  𝑝′(𝑟, 휃, 𝑧, 𝑡) (7.1-4) 



Note that for steady turbulent flow in a pipe 

𝑣�̅� = 𝑣�̅�(𝑟, 𝑧)  and  �̅� =  �̅�(r, z) 
By definition, 

𝑣𝑧
′̅ = 

1

𝑡0
 ∫ 𝑣𝑧

′
𝑡+𝑡0

𝑡

 𝑑𝑡 = 0 

Similarly 𝑝′̅ = 0  𝑣�̅� = 𝑣𝜃̅̅ ̅ =  0 and 𝑣𝑟
′̅ = 𝑣𝜃

′̅̅ ̅ =  0 

The instantaneous velocity fluctuations 𝑣𝑟
′ , 𝑣𝜃

′ , 𝑣𝑧
′  can become negative very often, but 

𝑣𝑟
′2, 𝑣𝜃

′ 2
, 𝑣𝑧

′2 cannot be negative. Therefore 𝑣𝑧
′2̅̅ ̅̅  will not be zero. As a measure of magnitude of 

the turbulence the level or intensity of turbulence is defined as  𝑇𝑢 =  
√ 𝑣𝑧

′2̅̅ ̅̅ ̅

𝑣𝑧̅̅ ̅
 (7.1-5) 

This turbulence intensity may have values 0.01 to 0.10 in typical turbulent flow conditions.  

  Of the many methods for the measurement of turbulent velocity, the hot-wire anemometer is the 

most satisfactory. The detecting element consists of a very fine short metal wire (e.g. 5 𝜇𝑚 dia. 
And 5 mm long platinum wire for air stream), which is heated by an electric current to a constant 

temperature above the stream temperature. 

The wire is placed perpendicular to the velocity component to be measured. The rate of heat loss to 

the ambient stream from the wire is proportional to the square root of the stream velocity √𝑣 in the 

usual stream condition. The wire is of such low heat capacity that the temperature of the wire can 

follow the rapid velocity fluctuations. The rate of heat loss is equal to the rate of heat generated by 

the electric current through the wire 𝐼2𝑅 , where 𝐼 is the electric current and 𝑅 the electric 

resistance of the wires. In the modern method, the electric resistance is kept constant as far as 

possible by using an electronic feedback system. Instead, the feedback system changes the current 

through the wire as soon as a variation in electric resistance occurs. The response time to the change 

in approach velocity is of the order shorter than 0.1 ms. 

Then we have the relation between 𝐼2 and 𝑣: 

𝐼2𝑅 = 𝛼 +  𝛽 √𝑣 (7.1-6) 

Where the constants 𝛼 and 𝛽 are usually determined by experiment. If we substitute 𝐼 =  𝐼 ̅ +  𝐼′ 
and 𝑣 =  �̅� +  𝑣′ into the above equation, we get the approximate relation between 𝐼′ and  𝑣′: 

(𝐼 ̅ + 𝐼′)2𝑅 =  𝛼 +  𝛽 √�̅� + 𝑣′  
The mean velocity is given by the equation 

𝐼2̅𝑅 = 𝛼 +  𝛽 √�̅� (7,1-7) 

The first approximation when 𝑣′ ≪ �̅�, i.e. 𝐼′ ≪ 𝐼  ̅ gives 

𝐼′ = 
𝛽

4 𝐼�̅�
 
√�̅�

�̅�
  𝑣′ (7.1-8) 

We can measure the fluctuating velocity 𝑣′ by the use of the above relation. 

A simple block diagram of hot-wire anemometer for constant temperature method is shown below. 

 

 

[PROBLEM 7.1-1] A component of turbulent velocity at a position is assumed to be of the form 

𝑣𝑧 = 𝑎 + ∑ 𝑏𝑛 cos 2𝜋𝑛 𝑡∞
𝑛=1         (𝑎, 𝑏1, − − −−, 𝑏𝑛, − − −∶ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) (7.1-P1) 

Calculate the time-averaged velocity and the intensity of turbulence. 

(Solution)  𝑣�̅� = 𝑎,  𝑇𝑢 =   
√𝑣𝑧

′2̅̅ ̅̅ ̅

𝑣𝑧̅̅ ̅
= 

1

√2 𝑎
 √∑ 𝑏𝑛

2∞
𝑛=1  
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Fig.7.1-2 Block diagram of hot-wire anemometer for constant temperature method 
 
 

 
 
Fig.7.1-3 Distribution of velocity fluctuations in a rectangular channel 
 

  As shown in Fig.7.1-3, the turbulence intensity in a rectangular channel becomes maximum near 

the wall. This suggests that the turbulence is produced due to the instability of velocity gradient in 

the vicinity of the pipe wall and diffuses both toward the center and the wall. The fluctuations in the 

streamwise direction, or in the z direction, are greater than the fluctuations in the transverse 

direction, or in the x direction. In the vicinity of the wall, molecular momentum transport becomes 

important, but the fluctuations become very small. Turbulent flow in a pipe also has similar 

tendency.  

  We usually consider turbulent pipe flow by dividing the flow region into three zones. (three-layer 

concept) 

The first layer very close to the wall is called the viscous sublayer, where Newton’s law of viscosity 

can be applied to describe the flow. Since molecular transport is predominant, this sublayer causes 

the main resistance to interphase transport. The second is called the buffer zone or transition zone, 

where the laminar and turbulent effects are comparable and both important. And the third is called 

the region of fully developed turbulence or the turbulent core, where viscous effects are negligibly 

important.  

 

[PROBLEM 7.1-2] Show how to measure the intensity of turbulence by use of hot-wire 
anemometer. 

(Solution) 𝑇𝑢 =  
√𝑣′2̅̅ ̅̅̅

�̅�
=  

4 𝐼 ̅𝑅√𝐼′2̅̅ ̅̅  

𝐼 ̅𝑅− 𝛼
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7.2 Friction Factor and Pressure Drop for Channel Flows 
 
  Most problems of engineering importance occur in the region of turbulent flow.  

Let us consider the momentum transport in turbulent flow inside a circular pipe. Figure 7.2-1 shows 

the time-averaged velocity distribution in the fully-developed region. The flow region can be 

subdivided into three regions: the turbulent core, the buffer zone, and the viscous sublayer near the 

wall.  

 
Fig.7.2-1 Time-averaged velocity profile and three subregions of turbulent pipe flow field 

 

  In the turbulent core, the velocity gradient is very small but momentum is transferred very rapidly 

by virtue of eddy motion. However, close to the wall, eddy motion is suppressed by viscous effect. 

Especially in the viscous sublayer, momentum is transferred by molecular diffusion only. Hence the 

main resistance to momentum transfer takes place in very thin film of the fluid near the wall, where 

most of the total velocity change occurs. 

  Then the momentum flux (i.e. the shear stress) at the pipe wall is given by 

𝜏𝑤 = −𝜇  
𝜕𝑣𝑧̅̅ ̅

𝜕𝑟
|
𝑟=𝑅

 (7.2-1) 

The velocity distribution near the wall can be approximated by 

− 
𝜕𝑣𝑧̅̅ ̅

𝜕𝑟
|
𝑟=𝑅

= 
〈𝑣𝑧̅̅ ̅〉

𝛿
 (7.2-2) 

Here 𝛿 is the thickness of a fictitious viscous film. 

The equation can be rewritten as 

𝜏𝑤 =  𝜇  
〈𝑣𝑧̅̅ ̅〉

𝛿
 (7.2-3) 

The film thickness is a complicated function of the flow condition, the fluid properties, and the 

geometry of the flow system. 

  For flow in channels, pressure drop data are usually desired and correlations given in terms of a 

friction factor. This factor is defined by setting the magnitude of the acting force 𝐹 proportional to 

the dynamic head or the characteristic kinetic energy 𝐾: 

𝐹 = 𝑓 𝐾 𝐴 (7.2-4) 

This is a useful definition because 𝑓 is only a function of 𝑅𝑒 for a given geometrical shape:  

𝑓 = 𝑓(𝑅𝑒) (7.2-5) 

For flow in a circular pipe, 𝐴 is taken to be the wetted surface 2𝜋𝑅 𝐿, 𝐾 is taken to be the kinetic 

energy based on the average velocity, i.e. (1 2⁄ )𝜌〈𝑣�̅�〉
2. The force 𝐹′ acting on the inner wall is 

𝐹′ =  2𝜋𝑅 𝐿 𝜏𝑤. Then 

𝜏𝑤 = 𝑓 
1

2
 𝜌〈𝑣�̅�〉

2 (7.2-6) 
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This indicates that the wall shear stress for pipe flow is proportional to the kinetic energy. 

Combining the equation with the foregoing equation for 𝛿, we get 

𝜇  
〈𝑣𝑧̅̅ ̅〉

𝛿
=  𝑓 

1

2
 𝜌〈𝑣�̅�〉

2 (7.2-7) 

From the equation, 
𝛿

𝐷
= 

2

𝑅𝑒
 

1

𝑓(𝑅𝑒)
 (7.2-8) 

This suggests that the dimensionless film thickness is a function of the Reynolds number only. 

 
Fig.7.2-2 Force balance of inclined circular pipe flow 

 

  According to the force balance on the fluid between 𝑧 = 0 and 𝐿 in the flow direction for fully 

developed flow  

2𝜋𝑅 𝐿 𝜏𝑤 = (𝑃0 − 𝑃𝐿) 𝜋 𝑅2 (7.2-9) 

Substituting the relation into the defining equation for 𝑓     

𝑃0 − 𝑃𝐿 = 4 𝑓 
𝐿

𝐷
 
1

2
 𝜌〈𝑣�̅�〉

2 (7.2-10) 

This is known as the Fanning friction factor. If the pipe is horizontal, the equation becomes 

𝑝0 − 𝑝𝐿 = 4 𝑓 
𝐿

𝐷
 
1

2
 𝜌〈𝑣�̅�〉

2 (7.2-11) 

Once we know as the relation between 𝑓 and 𝑅𝑒, we can calculate the pressure drop. 
 

[EXAMPLE 7.2-1]   

 
Fig.7.2-E1 Force balance on a cylindrical fluid element of radius r 

 
As shown in Fig.7.2-E1, we can set up the force balance on the cylindrical fluid element of length 

𝐿 and radius 𝑟 in the fully developed turbulent flow: 
(𝑃0 − 𝑃𝐿) 𝜋 𝑟2 =  𝜏𝑟𝑧 2𝜋𝑟 𝐿 (7.2-E1) 

Here 𝜏𝑟𝑧 is the total apparent shear stress or the sum of molecular and turbulent contributions. 

Then we divide by the foregoing equation for 𝜏𝑤 
𝜏𝑟𝑧

𝜏𝑤
=  

𝑟

𝑅
 (7.2-E2) 

Note that in a fully-developed pipe flow, whether laminar or turbulent, the total apparent shear 
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stress varies linearly from zero at the pipe axis to a maximum at the wall.  

The friction factor can be measured experimentally by using the following equation: 

𝑓 = 
1

4
 
𝐷

𝐿
 

𝑃0− 𝑃𝐿
1

2
 𝜌〈𝑣𝑧̅̅ ̅〉2 

 (7.2-E3)  

 

7.3 Dimensional Analysis of Friction Factor for Channel Flows 
 
  Next let us consider the friction factor by applying a dimensional analysis to the equation of 

motion. The turbulent effect on momentum transfer becomes of negligible importance in the 

viscous sublayer.  

The following equation is valid in the viscous sublayer, whether the flow is laminar or turbulent: 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑧
+  𝜇 [

1

𝑟

𝜕 

𝜕𝑟
(𝑟 

𝜕𝑣𝑧

𝜕𝑟
) + 

1

𝑟2

𝜕2𝑣𝑧

𝜕𝜃2 + 
𝜕2𝑣𝑧

𝜕𝑧2
] +  𝜌 𝑔𝑧 (7.3-1) 

The equation could be solved with the following conditions: 

𝑣𝑟 = 𝑣𝜃 = 𝑣𝑧 = 0 and 𝜏𝑤 =  𝜏𝑟𝑧|𝑟=𝑅 = −𝜇  
𝜕𝑣𝑧̅̅ ̅

𝜕𝑟
|
𝑟=𝑅

  at 𝑟 = 𝑅 

− 
𝜕𝑝

𝜕𝑧
+  𝜌𝑔𝑧 = 

𝑃0− 𝑃𝐿

𝐿
 (7.3-2) 

Next we introduce the dimensionless quantities 

𝑟∗ = 𝑟 𝐷,   𝑧∗ = 𝑧 𝐷,   𝑣𝑟
∗ = 𝑣𝑟 〈𝑣�̅�〉,   𝑣𝜃

∗ = 𝑣𝜃 〈𝑣�̅�〉,   𝑣𝑧
∗ = 𝑣𝑧 〈𝑣�̅�〉,   𝑝

∗ = (𝑃0 − 𝑃𝐿)  𝜌〈𝑣�̅�〉
2⁄⁄⁄⁄⁄⁄

  

 (7.3-3) 

According to the definition of friction factor 

𝜏𝑤 = 𝑓 
1

2
 𝜌〈𝑣�̅�〉

2 (7.3-4) 

Then the friction factor has the following form: 

𝑓 = 
𝜏𝑤

1

2
 𝜌〈𝑣𝑧̅̅ ̅〉2

=  
−𝜇  

𝜕𝑣𝑧̅̅̅̅

𝜕𝑟
|
𝑟=𝑅

1

2
 𝜌〈𝑣𝑧̅̅ ̅〉2

 = - 
2

𝑅𝑒
  

𝜕𝑣𝑧
∗

𝜕𝑟∗
|
𝑟∗=1 2⁄

 (7.3-5) 

For steady state, the above momentum equation is made dimensionless 

 𝑣𝑟
∗ 𝜕𝑣𝑧

∗

𝜕𝑟∗ + 
𝑣𝜃

∗

𝑟∗

𝜕𝑣𝑧
∗

𝜕𝜃
+ 𝑣𝑧

∗ 𝜕𝑣𝑧
∗

𝜕𝑧∗ = − 
𝜕𝑝∗

𝜕𝑧∗ + 
1

𝑅𝑒
 [

1

𝑟∗

𝜕 

𝜕𝑟∗ (𝑟
∗  

𝜕𝑣𝑧
∗

𝜕𝑟
) + 

1

𝑟∗2

𝜕2𝑣𝑧
∗

𝜕𝜃2 + 
𝜕2𝑣𝑧

∗

𝜕𝑧∗2
] (7.3-6) 

where 𝑅𝑒 = 𝐷〈𝑣�̅�〉 𝜌/𝜇. 
This equation is too difficult to solve analytically. But the solution can be expected to be of the form 

𝑣𝑟
∗ =  𝑣𝑟

∗(𝑟∗, 휃, 𝑧∗, 𝑅𝑒),   𝑣𝜃
∗ =  𝑣𝜃

∗(𝑟∗, 휃, 𝑧∗, 𝑅𝑒), 𝑣𝑧
∗ =  𝑣𝑧

∗(𝑟∗, 휃, 𝑧∗, 𝑅𝑒) (7.3-7) 

We assume the fully-developed, axisymmetric velocity field: 
𝜕𝑣𝑧

∗

𝜕𝑧∗ = 0  and  
𝜕𝑣𝑧

∗

𝜕𝜃
= 0 

Then we get 

𝑣𝑧
∗ =  𝑣𝑧

∗(𝑟∗, 𝑅𝑒) (7.3-8) 

The velocity gradient at the wall 
𝜕𝑣𝑧

∗

𝜕𝑟∗
|
𝑟∗=1 2⁄

 is a function of 𝑅𝑒 only. Therefore the friction factor 

is found to be a function of 𝑅𝑒 alone in the fully-developed velocity field: 

𝑓 = 𝑓(𝑅𝑒) (7.3-9) 

It is suggested that it is sufficient to plot only a single curve of 𝑓 against 𝑅𝑒 rather than determine 

how 𝑓 varies for separate values of 𝐷, 〈𝑣�̅�〉, 𝜌, 𝜇. 

Fig.7.3-1 gives the friction factor chart or empirical correlation of 𝑓 and 𝑅𝑒 for circular tube flow.  
For laminar flow, the friction factor can be derived theoretically from the Hagen-Poiseuille law: 

𝑓 =  
16

𝑅𝑒
 (7.3-10) 

The turbulent curve for hydraulically smooth tubes is curve-fitted from 𝑅𝑒 = 2.1 ×  103  to 

5 × 106 by the equation: 
1

√𝑓
= 4.0  𝑙𝑜𝑔10(𝑅𝑒 √𝑓) − 0.40 (7.3-11) 
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A similar expression exists for 2.1 ×  103  < 𝑅𝑒 < 5 ×  105: 

𝑓 =  
0.0791

𝑅𝑒1 4⁄  (7.3-12) 

This is known as the Blasius formula. 

 

 
 

Fig.7.3-1  Friction factor for smooth tubes 
 
 

If pipes are rough, then in the turbulent flow higher pressure drop is required for a given flow rate 

than that expected for smooth pipes. The friction factor for rough pipes is a function of not only the 

Reynolds number but also the relative roughness 𝜖 𝐷⁄ , where 𝜖 is the height of a protrusion. 

If the roughness-element height 𝜖 does not extend beyond the viscous sublayer, the roughness has 
little effect on the turbulent-flow profiles. This condition is called “hydraulically smooth.” If the 

roughness extends partly into the buffer layer, there is an added resistance to flow due to the form 

drag. 

 

[PROBLEM 7.3-1] Gasoline (𝜇 = 0.4 𝑐𝑃, 𝜌 = 710 𝑘𝑔 𝑚3⁄ ) is to be delivered at 10 m3/min 

through a smooth straight pipe (400 mmID, length 𝐿 = 2 𝑘𝑚) from a refinery to an airport. 

Calculate the pump horse power if the pump operates at an efficiency of 70%. For the case of 

relative roughness 𝜖 𝐷⁄ = 0.001, what is the power requirement of the pump?  

[PROBLEM 7.3-2] Water (at 20℃) flows in a circular tube of 50 mmID at a flow rater of 

0.15  𝑚3/𝑚𝑖𝑛 . Calculate the thickness of the viscous film defined by Eq.(7.2-8). 

 
 

7.4 Mechanical Energy Loss 
 

7.4-1 Mechanical energy losses in pipelines 
  As shown in Fig.7.4-1, we set up the macroscopic momentum balance over the inclined pipe 

section between planes 1 and 2. 

− 𝐹 =  𝑤1〈𝑣1⃗⃗⃗⃗ 〉 − 𝑤2〈𝑣2⃗⃗⃗⃗ 〉 −  𝑝1𝑛1⃗⃗⃗⃗  S− 𝑝2𝑛2⃗⃗⃗⃗ S +  ρV𝑔  (7.4-1) 

𝐹 =  𝜋𝐷𝐿 𝜏𝑤, 〈𝑣1⃗⃗⃗⃗ 〉 = 〈𝑣2⃗⃗⃗⃗ 〉,    (𝑃1 − 𝑃2)𝑆 = (𝑝1 − 𝑝2)𝑆 +  𝜌𝑉𝑔 𝑐𝑜𝑠 휃 

Here 𝑃 = 𝑝 −  𝜌𝑔𝑧 𝑐𝑜𝑠 휃 
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Then the momentum balance equation reduces to 

𝐹 =  𝜋𝐷𝐿 𝜏𝑤 =  (𝑃1 − 𝑃2)𝑆 (7.4-2) 
 

 
Fig.7.4-1  Macroscopic momentum balance for turbulent flow in an inclined pipe section 

 

Next we set up the macroscopic mechanical energy balance over the same pipe section: 
∆𝑃

𝜌
+ ∆

1

2
〈𝑣〉2 = −𝐹𝑟𝑚 − 𝑊𝑚 (7.4-3) 

In this case  𝑊𝑚 = 0,  〈𝑣1〉 =  〈𝑣2〉 
𝑃1− 𝑃2

𝜌
= 𝐹𝑟𝑚 (7.4-4) 

Comparing Eq.(7.2-26) to Eq.(7.2-24), we get 

𝐹 =  𝜌 𝐹𝑟𝑚𝑆 (7.4-5) 
From the definition of friction factor 

F = f 
1

2
 𝜌〈𝑣〉2𝜋𝐷𝐿 (7.4-6)  

Finally we get 

𝐹𝑟𝑚 = 4𝑓 
𝐿

𝐷
 
1

2
 〈𝑣〉2 (7.4-7) 

This is the defining equation of friction factor for turbulent pipe flow. 

Once the friction factor is given in terms of the Reynolds number, we can calculate from this 

equation the mechanical energy loss (friction loss) over the straight pipe section of length 𝐿. 
  In a general flow system the pipeline may not be of a uniform diameter and/or there may be 

various kinds of valves, elbows, and fittings which will cause mechanical energy losses. For most 

calculations, losses caused by fittings and valves are treated by the equivalent length model. This 

model is based on the assumption of high Reynolds number. Equivalent length 𝐿𝑒𝑞 for fittings and 

valves is defined as a pipe length that would give the same flow rate. Equivalent lengths for 

standard-size fittings and valves are given as 

𝐹𝑟𝑚 = 4𝑓 
𝐿𝑒𝑞

𝐷
 
1

2
 〈𝑣〉2 (7.4-8) 

 Then we obtain the useful equation of mechanical energy balance for isothermal system of 

turbulent flows (This is called the modified Bernoulli equation). 

∆
1

2
 〈𝑣〉2 +  𝑔∆ℎ + ∫

𝑑𝑝

𝜌
+ 𝑊𝑚 + ∑ (4𝑓 

𝐿

𝐷
 
1

2
 〈𝑣〉2)

𝑖
+ ∑ (4𝑓 

𝐿𝑒𝑞

𝐷
 
1

2
 〈𝑣〉2)

𝑗
= 0𝑗  𝑖

𝑝2

𝑝1
 (7.4-9) 

 

7.4-2 Mechanical energy losses due to pipe fittings1,2) 
We can also use the friction loss factor model for fittings, valves, and enlargements and contractions 

of the flow cross section: 

𝐹𝑟𝑚 =  𝜍 
1

2
 〈𝑣〉2 (7.4-10) 

where 𝜍 is the friction loss factor, dimensionless. This model is based on the fact that the friction 
factor of rough pipes becomes almost constant in the range of turbulent flow.  

(1) Sudden expansion of the flow cross section 
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𝐹𝑟𝑚 = 
1

2
 〈𝑣〉2    (1 − (

𝐷1

𝐷2
)
2
)
2

   (7.4-11) 

Here 〈𝑣〉 is the upstream velocity, 𝐷1 the diameter of upstream pipe, and 𝐷2 the diameter of 

downstream pipe. 

(2) Sudden expansion into very large regions, e.g. tanks 

𝐹𝑟𝑚 = 
1

2
 〈𝑣〉2 (7.4-12) 

   This implies 𝜍 = 1 for the case (𝐷2 𝐷1  →  ∞⁄ ). 
 

Typical values for friction loss factor and/or equivalent length are listed below. 

 

(1) Sudden contraction at a sharp-edged entrance 

 
 

𝐴2 𝐴1⁄  0 0.2 0.4 0.6 0.8 1.0 

𝜍 0.5 0.45 0.36 0.21 0.07 0 

 

(2) Contraction at a round entrance with a radius of rounding greater than 15%  

of the pipe diameter D 

 

 
(3) Sudden enlargement at a sharp-edged exit 

 

 
 

(4) Valves      we use the equation for 𝜍:  𝐹𝑟𝑚 =  𝜍 
1

2
 〈𝑣2〉

2 

(i) Gate valve 

 
 

(ii) Diaphragm valve      

 
                             

 
 

 
 

 

𝐹𝑟𝑚 =  𝜍 
1

2
 〈𝑣2〉

2 

 

𝜍 = 0.04 

 

𝐹𝑟𝑚 =  𝜍 
1

2
 〈𝑣1〉

2 

 

𝜍 =  (1 − 
𝐴1

𝐴2
)
2

 

Gate valve Fully 

open 

3/4 open 1/2 open 1/4 open 

𝜍 0.17 0.9 4.5 24.0 

𝐿𝑒𝑞/𝐷 7 40 200 800 

 

Diaphragm 

valve 

Fully open 3/4 open 1/2 open 1/4 open 

𝜍 2.3 2.6 4.3 21.6 

𝐿𝑒𝑞/𝐷 125 140 235 1140 
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(iii) Globe valve 

 
 
 

 

 
 

 

(iv) Check valve (fully open only) 
 

 
 

 

(5) Pipe fittings
1, 2)

 

Standard tee 
 
 

 
 

 
 
 

                                                                                   
 
 
 

 

Standard elbow 
 

 
 
 

 
 
 

 

Bend 
 

 
 
 

 
 
 

 
 

 

Bevel seat Fully open 1/2 open 
𝜍 6.0 9.5 

 

Composition seat Fully open 1/2 open 
𝜍 6.0 8.5 

𝐿𝑒𝑞/𝐷 330 470 

 Plug disk open 3/4 open 1/2 open 1/4 open 
𝜍 9.0 13.0 36.0 112.0 

 

Check valve swing disk ball 
𝜍 2.0 10.0 65 

𝐿𝑒𝑞/𝐷 110 500 3500 

 

          

𝜍 0.4 1.3 1.5 1.0 
𝐿𝑒𝑞/𝐷 20 60 70 46 

 

 
 

𝜍 0.74 0.3 
𝐿𝑒𝑞/𝐷 32 15 

 

  

90˚ bend 180˚ bend 
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  90˚ bend 

 
 

 
 

  180˚ bend  𝑅 ≫ 𝐷 

  𝜍 = 1.2    
𝐿𝑒𝑞

𝐷
= 50 

                                                                                                        
 

 

 

 

[EXAMPLE 7.4-1]  An example of local exhaust system is shown in Fig.7.4-E1. 

A canopy type of hood draws in the air contaminated with lead fumes at a flow rate of 

300 𝑚3 ℎ⁄ . The diameter of the pipeline is 100 𝑚𝑚. In gas flow we do not need to 

consider the potential energy change. The air has a density of 0.89 𝑘𝑔 𝑚3⁄ and a 

viscosity of 0.022 cp or 2.2 × 10−5  kg m s⁄ . The pressure drop at the hood is expressed as 

∆𝑝ℎ𝑜𝑜𝑑 =  𝜍 
1

2
 𝜚〈𝑣〉2 (7.4-E1) 

Here 〈𝑣〉 is the downstream velocity. The friction loss factor for the hood is given by 

𝜍 = 0.4.  

The pressure drop at the compact electrostatic precipitator is Δ𝑝𝐸𝑃 = 30 𝑚𝑚 𝐻2𝑂 for 

the given flow rate. The pipeline has five standard elbows and an exhaust stack. The 

exhaust stack has pressure drop of 7 𝑚𝑚 𝐻2𝑂. Calculate the power requirement of the 

turbo-blower assuming 60% efficiency. 

 
Fig.7.4-E1  Pipeline of local exhaust system 

 

 

(Solution)  The average velocity in the pipe is 

〈𝑣〉 =  
𝑄

(𝜋 4)𝐷2⁄
= (

300 𝑚3

3600 𝑠
)

4

𝜋(0.10 𝑚)2
= 10.6 𝑚 𝑠⁄  (7.4-E2) 

 

The Reynolds number shown below indicates that the flow is turbulent. 

 

 

𝑅𝑒 =  
𝐷〈𝑣〉𝜚

𝜇
=  

(0.10 𝑚)(10.6 𝑚 𝑠)(0.89 𝑘𝑔 𝑚3)⁄⁄

2.2 × 1 − 0−5  𝑘𝑔 𝑚 𝑠)⁄
= 4.3 × 104 > 2,100 

The reference planes are chosen outside the hood and exhaust stack. If we assume constant density 

R/D 0.5 1.0 2.0 4.0 8.0 
𝐿𝑒𝑞/𝐷 36 16.5 10 10 14.5 

 

1. Perry, R.H. and Chilton, C.H., Chemical Engineers’ Handbook, McGraw-Hill, New York, 5th ed. (1973)  
2. Lydersen, A. L., Fluid Flow and Heat Transfer, John Wiley, New York, p.9(1979) 
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and viscosity, the modified Bernoulli equation becomes 
1

2
(〈𝑣2〉

2 − 〈𝑣1〉
2) + 𝑔(ℎ2 − ℎ1) + (𝑝2 − 𝑝1) 𝜌 + 𝑊𝑚 + ∑ (4𝑓 

𝐿

𝐷
 
1

2
 〈𝑣〉2)

𝑖
𝑖⁄   

  

                                    + ∑ (4𝑓 
𝐿𝑒𝑞

𝐷
 
1

2
 〈𝑣〉2)

𝑗
+ (∆𝑝𝐻 + ∆𝑝𝐸𝑃 + ∆𝑝𝐸𝑆) 𝜌⁄ = 0𝑗  (7.4-E3) 

From the chart of f vs. Re, the friction factor 𝑓 = 0.0055   for   𝑅𝑒 =  4.3 × 104 

The pipeline has a constant pipe diameter. The total length of straight pipe sections is given as 

𝐿𝑡𝑜𝑡𝑎𝑙 = (2 + 20 + 2 + 5 + 10 + 1 + 5 + 5)𝑚 = 50 𝑚  
The pressure drop at the hood is 

∆𝑝𝐻 =  휁 
1

2
 𝜚〈𝑣〉2 = (0.4)(1 2)(0.89)(10.6)2 = 20.0 𝑘𝑔 𝑚 𝑠2⁄⁄  (7.4-E4) 

From the above table, the equivalent length for the standard elbow is given by 𝐿𝑒𝑞 = 3.20 𝑚 for 

= 0.10 𝑚 . 

Δ𝑝𝐸𝑃 = 30 𝑚𝑚 𝐻2𝑂 = (1000𝑘𝑔 𝑚3⁄ )(9.8 𝑚 𝑠2)(0.03 𝑚) = 294 𝑘𝑔 𝑚 𝑠2⁄⁄  (7.4-E5) 

Δ𝑝𝐸𝑆 = 7 𝑚𝑚 𝐻2𝑂 = 68.6 𝑘𝑔 𝑚 𝑠2⁄  (7.4-E6) 

At planes 1 and 2  〈𝑣1〉 = 〈𝑣2〉 = 0   and  𝑝2 = 𝑝1 

We neglect the potential energy effect: 𝑔(ℎ2 − ℎ1) ≅ 0 
Then the Bernoulli equation reduces to 

− 𝑊𝑚 = 
4𝑓

𝐷
 
1

2
 〈𝑣〉2(∑ 𝐿𝑖 + ∑ 𝐿𝑒𝑞𝑗𝑗𝑖 ) +

∆𝑝𝐻+ ∆𝑝𝐸𝑃+ ∆𝑝𝐸𝑆

𝜌
= 

4(0.0055)

0.10
 
1

2
 10.62 (50 + 5 × 3.20) +

20+294+68.6

0.89
= 816 + 430 = 1,246 𝑚2 𝑠2⁄  (7.4-E7)   

Therefore the power requirement can be calculated as 

− 𝑊 = 
𝑤(−𝑊𝑚)

𝜂
=  

𝜌𝑄(−𝑊𝑚)

𝜂
= 

(0.89)(300 3600)(1246)⁄

0.60
=  154 𝑘𝑔 𝑚2 𝑠3 = 0.154 𝑘𝑊⁄  (7.4-E8) 

 

 

7.4-3 Non-circular channels (Equivalent diameter) 
  The friction loss in long straight channels of noncircular cross section can be estimated by using 

the equations for circular pipes if the equivalent diameter as the characteristic length and the 

average velocity as the characteristic velocity are used for the Reynolds number.  

The equivalent diameter 𝐷𝑒𝑞 is defined as the ratio of four times the cross-sectional area of the 

channel to the wetted perimeter of the channel: 

𝐷𝑒𝑞 = 
4 × 𝑆𝑐

𝐿𝑤𝑝
 (7.4-13) 

Naturally for the special case of a circular pipe, the equivalent diameter becomes coincident with 

the pipe diameter. The equivalent diameter is a useful parameter for turbulent flow, but the simple 

equivalent-diameter rule does not apply to laminar flow without correction factor.  

The equivalent diameter concept is based on the following information. For turbulent flow the 

velocity distribution over most of the flow cross-section is flat and most of the velocity change is in 

the viscous sublayer near the wall. Therefore, as long as the wall shear stress around the periphery 

is almost uniform, the wall shear stress should be independent of the flow cross-sectional shape. 

The Reynolds number is defined as 

𝑅𝑒𝑒𝑞 = 
𝐷𝑒𝑞 𝐺

𝜇
 (7.4-14) 

Here 𝐺 =  𝜌 〈𝑣〉. 
 

 

[EXAMPLE 7.4-2]   

Water is flowing at an average velocity 〈𝑣〉 = 1.5 𝑚 𝑠⁄  in a horizontal annular space formed 

between two coaxial pipes shown below. The inner pipe has an outside diameter of 0.10 𝑚 and the 

outer pipe has an inside diameter of 0.20 𝑚. The temperature of water is 20 ˚C.  Assuming the 
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fully-developed flow and the smooth wetted surfaces, calculate the pressure drop per unit pipe 

length. 

 

(Solution)  The density and viscosity of water are 
𝜌 = 1,000 𝑘𝑔 𝑚3⁄  and 𝜇 = 1 𝑐𝑃 = 1 × 10−3  𝑘𝑔 𝑚 𝑠⁄  

The equivalent diameter of the annulus is  

 

𝐷𝑒𝑞 = 
4(𝜋 4⁄ )(𝐷𝑜

2 − 𝐷𝑖
2)

𝜋(𝐷𝑜 + 𝐷𝑖)
=  𝐷𝑜 − 𝐷𝑖 = 0.2 − 0.1 = 0.1 𝑚 

The Reynolds number is 

𝑅𝑒𝑒𝑞 = 
𝐷𝑒𝑞𝜌〈𝑣𝑧〉

𝜇
=  

(0.10)(1000)(1.5)

1 × 10−3 = 1.5 ×  105   (turbulent flow) 

From the friction factor chart for circular pipes 

𝑓 = 0.0041 at 𝑅𝑒𝑒𝑞 =  1.5 × 105 

From the defining equation of Fanning friction factor for a horizontal pipe 
𝑝0 − 𝑝𝐿

𝐿
= 4 𝑓 

1

𝐷𝑒𝑞
 
1

2
 𝜌〈𝑣𝑧〉

2 =  
4(0.0041)

0.1
 
1

2
 (1000)(1.5)2 = 184.5 𝑃𝑎 𝑚⁄  

 

 

7.5 Drag Force on Submerged Objects 
 

  Similarly to the defining equation Eq.(7.2-4) for a circular tube flow, the friction factor (called 

“drag coefficient”) for submerged objects can be defined as 

𝐹𝐷 = 𝐶𝐷 𝐾 𝐴 (7.5-1) 

where 𝐹𝐷 is the drag force, 𝐾 the kinetic energy of the surrounding fluid flow as (1 2⁄ )𝜌𝑣∞
2, 

and 𝐴 the characteristic area taken as the projected area of the submerged object. 

Usually the coefficient 𝐶𝐷 is called the drag coefficient instead of the friction factor. As in pipe 
flows, the drag coefficient is a function of the Reynolds number alone: 

𝐶𝐷 = 𝐶𝐷(𝑅𝑒) (7.5-2) 

Let us consider a fluid flow past a sphere of diameter 𝐷𝑝. In this case, the kinetic energy is 

𝐾 =  (1 2⁄ )𝜌𝑣∞
2    and characteristic area is 𝐴 = (𝜋 4⁄ )𝐷𝑝

2. The Reynolds number is defined 

as 𝑅𝑒 =  𝐷𝑝𝑣∞𝜌 𝜇⁄ . 

 
Fig.7.5-1. Variation of drag coefficient with Reynolds number for a single sphere  

 

82                       Interphase Momentum Transport 



For a single sphere surrounded by the fluid flow of velocity 𝑣∞, a chart of 𝐶𝐷 versus Re shown 
in Fig.7.5-1 is available. As distinct from a circular tube flow, there is no sharp transition from 

laminar to turbulent flow. However as the flow rate or 𝑣∞ increases, there is an increase in the 

amount of vortical motion behind the sphere. The sudden drop in the curve at about 𝑅𝑒 = 2 × 105 

results from the shift of the separation position of the boundary layer from the front to the rear side 

of the sphere. This sphere is subjected to both friction drag and form drag. 

The following set of equations is the representative correlations obtained from many 

experimental data: 

(1)  𝐶𝐷 =
24

𝑅𝑒
                      𝑅𝑒 < 0.1 (7.5-3) 

(2)  𝐶𝐷 =
18.5

𝑅𝑒3 5⁄                      2 < 𝑅𝑒 < 5 × 102 (7.5-4) 

(3)  𝐶𝐷 ≅ 0.44         5 × 102  < Re  < 2 × 105 (7.5-5) 

 The first equation comes from Stokes’s law given by 

𝐹𝐷 =  3𝜋𝜇𝐷𝑝𝑣∞ (7.5-6) 

The second equation is an approximate equation in the intermediate region. 

The third equation known as the Newton’s law gives an approximately constant. This suggests that 

the drag force is proportional to the kinetic energy of the fluid flow.  
    
 
 
Nomenclature 
  

𝐷 pipe inside diameter, [m] 

𝐷𝑒𝑞 equivalent diameter, [m] 

𝐹 external force, [N] 

𝐹𝑟 friction loss, [m2/s2] 

𝑓 friction factor, [ - ] 

𝐺 mass velocity, [kg/m2s] 

𝐻 height of rectangular channel, [m] 

𝐼 electric current, [A] 

𝐿 pipe length, [m]  

𝐿𝑒𝑞 equivalent length, [m] 

𝑝 pressure, [Pa] 

𝑅 electric resistance of hot wire, [Ω] or Wheatstone bridge resistance, [Ω] 

𝑅𝑒 Reynolds number, [ - ] 

𝑇𝑢 turbulence intensity, [ - ] 

𝑡 time, [s] 

𝑣𝑟 , 𝑣𝜃 , 𝑣𝑧 velocity component in cylindrical coordinates 

𝑊 power requirement, [W] 

𝑦 distance from wall, [m] 

𝛿 thickness of fictitious viscous film, [m] 

𝜍 friction loss factor, [ - ] 

𝜇 viscosity, [kg/m s] 

𝜏𝑤 wall shear stress, [N/m2] 

 
Superscripts 

´ fluctuation 
̅  time-averaged 

 

Brackets 
〈 〉 averaged over flow cross section  
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CHAPTER 8 
 

INTERPHASE ENERGY TRANSPORT 
 
 

8.1 Turbulent Heat Transfer and Definition  
of Heat Transfer Coefficient  

 

 There are three distinct ways in which heat may transfer from a source to a receiver: conduction, 

convection, and radiation. Conduction is the transfer of thermal energy due to molecular motion 

independent of net bulk flow of the material. We already know that the Fourier’s law describes heat 

transfer by conduction. Radiation is the transfer of energy due to the emission and subsequent 

absorption of electromagnetic radiation. 

 Convection is the transfer of energy due to fluid motion or bulk flow of the fluid. Let us consider 

the heat flow from a flowing fluid to a pipe wall. 

As shown in Fig.8.1-1, instantaneous fluid temperature is also fluctuating in a turbulent flow field 

where convective heat transfer takes place. Therefore the following time-averaged temperature is 

used for analysis of convective heat transfer. 

�̅� =  
1

𝑡0
 ∫ 𝑇 𝑑𝑡

𝑡+𝑡0
𝑡

 (8.1-1) 

 
Fig.8.1-1 Instantaneous fluid temperature in a turbulent flow field 

 
Fig.8.1-2 Time-averaged temperature profile in the neighborhood of a heat transfer solid surface 



 

For the case of forced convective heat transfer in a turbulent pipe flow, the time-averaged 

temperature profile, as shown in Fig,8.1-2, is formed in the neighborhood of the solid surface for 

heat transfer. Convective and conductive heat transfers are intimately related because heat 

transferred by convection ultimately involves conduction. 

 In the turbulent core, the time-averaged temperature has almost uniform distribution due to mixing 

by eddy motion. The temperature gradient is very small but energy is transferred very rapidly. 

However in the viscous sublayer near the pipe wall, such an eddy motion is suppressed to have 

steep linear temperature distribution by molecular transport effect only. The buffer zone has a 

transitional temperature profile, where the turbulent effect becomes of comparable order to 

molecular transport effect.  

Hence the main resistance to heat transfer takes place in very thin film of the fluid near the wall. 

Then the heat-flux through the film toward the pipe wall can be expressed at the heat transfer 

surface as 

.𝑞𝑤 = 𝑞𝑟|𝑟=𝑅 = − 𝜅 
𝜕𝑇

𝜕𝑟
|
𝑟=𝑅

 (8.1-2) 

Introducing a thermal film thickness 𝛿𝑇, this temperature gradient can be approximated as 

𝑞𝑟|𝑟=𝑅 =  𝜅 
𝑇𝑚− 𝑇𝑤

𝛿𝑇
 (8.1-3) 

where 𝑇𝑚 is the mixed mean temperature (bulk temperature), 𝑇𝑤 the wall temperature, and 𝛿𝑇 
the thickness of an fictitious conduction film. The definition of the mixed mean temperature is 

𝑇𝑚 − 𝑇𝑤 = 
∫ 2𝜋𝑟 𝑣𝑧𝜌𝐶𝑝(𝑇− 𝑇𝑤)𝑑𝑟
𝑅
0

∫ 2𝜋𝑟 𝑣𝑧𝜌𝐶𝑝 𝑑𝑟
𝑅

0

 (8.1-4) 

Then the equation becomes 

𝑞𝑤 = 
𝜅

𝛿𝑇
(𝑇𝑚 − 𝑇𝑤) = ℎ (𝑇𝑚 − 𝑇𝑤)  (𝑇𝑚 > 𝑇𝑤) 

𝑞𝑤 = 
𝜅

𝛿𝑇
(𝑇𝑤 − 𝑇𝑚) = ℎ (𝑇𝑤 − 𝑇𝑚)           (𝑇𝑚 < 𝑇𝑤) (8.1-5) 

This is one of the defining equations for heat transfer coefficient: 

ℎ =  𝜅 𝛿𝑇⁄  (8.1-6) 
The film thickness is a complicated function of the flow condition, the fluid properties, and the 

geometry of the flow system, that is, a function of 𝑅𝑒 and 𝑃𝑟. Therefore the heat transfer 

coefficient can be expressed to be a function of the same parameters. The heat transfer coefficient 

has units of 𝐽 𝑚2 𝑠 𝐾⁄  in SI unit system. 
 
 

8.2 Application of the Equation of Energy  
for Turbulent Heat Transfer 

 
  The turbulent effect on heat transfer becomes of negligible importance in the viscous sublayer. 

The following equations are valid in the viscous sublayer, whether the flow is laminar or turbulent: 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑧
+  𝜇 [

1

𝑟

𝜕 

𝜕𝑟
(𝑟 

𝜕𝑣𝑧

𝜕𝑟
) + 

1

𝑟2

𝜕2𝑣𝑧

𝜕𝜃2 + 
𝜕2𝑣𝑧

𝜕𝑧2
] (8.2-1) 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑟

𝜕𝑇

𝜕𝑟
+ 

𝑣𝜃

𝑟

𝜕𝑇

𝜕𝜃
+ 𝑣𝑧

𝜕𝑇

𝜕𝑧
)  =  𝜅 [

1

𝑟

𝜕 

𝜕𝑟
(𝑟 

𝜕𝑇

𝜕𝑟
) + 

1

𝑟2

𝜕2𝑇

𝜕𝜃2 + 
𝜕2𝑇

𝜕𝑧2
] (8.2-2) 

In the last equation the viscous dissipation term and the pressure work term have been 

neglected. 
These equations could be solved with the following boundary conditions 

𝑣𝑧 = 𝑣𝑟 = 𝑣𝜃 = 0  and  − 𝜇 
𝜕𝑣𝑧

𝜕𝑟
= 𝜏𝑤    at 𝑟 = 𝑅 (8.2-3) 

𝑇 =  𝑇𝑤   and   − 𝜅
𝜕𝑇

𝜕𝑟
= 𝑞𝑤    at 𝑟 = 𝑅 (8.2-4) 

According to the definition of heat transfer coefficient 

𝑞𝑟|𝑟=𝑅 = 𝑞𝑤 = ℎ (𝑇𝑤 − 𝑇𝑚) (8.2-5) 
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That is 

ℎ =  
1

𝑇𝑤− 𝑇𝑚
 (− 𝜅 

𝜕𝑇

𝜕𝑟
)|

𝑟=𝑅
 (8.2-6) 

Then let us start with dimensional analysis for application of the equation of energy transport. 

The following dimensionless quantities should be introduced: 

𝑟∗ =  𝑟 𝐷,   𝑧∗ = 𝑧 𝐷,   𝑇∗ = (𝑇𝑤 − 𝑇) (𝑇𝑤 − 𝑇𝑚),    𝑣𝑟
∗ = 𝑣𝑟 〈𝑣𝑧〉,   ⁄⁄⁄⁄  

𝑣𝜃
∗ = 𝑣𝜃 〈𝑣𝑧〉, 𝑣𝑧

∗ = 𝑣𝑧 〈𝑣𝑧〉,   ⁄   ⁄ 𝑝∗ = (𝑝 − 𝑝0) (𝜌 〈𝑣𝑧〉
2)⁄  

〈𝑣𝑧〉 is the representative velocity averaged over the cross section. 
The above energy equation is made dimensionless 

𝑣𝑟
∗  

𝜕𝑇∗

𝜕𝑟∗ + 
𝑣𝜃

∗

𝑟∗

𝜕𝑇∗

𝜕𝜃
+ 𝑣𝑧

∗  
𝜕𝑇∗

𝜕𝑧∗ =  
1

𝑅𝑒 𝑃𝑟
 [

1

𝑟∗  
𝜕 

𝜕𝑟∗ (𝑟
∗  

𝜕𝑇∗

𝜕𝑟∗) + 
1

𝑟∗2  
𝜕2𝑇∗

𝜕𝜃2 + 
𝜕2𝑇∗

𝜕𝑧∗2
] (8.2-7) 

where 𝑅𝑒 =  𝜌 𝐷 〈𝑣𝑧〉 𝜇⁄   and  𝑃𝑟 = 𝐶𝑝𝜇 𝜅⁄  

Note that these dimensionless parameters 𝑅𝑒 and 𝑃𝑟 appear automatically in the dimensional 

analysis. 

The equation of motion is also made dimensionless for steady state: 

𝑣𝑟
∗  

𝜕𝑣𝑧
∗

𝜕𝑟∗ + 
𝑣𝜃

∗

𝑟∗

𝜕𝑣𝑧
∗

𝜕𝜃
+ 𝑣𝑧

∗  
𝜕𝑣𝑧

∗

𝜕𝑧∗ = − 
𝜕𝑝∗

𝜕𝑧∗ + 
1

𝑅𝑒 
 [

1

𝑟∗  
𝜕 

𝜕𝑟∗ (𝑟
∗  

𝜕𝑣𝑧
∗

𝜕𝑟∗) + 
1

𝑟∗2  
𝜕2𝑣𝑧

∗

𝜕𝜃2 + 
𝜕2𝑣𝑧

∗

𝜕𝑧∗2
] (8.2-8) 

In general, this equation is too difficult to solve analytically. However the velocity solution can be 

expected to be of the form: 

𝑣𝑟
∗ = 𝑣𝑟

∗(𝑟∗, 휃, 𝑧∗, 𝑅𝑒)    

𝑣𝜃
∗ = 𝑣𝜃

∗(𝑟∗, 휃, 𝑧∗, 𝑅𝑒)   (8.2-9) 

𝑣𝑧
∗ = 𝑣𝑧

∗(𝑟∗, 휃, 𝑧∗, 𝑅𝑒)     
If the above dimensionless energy equation could be solved by substituting the dimensionless 

velocity solutions. Therefore the temperature solution can also be expected to be of the form:  

𝑇∗ = 𝑇∗(𝑟∗, 휃, 𝑧∗, 𝑅𝑒, 𝑃𝑟) (8.2-10) 

We assume the fully-developed, axisymmetric temperature field 
𝜕𝑇∗

𝜕𝑧∗ =  0   and   
𝜕𝑇∗

𝜕𝜃
= 0 

Then we get 𝑇∗ = 𝑇∗(𝑟∗, 𝑅𝑒, 𝑃𝑟)  

The temperature gradient at the wall 
𝜕𝑇∗

𝜕𝑟∗
|
𝑟∗=1/2

 should be a function of 𝑅𝑒 and 𝑃𝑟 only. 

The boundary condition is made dimensionless: 

𝑁𝑢 = 
ℎ 𝐷

𝜅
= 

𝜕(𝑇𝑤−𝑇)

𝜕𝑟
|
𝑟=𝑅

(𝑇𝑤− 𝑇𝑚) 𝐷⁄
= − 

𝜕𝑇∗

𝜕𝑟∗
|
𝑟∗= 

1

2

 (8.2-11) 

The new dimensionless parameter is known as the Nusselt number.  The above equation states that 

the Nusselt number is the dimensionless temperature gradient at the heat transfer surface. Therefore 

the Nusselt number is found to be a function of dimensionless parameters 𝑅𝑒 and 𝑃𝑟 in the 
fully-developed temperature field. Note that the Nusselt number gives a local heat transfer 

coefficient. 

𝑁𝑢 = 𝑁𝑢 (𝑅𝑒, 𝑃𝑟) (8.2-12) 

Similarly the Nusselt number averaged over the pipe length is also a function of 𝑅𝑒 and 𝑃𝑟. 
It may be convenient to use a new dimensionless group defined as 

𝑗𝐻 = 
ℎ

𝐶𝑝𝐺
(
𝐶𝑝𝜇

𝜅
)
𝑓

2 3⁄

= 𝑁𝑢 𝑅𝑒−1𝑃𝑟− 1 3⁄  (8.2-13) 

where 𝐺 is mass velocity = (fluid density) x (average fluid velocity) 𝜌〈𝑣〉. 
This is called the j-factor for heat transfer. This parameter is often used when the convective 

transport mechanism is discussed among momentum, energy, and mass transfer.  

The subscript f denotes properties evaluated at the film temperature  

𝑇𝑓 = 
𝑇𝑚 + 𝑇𝑤

2
 

For large temperature changers, the variation in 𝜇 should be taken into account.  
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Fig.8.2-1 j-factor correlation for heat transfer of circular pipe flows 

 

Figure 8.2-1 shows the j-factor for heat transfer in circular pipes which includes the correction 

factor 𝜙 for viscosity: 𝜙 = (𝜇𝑏 𝜇𝑤⁄ )−0.14 

In the highly turbulent flow range, the following empirical analogy for long smooth pipes is 

proposed by Colburn: 

𝑗𝐻 = 
𝑓

2
 (8.2-14) 

This analogy relation will be demonstrated for a laminar boundary layer flow over a flat plate in 

Chapter 17. 

 

The analogy permits one to predict heat transfer coefficients from friction data for the same flow 

conditions.  It should be noted that the laminar Nusselt number or j-factor depends on the ratio 

𝐿 𝐷⁄ . In the range of turbulent heat transfer, the following empirical correlation is available: 

ℎ

𝐶𝑝𝐺
 (

𝐶𝑝𝜇

𝜅
)
𝑓

2 3⁄

(
𝜇𝑏

𝜇𝑤
)
−0.14

= 0.026 (
𝐷 𝐺

𝜇
)
𝑏

− 0.2

       𝑅𝑒 =  
𝐷 𝐺

𝜇
> 104  0.6 < Pr < 100(8.2-15) 

                                                                              

 
 

 

8.3 Overall Heat Transfer Coefficient and Heat Exchangers 
 

8.3-1 Definition of overall heat transfer coefficient 
 

 
 
Fig.8.3-1 Double-pipe heat exchanger 

Colburn, A.P., Trans. A.I.Ch.E., 29, 174-210 (1933) 

Sieder, E.N. and Tate, G.E., Ind. Eng. Chem., 28, 1429 (1936) 
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As a very simple and comprehensible example of heat exchangers, Figure 8.3-1 shows a 

double-pipe heat exchanger consisting of two concentric pipes. For definiteness, we assume that the 

hot fluid is flowing through the inner pipe and the cold fluid in the annular space; heat is transferred 

rapidly across the wall of the inner pipe. If the two fluids flow in opposite directions, the type of 

flow is called “counter-current flow.” If the two fluids flow in the same direction, the flow is called 

“parallel flow.” Steady-state turbulent flow may be assumed here. Heat losses from the wall of the 

outer pipe to the surroundings may be neglected. The actual change in temperature with the radial 

distance is shown schematically by the solid lines 𝑇ℎ, 𝑇𝑤ℎ, 𝑇𝑤𝑐, 𝑇𝑐. The dotted lines show the 

temperature change modified by the film theory to define two heat transfer coefficients ℎ𝑖 , ℎ𝑜.  

The mixed mean temperature 𝑇ℎ𝑚  of the hot stream is somewhat lower than the maximum 

temperature 𝑇ℎ , whereas the mixed mean temperature 𝑇𝑐𝑚 of the cold stream is somewhat higher 

than the minimum temperature 𝑇𝑐. The thickness and thermal conductivity of the inner pipe wall 

are given by 𝛿𝑡 and 𝜅𝑡, respectively. 
It is convenient to utilize an overall resistance concept in calculation of the heat transfer rate 

across many layers in series: the inside film, the tube wall, and the outside film resistances. The heat 

flux can be expected to be proportional to the temperature difference 𝑇ℎ𝑚 − 𝑇𝑐𝑚 as the driving 
force. 

The rate of heat transfer over a very small pipe length 𝑑𝑧 can be expressed in terms of the 

individual temperature drops in three layers: 

𝑑𝑄 =  ℎ𝑖𝜋𝐷𝑖𝑑𝑧 (𝑇ℎ𝑚 − 𝑇𝑤ℎ) =  𝜅𝑡𝜋𝐷𝑎𝑣𝑑𝑧
𝑇𝑤ℎ− 𝑇𝑤𝑐

𝛿𝑡
= ℎ𝑜𝜋𝐷𝑜𝑑𝑧 (𝑇𝑤𝑐 − 𝑇𝑐𝑚) (8.3-1) 

This equation can be rewritten as 

𝑑𝑄 = 
𝑇ℎ𝑚− 𝑇𝑤ℎ

1

ℎ𝑖𝜋𝐷𝑖𝑑𝑧

=  
𝑇𝑤ℎ− 𝑇𝑤𝑐

𝛿𝑡
𝜅𝑡𝜋𝐷𝑎𝑣𝑑𝑧

=  
𝑇𝑤𝑐− 𝑇𝑐𝑚

1

ℎ𝑜𝜋𝐷𝑜𝑑𝑧

 (8.3-2) 

where 𝐷𝑎𝑣 is the logarithmic mean of the outer and inner diameters of the inner pipe.  
This equation indicates a heat transfer analog to Ohm’s law of electrical current. That is, the heat 

transfer rate 𝑑𝑄 corresponds to the electrical current. The individual temperature drops correspond 

to the voltage drops in the separate resistances operating in series. Each denominator indicates the 

corresponding thermal resistance.  

Adding these numerators and denominators separately, we get 

𝑑𝑄 = 
𝑇ℎ𝑚− 𝑇𝑐𝑚

1

ℎ𝑖𝜋𝐷𝑖𝑑𝑧
+ 

𝛿𝑡
𝜅𝑡𝜋𝐷𝑎𝑣𝑑𝑧

+ 
1

ℎ𝑜𝜋𝐷𝑜𝑑𝑧

 (8.3-3) 

The denominator indicates the overall thermal resistance. The numerator indicates a local value of 

the overall temperature difference. Then we can define an overall heat transfer coefficient 𝑈𝑜 
based on the outside area of the inner pipe by the equation 

𝑑𝑄 =  
𝑇ℎ𝑚− 𝑇𝑐𝑚

1

𝑈𝑜 𝜋𝐷𝑜𝑑𝑧

= 𝑈𝑜 𝜋𝐷𝑜𝑑𝑧 (𝑇ℎ𝑚 − 𝑇𝑐𝑚) (8.3-4) 

The denominator can be considered to be an overall resistance. Comparing this equation with 

Eq.(8.3-3), we get the following relation: 

𝑈𝑜 =  
1

1

ℎ𝑖

𝐷𝑜
𝐷𝑖

+ 
𝛿𝑡
𝜅𝑡

𝐷𝑜
𝐷𝑎𝑣

+ 
1

ℎ𝑜

 (8.3-5) 

The individual terms of the denominator on the right-hand side represent the individual resistances 

of the two fluid films and of the tube wall. Note that 𝑈𝑜 means a local value of the overall 

heat-transfer coefficient. 
 

[Fouling] 
Usually actual heat exchanger surfaces are subject to deposition of a film of foreign materials. 

This phenomenon called “Fouling” very often occurs on the heat transfer surfaces on the cooling 

water side when using natural water such as sea, river or well water. The film growing due to the 

accumulation of unwanted materials on solid surfaces offers a thermal resistance. 

Therefore the heat transfer resistance should be taken into account in the overall heat transfer 
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coefficient: 
1

𝑈𝑜
= 

1

ℎ𝑖
 
𝐷𝑜

𝐷𝑖
+ 

1

ℎ𝑠𝑖
 
𝐷𝑜

𝐷𝑖
+

𝛿𝑡

𝜅𝑡

𝐷𝑜

𝐷𝑎𝑣
+ 

1

ℎ𝑜
+ 

1

ℎ𝑠𝑜
   (8.3-6) 

where ℎ𝑠𝑖 and ℎ𝑠𝑜 are the reciprocals of the fouling thermal resistances on the inner and outer 
tube walls, respectively. 
 

8.3-2 Logarithmic mean temperature difference1)
 

  Since the overall temperature difference varies from point to point along the pipe, the heat flux 

also varies with pipe length. The temperature variation for counter-current flow is shown as an 

example in Figure 8.3-2. 

 

 
Fig.8.3-2. Temperature variation with pipe length for countercurrent flow  

in a double tube exchanger 
 

To apply the defining equation for 𝑈𝑜 to the entire area of the exchanger, the equation must be 
integrated with the simplifying assumptions: (1) the overall coefficient is constant and (2) the heat 

capacities of the two fluids are kept constant.  

  Figure 8.3-3 shows a double-pipe counter-flow heat exchanger. The outside and inside diameters 

of the inner pipe are 𝐷𝑜 and 𝐷𝑖 and the inner pipe length for heat exchange is 𝐿.   

 

 
Fig.8.3-3. Interphase heat transfer in a double-pipe countercurrent exchanger 

 
The hot fluid is flowing through the inner pipe and the cold fluid through the annular space. 

If we set up the differential energy balance over the volume element between 𝑧 and z + dz, 

𝑑𝑄 =  − 𝑤ℎ𝐶𝑝ℎ 𝑑𝑇ℎ𝑚 =  𝑤𝑐𝐶𝑝𝑐 𝑑𝑇𝑐𝑚 (8.3-7) 

The flow rate of the cold fluid 𝑤𝑐 is negative since the cold fluid flows in opposite direction. The 

temperature gradients are 𝑑𝑇ℎ𝑚 𝑑𝑧 < 0,   ⁄ 𝑑𝑇𝑐𝑚 𝑑𝑧 < 0   ⁄ .  The minus sign in front of 𝑤ℎ comes 

from the condition of positive 𝑑𝑄.  

  According to the equation for 𝑈𝑜, 

𝑑𝑄 =  𝑈𝑜𝜋𝐷𝑜 𝑑𝑧 (𝑇ℎ𝑚 − 𝑇𝑐𝑚) (8.3-8) 
From these equations we get the following equations for the hot and cold streams, respectively. 

− 
𝑑𝑇ℎ𝑚

𝑇ℎ𝑚− 𝑇𝑐𝑚
=  𝑈𝑜  

𝜋𝐷𝑜𝑑𝑧

𝑤ℎ𝐶𝑝ℎ
 (8.3-9) 

𝑑𝑇𝑐𝑚

𝑇ℎ𝑚− 𝑇𝑐𝑚
=  𝑈𝑜  

𝜋𝐷𝑜𝑑𝑧

𝑤𝑐𝐶𝑝𝑐
 (8.3-10) 
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By adding these equations, we obtain 

− 
𝑑(𝑇ℎ𝑚− 𝑇𝑐𝑚)

𝑇ℎ𝑚− 𝑇𝑐𝑚
= 𝑈𝑜  (

1

𝑤ℎ𝐶𝑝ℎ
+ 

1

𝑤𝑐𝐶𝑝𝑐
)  𝜋𝐷𝑜𝑑𝑧 (8.3-11) 

For constant coefficient 𝑈𝑜, we can integrate between both ends of the exchanger: 

ln (
𝑇ℎ𝑚1− 𝑇𝑐𝑚1

𝑇ℎ𝑚2− 𝑇𝑐𝑚2
) =  𝑈𝑜 (

1

𝑤ℎ𝐶𝑝ℎ
+ 

1

𝑤𝑐𝐶𝑝𝑐
)𝜋𝐷𝑜𝐿 (8.3-12) 

 

According to the energy balance between 𝑧 = 0 and 𝐿, the total rate of heat exchange is 

𝑄 = 𝑤ℎ𝐶𝑝ℎ(𝑇ℎ𝑚1 − 𝑇ℎ𝑚2) =  − 𝑤𝑐𝐶𝑝𝑐(𝑇𝑐𝑚1 − 𝑇𝑐𝑚2)     

= 
𝑇ℎ𝑚1− 𝑇ℎ𝑚2

1

𝑤ℎ𝐶𝑝ℎ

 = - 
(𝑇𝑐𝑚1− 𝑇𝑐𝑚2)

 
1

𝑤𝑐𝐶𝑝𝑐

= 
(𝑇ℎ𝑚1− 𝑇ℎ𝑚2)− (𝑇𝑐𝑚1− 𝑇𝑐𝑚2)

1

𝑤ℎ𝐶𝑝ℎ
 +  

1

𝑤𝑐𝐶𝑝𝑐

 (8.3-13) 

Then we get 
1

𝑤ℎ𝐶𝑝ℎ
 +   

1

𝑤𝑐𝐶𝑝𝑐
= 

[(𝑇ℎ𝑚1− 𝑇𝑐𝑚1)−(𝑇ℎ𝑚2− 𝑇𝑐𝑚2)]

𝑄
 (8.3-14) 

Substituting it into the foregoing equation, Eq,(8.3-12), we get 

𝑄 = 𝑈𝑜 𝜋𝐷𝑜𝐿 {
(𝑇ℎ𝑚1− 𝑇𝑐𝑚1)−(𝑇ℎ𝑚2− 𝑇𝑐𝑚2)

ln(
𝑇ℎ𝑚1− 𝑇𝑐𝑚1
𝑇ℎ𝑚2− 𝑇𝑐𝑚2

)
} (8.3-15) 

or 

𝑄 = 𝑈𝑜𝐴𝑜(𝑇ℎ𝑚 − 𝑇𝑐𝑚)𝑙𝑚 = 𝑈𝑜𝐴𝑜(∆𝑇𝑚)𝑙𝑚 (8.3-16) 

where  

(∆𝑇𝑚)𝑙𝑚 = 
∆𝑇𝑚1− ∆𝑇𝑚2

ln
∆𝑇𝑚1
∆𝑇𝑚2

 (8.3-17) 

This equation, valid for both parallel and counter-current flows, is the basic equation for 

engineering calculation of heat exchangers. The result indicates that we should use the logarithmic 

mean of the mixed mean temperature differences at both ends (abbreviated LMTD) to determine the 

total area for the required heat transfer rate.  

We can understand from this analysis for a double-pipe exchanger that the LMTD is appropriate as 

the characteristic temperature difference for thermal engineering design of various exchangers 

                                                                                          

 

 
 
Nomenclature 
  

𝐶𝑝 heat capacity, [J/kg K] 

𝐷 pipe diameter, [m] 

𝑓 friction factor, [ - ] 

𝐺 mass velocity, [kg/m2s] 

ℎ heat transfer coefficient, [W/m2K] 

𝑗𝐻 j-factor for heat transfer, [ - ] 

𝑁𝑢 Nusselt number, [ - ] 

𝑃𝑟 Prandtl number, [ - ] 

𝑄 heat transfer rate, [W] 

𝑞𝑟, 𝑞𝑤 heat flux at r, wall heat flux, [W/m2] 

𝑅 pipe radius, [m] 

𝑅𝑒 Reynolds number, [ - ] 

𝑟, 휃, 𝑧 cylindrical coordinates, [m, - , m] 

𝑇 temperature, [K] 

𝑡 time, [s] 

𝑈 overall heat transfer coefficient, [W/m2K] 

𝑣𝑟 , 𝑣𝜃 , 𝑣𝑧 velocity component in cylindrical coordinates 

𝑤𝑐 , 𝑤ℎ mass flow rate of cold fluid, hot fluid, [kg/s] 

𝑧 axial coordinate, [m] 

𝛿𝑡 tube wall thickness, [m] 

𝛿𝑇 film thickness for heat transfer, [m] 

𝜇 viscosity, [kg/m s] 

𝜅 thermal conductivity, [W/m K] 
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𝜌 density, [kg/m3] 

𝜙 correction factor for viscosity, [ - ] 

 
Superscripts 

∗ dimensionless 

´ fluctuation 
̅  time-averaged 

 

Subscripts 
c cold 

f film 

h hot 

i inner tube 
l.m. logarithmic mean 

m bulk or mixed mean 

o outer tube or outside surface 

t tube 
w wall 

 

Brackets 
〈 〉 averaged over flow cross section  
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CHAPTER 9 
 

HEAT TRANSFER EQUIPMENT 
 
 

9.1 Shell-and-Tube Heat Exchanger 
 

There are various kinds of heat exchangers in industrial processes: double-pipe exchanger, 

shell-and-tube exchanger, cross-flow plate exchanger, etc. 
 

 
1:tubes, 2:shell, 3:stationary tubesheet, 4:floating tubesheet, 5:floating head cover, 6:shell cover, 7:baffles, 8:shell 

nozzle, 9:stationary head nozzle, 10:pass partition, 11:tie rods and spacers, 12:impingement baffle, 13:channel cover 
 

Fig.9.1-1. Floating-head 1-2 heat exchanger 
 

Figure 9.1-1 shows a floating-head one-shell-pass, two-tube-pass heat exchanger. 

Here we deal with the thermal analysis of shell-and-tube exchangers, which are widely used 

because they can be constructed with large heat-transfer surfaces in a relatively small volume. The 

above figure is a sketch of a shell-and-tube heat exchanger with one shell pass and two tube passes. 

Usually the hot fluid flows through the tubes and the cold fluid through the shell. The shell-side and 

tube-side heat transfer coefficients are of comparable importance, and both must be large to attain a 

satisfactorily large overall coefficient. Heat transfer tubes are laid out on either square or triangular 

patterns.  

 

The tube pitch 𝑃𝑡 is the shortest center-to-center distance between adjacent tubes. Usually we 

use 1.25 times the outside diameter of the tubes for triangular pitch. Since the velocity on the shell 

side is usually low in comparison with that on the tube side, 25%-cut baffles are installed in the 

shell to decrease the flow cross-section and to cause the fluid to flow across the tube bank rather 

than parallel with it.  An increase in the shell-side coefficient is obtained by this type of cross flow 

across the tube bank. Standard length of tubes is usually 5 m. Shells are fabricated from pipe or by 

rolling plate of steel or stainless steel. It is often difficult to obtain a high velocity when the 

tube-side fluid flows through all the tubes in a single pass. Multipass construction by means of the 

pass partitions are used to increase the tube-side velocity with a corresponding increase in the 

tube-side coefficient. The sizes of tubes which are frequently used are in the range 15 to 30 mm 

OD. 

  
 

9.2 Tube-side Heat Transfer Coefficient 
 

  In the last chapter, we concluded that the Nusselt number for fully-developed temperature field is 



a function of Reynolds number and Prandtl number. The inside heat transfer coefficient ℎ𝑖 for the 
tube-side fluid can also be correlated in the j-factor form: 

𝑗𝐻 = 
𝑁𝑢

𝑅𝑒
 𝑃𝑟−1/3  (

𝜇𝑚

𝜇𝑤
)
−0.14

 (9.2-1) 

where 𝜇𝑚, 𝜇𝑤 are the viscosities of the tube-side fluid at the mixed-mean temperature 𝑇𝑚 and 

wall temperature 𝑇𝑤. Unless the temperature difference between 𝑇𝑚 and 𝑇𝑤 is very large, the 

viscosity correction term 𝜙 =  (𝜇𝑚 𝜇𝑤)⁄ −0.14
 may be considered to be unity. 

For highly turbulent pipe flow, we can use the empirical equation (Sieder and Tate correlation)
1)

 

ℎ𝑖𝐷

𝜅
= 0.026 (

𝐷 𝐺

𝜇
)
0.8

(
𝐶𝑝 𝜇

𝜅
)
1/3

(
𝜇𝑚

𝜇𝑤
)
0.14

 (9.2-2) 

 

or in the Colburn j-factor form 

𝑗𝐻 = 0.026 𝑅𝑒−0.2 (9.2-3) 

which gives the heat transfer coefficient within ±20 % error in the range 𝑅𝑒 =  104 ~ 105, 

Pr = 0.6 ~  100, and 𝐿 𝐷⁄  > 10. In moderate heat transfer conditions 𝜇𝑚 𝜇𝑤  ≅ 1.⁄   
We can also use 

ℎ𝑖𝐷

𝜅
= 0.023 (

𝐷 𝐺

𝜇
)
0.8

(
𝐶𝑝 𝜇

𝜅
)
1/3

 (9.2-4) 

For laminar flow we have to consider the boundary layer effect of entrance length developing from 

the pipe entrance. We can use the following equation 
ℎ𝑖𝐷

𝜅
= 1.86 (𝑅𝑒 Pr𝐷 𝐿⁄ )1/3 (

𝜇𝑚

𝜇𝑤
)
0.14

 (9.2-5) 

which is good within ±20 for 𝑅𝑒 Pr 𝐿 𝐷⁄  > 10. Keep in mind that Eq.(9.2-5) gives an average 

heat transfer coefficient in the developing temperature field. 

Note that Figure 8.2-1 gives this laminar flow correlation in the form of parallel straight lines. 
                                           
1. Sieder, E.N. and Tate, G.E., Ind. Eng. Chem., 28, 1429 (1936) 

 
 

9.3 Heat Transfer Coefficient in Annular Space of Double-tube 
Exchangers

1)
 

 

  For evaluating the heat transfer coefficient of the annular side, we have to consider the hydraulic 

equivalent diameter for noncircular flow passage. 

  The heat transfer through the inner tube-side wall in turbulent annular flow can be correlated by 

equations similar to those used for circular tube flow accounting for the annular geometry.  

Here the equivalent diameter 𝐷𝑒𝑞 is used. 

One of the correlative equations is 
ℎ𝑜𝐷𝑒𝑞

𝜅
= 0.023 (

𝐷𝑒𝑞 𝐺

𝜇
)
0.8

(
𝐶𝑝 𝜇

𝜅
)
0.4

(
𝐷2

𝐷1
)
0.45

 (9.3-1) 

𝐷𝑒𝑞 = 𝐷2 − 𝐷1,     𝑅𝑒 > 104 

where 𝐷2 and 𝐷1 are the inside diameter of the outer tube and the outside diameter of the inner 

tube, respectively.  
                                                                                     
1. Kern, D. Q., Process Heat Transfer, McGraw-Hill, New York, 137 (1950) 

 
 

9.4 Shell-side Heat Transfer Coefficient  
 

  As shown in Fig.9.4-1, the triangular pitch gives high shell-side heat transfer coefficients because 

the shell-side fluid flowing between adjacent tubes impinges directly on the succeeding tube row. 
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Fig.9.4-1. Two kinds of tube layouts for exchangers and equivalent diameter 
 

Because the fluid flows partly parallel to the tube bank and partly across it, we would use a 

characteristic mass velocity and an equivalent diameter appropriate for the flow pattern.  

The mass velocity 𝐺𝑐 for cross flow is the mass flow rate divided by the total flow area 𝑆𝑐 for 

transverse flow between the tubes in the row at or closest to the centerline of the exchanger.  

𝐺𝑐 = 
𝑊𝑠

𝑃𝑏𝐷𝑠− (𝐷𝑠 𝑃𝑡⁄ )𝑃𝑏𝑑𝑜
  for either square or triangular pitch (9.4-1) 

where 𝑃𝑡 is the tube pitch and 𝑃𝑏 the baffle pitch. 
 

 
Fig.9.4-2. Shell-side flow passage in tube bundles 

 

We choose the cross-flow mass velocity 𝐺𝑐 for the characteristic mass velocity. The equivalent 
diameter for the shell is taken as the equivalent diameter for the fictitious parallel flow without 

baffles: 

𝐷𝑒𝑞 = 
4 (

√3

4
 𝑃𝑡

2− 
𝜋

4
 𝑑𝑜

2 
1

2
)

𝜋 𝑑𝑜 
1

2

      for triangular pitch (9.4-2) 

𝐷𝑒𝑞 = 
4(𝑃𝑡

2− 
𝜋

4
 𝑑𝑜

2)

𝜋 𝑑𝑜
         for square pitch (9.4-3) 

  If we use 𝐺𝑐 and 𝐷𝑒 as the mass velocity and equivalent diameter, the Nusselt number is 
correlated with the Reynolds number in the form 

ℎ𝑜𝐷𝑒𝑞

𝜅
= 0.36 (

𝐷𝑒𝑞𝐺𝑐

𝜇
)
0.55

(
𝐶𝑝 𝜇

𝜅
)
1/3

(
𝜇𝑚

𝜇𝑤
)
0.14

 (9.4-4) 

𝑅𝑒 =  2,000 ~ 1,000,000. 
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9.5 True Temperature Difference for 1-2 Exchangers
1)

 
 

  The temperature-length curves for a 1-2 exchanger having the nozzle arrangement indicated are 

shown in Figure 9.5-1. The curve 𝑇ℎ𝑖  →  𝑇ℎ𝑡 and 𝑇𝑐𝑖 → 𝑇𝑐𝑜 can be considered as those of a 

counter-flow exchanger, and the curves 𝑇ℎ𝑡  →  𝑇ℎ𝑜 and 𝑇𝑐𝑖  →  𝑇𝑐𝑜 correspond to a parallel-flow 
exchanger.   

The LMTD for counter-flow can be formally written as 

𝐿𝑀𝑇𝐷 = (∆𝑇)𝑙𝑚 = 
(𝑇ℎ𝑖− 𝑇𝑐𝑜)−(𝑇ℎ𝑜− 𝑇𝑐𝑖)

ln
𝑇ℎ𝑖− 𝑇𝑐𝑜
𝑇ℎ𝑜− 𝑇𝑐𝑖

 (9.5-1) 

This cannot be used without correction to calculate the true mean temperature difference. A 

correction factor 𝐹 is so defined that when it is multiplied by the counter-flow LMTD, the product 

is the correct mean temperature difference. Figure 9.5-2 shows the factor 𝐹 for 1-2 exchangers as a 
function of the two dimensionless parameters. This correction factor shown in Fig.9.5-2 can also be 

used for exchangers with one shell pass and even tube passes. 
                                                                                 
1. Bowman, R.A., Mueller, A.C. and Nagle, W.M., Trans. A.S.M.E., 62, 283 (1940)  

 

 
 
Fig.9.5-1. Temperature—pipe length curve for 1-2 exchanger 
 

 
Fig.9.5-2 Correction factor plot for exchangers with one shell pass and two, four, or any multiple 
passes 
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Therefore the heat transfer surface area 𝐴𝑜 of a shell-and-tube exchanger can be calculated by  

𝑄 = 𝑈𝑜𝐴𝑜 (∆𝑇)𝑙𝑚𝐹 (9.5-2) 
where the LMTD to be used with this kind of correction factor is for a counter-flow double-pipe 

heat exchanger with the same fluid inlet and exit temperatures. The correction factors 𝐹 for 
various and complex configurations are omitted here. If necessary, you should refer to the 

handbooks.  

 
 

9.6 Engineering Design of a Shell-and-Tube Heat Exchanger 
 
Only for simplicity, we will study the fundamental calculation method. 

(1) Pressure drop in heat exchanger 

(1-A) Tube-side pressure drop 

The tube -side pressure drop can be calculated in a manner basically similar to the pressure 

drop in a single straight pipe. That is, the tube-side pressure drop is the sum of the pressure 

drop over the straight pipe section and the pressure drop due to the change of flow direction 

caused in the front and rear heads when entering or leaving the tube-sheets.  

The pressure drop over the straight pipe section is given by 

∆𝑝𝑡 = 
4 𝑓 𝐺𝑡

2 𝐿 𝑛

2 𝐷 𝜌 𝜙𝑡
 (9.6-1) 

where  𝑛 is the number of tube passes. Therefore (1 2)𝐺𝑡
2/𝜌⁄  means  (1 2)𝜌 𝑣𝑡

2⁄  and 

𝐿 𝑛 is the total length of path.  The viscosity correction term 𝜙 = (𝜇𝑚 𝜇𝑤)⁄ −0.14
 

  The pressure drop due to the abrupt change of direction in flowing from one pass into the 

next pass can be considered as four velocity-heads per pass: 

Δ𝑝𝑟 = 4 𝑛 
1

2
 𝜚𝑣𝑡

2 (9.6-2) 

    (1-B) Shell-side pressure drop 

     It can be considered that the pressure drop is proportional to the number of times and the 

distance the fluid crosses the tube bundle between baffles. Using a modification of Eq.(7.4-8), 

an empirical correction available for calculation of the pressure drop through the shell side: 

     ∆𝑝𝑠 = 4 𝑓𝑠  
𝐺𝑐

2 𝐷𝑠(𝑁+1)

(1 2) 𝜌 𝐷𝑒𝜙𝑠⁄
 (9.6-3) 

     where  (1 2)𝐺𝑐
2/𝜌⁄  implies the kinetic energy  (1 2)𝜌 𝑣𝑐

2⁄  and 𝐷𝑠 (𝑁 + 1) is a kind of 

equivalent length the fluid travels. The viscosity correction term is 𝜙 = (𝜇𝑚 𝜇𝑤)⁄ −0.14
. If 𝑁 

is the total number of baffles in the shell, the shell-side fluid crosses (N + 1) times the tube 

bundle. That is, (N + 1) equals the ratio of tube length 𝐿 to baffle spacing 𝑃𝑏 . The 

equivalent diameter 𝐷𝑒𝑞  is the same as for heat transfer. The above equation includes 

entrance and exit losses.  

The friction factor 𝑓𝑠 = 0.43 𝑅𝑒𝑠
−0.19            500 <  𝑅𝑒𝑠  <  105 (9.6-4) 

     where 𝑅𝑒𝑠 =  
𝐷𝑒𝑞𝐺𝑐

𝜇
. 

 

 

9.6-1 Thermal design procedure of double-tube exchangers 
[EXAMPLE 9.6-1]  4,000 kg/h of 98 mol% methanol from an overhead condenser is to be cooled 

from 62 C (=335 K) to 30 C (=3034 K) by a double-tube exchanger  which consists of 50 mm OD, 

2 mm thick copper tube and 80 mm ID copper tube. Methanol solution is placed on the tube side 

and cooling water is supplied into the annulus in counter-current direction. The inlet water 

temperature is 20 C (=293 K) and the outlet temperature is desired to be 25 C (=298 K). Obtain the 

necessary total length of double tubes. 
[Solution]  The physical properties of methanol at mean temperature 46 C (=319 K) are: 
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𝜌 = 780 𝑘𝑔 𝑚3⁄ , 𝐶𝑝 = 2.59 × 103  𝐽 𝑘𝑔 𝐾⁄ ,  𝜇 = 0.0004 𝑘𝑔 𝑚 𝑠⁄ , and 

𝜅 = 0.196 𝑊 𝑚 𝐾⁄ . 

     Heat balance: 𝑄 = (4000)(2.59 × 103)(335 − 303) = 𝑊 (4.183 × 103)(298 − 293) 

       = 3.3165 ×  109  𝐽 ℎ⁄ = 0.921 × 105 𝑊 
From this equation, the required water rate is 

   𝑊 = 1.585 ×  104  𝑘𝑔 ℎ⁄  

       Heat transfer coefficient on methanol side: 

   Mass velocity 

    𝐺 =  
(4000 3600)⁄

(𝜋 4)(0.046)2⁄
= 668.6  𝑘𝑔 𝑚2𝑠⁄  

    𝑅𝑒 =  𝐷 𝐺 𝜇⁄ = (0.046) (668.6) 0.0004⁄ = 76,900     (turbulent flow)      

    𝑃𝑟 =  𝐶𝑝 𝜇 𝜅⁄ = (2.59 ×  103) (0.0004 0.196) = 5.286⁄  

   From Eq.(9.2-4) 

    ℎ𝑖 = 0.023 (𝜅 𝐷) 𝑅𝑒0.8 𝑃𝑟1 3⁄ = (0.023)(0.196 0.046)(76,900)0.8(5.286)1 3⁄⁄⁄  

= 1,380  𝑊 𝑚2𝐾⁄   
        Heat transfer coefficient on water side: 

    𝐷𝑒𝑞 = 𝐷2 − 𝐷10 = 0.08 − 0.05 = 0.03 𝑚   

    𝐺𝑜 =  
(1.6585 × 104 3,600)⁄

(𝜋 4)((0.08)2− (0.05)2)⁄
= 1,440  𝑘𝑔 𝑚2𝑠⁄  

The physical properties of water at 22.5 C (=295.5 K) are: 𝜌 = 1,000  𝑘𝑔 𝑚3⁄ , 

𝐶𝑝 = 4.183 × 103  𝐽 𝑘𝑔 𝐾⁄ , 𝜇 = 0.0009  𝑘𝑔 𝑚 𝑠⁄ , and 𝜅 = 0.616  𝑊 𝑚 𝐾⁄ . 

    𝑅𝑒𝑒𝑞 = 𝐷𝑒𝑞 𝐺𝑜 𝜇 = (0.03)(1440 0.0009) = 48,000⁄⁄   

          𝑃𝑟 =  𝐶𝑝 𝜇 𝜅⁄ = (4.183 ×  103) (0.0009 0.616) = 6.11⁄  

        From Eq.(876) 

           ℎ𝑜 = 0.023 (𝜅𝑏 𝐷𝑒𝑞⁄ )(𝐷𝑒𝑞𝐺𝑜 𝜇⁄ )0.8(𝐶𝑝 𝜇 𝜅⁄ )0.4(𝐷2 𝐷1)⁄ 0.45
 

= 0.023 (0.616 0.03)(48000)0.8(6.11)0.4(80 50⁄ )0.45 = 6690  𝑊 𝑚2𝐾⁄⁄  

        Neglecting the thermal resistance of copper tube wall and assuming the overall fouling 

resistance of 1 ℎ𝑠 = 4.4 × 10−4  (𝑊 𝑚2𝐾⁄ )−1⁄ , the overall coefficient is 

𝑈𝑜 = 
1

1
1380 

0.050
0.046 + 4.4 × 10−4 + 

1
6690

= 726.1  𝑊 𝑚2𝐾⁄  

 

  Temperature difference:  

    𝐿𝑀𝑇𝐷 = (∆𝑇)𝑙𝑚 = 
(335−298)−(303−293)

ln
335−298

303−293

= 20.6 𝐾  

  Then the area required for the heat transfer rate is 

    𝐴𝑜 = 𝑄 𝑈𝑜(∆𝑇)𝑙𝑚 = (0.921 × 105) (726.1)(20.6) = 6.16 𝑚2⁄⁄  

 

  The necessary total tube length is  

    𝐿 =  𝐴𝑜 𝜋𝐷 = 6.16 𝜋(0.05)⁄ = 39.2 𝑚⁄  
 

9.6-2 Thermal design procedure of shell-and-tube exchangers 
[EXAMPLE 9.6-2]  30,000 kg/h of liquid mixture of organic compounds is to be heated from 

30℃(= 303 K) to 70℃ (= 343 K) by a shell-and-tube exchanger before feeding into a 

distillation column.  

     The liquid mixture is placed on the shell side and as the heating medium, 42,000 kg/h of 

toluene from the reboiler of another column is supplied at 105℃ (= 378 K) into the tube side. 

Plant practice uses 25 mm OD, 22 mm ID smooth steel pipes 5 m long on 35 mm square 

pitch and baffles 250 mm apart. A 1 ×  105 Pa pressure drop is permissible on both streams. 

Assume the overall fouling resistance factor 1 ℎ𝑠𝑡⁄  to be 3.8 ×  10−4 (W/m
2
K)

-1 
. Obtain 

the necessary size of shell-and-tube exchanger for the requirement. 
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Table 9.6  Physical properties 
Organic liquid mixture 

𝑇 ℃ 𝜌   kg/m
3
 𝜇  kg/m s 𝜅  W/m K 𝐶𝑝  J/kg K 

30 890 0.0017 0.150 1.85 x 10
3
 

50 870 0.0012 0.147 1.91 x 10
3
 

70 855 0.00094 0.145 1.98 x 10
3
 

90 845 0.00076 0.142 2.04 x 10
3
 

Toluene 

𝑇 ℃ 𝜌   kg/m
3
 𝜇  kg/m s 𝜅  W/m K 𝐶𝑝  J/kg K 

50 850 0.00040 0.128 1.80 x 10
3
 

70 820 0.00034 0.124 1.88 x 10
3
 

90 800 0.00028 0.117 1.97 x 10
3
 

110 770 0.00021 0.114 2.05 x 10
3
 

 

[Solution]   

Average heat capacities are 

Liquid mixture  𝐶𝑝𝑜 = 1.91 × 103  J/kg K   at  𝑇𝑐𝑜 =
30+70

2
= 50 ℃ 

Toluene        𝐶𝑝𝑖 = 1.97 ×  103   J/kg K   at  𝑇𝑐𝑜 =
105+77.4

2
= 91.2 ℃ 

 （Because the toluene side exit temperature is unknown, the above toluene heat capacity is 

determined by trial-and-error method applied to the following total heat balance） 

(i) Heat Balance: 

𝑄 = (30,000)(1.91 × 103)(70 − 30) = 2.292 ×  109
𝐽

ℎ
=  6.367 × 105 𝑊 

= (42,000) 𝐶𝑝𝑖 (105 − 𝑇𝑖2) 

From the equation, the outlet temperature of the tube-side stream is 𝑇𝑖2 = 77.4 ℃. 

(ii) True temperature difference: 

𝐿𝑀𝑇𝐷 = (∆𝑇)𝑙𝑚 = 
(105 − 70) − (77.4 − 30)

ln
105 − 70
77.4 − 30

= 40.9 K 

For 1 – 4 exchanger   𝑍 =  
105−77.4

70−30
= 0.69        𝑌 =  

70−30

105−30
= 0.533 

From Fig.9.5-2, F = 0.88 

Therefore the true temperature difference ∆𝑇 = (∆𝑇)𝑙𝑚𝐹 = (40.9)(0.88) = 36.0 𝐾 
(iii) Trial: 

Assume 𝑈𝑜 = 300 𝑊 𝑚2𝐾⁄  

Then the total heat-transfer area 𝐴𝑜 =  𝑄 𝑈𝑜∆𝑇 =  6.367 × 105 (300)(36.0) = 58.95 𝑚2⁄⁄  

Outside surface area per tube 𝑎𝑜 =  𝜋𝐷𝑜𝐿 =  𝜋(0.025)(5) = 0.393 𝑚2 

Total number of tubes 𝑛𝑡 = 𝐴𝑜 𝑎𝑜⁄ = 58.95 0.393⁄ = 150 < 152 

Each tube pass can accommodate 38 tubes. 

Then a new overall heat transfer coefficient is re-assumed. 

𝑈𝑜 = 𝑄 𝑛𝑡𝑎𝑜∆𝑇⁄ =  6.367 × 105 (152)(0.393)(36.0) = 296.1 𝑊 𝑚2𝐾⁄⁄  
Tube-side 

Flow area per tube  𝑎𝑡 = (𝜋 4) 𝐷𝑖
2⁄ = (𝜋 4)(0.022)2 = 3.80 ×  10−4⁄ 𝑚2  

Flow area per pass: 𝐴𝑡 = (152 4)(3.80 × 10−4) = 0.0144 𝑚2⁄  

Mass velocity 𝐺𝑖0 = 𝑊𝑖 𝐴𝑡 = (42,000 3600)⁄ (0.0144) = 810.2 𝑘𝑔 𝑚2 𝑠⁄⁄⁄  

Toluene viscosity at 𝑇𝑐𝑖 =  91.2℃: 𝜇𝑖 = 0.000276  𝑘𝑔 𝑚 𝑠⁄  

Reynolds number on the tube side: 𝑅𝑒𝑖 = (0.022) (810.2) 0.000276⁄ = 64,600  
𝐿 𝐷𝑖 = 5 0.022⁄ = 227,⁄    

Then from the turbulent flow curve of Fig.8.2-1, 𝑗𝐻𝑖 = 0.0028  at 𝑅𝑒𝑖 = 64,6000. 

At  𝑇𝑐𝑖 =  91.2℃,  𝐶𝑝𝑖 = 1.97 × 103   J/kg K, 𝜅𝑖 = 0.117 𝑊 𝑚 𝐾⁄  
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Prandtl number  𝑃𝑟𝑖 = 𝐶𝑝𝑖𝜇𝑖 𝜅𝑖⁄ = 4.65. 
Then the inside heat-transfer coefficient is  

ℎ𝑖 𝜙𝑖⁄ = (𝑗𝐻𝑖 𝜙𝑖⁄ )(𝜅𝑖 𝐷𝑖)𝑅𝑒𝑖 𝑃𝑟𝑖
1 3⁄ = (0.0028)(0.117 0.022)(64,600)(4.65)1 3⁄  ⁄⁄  

= 1,606 𝑊 𝑚2𝐾⁄  
 

Shell side 

The inside diameter of shell accommodating 152 heat-transfer tubes of 25 mm OD can be 

estimated from the tube layout on 35 mm square pitch. Since one square which has area of 

(0.035)
2
 = 0.00123 m

2
 can accommodate one tube. From the following equation, 

(𝜋 4⁄ ) 𝐷𝑠
2 = (0.00123)(152) = 0.187 𝑚2 

we get 𝐷𝑠 = 0.488 𝑚 as the first approximate value.   
We need to avoid a collision between the inside wall  

of the shell and the outer-most tubes.  A space for 

𝐷𝑜 2⁄  is still necessary at both ends of the shell  

diameter: 

𝐷𝑠 = 0.488 + (0.0125 × 2) = 0.513 𝑚 
Further about a tube diameter space for tie-rods 

is necessary between the outer edge of the tube  

bundle and the inside wall of the shell: 

𝐷𝑠 = 0.513 + (0.025 × 2) = 0.563 𝑚 
Equivalent diameter for square pitch is 

𝐷𝑒𝑞 = 
4 (𝑃𝑡

2 − (𝜋 4)⁄ 𝐷𝑜
2)

𝜋𝐷𝑜
= 

4 ((0.035)2 − (𝜋 4)⁄ (0.025)2)

𝜋(0.025)
= 0.0374 𝑚 

Mass velocity for crossflow position 

𝐺𝑐 = 
𝑊𝑜

𝑃𝑏 𝐷𝑠 − (𝐷𝑠 𝑃𝑡)𝑃𝑏𝐷𝑜⁄
=  

(30,000 3,600)⁄

(0.25)(0.563) − (0.563 0.035)(0.25)(0.25)⁄
= 207.2 𝑘𝑔 𝑚2𝑠⁄  

 

At 𝑇𝑐𝑜 = 50℃, 𝐶𝑝𝑜 = 1.91 ×  103  𝐽 𝑘𝑔 𝐾⁄ , 𝜇𝑜 = 0.0012 𝑘𝑔 𝑚 𝑠⁄ , 

𝜅𝑜 = 0.147 𝑊 𝑚 𝐾⁄ ,  

Prandtl number:  𝑃𝑟𝑜 = 15.6. 

Reynolds number:  𝑅𝑒𝑜 = 𝐷𝑒𝑞 𝐺𝑐 𝜇𝑜 = (0.0374) (207.2) 0.0012⁄ = 6,460⁄   

From Eq.9.4-4, we obtain 

ℎ𝑜 𝜙𝑜 = 0.36 (𝜅𝑜 𝐷𝑒𝑞) 𝑅𝑒𝑜
0.55 𝑃𝑟𝑜

1 3⁄⁄⁄

= (0.36)(0.147 0.0374)(6460)0.55 (15.6)1 3⁄ = 440.6 𝑊 𝑚2𝑠 𝐾⁄⁄  
Tube-wall temperature  

From heat balance neglecting the fouling resistance 
ℎ𝑖

𝜙𝑖
 (𝑇𝑤 − 𝑇𝑐𝑖) =  

1
𝜙𝑖
ℎ𝑖

+ 
𝜙𝑜
ℎ𝑜

 (𝑇𝑐𝑜 − 𝑇𝑐𝑖)  

That is 

𝑇𝑤 = 𝑇𝑐𝑖 + 
ℎ𝑜 𝜙𝑜⁄

(ℎ𝑖 𝜙𝑖) + (ℎ𝑜 𝜙𝑜)⁄⁄
 (𝑇𝑐𝑜 − 𝑇𝑐𝑖) 

= 91.2 + (440.6)(50 – 91.2)/(1606 + 440.6) = 82.3 C (= 355.3 K) 

At 𝑇𝑤 = 82.3 𝐶  𝜇𝑤𝑜 = 0.000829 𝑘𝑔 𝑚 𝑠,    ⁄ 𝜇𝑤𝑖 = 0.000303 𝑘𝑔 𝑚 𝑠⁄  

𝜙𝑜 = (𝜇 𝜇𝑤)⁄ 0.14
= (0.0012 0.000829)⁄ 0.14

 = 1.05 

𝜙𝑖 =   (𝜇 𝜇𝑤)⁄ 0.14
= (0.000276 0.000 − 303)⁄ 0.14

= 0.99 
 
Corrected heat –transfer coefficients 

ℎ𝑜 = (ℎ𝑜 𝜙𝑜)⁄ 𝜙𝑜 = (440.6)(1.05) = 462.6 W/m2K 
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ℎ𝑖 = (ℎ𝑖 𝜙𝑖)⁄ 𝜙𝑖 = (1606)(0.99) = 1590 W/m2K 

The thermal conductivity of steel tube:  𝜅𝑡 = 45.0 𝑊 𝑚 𝐾⁄  

Average tube-diameter (logarithmic mean) 

𝐷𝑎𝑣 = 
(𝐷𝑜 − 𝐷𝑖)

ln
𝐷𝑜

𝐷𝑖

= 
0.025 − 0.022

ln
0.025
0.022

= 0.0235 𝑚 

Overall heat-transfer coefficient 

𝑈𝑜 = 
1

1
ℎ𝑖

 
𝐷𝑜

𝐷𝑖
+ 

𝛿𝑡

𝜅𝑡
 
𝐷𝑜

𝐷𝑎𝑣
+ 

1
ℎ𝑜

+ 
1
ℎ𝑠𝑡

 

= 
1

1

1590
 
0.025

0.022
+ 

0.0015

45.0
 
0.025

0.0236
+ 

1

462.6
+3.8× 10−4

= 303. 8  W/m2K  (vs.  296 assumed) 

 

(If the calculated coefficient is greatly different from the assumed value, the 

foregoing calculation should be repeated with new values assumed.) 

The overall coefficient calculated above is only 2.6% larger on the safe side than 

the assumed value. The exact value of the shell diameter 𝐷𝑠 should be 

determined from drawing of tubes laid on 35 mm square pitch taking into 

account the spaces for pass partition, tie rods, etc. 
 

SHELL SIDE    TUBE SIDE 

1 pass 4 tube passes 

𝐷𝑠 = 0.563 m 𝐷𝑜 = 0.0-25 m, 𝐷𝑖 = 0.022 m, 𝐿 = 5 m 

𝑇𝑜1 = 30 C 𝑇𝑖1  𝑇𝑖1  = 105 C 

𝑇𝑜2 = 70 C 𝑇𝑖2  = 77.4 C 

𝑇𝑐𝑜 = 50 C 𝑇𝑐𝑖  =  91.2 C 

𝑅𝑒𝑜 = 6,460 𝑅𝑒𝑖 = 64,600 

ℎ𝑜 = 462.6 W/m2K ℎ𝑖 = 1,590 W/m2K 

𝑄 = 6.367 x 105 W 

∆𝑇 = 36.0 K,  𝑇𝑤 = 82.3 C 

𝑛𝑡 = 152 

𝑈𝑜 = 303.8 W/m2K 

 

(iv) Pressure drop 

(a) Shell side: 

From Eq.(9.6-4),  𝑓𝑠 = 0.43 𝑅𝑒𝑠
−0.19 = 0.0812  at 𝑅𝑒𝑠 = 6,460 

  In Eq.(9.6-3), 𝑁 = 20,  𝜙𝑠 = 1.05 , 𝐺𝑐 = 207.2 kg/m2 s, 𝐷𝑠 = 0.563 m 

  𝜚 = 870 𝑘𝑔 𝑚3⁄ , 𝐷𝑒𝑞 =  0.0374 𝑚 

∆𝑝𝑠 = 4 (0.0812) 
(207.2)2(0.563)(21)

2 (870)(0.0374)(1.05)
= 2,400 <  105 𝑃𝑎6 

This value is smaller than the permissible limit. 

(b) Tube side: 

From Fig.7.3-1, 𝑓 = 0.0049   at 𝑅𝑒𝑖 = 64,600 

In Eq.(9.6-1), 𝐺𝑡 = 810.2 𝑘𝑔 𝑚2𝑠⁄  , 𝐿 = 5 m,  𝑛 = 4, 𝜙𝑡 = 0.99 , 𝜚 = 798 𝑘𝑔 𝑚3⁄ , 

𝐷𝑖 = 0.022 𝑚 

∆𝑝𝑡 = 
4 (0.0049)(810.2)2(5)(4)

2 (0.022)(798)(0.99)
 = 7,403 𝑃𝑎 

In Eq.(9.6-4), 𝑣𝑡 = 𝐺𝑖 𝜌 = 810.2 798⁄ = 1.02 ⁄ 𝑚 𝑠⁄  
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∆𝑝𝑟 = 4 (4)(1 2)(798)(1.02)2 = 6,642 𝑃𝑎⁄  

Then the total pressure drop on the tube side is 

∆𝑝 =  ∆𝑝𝑡 + ∆𝑝𝑟 = 7,403 + 6,642 = 1.04 × 104 < 105𝑃𝑎 

This value is also smaller than the permissible limit. 

 

 
[PROBLEM 9.6-1] 

A triangular pitched 1-2 shell-and-tube exchanger is operated to cool 4,000 kg/h of oil. 

At the present time, the oil, which is the tube-side fluid, is being cooled from 90 C (=363 

K) to 63 C (= 336 K), while water as the shell-side fluid is being heated from 30 C (= 303 

K) to 38 C (= 311 K). The exchanger has the effective heat-transfer area of 10 m2 on the 

basis of the outside diameter. The oil has average heat capacity 𝐶𝑝 = 2.2 ×  103 𝐽 𝑘𝑔 𝐾⁄   
and density 𝜌 = 880 𝑘𝑔 𝑚3⁄ .  Determine the present value of the overall heat-transfer 

coefficient. 

(Answer:  162.2 W/m2K) 

 
[PROBLEM 9.6-2] 

  100,000 kg/h of crude oil is to be heated from 70 C (= 343 K) to 100 C (=373 K) by a 

shell-and-tube exchanger before feeding into the first distillation column of oil refinery. 

The crude oil is placed on the tube side and as the heating medium, 65,000 kg/h of 

kerosene is supplied at 200 C (= 473 K) into the shell side. Plant practice uses 25 mm 

OD, 22 mm ID smooth steel pipes 5 m long on 35 mm triangular pitch and 25%-cut 

bafflers 250 mm apart. Permissible pressure drops on the tube-side and the shell-side 

streams are 3 × 105 and 1 × 105 𝑃𝑎, respectively.  

Calculate the heat transfer area required and obtain the size of the shell-and-tube 

exchanger.  Determine the appropriate number of the tube passes. 

The following values of the fouling resistance factors can be used. 

1 ℎ𝑠𝑖 = 3.5 × 10−4⁄ (𝑊 𝑚2𝐾)⁄
−1

,     1 ℎ𝑠𝑜 = 1.8 × 10−4⁄ (𝑊 𝑚2𝐾)⁄
−1

 
 

Table 9.6-2  Physical properties of kerosene and crude oil 

𝑇  ℃ 𝜌  𝑘𝑔 𝑚3⁄  𝐶𝑝 𝑘𝐽 𝑘𝑔 𝐾⁄  𝜇  𝑘𝑔 𝑚 𝑠⁄  κ  𝑊 𝑚 𝐾⁄  𝑇  ℃ 𝜌  𝑘𝑔 𝑚3⁄  𝐶𝑝 𝑘𝐽 𝑘𝑔 𝐾⁄  𝜇  𝑘𝑔 𝑚 𝑠⁄  κ  𝑊 𝑚 𝐾⁄  

120 740 2.39 0.00048 0.135 60 820 2.08 0.0032 0.132 

140 720 2.47 0.00039 0.133 80 810 2.16 0.0023 0.131 

160 710 2.55 0.00031 0.131 100 790 2.24 0.0017 0.130 

180 690 2.63 0.00026 0.130 120 780 2.34 0.0013 0.129 

200 680 2.71 0.00021 0.128 140 770 2.43 0.00096 0.128 

     160   0.00071  

 
 

9.7  Convective Heat Transfer around Submerged Objects 
 

9.7-1 A circular cylinder in cross flow1,2) 

  Let us consider a circular cylinder (diameter 𝐷) submerged in the free stream with uniform 

velocity 𝑣∞ and temperature 𝑇∞. The cylinder surface is kept at a temperature 𝑇𝑆.  

 

The Nusselt number and Reynolds number are defined as 

𝑁𝑢𝐷 = 
ℎ𝑙𝑜𝑐𝐷

𝜅𝑓
  𝑅𝑒𝐷 = 

𝑣∞𝐷𝜌∞

𝜇𝑓
 

where the viscosity 𝜇𝑓 and thermal conductivity 𝜅𝑓 should be evaluated at the film temperature.  
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Fig.9.7-1. A circular cylinder in a uniform flow normal to its axis 
 

 

 
Fig.9.7-2  Local Nusselt numbers around a circular cylinder in a transverse air stream 
 

When the Reynolds number is small enough, the boundary layer developing from the front 

stagnation point is kept laminar and the flow in the separated region formed on the back side is still 

laminar. 

Fig. 9.7-2 indicates a typical continuously decreasing variation in the Nusselt number at low 

Reynolds numbers. We can see a slight rise in the separated wake region of the cylinder. When the 

Reynolds number becomes sufficiently large, the boundary layer undergoes transition from laminar 

to turbulent flow and the local distribution of heat transfer changes characteristically. The point of 

separation shifts upstream to a value beyond 90 degree and the heat transfer coefficients become 

very large in the separated region.  

 

For engineering calculations, the main interest is in the total rate of heat transfer, or in the heat 

transfer coefficient ℎ𝑎𝑣 averaged over the circumstance. 
The following equations are available as the empirical heat transfer correlations in two Reynolds 

number ranges: 

𝑁𝑢𝐷 = (0.43 + 0.50 𝑅𝑒𝐷
0.5)𝑃𝑟0.38      1 <  𝑅𝑒𝐷  <  103  (9.7-1) 

𝑁𝑢𝐷 = 0.25 𝑅𝑒𝐷
0.6 𝑃𝑟0.38            103  <  𝑅𝑒𝐷  < 2 × 105 (9.7-2) 

Here the ratio of Prandtl number 𝑃𝑟∞ 𝑃𝑟𝑆⁄  coming from the temperature difference between the 

wall and fluid bulk temperatures is assumed to be approximately unity. The Nusselt number is 

defined as 

𝑁𝑢𝐷 = 
ℎ𝑎𝑣𝐷

𝜅𝑓
 (9.7-3) 
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1. Eckert, E. R. G. and R. M. Drake, Jr.: “Analysis of Heat and Mass Transfer,” McGraw-Hill, Chap.9, 406 (1972) 

2. Zhukauskas, A. A., V. Makarevicius and A. Shlanciauskas: “Heat Transfer in Banks of Tubes in Crossflow of Fluid,” Mintis, 

Vilnius, Lithuania (12968) 

 

 

9.7-2  Hot-wire anemometry 
  Eq. (9.7-1) is very important equation to be utilized for the principle of hot-wire anemometry. 

Two basic forms; the constant-current type and the constant-temperature type are available. Both 

utilize the same physical principle but in different ways.   

The heat transfer from a fine, long wire (hot wire diameter 𝑑, length 𝑙, and electric resistance 𝑅𝑤) 

of tungsten or platinum to a flowing air (velocity 𝑣∞, temperature 𝑇∞) may be described by the 
follow dimensionless equation: 

𝑁𝑢𝑑 =  𝛼 +  𝛽√𝑅𝑒𝑑 (9.7-4) 

This equation is one form of Eq. (9.7-1) applied in the range of very small Reynolds numbers, 

where the effect of Prandtl number is also assumed to be constant. Only for simplicity, let us study 

the constant-temperature mode.  

The wire attains an equilibrium temperature when the heat 𝐼2𝑅𝑤 generated in it is just balanced by 

the convective heat loss from its surface. 

The wire temperature 𝑇𝑤 can be observed in terms of its electric resistance 𝑅𝑤 = 𝑅𝑤0(1 + 𝑟0(𝑇𝑤 

- 𝑇0)) which can be measured by the bridge circuit shown in Fig.9.7-2. The constant 𝑟0 is given 
by the temperature coefficient of the wire resistance. 

 

 
 
Fig.9.7-3. Hot wire and bridge circuit for hot-wire anemometry 
  

 

The heat transfer coefficient can be calculated by the following equation: 

ℎ𝑎𝑣 = 
𝐼2𝑅𝑤

𝜋𝑑𝑙(𝑇𝑤 − 𝑇∞)
 (9.7-5) 

The Reynolds number is given by 

𝑅𝑒𝑑 = 
𝑣∞𝑑𝜌∞

𝜇∞
 (9.7-6) 

Because of a very thin hot wire, the Reynolds number is kept very low. 

Finally the approach velocity 𝑣∞ can be measured from the electric current 𝐼 measured by the 

bridge circuit with a balance-detecting galvanometer by using the following equation: 

𝐼2 =  𝛼′ + 𝛽′
√𝑣∞ (9.7-7) 

where the constant 𝛼′ and 𝛽′ must be determined by calibration. Once calibrated, the hot-wire 
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probe can be used to measure an unknown local velocity by adjusting 𝑅𝐼 until the bridge balance is 
achieved.  

 
9.7-3  A circular sphere in cross flow 

  Let us consider a circular sphere (diameter 𝐷) submerged in the free stream with uniform 

velocity 𝑣∞. 
Similarly to the case of circular cylinders, the heat transfer distribution changes depending on the 

Reynolds number. For engineering purposes, the main interest is in the heat transfer coefficient 

averaged over the spherical circumference. 

The famous heat transfer correlation applicable in a wide range of the Reynolds number is given by 

Ranz and Marshall
1)

: 

ℎ𝑚𝐷

𝜅𝑓
= 2.0 + 0.60 (

𝐷 𝜌𝑓 𝑣∞

𝜇𝑓
)
1 2⁄

(
𝐶𝑝 𝜇𝑓

𝜅𝑓
)
1 3⁄

    1 < 𝑅𝑒 < 7 ×  104  0.6 < Pr < 400 (9.7-8) 

where the physical properties are evaluated at the film temperature 𝑇𝑓 =  (𝑇∞ + 𝑇𝑆) 2⁄ . 

This equation is practically very convenient for estimating the heat transfer coefficients of particles, 

bubbles and droplets flying in an infinite fluid flow.  
                                                                             
1. Ranz, W. E. and W.R. Marshall, Jr.: Chem. Eng. Prog., vol.48, 141, 173 (1962) 

 

Let us consider again the convective heat transfer around a circular cylinder and a circular sphere 

in a free stream with uniform velocity and temperature. Figure 9.7-4 shows a comparison between 

those convective heat transfer correlation curves.  It is very interesting that both heat transfer 

correlations are correspondent exactly to each other.  

 
Fig.9.7-4. Comparison of convective heat transfer correlations between two submerged objects. 
 

 

 

[PROBLEM 9.7-1] A liquid droplet of toluene is suspended at the hot junction of a very thin wire 

thermocouple in a superheated toluene vapor (pressure 1 atm, temperature 𝑇∞ = 125 ℃) flowing 
upward at uniform velocity 1 m/s. The droplet can be assumed to be kept as a sphere in shape. The 

droplet temperature is almost kept at the boiling point 𝑇𝑆 = 110℃. At the starting time 𝑡 = 0, the 

droplet diameter D = 𝐷0 = 4 𝑚𝑚. How long does it take until the droplet disappears? 
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Fig.9.7-P1. A single droplet suspended in a superheated vapor stream 
 
 
Nomenclature 
  

𝐴 heat transfer area, [m2] 

𝐶𝑝 heat capacity, [J/kg K] 

𝐷 tube inside diameter, [m], cylinder diameter, [m] or sphere diameter, [m] 

𝐷𝑒𝑞 equivalent diameter, [m] 

𝐷𝑠 inside diameter of shell, [m] 

𝑑 hot-wire diameter, [m] 

𝑑𝑜 outside diameter of heat transfer tube, [m] 

𝐹 correction factor for temperature difference, [ - ] 

𝑓 friction factor, [ - ] 

𝐺 mass velocity, [kg/m2s] 

𝐺𝑐 mass velocity in cross flow section, [kg/m2s] 

ℎ heat transfer coefficient, [W/m2K] 

𝐼 electric current of hot wire, [A] 

𝑗𝐻 j-factor for heat transfer, [ - ] 

𝐿 tube length, [m] 

𝑁 total number of baffles, [ - ] 

𝑁𝑢 Nusselt number, [ - ] 

𝑛 number of tube passes, [ - ] 

𝑛𝑡 total number of heat transfer tubes, [ - ] 

𝑃𝑟 Prandtl number, [ - ] 

𝑃𝑏 baffle pitch of tube layout, [m] 

𝑃𝑡 pitch of tube layout, [m] 

𝑄 heat transfer rate, [W] 

𝑅𝑒 Reynolds number, [ - ] 

𝑇 temperature, [K] 

𝑇𝑠 surface temperature, [K] 

𝑈 overall heat transfer coefficient, [W/m2K] 

𝜇 viscosity, [kg/m s] 

𝜙 correction factor for viscosity, [ - ] 

 

Subscripts 
c cold 

D cylinder 

f film 

h hot 
i inner tube, inside surface or inlet 

m bulk or mixed mean 

o outer tube, outside surface or outlet 

s shell side 
t tube side 

w wall 

∞ free stream 
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CHAPTER 10 
 

INTERPHASE MASS TRANSPORT 
 
 

10.1 Definition of Mass Transfer Coefficient  
 

Mass transfer mechanism also falls into one of the two large categories: molecular and 

convective transports. The Fick’s law describes the ordinary diffusion as 

𝑁𝐴 − 𝑥𝐴(𝑁𝐴 + 𝑁𝐵) =  −𝑐 𝐷𝐴𝐵
𝜕𝑥𝐴

𝜕𝑦
 (10.1-1) 

where 𝑥𝐴 is mole fraction of component A and 𝑐 the total molar density. The second term of the 
left side represents the contribution of the bulk motion.  

  Applying the Fick’s law to the interface 

𝑁𝐴𝑤 − 𝑥𝐴𝑤(𝑁𝐴𝑤 + 𝑁𝐵𝑤) =  −𝑐 𝐷𝐴𝐵
𝜕𝑥𝐴

𝜕𝑦
|
𝑦=0

 (10.1-2) 

The mass transfer analog of the defining equation of heat transfer coefficient becomes 

𝑁𝐴𝑤 − 𝑥𝐴𝑤(𝑁𝐴𝑤 + 𝑁𝐵𝑤) =  𝑘𝑥
∗(𝑥𝐴𝑚 − 𝑥𝐴𝑤) (10.1-3) 

Note that the mass transfer coefficient can be considered to be a function of the mass transfer rate. 

Let us consider as an example the mass transfer of component A from a pipe wall to a flowing 

fluid. Dissolution of benzoic acid (solid) from a pipe wall of cast benzoic acid to a turbulent flow of 

water is a good example. Fig.10.1-1 shows its concentration profile near the wall.  

 

 
Fig.10.1-1. Time-averaged concentration profile near the wall of benzoic acid cast pipe  

 

Then the mass flux at the pipe wall can be written by Fick’s law: 

𝑁𝐴|𝑟=𝑅 − 𝑥𝐴(𝑁𝐴 + 𝑁𝐵)|𝑟=𝑅 = −𝑐 𝐷𝐴𝐵
𝜕𝑥𝐴

𝜕𝑟
|
𝑟=𝑅

 (10.1-4) 

The main resistance to mass transfer takes place in very thin fluid film near the pipe wall, where 

most of the total concentration drop occurs. Therefore the following approximation can be made 

defining 𝛿𝐷 the thickness of a fictitious diffusion film: 

− 
𝜕𝑥𝐴

𝜕𝑟
|
𝑟=𝑅

= 
𝑥𝐴𝑤− 𝑥𝐴𝑚

𝛿𝐷
 (10.1-5) 



Here 𝑥𝐴𝑚 is the mixed mean concentration (bulk concentration) of component A, 𝑥𝐴𝑤 the wall 
concentration (solubility of benzoic acid in this case). 

The definition of the mixed mean concentration in a circular pipe flow is 

𝑥𝐴𝑤 − 𝑥𝐴𝑚 = 
∫ 2𝜋𝑟 𝑣𝑧 (𝑥𝐴𝑤− 𝑥𝐴)𝑑𝑟
𝑅
0

∫ 2𝜋𝑟 𝑣𝑧 𝑑𝑟
𝑅

0

 (10.1-6) 

The above equation, Eq.(10.1-4) becomes the defining equation of convective mass transfer 

coefficient: 
[𝑁𝐴 − 𝑥𝐴(𝑁𝐴 + 𝑁𝐵)]𝑟=𝑅 = (𝑐 𝐷𝐴𝐵 𝛿𝐷⁄ )(𝑥𝐴𝑤 − 𝑥𝐴𝑚) = 𝑘𝑥

∗(𝑥𝐴𝑤 − 𝑥𝐴𝑚) (10.1-7) 

In this case, 𝑘𝑥
∗  has unit of  kmol/m

2
s. 

The mass transfer analog of the Nusselt number is defined by 

𝑆ℎ =  
𝑘𝑥

∗𝐷

𝑐 𝐷𝐴𝐵
 (10.1-8) 

This dimensionless group is called the Sherwood number. As in the derivation of heat transfer 

correlation, the mass transfer correlation for low mass transfer rate can be found to be of the form: 

𝑆ℎ =  𝑆ℎ(𝑅𝑒, 𝑆𝑐, 𝐿 𝐷⁄ ) (10.1-9) 
Actually, most of the available mass transfer data have been correlated using the following 

definition: 

𝑁𝐴𝑤 = 𝑘𝑥(𝑥𝐴𝑚 − 𝑥𝐴𝑤) (10.1-10) 

For the case of mass transfer in a gas phase, the partial pressure difference can be used as the 

driving force 

𝑁𝐴𝑤 = 𝑘𝐺(𝑝𝐴𝑚 − 𝑝𝐴𝑤) (10.1-11) 

The 𝑘𝐺 has units of kmol/m
2
s atm. 

 If the molar concentration difference is used as the driving force for liquids 

𝑁𝐴𝑤 = 𝑘𝐿(𝐶𝐴𝑚 − 𝐶𝐴𝑤) (10.1-12) 

The 𝑘𝐿 has units of m/s. 

It should be kept in mind that as distinct from 𝑘𝑥
∗ , these coefficients include the contribution of the 

bulk fluid motion.  

For the case in which one component is transferred and the other is stagnant i.e. 𝑁𝐵 = 0, 

𝑁𝐴𝑤 = 
𝑘𝑥

∗

(1− 𝑥𝐴𝑤)
(𝑥𝐴𝑚 − 𝑥𝐴𝑤) =  

𝑘𝑥
∗

𝑥𝐵𝑤
 (𝑥𝐴𝑚 − 𝑥𝐴𝑤) =  𝑘𝑥(𝑥𝐴𝑚 − 𝑥𝐴𝑤) (10.1-13)  

For gases 

𝑁𝐴𝑤 = 
𝑘𝑥

∗

𝑥𝐵𝑤
 (𝑥𝐴𝑚 − 𝑥𝐴𝑤) =  𝑘𝐺(𝑝𝐴𝑚 − 𝑝𝐴𝑤) (10.1-14) 

Here 𝑥𝐵𝑤 = 𝑝𝐵𝑤 𝑃⁄   (𝑃 : total pressure). 

𝑘𝑥
∗ = 𝑘𝑥𝑥𝐵𝑤, 𝑘𝑥

∗ = 𝑘𝐺𝑝𝐵𝑤, 𝑘𝑥
∗ = 𝑘𝐿𝐶𝐵𝑤 (10.1-15) 

Gas absorption belongs to this case. 

For liquids 

𝑁𝐴𝑤 = 
𝑘𝑥

∗

𝑥𝐵𝑤
 (𝑥𝐴𝑚 − 𝑥𝐴𝑤) =   𝑘𝐿(𝐶𝐴𝑚 − 𝐶𝐴𝑤) (10.1-16) 

Here 𝑥𝐵𝑤 = 𝐶𝐵𝑤 𝑐⁄   (𝑐 : total molar density). 

For the case of equimolar counter-diffusion i.e.  𝑁𝐴 =  − 𝑁𝐵 

𝑘𝑥
∗ = 𝑘𝑥, 𝑘𝑥

∗ = 𝑘𝐺𝑃, 𝑘𝑥
∗ = 𝑘𝐿𝑐 (10.1-17) 

Distillation belongs to this case. 

 
 

10.2 Analogy between Heat and Mass Transfer 
 

  By dimensional analysis, we can also obtain the same functional similarity for 𝑁𝑢 and 𝑆ℎ: 

𝑁𝑢 =  𝑁𝑢(𝑅𝑒, 𝑃𝑟) 
𝑆ℎ =  𝑆ℎ(𝑅𝑒, 𝑆𝑐) 

A new dimensionless group for mass transfer is defined as 
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𝑗𝐷 = 
𝑘𝑥

𝐺𝑀
 (

𝜇

𝜌𝐷𝐴𝐵
)
𝑓

2 3⁄

= 𝑆ℎ 𝑅𝑒−1 𝑆𝑐−1 3⁄  (10.2-1) 

The subscript f refers to properties evaluated at the film temperature 𝑇𝑓 = (𝑇𝑚 + 𝑇𝑤) 2⁄  and the 

film composition 𝑥𝐴𝑓 = (𝑥𝐴𝑚 + 𝑥𝐴𝑤) 2⁄ . 

The Chilton-Colburn analogy
1)

 is one of the important empirical analogies: 

𝑗𝐷 = 𝑗𝐻   or  
𝑘𝑥

𝐺𝑀
 (

𝜇

𝜌𝐷𝐴𝐵
)
𝑓

2 3⁄

= 
ℎ

𝐶𝑝 𝐺
 (

𝐶𝑝 𝜇

𝜅
)
𝑓

2 3⁄

 (10.2-2) 

This analogy permits one to calculate mass-transfer coefficients from heat-transfer data for the 

equivalent boundary conditions. The analogy between 𝑗𝐷  and 𝑗𝐻  is also applicable to 

simultaneous heat and mass transfer. 
                                                                            
1. Chilton, T. H. and A. P. Colburn, Ind. Eng. Chem., 26, 1183 (1934) 

 
 

10.3 Theory of Interphase Mass Transfer   
 

  Most of mass transfer processes in chemical engineering involve mass transfer across the 

interface between two phases, as in gas absorption and distillation. Interphase transfer occurs owing 

to the concentration gradients resulting from a deviation from equilibrium. 
 

10.3-1 Fundamentals --- Gas-liquid equilibrium relationship for absorption 
In gas absorption, we usually neglect the solubility of the inert gas (e.g., air) and the presence 

of vapor from the liquid (e.g., water) in the gas. Therefore there are four variables: pressure, 

temperature, and the concentrations of solute component A in liquid and gas. For simplicity, the 

temperature and pressure are usually fixed: one concentration may be chosen as the remaining 

independent variable. The equilibria of interest are those between a nonvolatile absorbing liquid and 

a solute gas. The equilibrium relationship in absorption can be expressed as the diagram of the 

concentration of solute 𝑥𝑒 in the liquid against the concentration of solute 𝑦𝑒 in the gas. One of 
the important fundamental expression is the Henry’s law: 

𝑦𝐴 = 𝐻 𝑥𝐴 (10.3-1) 

or 

𝑝𝐴 = 𝐻′ 𝐶𝐴 (10.3-2) 

where  𝑥𝐴 the mole fraction of solute A, and 𝐻 the Henry’s constant. 

In the second equation, 𝑝𝐴 is the partial pressure of the gas phase, and 𝐶𝐴 the molar concentration 

of solute A, and the modified Henry’s constant. 

  Fig.10.3-1 is a schematic diagram of the solubility of gases into a solvent such as water. 

 
Fig.10.3-1 Schematic picture of gas solubility  
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10.3-2 Interphase mass transfer for gas absorption 
  Consider a transferring component A in an inert gas B which is in contact with a nonvolatile 

liquid C. 

A simple example is the removal of sulfur dioxide from stack gases by water using a wetted wall 

column. 

Water is flowing downward by gravity in the form of liquid film falling along the inside surface of a 

circular cylinder whereas the stack gas is flowing upward in the form of counter-current inside the 

cylinder. 

  In general, there exist three resistances in series to the interphase transfer of component A: the 

gas phase film, the interface, and the liquid phase film. The concentration gradients in the two 

phases are shown in Fig.10.3-2. 

Note that components B and C do not diffuse in spite of the concentration gradients. 

  Two-film theory, initially suggested by Whitman, is appropriate at this stage to explain this 

process. 

First, three assumptions are made: (1) that there is no resistance to transport of component A across 

the actual interface, (this is equivalent to assuming that the two phases are approximately in 

equilibrium just at the actual interface), (2) that the holdup of component A in the boundary layers 

on both sides of the interface is negligibly small compared to the amount transferred, and (3) that 

the bulk of each phase is well mixed. For the case of packed columns for gas absorption, the gas 

flows up and liquid trickles down.  
 

 

 
Fig.10.3-2. Concentration profile in the neighborhood of gas-liquid contacting interface  
 

The velocity distribution near the interface is also shown in Fig.10.3-2. Since there is no slip at the 

interface, gas film is in enough contact with the liquid film to establish the phase equilibrium at the 

interface. 

  Using mass transfer coefficients defined by the two-film theory, the steady-state mass flux is 

expressible as 

𝑁𝐴 = 𝑘𝑦𝐴(𝑦𝐴𝑚 − 𝑦𝐴𝑖) =  𝑘𝑥𝐴(𝑥𝐴𝑖 − 𝑥𝐴𝑚) (10.3-3) 

Here 𝑦𝐴𝑚 and 𝑥𝐴𝑚 are the mixed mean concentrations (the bulk concentrations) and 𝑘𝑦𝐴 and 

𝑘𝑥𝐴 are the convective mass transfer coefficients having units of kmol of A/m
2
 s in the gas and 

liquid phases, respectively. 

According to the assumption made, the gas and liquid concentrations at the interface lie on the 

equilibrium curve given by 

𝑦𝐴𝑖 = 𝑓(𝑥𝐴𝑖) (10.3-4) 
where f is the equilibrium function. These equilibrium concentrations would be obtained if the two 
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phases had been in contact for an infinite period of time. Henry’s law is an example of the 

equilibrium function for dilute solution: 

𝑦𝐴𝑖 = 𝑚 𝑥𝐴𝑖 (10.3-5) 
in which m is the Henry’s constant. For simplicity, the Henry’s law is assumed for the remaining 

development. 

It is convenient to define an overall mass transfer coefficient 𝐾𝑦𝐴 and 𝐾𝑥𝐴 based on an overall 

driving force between the bulk concentration 𝑦𝐴𝑚 or 𝑥𝐴𝑚 because the interface concentrations are 
very difficult to measure. This treatment is similar to that in defining the overall heat transfer 

coefficient. However the bulk concentration 𝑦𝐴𝑚 and 𝑥𝐴𝑚 do not have the same units; 𝑦𝐴𝑚 has 

units of kmol of A/kmol of A+B whereas 𝑥𝐴𝑚 has units of kmol of A/kmol of A+C. 

The above equation Eq.(10.3-3) can be rewritten as 

𝑁𝐴 = 
𝑦𝐴𝑚− 𝑦𝐴𝑖

1

𝑘𝑦𝐴

=  
𝑥𝐴𝑖− 𝑥𝐴𝑚

1

𝑘𝑥𝐴

 (10.3-6) 

Multiplying the numerator and denominator of the right-most term by m, 

a new fraction having the same value is obtained by the law of additivity as 

𝑁𝐴 = 
𝑦𝐴𝑚− 𝑦𝐴𝑖

1

𝑘𝑦𝐴

=  
𝑚(𝑥𝐴𝑖− 𝑥𝐴𝑚)

𝑚

𝑘𝑥𝐴

=
𝑦𝐴𝑚− 𝑦𝐴𝑚

∗

1

𝑘𝑦𝐴
+ 

𝑚

𝑘𝑥𝐴

= 𝐾𝑦𝐴(𝑦𝐴𝑚 − 𝑦𝐴𝑚
∗ ) (10.3-7) 

Here 𝑦𝐴𝑚
 ∗ = 𝑚  𝑥𝐴𝑚 is the bulk concentration of the liquid phase expressed with the units of the 

gas-phase concentration by using the Henry’s law. The overall mass transfer coefficient 𝐾𝑦𝐴 is 

given by 

𝐾𝑦𝐴 = 
1

1

𝑘𝑦𝐴
+ 

𝑚

𝑘𝑥𝐴

 (10.3-8 

Similarly the following formulae are available. 

𝑁𝐴 = 
(𝑦𝐴𝑚 𝑚) ⁄ −( 𝑦𝐴𝑖 𝑚)⁄

1

𝑚𝑘𝑦𝐴

=  
𝑥𝐴𝑖− 𝑥𝐴𝑚

1

𝑘𝑥𝐴

=
 𝑥𝐴𝑚

 ∗ − 𝑥𝐴𝑚
1

𝑚𝑘𝑦𝐴
+ 

1

𝑘𝑥𝐴

= 𝐾𝑥𝐴( 𝑥𝐴𝑚
 ∗ − 𝑥𝐴𝑚) (10.3-9) 

𝐾𝑥𝐴 = 
1

1

𝑚𝑘𝑦𝐴
+ 

1

𝑘𝑥𝐴

 (10.3-10) 

Notice that 𝐾𝑦𝐴 and 𝐾𝑥𝐴 represent the basic information in different units of concentration. 

 

10.3-3 Mass transfer model for gas absorption 
  Gas absorption is the typical mass transfer operation in which one or more soluble gases are 

absorbed from their mixture with an inert gas into a liquid. The absorption process may be purely 

physical or involve chemical reactions in the liquid. A typical example is the washing sulfur dioxide 

from the boiler-exhaust gas by means of water or alkaline solution. 

  The gas absorption equipment is designed to provide intimate contact of a gas and a liquid. A 

typical continuous gas-absorber is the packed column which consists of a vertical column filled 

with a randomly arranged packing of small inert solid or equipped with structured packing. The 

packing provides a large interfacial area of contact between the two phases. Figure 10.3-3 shows 

some example of random packings and structured packing.  
 

 
Fig.10.3-3. Random packings and structured packing (a: Raschig ring, b: Berl saddle, c: Pall ring, 
and d: corrugated structured packing, e: partial structure of structured packing) 
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Fig.10.3-4. Packed column absorber equipped with Raschig rings 

 

  For simplicity, we will deal with the physical absorption of one soluble component A from a 

mixture with an inert gas B by non-volatile liquid solvent C. 

Fig.10.3-4 shows a conventional packed column equipped with Raschig rings. The liquid is 

sprayed evenly over the top of the packed bed by the distributor and trickles down over the packing 

surfaces by gravity. The solute-containing gas is fed into the column from below the packing and 

flows upward through the interstices due to the pressure drop through the bed of the packing. This 

countercurrent direct contacting permits the transfer of component A from the gas to the liquid. The 

liquid is enriched in component A as it flows down the packing, and the concentrated liquid leaves 

the column through the liquid outlet. The bulk concentration of component A in the gas stream 

decreases as the gas flows up, and the lean gas leaves the column through the gas outlet. 

Let us develop an expression for the column height 𝑍𝑇 required to get the desired degree of 
recovery of component A. The column height is calculated from a viewpoint of mass-transfer area. 

Assume that the mass transfer takes place isothermally. In usual absorption operations the liquid 

and gas flow rates 𝐿𝑀 and 𝐺𝑀 vary appreciably with the elevation from the bottom of the packed 
section. It is convenient to use units of flow rate and concentration on a solute-free basis because 

the molar flow rates of the inert gas B and nonvolatile liquid C are constant over the total height of 

the packed column. The gas stream enters the column at molar velocity of 𝐺𝑀
′  on an A-free basis. 

The mole fraction of A in the entering gas stream is 𝑦𝐴1. In usual situation for the design of an 

absorber, the designer is required to determine the molar liquid velocity 𝐿𝑀
′ , the concentration 𝑥𝐴2 

of which is usually known. The outlet gas concentration 𝑦𝐴2 is also given in terms of the specified 

degree of recovery of component A. 

The overall material balance of component A may be written as 

𝐺𝑀
′  

𝑦𝐴1

1− 𝑦𝐴1
+ 𝐿𝑀

′  
𝑥𝐴2

1− 𝑥𝐴2
= 𝐺𝑀

′  
𝑦𝐴2

1− 𝑦𝐴2
+ 𝐿𝑀

′  
𝑥𝐴1

1− 𝑥𝐴1
 (10.3-11) 

Note that each term has units of 
kmol of B

(m2 of the bed)(s)
 
kmol of A

kmol of B
=  

kmol of A

(m2 of the bed)(s)
   

These molar velocities  𝐺𝑀
′  and 𝐿𝑀

′  are the so-called superficial molar velocities the gas and 

liquid would have in the column on an A-free basis if no packing were present. 

At the present stage, 𝐿𝑀
′  and 𝑥𝐴1 are unknown. The above equation indicates that the outlet liquid 

concentration 𝑥𝐴1 increases as the liquid flow rate is decreased. Choosing the portion of the 
column above an arbitrary section as a control volume, as shown by the dotted line in Fig.10.3-5, 

we get a material balance on component A: 
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Fig.10.3-5. Control volume for mass balance and differential control volume of interphase mass 
transfer model for a packed column absorber 
 

𝐺𝑀
′ (

𝑦𝐴

1− 𝑦𝐴
−  

𝑦𝐴2

1− 𝑦𝐴2
) =  𝐿𝑀

′  (
𝑥𝐴

1− 𝑥𝐴
− 

𝑥𝐴2

1− 𝑥𝐴2
)   (10.3-12) 

This is the equation for the operating line which gives the relation between the bulk concentrations 

of the gas and liquid at an arbitrary position. The liquid flow rate 𝐿𝑀
′  can be determined from the 

viewpoint of the limiting liquid-gas ratio. 

 

 
Fig.10.3-6. Concept of limiting liquid-gas ratio. 
 

Figure 10.3-6 shows a graphical relation of the operating line with the equilibrium line for gas 

absorption. For a given gas flow rate 𝐺𝑀
′ , a reduction in liquid flow rate 𝐿𝑀

′  decreases the slope of 

the operating line. As the liquid flow rate is decreased fixing the terminal concentrations 𝑦𝐴2, 𝑥𝐴2, 

and 𝑦𝐴1, the upper end of the operating line approaches the equilibrium line. Just when the 

operating line touches the equilibrium line, the minimum possible liquid flow rate (𝐿𝑀
′ )𝑚𝑖𝑛 is 

obtained. 

At this condition, an infinitely long packed section is required owing to very small driving forces in 

the vicinity of the bottom of the column.  
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  In an actual column, the liquid rate must be greater than the minimum. Replacing 𝑦𝐴 and 𝑥𝐴 of 

Eq.(10.3-12) by 𝑦𝐴1 and 𝑥𝐴1
∗ , we obtain the limiting liquid-gas ratio: 

(
𝐿𝑀
′

𝐺𝑀
′ )

𝑚𝑖𝑛
=  

𝑦𝐴1 (1−𝑦𝐴1)− 𝑦𝐴2 (1−𝑦𝐴2)⁄⁄

𝑥𝐴1
∗ (1−⁄ 𝑥𝐴1

∗ )− 𝑥𝐴2 (1−𝑥𝐴2)⁄
 (10.3-13) 

Here 𝑥𝐴1
∗ = 𝑦𝐴1 𝑚′⁄  is the liquid-phase concentration that would be in equilibrium with the inlet 

gas-phase concentration. From the economical viewpoint, the optimum liquid rate is usually found 

by making the operating line parallel to the equilibrium line: 
(𝐿𝑀

′ 𝐺𝑀
′⁄ )

𝑚′
= 1 (10.3-14) 

The actual liquid rate is usually 25 to 100% greater than the minimum. Once the actual liquid rate is 

decided in this way, we can calculate the concentration 𝑥𝐴1 in the exit liquid stream.  
  The equipment size required for the desired separation cannot be determined without considering 

the relation between mass transfer rate and mass transfer area. The behavior of an actual packed 

column is too complicated to be modeled in a straight-forward way. We simplify the actual column 

to a system consisting of the two streams flowing side-by-side without back mixing and in contact 

with one another.  

The interfacial area “ 𝑎 ” per unit packed-bed volume and the mass transfer coefficients 

𝑘𝑦 , 𝑘𝑥, 𝐾𝑦 , 𝐾𝑥 are assumed to be constant over the packed section.  

  First we set up the mass balance within a differential height 𝑑𝑍 at an arbitrarily chosen distance 

𝑍 from the top of the packed bed: 

𝑁𝐴 𝑎 𝑑𝑍 𝑆 =  𝐺𝑀
′ 𝑆 (

𝑦𝐴

1−𝑦𝐴
|
𝑍+𝑑𝑍

− 
𝑦𝐴

1−𝑦𝐴
|
𝑍
) =  𝐿𝑀

′ 𝑆 (
𝑥𝐴

1−𝑥𝐴
|
𝑍+𝑑𝑍

− 
𝑥𝐴

1−𝑥𝐴
|
𝑍
) (10.3-15) 

That is 

𝑁𝐴 𝑎 𝑑𝑍 = 𝐺𝑀
′  𝑑 (

𝑦𝐴

1− 𝑦𝐴
) =  𝐿𝑀

′  𝑑 (
𝑥𝐴

1− 𝑥𝐴
) (10.3-16) 

or 

𝑁𝐴 𝑎 𝑑𝑍 =  𝐺𝑀
′ 𝑑𝑦𝐴

(1−𝑦𝐴)2
=  𝐿𝑀

′  
𝑑𝑥𝐴

(1−𝑥𝐴)2
 (10.3-17) 

The cross-sectional area S of the packed section is usually determined by ban empirical relation 

between the pressure drop per unit height of the packing and the gas velocity from a viewpoint of 

the stable flow regime for intimate gas-liquid contact. 

The interphase mass transfer is also expressed as 

𝑁𝐴 𝑎 𝑑𝑍 =  𝑘𝑦𝑎(𝑦𝐴 − 𝑦𝐴𝑖)𝑑𝑍 =  𝑘𝑥𝑎(𝑥𝐴𝑖 − 𝑥𝐴)𝑑𝑍 (10.3-18) 

𝑁𝐴 𝑎 𝑑𝑍 =  𝐾𝑦𝑎(𝑦𝐴 − 𝑦𝐴
∗)𝑑𝑍 =  𝐾𝑥𝑎(𝑥𝐴

∗ − 𝑥𝐴)𝑑𝑍 (10.3-19) 

From one of these equations 

𝐺𝑀 
∗ 𝑑𝑦𝐴

(1−𝑦𝐴)2
= 𝐾𝑦𝑎(𝑦𝐴 − 𝑦𝐴

∗)𝑑𝑍   (10.3-20) 

The coefficients 𝑘𝑦𝑎, 𝑘𝑥𝑎,𝐾𝑦𝑎, 𝐾𝑥𝑎 are called “volumetric mass transfer coefficients.” 

Integrating the equation gives the column height of packing section required for the desired 

separation: 

𝑍𝑇 =  
𝐺𝑀

∗

𝐾𝑦𝑎

̅̅ ̅̅
 ∫

𝑑𝑦𝐴

(1− 𝑦𝐴)2(𝑦𝐴− 𝑦𝐴
∗ )

𝑦𝐴1

𝑦𝐴2
 (10.3-21) 

Similar equations can also be obtained from the remaining three equations as follows.  

𝑍𝑇 =  
𝐺𝑀

∗

𝑘𝑦𝑎

̅̅ ̅̅
 ∫

𝑑𝑦𝐴

(1− 𝑦𝐴)2(𝑦𝐴− 𝑦𝐴𝑖)

𝑦𝐴1

𝑦𝐴2
  

       =  
𝐿𝑀
∗

𝐾𝑥𝑎

̅̅ ̅̅
 ∫

𝑑𝑥𝐴

(1− 𝑥𝐴)2( 𝑥𝐴
∗ −𝑥𝐴)

𝑥𝐴1

𝑥𝐴2
  

       =  
𝐿𝑀
∗

𝑘𝑥𝑎

̅̅ ̅̅
 ∫

𝑑𝑥𝐴

(1− 𝑥𝐴)2( 𝑥𝐴𝑖−𝑥𝐴)

𝑥𝐴1

𝑥𝐴2
 (10.3-22) 

The quantities 𝐺𝑀
′ 𝐾𝑦𝑎⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝐺𝑀

′ 𝑘𝑦𝑎⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝐿𝑀
′ 𝐾𝑥𝑎⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝐿𝑀

′ 𝑘𝑥𝑎⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are roughly approximated parameters called 

“Height of a Transfer Unit,” averaged between the top and bottom of the packing section. These 

mass transfer capacity coefficients 𝐾𝑦𝑎, 𝐾𝑥𝑎, 𝑘𝑦𝑎, 𝑘𝑥𝑎 depend on the mass velocity of the gas 
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𝐺𝑀 = 𝐺𝑀
′ (1 − 𝑦𝐴)⁄  and decrease from bottom to top. From this viewpoint the precision may be 

better if the following expressions are used: 

𝑍𝑇 =  
𝐺𝑀

𝐾𝑦𝑎

̅̅ ̅̅
 ∫

𝑑𝑦𝐴

(1− 𝑦𝐴)(𝑦𝐴− 𝑦𝐴
∗ )

𝑦𝐴1

𝑦𝐴2
 (10.3-23) 

 

[PROBLEM 10.3-1] 

30 kmol/h of air contaminated by chlorine gas (mole fraction of Cl2: 𝑦𝐴 = 0.06 ) is contacted 

with water in a packed column to get the exit concentration 𝑦𝐴 = 0.005. The column operates at 1 

atm and 20˚C(=293 K). 

Determine the minimum liquid flow rate assuming physical absorption. The solubility of Cl2 into 

water (at 1 atm and 20˚C) is approximately expressed as  𝑝 = 1.92 × 109 𝑥2.16 

where 𝑥 = mole fraction of Cl2 in water and p = partial pressure (mmHg) of Cl2 in air. 
 

10.3-4  Mass transfer coefficients in a packed column absorber 
  Usually the mass transfer data for packed-tower absorption are correlated in the form 

𝐻𝑂𝐺 = 
𝐺𝑀

𝐾𝑦𝑎
  ,  𝐻𝐺 =  

𝐺𝑀

𝑘𝑦𝑎
  ,  𝐻𝑂𝐿 = 

𝐿𝑀

𝐾𝑥𝑎
  ,  𝐻𝐿 = 

𝐿𝑀

𝑘𝑥𝑎
 (10.3-24) 

These parameters are called the height of a transfer unit (HTU). The concept is based on the idea of 

dividing the packed section into a number of contact units called transfer units.  

The following integrals are designated as the number of transfer units (NTU): 

𝑁𝑂𝐺 =  ∫
𝑑𝑦𝐴

(1−𝑦𝐴)(𝑦𝐴−𝑦𝐴
∗ )

𝑦𝐴1

𝑦𝐴2
 (10.3-25) 

𝑁𝐺 = ∫
𝑑𝑦𝐴

(1−𝑦𝐴)(𝑦𝐴−𝑦𝐴𝑖)

𝑦𝐴1

𝑦𝐴2
  

𝑁𝑂𝐿 = ∫
𝑑𝑥𝐴

(1−𝑥𝐴)(𝑥𝐴
∗ −𝑥𝐴)

𝑥𝐴1

𝑥𝐴2
  

𝑁𝐿 = ∫
𝑑𝑥𝐴

(1−𝑥𝐴)(𝑥𝐴𝑖−𝑥𝐴)

𝑥𝐴1

𝑥𝐴2
  

Therefore the tower height may be calculated as the product of the number of transfer units and the 

height of a transfer unit (HTU): 

𝑍𝑇 =  𝐻𝑂𝐺 𝑁𝑂𝐺 = 𝐻𝐺  𝑁𝐺 = 𝐻𝑂𝐿 𝑁𝑂𝐿 =  𝐻𝐿 𝑁𝐿 (10.3-26) 
Using the two-film theory, the overall heights of transfer unit can be related to the single-phase 

transfer units as 

𝐻𝑂𝐺 = 𝐻𝐺 + 
𝑚 𝐺𝑀

𝐿𝑀
 𝐻𝐿  and  𝐻𝑂𝐿 = 𝐻𝐿 + 

𝐿𝑀

𝑚 𝐺𝑀
 𝐻𝐺  (10.3-27) 

These equations indicate that the overall resistance of interphase mass transfer consists of the 
gas-phase and liquid-phase resistances in series. 

 
 

10.4 Mass Transfer Correlations for Packed Columns 
 

  As in Eq.(10.3-25), the overall resistance to the interphase mass transfer comprises the gas-phase 

film resistance 𝐻𝐺 and the liquid-phase film resistance (𝑚𝐺𝑀 𝐿𝑀⁄ )𝐻𝐿. 
10.4-1 Height of a liquid-phase transfer unit 

  Sherwood and Holloway
1)

 measured the desorption of oxygen, hydrogen, and carbon dioxide 

from water in the range of gas flow rate up to the loading point and obtained the following 

correlation: 

𝐻𝐿 = 
1

𝛼
 (

𝐿

𝜇𝐿
)
𝑛

(
𝜇𝐿

𝜌𝐿𝐷𝐿
)
0.5

 (10.4-1) 

Temperature  278 < 𝑇 < 313𝐾  and liquid flow rate 0.556 < 𝐿 < 20.8 𝑘𝑔 𝑚2𝑠⁄ , where 𝜇𝐿 

is liquid viscosity (kg/m s), 𝐷𝐿 diffusivity for liquid (m
2
/s) and 𝜌𝐿 liquid density (kg/m

3
). 

                                                                               
1. Sherwood, T.K. and Holloway, F.A.L.: Trans. Am. Inst. Chem. Engrs., vol.36, 39 (1940) 
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Table 10.4-1  HTUL correlation parameters 

 Packing       size in.(I= 25.4 mm)      𝛼   n 
 Raschig rings   3/8  3,100   0.46 

    1/2  1,400   0.35 
    1    430   0.22 
    1 1/2    380   0.22 

    2    340   0.22 
 Berl saddles  1/2    600   0.28 

    1    780   0.28 
    1 1/2    730   0.28 

 

Note that the transfer unit 𝐻𝐿 up to the loading point is independent of the gas flow rate. 

  Onda et al.
1)

 obtained a dimensionless correlation: 

𝑘𝐿 (
𝜌𝐿

𝜇𝐿𝑔
)
1 3⁄

= 0.0051 (
𝐿

𝑎𝑤 𝜇𝐿
)
2 3⁄

(
𝜇𝐿

𝜌𝐿 𝐷𝐿
)
−0.5

 (𝑎𝑡𝐷𝑝)
0.4 (10.4-2) 

where the wetted surface area 𝑎𝑤 is given taking into account the liquid surface tension by 

𝑎𝑤 𝑎𝑡 = 1 − exp{− 1.45 (𝜎𝑐 𝜎)⁄ 0.75 (𝐿 𝑎𝑡𝜇𝐿⁄ )0.1 (𝐿2𝑎𝑡 𝜌𝐿
2𝑔⁄ )−0.05(𝐿2 𝜌𝐿𝜎𝑎𝑡⁄ )0.2}⁄  (10.4-3) 

                                                                          
1. Onda, K., Takeuchi, H., and Okumoto, Y., J. Chem. Eng. Japan, 1(1), 56 (1968) 

 

The total surface area 𝑎𝑡, the size 𝐷𝑝 of the packing are obtainable in relation with the void 

fraction 휀 on the dry basis in Table 10.4-2. 
 
Table 10.4-2  Geometrical data of Packings

1)
 

Packing    Size in. (= 25.54 mm) 𝑎𝑡   m
2 m3⁄   휀  m3 m3⁄  

Steel Raschig rings   3/4   364  0.73 
    1   184  0.86 

    1 1/2   128  0.90 
    2    95.1  0.92 

Steel Pall rings   5/8   341  0.93 
    1   207  0.94 
    1 1/2   128  0.95 

    2   102  0.96 
Ceramic Raschig rings  1/4   712  0.62 
    1/2   367  0.64 

    3/4   243  0.72 
    1   190  0.74 

    1 1/2   121  0.73 
    2   91.9  0.74 
Ceramic Berl saddles  1/4   899  0.60 

    1/2   466  0.62 
    3/4   285  0.66 
    1   249  0.68 

    1 1/2   151  0.71 
    2   105  0.72 
                                                                                      
1. Perry, R. H., and Chilton, C. H., Chemical Engineers’ Handbook, McGraw-Hill, New York, 5th ed.,Table 18-6 (1973) 

 

Hikita
1)

 obtained the following Sherwood number correlation: 

𝑘𝐿𝐷𝑝

𝐷𝐿
= 𝑐 (

4 𝐿

𝑎𝑤𝜇𝐿 
)
0.45

 (
𝜇𝐿

𝜌𝐿𝐷𝐿
)
0.5

 (
𝜌𝐿

2𝑔 𝐷𝑝
3

𝜇𝐿
2 )

1 6⁄

 (10.4-4) 

Liquid Reynolds number 
4 𝐿

𝑎𝑤𝜇𝐿 
= 50 ~ 1,000 

Here 𝑐 = 0.31 for Raschig rings, 𝑐 = 0.37 for Berl saddles. 

𝐿 (kg/m
2
h): liquid flow rate, 𝐷𝑝 (cm): packing size, and 𝜎 (dyne/cm): surface tension. 
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The empirical relations between the wetted surface and the total surface area proposed by Hikita are 

given as follows: 

𝑎𝑤 𝑎𝑡 = 0.0406 𝐿0.455 𝜎(−0.83 𝐷𝑝
−0.48)⁄   for Raschig rings 

𝑎𝑤 𝑎𝑡 = 0.0078 𝐿0.455 𝜎(−0.495 𝐷𝑝
−0.98)⁄         for Berl saddles   (10.4-5) 

                                      
1. Hikita, H.: Kagakukogaku (Chem. Eng. Japan), vol.26, 725 (1962) 

 

 

10.4-2 Height of a gas-phase transfer unit 
  Fellinger’s ammonia-air-water absorption data up to the loading point are correlated in the 

form
1)

 : 

𝐻𝐺 = 𝑐 𝐺𝑝 𝐿𝑞  (
𝜇𝐺

𝜌𝐺𝐷𝐺
)
2 3⁄

 (10.4-6) 

where 𝐻𝐺 = height of a gas-phase transfer unit m, 𝐺 = gas flow rate 1,000 ~ 3,500 kg/m
2 
h,  𝐿 = 

liquid flow rate 2,500 ~ 7,500 kg/m
2
 h 

                                         
1. Fellinger, L. Sc.D. thesis in Chem. Eng. M.I.T. (1941) from Perry, J.H.: Chemical Engineers’ Handbook, 4th ed. Vol.18-42, 

McGraw-Hill, New York (1963). 

 

The unknown parameters 𝑝, q, c calculated by Hikita are given in Table 10.4-3. 
 
Table 10.4-3 Parameters for correlation Eq.(10.4-6 ) 

 Packing         size in.(I= 25.4 mm)      𝑝  q  c 

 Raschig rings   3/8  0.45  - 0.47  0.85 
    1/2  0.43  - 0.60  4.2 

    1  0.32  - 0.51  3.07 
    1 1/2  0.38  - 0.66  9.59 
    2  0.41  - 0.45  1.44 

 Berl saddles  1/2  0.30  - 0.24  0.262 
    1  0.36  - 0.40  0.745 
    1 1/2  0.32  - 0.45  2.20 

                                       
Hikita, H.: Kagakukogaku (Chem. Eng. Japan), vol.26, 725 (1962) 

 

The gas-phase mass transfer correlation is experimentally obtained by Onda et al.
1)

: 

𝑘𝐺

𝑎𝑝𝐷𝐺
= 5.23 (

𝐺

𝑎𝑝𝜇𝐺
)
0.7

(
𝜇𝐺

𝜌𝐺𝐷𝐺
)
1 3⁄

(𝑎𝑝𝐷𝑝)
−2

 (10.4-7) 

The 𝐻𝐺  can be calculated by using the following defining equation with the superficial gas 

velocity 𝑢𝑠𝑓 

𝐻𝐺 = 
𝑢𝑠𝑓

𝑘𝐺𝑎𝑒
 (10.4-8) 

Here 𝑎𝑒 is the effective interfacial area for gas-liquid contact per unit volume. 
                                        
1. Onda, K., Takeuchi, H., amnd Okamoto, Y., J. Chem. Eng. Japan, 1, No.1, 56 (1982) 

 
 

10.5 Column Diameter and Pressure Drop of Packed Columns 
 

  The power of blower required to feed gas mixture at the specified rate is mainly related to the 

pressure drop in the packing section. The pressure drop per unit height of the packing section 

∆𝑝 𝑍𝑇⁄  is characterized graphically in Figure 11.4-1. As can be seen, for the case of countercurrent 
gas absorber, the pressure drop is increased due to reduction in free volume by the liquid.  

When gas mass-velocity 𝐺  is increased at a constant liquid mass-velocity 𝐿 , three flow 

conditions may occur successively. At very low gas velocities, the pressure drop is proportional 
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approximately to square of the gas velocity, as for dry packing. When 𝐺 is further raised, ∆𝑝 𝑍𝑇⁄  

ceases to increase with 𝐺2. It is attributable to the fact that a portion of the kinetic energy of the gas 

stream is used to support the liquid in the interstices of packing. This is called the “loading point.”  

The transition from preloading to loading is usually gradual. When 𝐺 exceeds a certain critical 

value, the liquid cannot flow downward over the packing, and then the column floods. This is called 

the “flooding point.” 

 
 
 

Fig.10.5-1. Pressure drop characteristics and flooding gas velocity of a packed column absorber 
 

One of the earliest correlations of the flooding data, which has been modified later by Eckert, is 

in the form: 

𝜌𝐺𝑢𝑠𝑓
2

𝜌𝐿𝑔(휀3 𝑎𝑡)⁄
 (

𝜇𝐿

𝜇𝑤
)
0.2

  𝑣𝑠.  
𝐿

𝐺
 √

𝜌𝐺

𝜌𝐿
 

where 𝑢𝑠𝑓 = superficial gas-velocity at the flooding point (m/s), 𝜌𝐺 and 𝜌𝐿 = gas and liquid 

densities (kg/m
3
), 𝜇𝐿 and 𝜇𝑤 = liquid and water viscosities (kg/m s), 𝑎𝑡= total surface area 

(m
2
/m

3
) and 휀 = void fraction (m

3
 interstices/m

3
 packed bed). Note that the left-side fraction 

implies the ratio of the kinetic energy of the gas stream to the potential energy of the liquid stream. 

For several kinds of packings, 𝑎𝑡 and 휀 are tabulated with respect to their sizes in the last section. 
The pressure drop in packed columns can be expressed as the function of 

𝐺2𝐹𝑝𝜓 (𝜇𝐿 𝜇𝑤⁄ )0.2

𝜌𝐺𝜌𝐿𝑔
   𝑣𝑠.  

𝐿

𝐺
 √

𝜌𝐺

𝜌𝐿
 

Here 𝜓 = 𝜌𝑤 𝜚𝐿⁄  is the ratio of water density to liquid density and 𝐹𝑝 the packing factor in 1/m, 

which should usually be given as the characteristics of various random packings. For example, 

25-mm (1 in.) steel Pall rings give 𝐹𝑝 = 157 1/m. 

It should be noted that as long as  (𝜇𝐿 𝜇𝑤⁄ )0.2 is regarded as a kind of correction factor, the 

remaining left-side term is a characteristic dimensionless kinetic energy 𝑢𝑠
2 group. 

Fig.11.3-1 shows generalized correlations of pressure drop for various random packing towers 

recalculated after Eckert correlation
1)

.  
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Figure 10.5-2. Generalized correlation for flooding and pressure drop in packed towers. 
                (After Eckert) 
                                                                                                   
 

 

[PROBLEM 10.5-1]  A gas absorber packed with 25-mm Pall rings (𝑭𝒑 = 𝟏𝟓𝟕 1/𝒎) deals with 

500 m
3
 of entering gas per hour. 

The SO2 content of the entering gas is 2 mol% and the remaining can be considered as air. Water is 

used as SO2-free absorbent. The temperature is 25˚C and pressure 1 atm. Ehen the ratio of gas flow 

to liquid flow is 1 kg gas/1 kg water, the gas velocity is one-half of the flooding velocity. 

(a) Calculate the tower diameter. 

(b) What is the pressure drop when the packing section is 7 m high? 
 
 

10.6 Pressure Drop of Dry Packed Columns 
 

  The pressure drop studied in the last section is for the gas-liquid countercurrent flow in a packed 

column. Regarding the single phase fluid flow in a packed bed, the following empirical equation is 

available.
1, 2)

 
𝑃0− 𝑃𝐿

𝐿
= 

150 𝜇𝑢𝑠

𝐷𝑝
2

(1− 𝜖)2

𝜖3
+ 

1.75 𝜌𝑢𝑠
2

𝐷𝑝

(1− 𝜖)

𝜖3
 (10.6-1) 

This equation gives the pressure drop 𝑃0 − 𝑃𝐿 through the length 𝐿 of a packed bed. The first 

term is the Blake-Kozeny equation for laminar flow and the second term is the Burke-Plummer 

equation for turbulent flow. As distinct from packed column gas absorbers, the packing material 

may be spheres, cylinders, or various kinds of commercial packing. Here 𝑢𝑠 is the superficial 

velocity, 𝜖 the void fraction, and 𝐷𝑝 is the mean packing particle diameter (e.g. sphere diameter).  

The mean diameter is defined by 

𝐷𝑝 =  6 𝑎𝑣⁄  (10.6-2) 

where 𝑎𝑣 is the specific surface area of a nonspherical packing particle (particle surface/particle 
volume). 

We define the friction factor for the packed bed by the following equation: 

1. Eckert, E. R. G., Chem. Eng. Progr., 66(3), 39 (1970) 
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𝑃0− 𝑃𝐿
1

2
 𝜌𝑢𝑠

2
= 

𝐿

𝐷𝑝
 𝑓 (10.6-3) 

Analogously to the friction factor for a circular tube flow, the first term can be rewritten as 

𝑓 =  (
(1− 𝜖)2

𝜖3 ) 
75

𝐷𝑝𝜌𝑢𝑠 𝜇⁄
 (10.6-4) 

This equation corresponds to the following equation for the laminar flow in a circular tube: 

𝑓 =  
16

𝑅𝑒
 (6.1-17) 

Similarly the second term may give 

𝑓 =  0.875 
1− 𝜖

𝜖3  (10.6-5) 

Usually the friction factor becomes constant in the turbulent flow region, except for the turbulent 

flow along smooth-walls.  

For the case of smooth tubes, the Blasius equation for the turbulent tube flow is available as an 

example.  

𝑓 =  
0.0791

𝑅𝑒1 4⁄  (7.3-12) 

The above correlation Eq.(10.6-5) can be understood from the following facts of various flows. 

 As can be seen in Fig.7.3-1, we note that for highly turbulent flow in rough tubes or pipe fittings 

the friction factors become constant and a function of the roughness or the fittings structure only.  

As will be studied in Chapter 20, the power number (a kind of friction factor) for baffled agitated 

vessel also has the same tendency in the turbulent flow condition.  
                                                                                      
1. Bird, R. B., Stewart, W. E., and Lightfoot, E. N., “Transport Phenomena,” Wiley, New York (1960) 

2. Ergun, S., Chem. Eng. Prog., 48, 89 (1952) 

 

 
 
Nomenclature 
  

𝑎, 𝑎𝑒 effective interfacial area per unit volume of packed bed, [m2/m3] 

𝑎𝑡 total surface area of packing, [m2/m3] 

𝑎𝑣 specific surface area of non-spherical packing particles, [m2/m3] 

𝐶𝐴 molar concentration of solute A, kmol/m3 solution 

𝐶𝑝 heat capacity, [J/kg K] 

𝑐 total mole density, [kmol/m3] 

𝐷 pipe diameter, [m] 

𝐷𝐴𝐵 diffusivity of component A, [m2/s] 

𝐷𝑝 size or diameter of packing particle, [m] 

𝐹𝑝 packing factor, [1/m] 

𝑓 friction factor, [ - ] 

𝐺, 𝐿 mass velocity of gas and liquid, [kg/m2s] or [kg/m2h] 

𝐺𝑀 , 𝐿𝑀 gas- and liquid-phase molar velocity, [kmol/m2s] 

𝐻, 𝐻′ Henry’s constant, mole fraction gas-phase/mole fraction liquid-phase or Pa gas-phase/(kmol A/m3 liquid)  

𝐻𝐺 , 𝐻𝐿 gas- and liquid-phase HTU (Height of a Transfer Unit), [m] 

𝐻𝑜𝐺 , 𝐻𝑜𝐿 overall HTU, [m] 

𝑗𝐷 , 𝑗𝐻 j-factor for mass transfer, j-factor for heat transfer, [ - ] 

𝑘𝐺 , 𝑘𝐿 gas-phase, and liquid-phase mass transfer coefficient, [kmol/m2s Pa], [m/s] 

𝐾𝑦 , 𝐾𝑥  overall mass transfer coefficient using gas-phase, and liquid-phase concentration, [kmol/m2s] 

𝑘𝑦 , 𝑘𝑥 gas-, and liquid-phase mass transfer coefficient using mole fraction, [kmol/m2s] 

𝐿 pipe length, [m] 

𝑚 Henry’s constant, [ - ] 

𝑁𝐴 molar mass-flux of component A, [kmol/m2s] 

𝑁𝑢 Nusselt number, [ - ] 

𝑁𝐺 , 𝑁𝐿 gas- and liquid-phase NTU (Number of Transfer Units), [m] 

𝑁𝑜𝐺 , 𝑁𝑜𝐿 overall NTU, [m] 

𝑝 pressure, [Pa] 

𝑝𝐴 partial pressure of solute gas A, [Pa] 

𝑅 pipe radius, [m] 

𝑅𝑒 Reynolds number, [ - ] 

𝑟 radial coordinate, [m] 

𝑆𝑐 Schmidt number, [ - ] 
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𝑆ℎ Sherwood number, [ - ] 

𝑥𝐴 mole fraction of component A, [ - ] 

𝑢𝑠 superficial velocity of gas, [m/s] 

𝑢𝑠𝑓 superficial gas velocity at flooding point, [m/s] 

𝑍 height of packed section, [m] 

𝑦 distance from pipe wall, [m] 

𝛿𝐷 film thickness for mass transfer, [m] 

휀 void fraction, [ - ] 

𝜇 viscosity, [kg/m s] 

𝜅 thermal conductivity, [W/m K] 

𝜎 surface tension, [N/m] 

 

Subscripts 
f film 

G gas 

i interface 

L liquid 
m bulk or mixed mean 

w wall nor wetted 
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PART Ⅱ 
 
 

CHAPTER 11 
 

MASS TRANSPORT EQUIPMENT 
 
 

11.1 Distillation Fundamentals 
 
11.1-1 Phase Equilibria for Distillation 
   

The rate of inter-phase mass transport increases with the deviation from the vapor-liquid 

equilibrium. We should have to some degree the knowledge of gas-liquid equilibrium. The 

following phase rule is available to establish the number of independent variables or degree of 

freedom in a specific situation: 

𝑭 = 𝑪 − 𝑷 + 𝟐 (11.1-1) 

Assume a binary solution having two components to be distilled, so 𝑪 = 2, 𝑷 = 2, and 𝑭 = 2. 
Both components are found in both phases. It can be considered that there are four variables: 

pressure, temperature, and the concentrations of component A in the liquid and vapor phases. For 

example, if the pressure is fixed, only one variable, e.g., liquid-phase concentration, can be changed 

independently, and temperature and vapor-phase concentration follow. Therefore equilibrium data 

are expressed in temperature-composition diagram under the condition of constant pressure. Such 

an equilibrium curve is given by plotting 𝑦𝑒, vapor-phase mole fraction , against 𝑥𝑒, liquid-phase 

mole fraction. Here only a very simple equilibrium case is introduced. 

 At equilibrium the activities of component A in the vapor and liquid should be equal.  

For ideal solutions, Raoult’s law can be applied: 

𝑝𝐴 = 𝑃𝐴 𝑥𝐴 (11.1-2) 

where 𝑝𝐴 is the partial pressure of component A in the vapor phase, 𝑃𝐴 the vapor pressure of pure 

component A, and 𝑥𝐴  the mole fraction of component A in the liquid. For the case of 

two-component system (binary system), the total pressure is  

𝑃 =  𝑝𝐴 + 𝑝𝐵 and 𝑥𝐴 + 𝑥𝐵. Therefore the vapor concentration can be calculated as 

𝑦𝐴 = 
𝑃𝐴𝑥𝐴

𝑃
 (11.1-3) 

 

 
Fig.11.1-1 Equilibrium diagram expressed mole fraction 𝒚𝑨 𝐚𝐠𝐚𝐢𝐧𝐬𝐭 𝒙𝑨 



 

The x-y diagram for binary equilibrium relationship is plotted for the more-volatile component A. 

A more general equilibrium relation is usually expressed as 

𝑦𝐴 = 𝐾𝐴 𝑥𝐴 (11.1-4) 

where 𝐾 is called the vapor-liquid equilibrium constant. 

For arbitrarily-chosen two components A and B, the relative volatility is defined as 

𝛼𝐴𝐵 = 
𝑦𝐴 𝑥𝐴⁄

𝑦𝐵 𝑥𝐵⁄
= 

𝐾𝐴

𝐾𝐵
 (11.1-5) 

For a binary system, the vapor-liquid equilibrium relation can be written by using 𝛼𝐴𝐵: 

𝑦𝐴 = 
𝛼𝐴𝐵 𝑥𝐴𝐵

1+(𝛼𝐴𝐵−1) 𝑥𝐴𝐵
 (11.1-6) 

Since the relative volatility does not vary so much in the small range of temperature, the equation 

can be used with an assumption of constant 𝛼𝐴𝐵. Eq.(11.1-6) is useful for analytical process 

simulation. 

 

11.1-2 Boiling-point diagram 

  As a simple example of equilibrium relation, a two-phase two-component system can be 

interpreted in terms of the temperatures and mole fractions by reference to Fig.11.1-2 called 

“Boiling point diagram.” 
 

 
 

Fig.11.1-2 Boiling-point diagram (constant pressure) 

 

 The boiling-point diagram at constant pressure for mixtures of component A (the more-volatile 

component), boiling at temperature 𝑇𝐴, and component B, boiling at temperature 𝑇𝐵. The diagram 
consists of two curves, the ends of which coincide at the positions of pure A-component and pure 

B-component, respectively. The upper line (called the dew-point curve) represents the vapor 𝑦𝐴𝑒 

that will just begin to condense at temperature 𝑇𝑑𝑒  (dew point). The lower line (called the 

bubble-point curve) represents the liquid 𝑥𝐴𝑒 that will just begin to boil at temperature 𝑇𝑏𝑒 (bubble 
point). Any two points d and b on the same horizontal line represent concentrations of liquid and 

vapor in equilibrium.at the temperature 𝑇𝑒. For all points above the dew-point line, the mixture is 

entirely vapor whereas for all points below the bubble-point line, the mixture is liquid. For points 

between the two lines, the mixture is partly liquid and partly vapor. As shown in Fig.11.1-2, the 

horizontal line indicates the vapor-liquid equilibrium relation that the vapor 𝑦𝐴𝑒 is in equilibrium 

with the liquid 𝑥𝐴𝑒 at temperature 𝑇𝑑𝑒 = 𝑇𝑏𝑒. 
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11.2 Distillation Equipment 
 
11.2-1 Continuous distillation plate column 
  Mass transfer equipment is designed to bring the two phases into intimate contact. Let us study 

how to design a continuous fractionating plate column. A typical distillation column with the major 

accessories is shown in Figure 11.2-1. The distillation system consists of the main fractionating 

column, an overhead condenser, and a bottom reboiler. Assume that the feed to be distilled is 

supplied into a plate in the central portion of the column as the liquid saturated at its bubble point. 

All plates above this feed plate constitute the rectifying section, and all plates below the feed plate 

constitute the stripping section which usually includes the feed plate. 

The liquid feed flows down the column by gravity to the bottom reboiler and is subjected to 

rectification by the vapor rising from the reboiler. The vapor generated in the reboiler passes up the 

entire column, and is condensed in the overhead condenser.  A portion of the condensate is 

returned to the top plate to provide the downflowing liquid in contact with the upflowing vapor in 

the rectifying section. This feedback liquid stream is called reflux. The bottom product liquid is 

withdrawn from the liquid pool in the reboiler. The overhead product is also withdrawn from the 

condensate collected in the accumulator. 
 

 
Fig.11.2-1. A typical continuous distillation plate column system.  

 

Various types of crossflow and dual-flow plates are available. As shown in Fig.11.2-2, vapor 

flows upward through the passage of both types of plates. Liquid flows downward through the side 

pipe called “downcomer” for crossflow plates. For dual-flow plates, liquid flows directly downward 

from the perforations or openings of the plater itself.  
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Fig.11.2-2. Vapor and liquid flows for crossflow and dual-flow trays 

 
 Bubble-plate and sieve-plate columns are commonly used in industrial distillation. A liquid 

mixture to be distilled, for example, is fed continuously into the central portion of the column. All 

plates above the feed plate constitute the rectifying section, and all plates below the feed plate 

(including the feed plate) constitute the stripping section. The liquid flows down the stripping 

section by gravity to the bottom of the column. The liquid reaching the bottom is partially vaporized 

by the reboiler and the vapor is sent back to the bottom of the column to provide the upflowing 

vapor stream in the stripping section. A definite rate of liquid as the bottom product is withdrawn 

from the pool of liquid in the reboiler. The vapor rises through the rectifying section after the 

stripping section toward the top of the column. The vapor arriving at the top of the column is cooled 

and completely condensed in the overhead condenser. Part of the condensate is returned to the top 

plate of the column to provide the downflowing liquid stream in the rectifying section. This return 

liquid is called “reflux.” Without the reflux there is no liquid stream in the rectifying section, and so 

no rectification would occur. A definite rate of the condensate is withdrawn as the overhead product 

from the condenser.  

 

 
Fig.11.2-3. Typical traditional crossflow plates 
 

Two typical traditional plates are shown in Fig.11.2-3. For cross-flow type plates, there are an outlet 

weir and a downcomer for liquid overflowing and then downflowing to the downstair tray. At each 

plate, bubbles of vapor are formed at the bottom of a liquid pool by forcing the vapor through small 

holes drilled in the plate or under slotted caps immersed in the liquid. Therefore interphase mass 

transfer occurs across the bubble interface while the bubbles rise up through the liquid pool. Some 

of the less-volatile component existing within the bubble is condensed while some of the 

more-volatile component existing in the liquid pool is vaporized. The result is a vapor phase which 
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becomes richer in the more-volatile component as it passes up the column and a liquid phase 

which becomes richer in the less-volatile component as it cascades downward. 

  The mass transfer process in an actual distillation column is too complicated to model in any 

direct way. For engineering design of actual distillation columns, therefore, the ideal plate concept 

is introduced to overcome this difficulty, and then the plate efficiency concept is taken into account.  

We shall firstly study the ideal plate model and engineering design method before considering 

distillation from a viewpoint of mass transfer. 
 

11.2-2 Plate column fundamentals 
 

 11.2-2-1 Definition of ideal stage 
  Let us consider a single plate (the nth plate from the top) in a column. As shown in Fig.11.2-4, 

two fluid streams enter the nth plate, and two leave it. A stream of liquid, 𝐿𝑛−1 kmol/s, from the 

plate n-1, and a stream of vapor, 𝑉𝑛+1 kmol/s, from plate n+1, are brought into intimate contact on 

the nth plate. A stream of vapor, 𝑉𝑛 and a stream of liquid, 𝐿𝑛 leave the nth plate. The definition 

of ideal stage or plate states that the vapor and liquid leaving the nth stage or plate are in 

equilibrium, so 𝑥𝐴𝑛  and 𝑦𝐴𝑛 represent equilibrium concentrations. 
 

 
 
 Fig.11.2-4 Definition of ideal plate or stage 

 

 
Fig.11.2-5 Boiling-point diagram (constant pressure) 
 

Fig.11.2-5 shows the boiling-point diagram. Usually the concentrations of the volatile component in 

both phases increase with the height of the column. Although the two streams 𝑦𝐴𝑛 and 𝑥𝐴𝑛 leaving 

the nth plate are in equilibrium, those entering it 𝑦𝐴𝑛+1 and 𝑥𝐴𝑛−1 are not in general. The vapor 
from plate n+1 and liquid from plate n-1 are brought into nth plate, and then some of the 

more-volatile component A is vaporized from the liquid whereas some of the less-volatile 

component B is condensed from the vapor. As a result, the liquid concentration decreases from 

𝑥𝐴𝑛−1 to 𝑥𝐴𝑛 and the vapor concentration increases from 𝑦𝐴𝑛+1 to 𝑦𝐴𝑛. For an ideal solution 

such as the benzene-toluene binary system, the latent heat necessary to vaporize component A can 
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be supplied by the latent heat released in the condensation of component B. This situation is 

expressed in Fig.11.2-6. 
 

 
Fig.11.2-6 Concentration change due to rectification on ideal plate in boiling-point diagram  
 

11.2-2-2 Material balance 

As shown in Fig.11.2-7, the column is fed with 𝐹 kmol/h of concentration 𝑥𝐹 (mole 

fraction of more-volatile component A). The 𝐷  kmol/h of overhead product of 

concentration 𝑥𝐷  and the 𝐵  kmol/h of bottom product of concentration 𝑥𝐵  are 

withdrawn. The vapor 𝑉𝑡 from the column top is condensed. Part of the condensate is 

returned as the reflux liquid 𝑅 to the top plate. 

The overall material balances can be written: 
Total material balance  

𝐹 = 𝐷 + 𝐵 (11.2-1) 
Component A balance 

𝐹𝑥𝐹 = 𝐷𝑥𝐷 + 𝐵𝑥𝐵 (11.2-2) 
A material balance around the overhead condenser is 

𝐷 = 𝑉𝑡 − 𝑅 (11.2-3) 

The (external) reflux ratio is defined as 

𝑟 =
𝑅

𝐷
= 

𝑉𝑡−𝐷

𝐷
 (11.2-4) 

 

 
Fig.11-2-7. Distillation column for total material balances 
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Fig.11.2-8. Material balance in rectifying section 
 

  Let us consider the 𝑛th plate from the top, where the plates are numbered serially from the top 
down. 

A stream of liquid, 𝐿𝑛−1 kmol/h of concentration 𝑥𝑛−1 from the plate 𝑛 − 1, and a stream of 

vapor, 𝑉𝑛+1 kmol/h of concentration 𝑦𝑛+1 from the plate 𝑛 + 1, are brought into intimate contact 

on the 𝑛th plate. A stream of vapor, 𝑉𝑛 kmol/h of concentration 𝑦𝑛, and a stream of liquid, 𝐿𝑛 

kmol/h of concentration 𝑥𝑛 leave the 𝑛th plate. At each plate the liquid is at the bubbling point 
and the vapor is at the dew point. Some of the less volatile component B is condensed from the 

vapor while some of the more volatile component A is vaporized by the latent heat released in the 

condensation of component B. 

  Choosing the rectifying section above plate 𝑛 + 1 including the overhead condenser as a control 

volume, we get material balances: 

𝐷 = 𝑉𝑛+1 − 𝐿𝑛 (11.2-5) 

𝐷 𝑥𝐷 =  𝑉𝑛+1𝑦𝑛+1  − 𝐿𝑛 𝑥𝑛 (11.2-6) 
This equation can be written as 

𝑦𝑛+1 = 
𝐿𝑛

𝑉𝑛+1
𝑥𝑛 +

𝐷

𝑉𝑛+1
 𝑥𝐷 (11.2-7) 

This is the equation for the operating line in the rectifying section which gives the relation between 

the concentrations of the entering vapor 𝑉𝑛+1 and the leaving liquid 𝐿𝑛. 
 

 
Fig.11-2-9 Material balance in stripping section 
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Similarly choosing the stripping section below plate 𝑚 including the reboiler as a control volume, 
we get material balances: 

𝐵 = 𝐿′𝑚 − 𝑉′𝑚+1 (11.2-8) 

𝐵 𝑥𝐵 = 𝐿′𝑚𝑥𝑚 − 𝑉′𝑚+1𝑦𝑚+1 (11.2-9) 
The lower equation 

𝑦𝑚+1 = 
𝐿′𝑚

𝑉′𝑚+1
𝑥𝑚 −

𝐵

𝑉′𝑚+1
 𝑥𝐵 (11.2-10) 

This is the equation for the operating line in the stripping section. 
 

11.2-2-3 McCabe-Thiele method 
  The number of ideal plates required to accomplish a specified separation can be computed by use 

of the McCabe-Thiele step-by-step construction of ideal plates. The ideal plate definition is that the 

vapor 𝑉𝑛 leaving the nth plate is in equilibrium with the liquid  𝐿𝑛 leaving the same plate.  
 

 
 
Fig.11.2-10. Definition of ideal plate 
 

Regarding the simplification of vapor-liquid equilibrium, the concept of volatility can be 
considered. The relative volatility for a binary solution A and B can be defined as 

𝛼 =  
𝑦𝐴 𝑥𝐴⁄

𝑦𝐵 𝑥𝐵⁄
 (11.2-11) 

where 𝑦𝐵 = 1 − 𝑦𝐴,   𝑥𝐵 = 1 − 𝑥𝐴. 
 

Assuming constant relative volatility 𝛼, the equilibrium can be approximated as 

𝑦 =  
𝛼 𝑥

1+(𝛼−1)𝑥
 (11.2-12) 

The x-y diagram for binary equilibrium relationship is plotted for the more-volatile component. 

 

The McCabe-Thiele method is based on the following two assumptions: 

(1) Equimolar heats of vaporization for the two components and 

(2) No heat leaks and no heat of mixing. 

 

Then the concept of constant molar overflow is obtained: 

(Rectifying section) 

𝑉𝑛 = 𝑉𝑛−1 = − − − − − =  𝑉1 = 𝑉𝑡 =  𝑉 (11.2-13) 

𝐿𝑛 =  𝐿𝑛−1 = − − − − − =  𝐿1 =  𝑅 =  𝐿 (11.2-14) 

 (Stripping section) 

𝑉′𝑚 = 𝑉′𝑚+1 = − − − − − =  𝑉′ (11.2-15) 

𝐿′𝑚 = 𝐿′𝑚+1 = − − − − − =  𝐿′ (11.2-16) 
Therefore the equations for the operating lines become 

𝑦𝑛+1 = 
𝐿

𝑉
 𝑥𝑛 + 

𝐷

𝑉
 𝑥𝐷 (11.2-17) 

𝑦𝑚+1 = 
𝐿′

𝑉′
 𝑥𝑚 − 

𝐵

𝑉′
 𝑥𝐵 (11.2-18) 
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The slope 𝐿 𝑉⁄  of the operating line is sometimes called the internal reflux ratio: 
𝐿

𝑉
= 

𝑅

𝑉𝑡
=  

𝑟

1+𝑟
 (11.2-19) 

A mass balance around the feed plate is 

𝐿′ = 𝐿 + 𝑞 𝐹 (11.2-20) 

𝑉 = 𝑉′ + (1 − 𝑞)𝐹 (11.2-21) 

Here the 𝑞 is a measure of the thermal condition of the feed: 

𝑞 =  
energy to convert 1 mole of feed to saturated vapor

molar heat of vaporization
 

If a saturated vapor mixture is fed, the 𝑞 becomes 0. 

Then 

𝐿′ = 𝐿          

𝑉 = 𝑉′ + 𝐹 (11.2-22) 

If a saturated liquid mixture is fed, the 𝑞 becomes 1. 

Then 

𝐿′ = 𝐿 + 𝐹      

𝑉 = 𝑉′ (11.2-23) 
The q-line, as shown in Fig.11.2-11, passes through the intersection point of the two operating lines 

at the feed plate. 

  
Fig.11.2-11. Interrelation of q-line with two operating lines 
 

The general equation of q-line is given by 

𝑦 =  
𝑞

𝑞−1
 𝑥 − 

1

𝑞−1
 𝑥𝐹 (11.2-24) 

When 𝑞 = 0,  𝑦 =  𝑥𝐹  
When 𝑞 = 1,  𝑥 =  𝑥𝐹  (11.2-25) 
 

 
 

11.2-2-4 McCabe-Thiele step-by-step calculation method1) 

The operating line for the rectifying section intersects the diagonal (𝑦 = 𝑥) at the overhead 

product concentration 𝑥𝐷. Similarly, the operating line for the stripping section intersects the 

diagonal at the bottom product concentration 𝑥𝐵. 
 

 

 

 
                                                                                       
1. McCabe, W. L., and Thiele, E. W., Ind. Eng. Chem., 17, 605 (1925) 
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Fig.11.2-12. McCabe-Thiele step-by-step construction of ideal plates 
 

Since, by definition of an ideal plate, 𝑦𝑛 and 𝑥𝑛 are the concentrations of the equilibrium vapor 

and liquid leaving the nth plate, point A(𝑦𝑛, 𝑥𝑛) on the equilibrium curve represents the equilibrium 

plate n. The operating line represents the concentrations of all possible pairs of passing streams 

within the section. A horizontal line AB at 𝑦𝑛 passing through the point B (𝑦𝑛, 𝑥𝑛−1) on the 
operating line gives the concentrations of vapor leaving and liquid entering plate n. A vertical line 

AC at 𝑥𝑛 intersecting the point C((𝑦𝑛+1, 𝑥𝑛) on the operating line gives the concentrations of 

vapor entering and liquid leaving plate 𝑛 + 1. Likewise, we can count the ideal plates downward 

( or upward) from the starting point (𝑥𝐷, 𝑥𝐷) through the rectifying section ( or stripping section) 
by alternating use of the equilibrium curve and the operating lines… 

The number of ideal plates (hypothetical equilibrium stages) must be converted to the number of 

actual plates by means of Murphree plate efficiency for practical column design, which will be 

studied later.. 

 

11.2-2-5 Reflux ratio 

  As the reflux ratio is decreased, the intersection point of the two operating lines approaches the 

equilibrium curve. When the intersection point touches the equilibrium curve, an infinite number of 

ideal plates would be required to accomplish a specified separation. The reflux ratio corresponding 

to this situation is the minimum reflux ratio. The economical (optimum) reflux ratio of actual 

columns usually falls around 1.5 times the minimum reflux ratio. 
 

 
Fig.11.2-13. McCabe-Thiele diagram for minimum reflux ratio 
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11.2-2-6 Enthalpy-composition method (Ponchon-Savarit step-by-step method)1,2)
 

  Analysis of fractionating columns can be done by using an enthalpy balance in conjunction with 

material balances and phase equilibria. This method is based on the graphical analysis of an 

enthalpy-composition diagram. Fig.11.2.14 is its schematic picture. The abscissa indicates the 

composition of a binary solution and the ordinate gives the enthalpy of the mixture of component A 

and B. Similarly to the boiling-point diagram, the curve KL is a dew point line and the curve MN 

indicates a bubble point line. The enthalpy of the ordinate includes latent heat, heats of mixing, and 

sensible heats and all these effects are built into the diagram, so that none of them need be 

considered separately. The balances of mass and enthalpy are set up over a control volume shown in 

Fig.11.2-8. 
 

 
 

Fig.11.2-14. Enthalpy-composition diagram for Ponchon-Savarit method. 
 

  Regarding the rectifying section shown in Fig.11.2-14, the enthalpy of the vapor stream (flow 

rate 𝑉𝑛+1) rising from plate n+1 is given by 𝐻𝑉𝑛+1 and the enthalpy of the liquid stream (flow rate 

𝐿𝑛) leaving plate n is given by 𝐻𝐿𝑛. If the column is assumed adiabatic, points P, 𝑉𝑛+1, 𝐿𝑛 are 
collinear. This line is called “enthalpy operating line.” Point P represents a common operating point 

for all values of 𝑉𝑛+1 and 𝐿𝑛. According to the center-of gravity principle,  
𝑉𝑛+1

𝐿𝑛
= 

𝑃𝐿𝑛

𝑃𝑉𝑛+1
= 

𝑥𝐷− 𝑥𝑛

𝑥𝐷− 𝑦𝑛+1
 (11.2-26) 

Similarly for the stripping section 
𝑉′𝑚+1

𝐿′𝑚
=   

𝑥𝑚− 𝑥𝑤

𝑦𝑚+1− 𝑥𝑤
 (11.2-27) 

In this rectifying section for adiabatic operation, the difference between the enthalpy carried 

upward by the vapor stream and that carried downward by the liquid stream is constant. In this 

control volume, enthalpy is removed by the overhead condenser in an amount 𝑄𝑐 (usually fixed) 
Setting up the enthalpy balance over the control volume 

𝐿𝑛𝐻𝐿𝑛 + 𝐷𝐻𝐷 + 𝑄𝑐 = 𝑉𝑛+1𝐻𝑉𝑛+1  (11.2-28) 

𝐻𝑃 = 𝐻𝐷 + 𝑄𝑐 𝐷⁄  (11.2-29) 

Then 

𝐷𝐻𝑃 = 𝑉𝑛+1𝐻𝑉𝑛+1 − 𝐿𝑛𝐻𝐿𝑛 (11.2-30) 
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For adiabatic operation, 𝐷𝐻𝑃 (the difference between the enthalpy carried by the vapor and liquid 
streams) becomes the same everywhere in the rectifying section. 

  Similarly in the stripping section we get 

𝑊𝐻𝑊 = 𝐿′𝑚𝐻𝐿𝑚 − 𝑉′
𝑚+1𝐻𝑉𝑚+1 + 𝑄𝑟 (11.2-31) 

𝐻𝑄 = 𝐻𝑊 − 𝑄𝑟 (11.2-32) 

𝑊𝐻𝑄 = 𝐿′𝑚𝐻𝐿𝑚 − 𝑉′
𝑚+1𝐻𝑉𝑚+1 (11.2-33) 

Since 𝐷 and 𝑊 are constant, 𝐻𝑃 and 𝐻𝑄 are also constant. 

𝑊𝐻𝑄 becomes the same everywhere in the stripping section. 

In a manner similar to McCabe-Thiele method, the enthalpy operating lines are used alternately 

with the tie-lines to give a step-by-step determination of the number of ideal plates necessary to 

accomplish a specified separation. This is called the “Ponchon-Savarit method.” 

 

Regarding the reflux ratio, the center-of-gravity principle gives 

𝑅 = 
𝐻𝑃− 𝐻𝑉1  

𝐻𝑉1− 𝐻𝐷
 (11.2-34) 

This equation indicates that Point P is specified by the reflux ratio. 
                                                                                       
1) Randall, M. and Longtin, B., Ind. Eng. Chem., 30, 1063, 1188 (1938) 
2) McCabe, W. L. and Smith, J. C., “Unit Operations of Chemical Engineering,” McGraw-Hill, 3rd ed., 571 – 585(1976)  

 

 

 

[EXAMPLE 12.2-1 ] A 2 kmol/h mixture of 0.4 mole fraction of methanol and 0.6 mole fraction of 

water is to be separated into overhead and bottom products of 0.85 and 0.2, respectively, by a 

column operated with a reflux ratio of 3 at 1 atm. The feed is supplied as a saturated liquid.  

(Attention: The specified concentrations of the overhead and bottom products are made 

intentionally moderate for easy explanation on the enthalpy-composition diagram, especially the 

bottom product concentration is specified larger than usual.) 

(1) Per kmol of overhead product, how much heat must be withdrawn at the overhead condenser 

and how much heat per kmol of bottom product must be added at the reboiler? 

(2) Explain the step-by-step method for obtaining the number of ideal plates on the diagram.  

 

Solution: 

(1) From the overall material balance, 𝐷 = 0.615 and 𝑊 = 1.385 kmol/h, respectively. 

Point F is placed on the bubble-point line at 𝑥𝐹 = 0.4. Points D and W are also located on the 

bubble-point line at 𝑥𝐷 = 0.85 and 𝑥𝑊 = 0.2, respectively. The point P can be determined 

from the specified reflux ratio 𝑅 = 3 as follows: 

From Fig.11.2-E1, we obtain 𝐻𝑉1 =  42,610, and 𝐻𝐷 = 5,645 kJ/kmol . Then 

𝐻𝑃 = 𝑅(𝐻𝑉1 − 𝐻𝐷) + 𝐻𝑉1 = 3 × (42,610 − 5,645) + 42,610 = 79,575 kJ/kmol 

The point P is decided as 𝐻𝑃 =  79,575 kJ/kmol and 𝑥𝐷 = 0.85. Then 

−𝑄𝑐 𝐷 = 79,575 − 5,645 = 73,930⁄  kJ/kmol.  The cooling duty becomes 

−𝑄𝑐 = 73,930 kJ kmol⁄ × 0.615 kmol h⁄ =  45,470 kJ/h 

The point W is obtained at the intersection of the overall-enthalpy line PF with the line 

𝑥𝑊 = 0.2, where 𝐻𝑊 = 6,245 kJ/kmol. Therefore 

𝑄𝑟 𝑊 = 𝐻𝑊 − 𝐻𝑄 = 6,245 − (−27,000) = 33,240⁄  kJ/kmol. The heat duty is 

𝑄𝑟 = 33,240 kJ kmol⁄ × 1.385 kmol h =  46,040⁄  kJ h⁄  
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Fig.11.2-E1. Ponchon-Savarit step-by-step method for a fractionating column 
 

(2) Since 𝑥𝐷 = 𝑦1 = 0.85, the point V1 is on the dew-point line at  𝑥𝐷 = 0.85. According to the 

vapor-liquid equilibrium relation, when 𝑦1 = 0.85 is in equilibrium with 𝑥1 = 0.656. This 

indicates that point L1 should lie on the bubble-point line at 𝑥1 = 0.656. Therefore the arrow 

V1→L1 shown in the figure is the tie-line. The next operating line through P and L1 intersects 

the dew-point line at point V2 (𝑦2 = 0.75). Using the VL equilibrium relation, the next tie-line 

gives point L2 on the bubble-point line at 𝑥2 = 0.442. Similarly point V3 is obtained at 

𝑦3 = 0.655. The next tie-line V3→L3 crosses the overall-enthalpy line. It can be considered that 

the rectifying operating lines should be placed on the right of the overall-enthalpy line and the 

stripping lines to the left. The best location of the feed plate is on the first plate where the liquid 

concentration is less than the abscissa of the intersection of the bubble-point line and the 

overall-enthalpy line. Therefore the feed plate should be on the No.4 plate. Since L3 is at the left 

of line PFQ, the next operating line should be drawn from point Q. This operating line intersects 

the dew-point line at V4 (at 𝑦4 = 0.380). Since 𝑥4 = 0.0857 is less than 𝑥𝑤, four steps can be 
considered to be sufficient. A reboiler plus three ideal plates should be specified with feed plate 

located at No.3 plate. (Attention: Because of the concentration of the bottom product specified 

larger than the usual value in this example, the feed plate is located at No.3 plate above the 

reboiler.) 
 
 

11.3  Mass Transfer in Distillation Column (Plate Column) 
 

In general, an actual column does not work well in the same manner as the ideal plate column 

above mentioned. Let us consider the distillation efficiency of plate columns from a viewpoint of 

mass transport phenomena. The plate efficiency calculation is based on the two-film theory. 

Assuming equal molar heat of vaporization for a binary mixture of A and B, the basic equations can 

be derived from the interphase mass transfer equations. 

Three assumptions have been made: 

(1) the rate of mass transfer of a component within a phase is proportional to the difference in its 

concentration in the bulk of the phase and at the vapor-liquid contacting interface,  

(2) the vapor and liquid at the interface are in equilibrium , and  
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(3) the holdup of the transferring component in the boundary layers on both sides of the interface is 

negligibly small compared to the amount transferred in the process. 

 

 
Fig.11.3-1. Composition profile in the neighborhood of vapor-liquid interface 

 
 

The rate of mass transfer per unit area or the mass flux may be expressed by 
*( ) ( ) ( )A yA A A yA Ai A xA A AiN K y y k y y k x x       (11.3-1) 

where 𝑥𝐴 and 𝑦𝐴 are mole fractions of the more volatile component A. 

The film coefficients of mass transfer 𝑘𝑦 ,   𝑘𝑥 are defined as 

𝑘𝑦𝐴 = 𝐷𝐺 𝛿𝐺𝑦 ,   𝑘𝑥𝐴 =  𝐷𝐿 𝛿𝐿𝑥⁄⁄  (11.3-2) 

According to the two-film theory, two resistances in series to interphase mass transfer can be 

expressed as 
1

𝐾𝑦𝐴
= 

1

𝑘𝑦𝐴
+ 

𝑚

𝑘𝑥𝐴
 ,       

1

𝐾𝑥𝐴
= 

1

𝑚 𝑘𝑦𝐴
+ 

1

𝑘𝑥𝐴
 (11.3-3) 

Consider the vapor bubbling up through a pool of liquid on plate n.  

At the differential control volume 𝑑𝑧 × 1 × 1, the mass balance of more volatile component A is 

𝐺𝑀 𝑑𝑦𝐴 = 𝐾𝑦𝐴 (𝑦𝐴
∗ − 𝑦𝐴)𝑎 𝑑𝑧 (11.3-4) 

Here 𝑎 is the interfacial area per unit volume of gas and liquid holdup in m
2
/m

3
. 

Integrating with assumption that 𝐾𝑦𝐴𝑎 𝐺𝑀⁄  is constant, we get 

𝑁𝑂𝐺 =  ∫
𝑑𝑦

𝑦𝐴
∗−𝑦𝐴

𝑦′𝑛
𝑦𝑛+1

= 
𝐾𝑦𝐴𝑎 𝑍𝑝

𝐺𝑀
 (11.3-5) 

This equation is the equation defining a local value of the number of transfer unit on plates of 

distillation column. Here 𝑍𝑝 is the bubbling pool height on plate n.  
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𝐺𝑀(1 × 1)𝑑𝑦 =  𝐾𝑦(𝑦

∗ − 𝑦)𝑎 (𝑑𝑧 × 1 × 1) 
Fig.11.3-2. Material balance of component A over a differential control volume dz of bubbling 

foam layer (height 𝒁𝒑) on a plate 
 

  The inlet vapor is assumed to be well mixed, so that 𝑦𝐴𝑛+1 can be regarded as a constant. The 

concentration of the outlet vapor 𝑦′𝐴𝑛 is generally a function of the length from the outlet weir 

along plate n for this kind of crossflow plate. The right-hand side term 𝐻𝑇𝑈 =  
𝐾𝑦𝐴𝑎 𝑍𝑝

𝐺𝑀
 is called 

“Height of Transfer Unit.” Similar equations are obtained with the other transfer units: 

𝑁𝐺 = ∫
𝑑𝑦

𝑦𝐴𝑖 −𝑦𝐴

𝑦′𝑛
𝑦𝑛+1

= 
𝑘𝑦𝐴𝑎 𝑍𝑝

𝐺𝑀
 (11.3-6) 

𝑁𝑂𝐿 = ∫
𝑑𝑥

𝑥𝐴 −𝑥𝐴
∗

𝑥′′𝑛
𝑥′𝑛

= 
𝐾𝑥𝐴𝑎 𝑍𝑝

𝐿∗
𝑀

 (11.3-7) 

𝑁𝐿 =  ∫
𝑑𝑥

𝑥𝐴 −𝑥𝐴𝑖

𝑥′′𝑛
𝑥′𝑛

= 
𝑘𝑥𝐴𝑎 𝑍𝑝

𝐿∗
𝑀

 (11.3-8) 

  Note that the above definition of local liquid-phase transfer units assuming the counter-current 

flow does not describe actual mass transfer situations, since the actual liquid stream flows 

horizontally on the plates.  

  We should interpret that 𝑥′𝑛 and 𝑥"𝑛 are hypothetical liquid concentrations at the top and 

bottom of the liquid pool and that 𝐿∗
𝑀 is hypothetical molar flow rate divided by the effective plate 

area. In the later section, the average values of the transfer units will be defined. 

  The relation between hypothetical and actual molar flow rates is given by 

𝐿𝑀𝑍𝑝 = 𝐿∗
𝑀𝐿𝑡   (11.3-9) 

where 𝐿𝑡 is the effective length of liquid travel on plate n. 

The overall mass transfer resistance is expressed in terms of the individual gas-phase and 

liquid-phase resistances: 
𝐺𝑀

𝐾𝑦𝐴 𝑎
= 

𝐺𝑀

𝑘𝑦𝐴𝑎
+ 

𝑚 𝐺𝑀

𝑘𝑥𝐴𝑎
 (11.3-10) 

where the vapor-liquid equilibrium curve is assumed to be locally a straight line. 

𝑦∗ = 𝑚 𝑥 + 𝑏 (11.3-11) 

Since 𝑍𝑝 = 
𝐺𝑀

𝐾𝑦𝐴 𝑎
 𝑁𝑂𝐺 =

𝐺𝑀

𝑘𝑦𝑎 𝑎
 𝑁𝐺 = 

𝐿∗
𝑀

𝑘𝑥𝑎𝑎
 𝑁𝐿 ,  

𝐺𝑀

𝐾𝑦𝐴𝑎
= 

𝑍𝑝

𝑁𝑂𝐺
,  

𝐺𝑀

𝑘𝑦𝐴𝑎
= 

𝑍𝑝

𝑁𝐺
,   

𝑚 𝐺𝑀

𝑘𝑥𝐴𝑎
= (𝑚 

𝐺𝑀

𝐿∗
𝑀
)

𝐿∗
𝑀

𝑘𝐴𝑥𝑎
=  (𝑚 

𝐺𝑀

𝐿∗
𝑀
)

𝑍𝑝

𝑁𝐿
,  

Thus Eq.(11.2-10) can be rewritten as 

 
1

𝑁𝑂𝐺
= 

1

𝑁𝐺
+ 

𝜆

𝑁𝐿
 (11.3-12) 

where 𝜆 = 𝑚 (𝐿∗
𝑀 𝐺𝑀⁄ )⁄  is the slope ratio of the equilibrium and operating liners called “the 

stripping factor.” The transfer units averaged over the effective plate area may be applied to 

Eq.(11.2-10) for commercial-scale columns except for extremely large columns. 
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11.4 Tray Model (Plate Efficiency) 
 
 11.4-1 Murphree Plate Efficiency 

The following assumptions are made: (1) that the inlet and outlet vapors are well mixed with 

concentrations of 𝑦𝑛+1 and 𝑦𝑛 respectively, and (2) that the inlet and outlet liquids are also well 

mixed, but the liquid concentration will vary between 𝑥𝑛−1 and 𝑥𝑛.  

The Murphree plate efficiency is defined as 

𝐸𝑀𝐺 =  
𝑦𝑛− 𝑦𝑛+1

𝑦∗
𝑛− 𝑦𝑛+1

 (11.4-1)  

 

 
Fig. 11.3-1. Murphree plate efficiency and point efficiency 
 

Here 𝑦∗
𝑛

 is the concentration of the vapor that would be in equilibrium with the liquid of 

concentration 𝑥𝑛 leaving the plate, i.e. 𝑦∗
𝑛

= 𝑚 𝑥𝑛 + 𝑏. The 𝑦𝑛+1 can be considered as a 

constant concentration since the inlet vapor is well mixed. As mentioned in the section of 
McCabe-Thiele method, for an ideal plate the vapor rising from the plate n is in equilibrium 
with the liquid of concentration 𝑥𝑛 leaving the plate. Therefore 𝐸𝑀𝐺 = 1. 
Similarly the plate efficiency for the liquid phase is also defined as 

𝐸𝑀𝐿 = 
𝑥𝑛−1− 𝑥𝑛

𝑥𝑛−1− 𝑥∗
𝑛
 (11.4-2) 

A point efficiency for the vapor phase can be defined as 

𝐸𝑃𝐺 =
𝑦′

𝑛− 𝑦𝑛+1

𝑦′∗
𝑛− 𝑦𝑛+1

 (11.4-3) 

Similarly 

𝐸𝑃𝐿 =
𝑥𝑛−1− 𝑥′

𝑛

𝑥𝑛−1− 𝑥′∗
𝑛
 (11.4-4) 

Here 𝑦′
𝑛

 and 𝑥′
𝑛 are local concentrations of the leaving vapor and the crossing liquid at 

distance 𝑙 from the outlet weir.  
The point efficiency is related with the local value of the number of transfer unit on plates of 
distillation column Eq. (11.3-5).1) 

Assume that over the liquid-flow cross section the liquid is well mixed i.e. 𝑦′∗
𝑛

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Combining the definition of 𝑁𝑂𝐺 with the definition of 𝐸𝑃𝐺  

𝑁𝑂𝐺 =   ∫
𝑑𝑦

𝑦∗−𝑦

𝑦′𝑛
𝑦𝑛+1

= − ln
𝑦′∗

𝑛− 𝑦′
𝑛

𝑦′∗
𝑛− 𝑦𝑛+1

   

exp(− 𝑁𝑂𝐺) =  
𝑦′∗

𝑛− 𝑦′
𝑛

𝑦′∗
𝑛− 𝑦𝑛+1

= 1 − 𝐸𝑃𝐺 (11.4-5) 

This is the equation for calculating the point efficiency from the number of transfer units. 
The transfer units averaged over the whole effective plate area can be expressed as 

𝑁𝑂𝐺
̅̅ ̅̅ ̅ =  ∫

𝑑𝑦

𝑦∗−𝑦
= 

𝐾𝑦𝑎 𝑍𝑝

𝐺𝑀
 ,     𝑁𝐺

̅̅ ̅̅ =  ∫
𝑑𝑦

𝑦𝑖−𝑦
= 

𝑘𝑦𝑎 𝑍𝑝

𝐺𝑀
 

       

𝑦𝑛

𝑦𝑛+1
 

𝑦𝑛

𝑦𝑛+1
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𝑁𝑂𝐿
̅̅ ̅̅ ̅ = ∫

𝑑𝑥

𝑥− 𝑥∗ = 
𝐾𝑥𝑎 𝑍𝑝

𝐿∗
𝑀

 ,    𝑁𝑂𝐿
̅̅ ̅̅ ̅ =  ∫

𝑑𝑥

𝑥− 𝑥𝑖
= 

𝑘𝑥𝑎 𝑍𝑝

𝐿∗
𝑀

 
𝑥𝑛−1

𝑥𝑛
 

𝑥𝑛−1

𝑥𝑛
 (11.4-6) 

In the above definition of liquid-phase transfer units, the inlet and outlet concentrations 
𝑥𝑛−1, 𝑥𝑛 are adopted in place of the concentrations at the top and bottom of the liquid pool. 
These averaged transfer units are more useful than the local transfer units because they are 
measurable by experiment. 
In the case when the liquid on the plate is also completely mixed, the point and plate 
efficiencies become identical : 
𝐸𝑃𝐺 = 𝐸𝑀𝐺 = 1 − exp(− 𝑁𝑂𝐺

̅̅ ̅̅ ̅ ) (11.4-7) 
                                                                                      
 
 
11.4-2 Mass Transfer Experiment1) 
In order to understand the mass transfer in plate column distillation processes, vapor-phase and 

liquid-phase mass transfer coefficients should be discussed separately. The numbers of transfer units 

are a function of mass transfer coefficient and interfacial area. The transfer units can be considered 

of the form 

𝑁𝐺
̅̅ ̅̅ = 𝑁𝐺

̅̅ ̅̅  (𝑆𝑐𝐺 ,𝑊𝑒, 𝑅𝑒𝐺 , ℎ𝑤 𝐿𝑡 ,   𝑑 𝐿𝑡 ,   𝐿𝑀 𝑉𝑀,   𝑛 𝐿𝑡
2⁄⁄⁄ )   

𝑁𝐿
̅̅̅̅ = 𝑁𝐿

̅̅̅̅  (𝑆𝑐𝐿,𝑊𝑒, 𝑅𝑒𝐿 , ℎ𝑤 𝐿𝑡 ,   𝑑 𝐿𝑡 ,   𝐿𝑀 𝑉𝑀,   𝑛 𝐿𝑡
2⁄⁄⁄ ) (11.4-8) 

Here 𝑊𝑒 is known as the Weber number which represents the ratio of inertia to surface tension 
force: 

𝑊𝑒 = 
𝑢𝐺0

2𝜌𝐺𝑑

𝜎
 (11.4-9) 

The Reynolds numbers are 

𝑅𝑒𝐺 = 
𝑢𝐺0𝜚𝐺𝑑

𝜇𝐺
  

𝑅𝑒𝐿 = 
𝑢𝐿0𝜚𝐿𝑑𝑒𝑞

𝜇𝐿
 (11.4-10) 

The n , d and ℎ𝑤 are the number of holes per unit area of plate, the hole diameter, and the height of 

the outlet weir, respectively. The 𝑢𝐺0 is the vapor velocity in a hole and 𝑢𝐿 is the liquid velocity 

along the plate deck. The 𝑑𝑒𝑞 is the equivalent hydraulic diameter on plate.  

As an example, regarding the distillation column efficiency, the experimental data on bubble cap 

tray reported very many years ago by AIChE Research Committee
1)

 is still available.  

Fig.11.4-1 shows the geometry of a crossflow tray and bubbling foam layer. 

 
Fig. 11.4-1 Geometry of a crossflow tray and bubbling foam or froth layer 
 

The superficial vapor velocity 𝑢𝐺  (m/s) is based on the effective area of plate (bubbling area). 
The correlation equation1,2) developed on the basis of the gas-phase efficiency was obtained 
from the ammonia-air-water system and acetone-benzene system: 

𝑁𝐺 = 
1

√𝑆𝑐𝐺
 (0.776 + 4.57 ℎ𝑤 − 0.238 𝐹 + 105 𝐿) (11.4-11) 

where ℎ𝑤 is the outlet weir height, 𝐹 the F-factor given by 𝑢𝐺√𝜌𝐺 in (m/s)(kg/m3)1/2, and 

 

1. Kister, H. Z., Distillation Design, McGraw-Hill, Newb York, P.367 (1992) 
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𝐿 the liquid volume flow-rate per unit width of plate in m3/m s. 
The liquid holdup per unit bubbling area length ℎ𝐵 is also given by 

ℎ𝐵 = 4.2 ×  10−2 + 0.19 ℎ𝑤 − 1.36 ×  10−2𝐹 + 2.49 𝐿    
 (11.4-12) 
The number of transfer unit on the liquid-phase is given by the following correlation: 

𝑁𝐿 = 2.08 × 104 √𝐷𝐿  (0.213 𝐹 + 0.15)𝑡𝐿     (11.4-13) 

Here 𝐷𝐿 is the diffusivity in the liquid in m
2
/s. The residence time 𝑡𝐿 (s) is the time of liquid 

crossing the liquid length 𝐿𝑡 on the bubbling area shown in Fig.11.4-1.  
                                           
1. AIChE Research Committee, Bubble Tray Design Manual, New York (1958) 
2. AIChE Research Committee, Tray Efficiencies in Distillation Columns, Final Report from the Univ. Delaware (1958) 

 
Let us learn how to predict the plate efficiency from these mass transfer correlations expressed as 

the number of transfer units. 
 

[EXAMPLE 11.4-1]  A liquid mixture of benzene and toluene is to be distilled by a bubble tray 
column which is 2 m in diameter and which contains eighteen trays on 0.50 m tray-to-tray spacing. 

The feed containing 54 mol% benzene is supplied as the liquid at the bubbling point. The operating 

conditions and tray geometry are listed in Table 11.3-1. Obtain the plate efficiency of the rectifying 

section assuming that the liquid is completely mixed. 
 
Table 11.4-1 Operating conditions 
Feed rate   0.139 kmol/s 
Feed composition  54 mol% benzene 
Overhead rate  0.075 kmol/s 
Overhead composition 99 mol% benzene 
Reflux ratio  1.67 
 

Rectifying section 
Vapor flowrate  0.20 kmol/s (Rectifying section) 
Liquid flowrate  0.125 kmol/s (Rectifying section) 
Average temperature 98℃ 
Average pressure  0.15 MPa 
Average liquid composition 90 mol% benzene 
Average vapor composition 94 mol% benzene 
 

Tray geometry 
Tray diameter   2 m 
Cap size    0.0762  
Cap layout  triangular 
Bubbling area  1.7 m (average width) 

1.2 m (average length) 
Outlet weir height  0.08 m 
Outlet weir length  1.5 m 
 

Solution: 
(Step Ⅰ) Calculation of 𝑁𝐺: The physical properties of the vapor at 98℃ and 0.15 MPa are 

𝜌𝐺 = 4.0 kg m3,   𝜇𝐺 = 8.5 × 10−6  kg m s, and 𝐷𝐺 = 2.94 × 10−6 𝑚2 𝑠⁄  ⁄⁄ , respectively. Then 

the Schmidt number is 𝑆𝑐𝐺 = 0.72.  The average molecular weight of the vapor 

𝑀𝐺 = 78.8 kg kmol⁄ . Then the volumetric vapor flow rate is 

𝐺′ = 𝐺𝑀𝑀𝐺 𝜌𝐺 = (0.20)(78.8) 4⁄ = 3.94 m3 s⁄⁄    
The superficial velocity based on the bubbling area is 
𝑢𝐺 = 𝐺′ 𝐴⁄ =  3.94 (1.2 × 1.7) = 1.93 ⁄ m/s 
Then the F-factor is obtained  

138                   Mass Transport Equipment 



𝐹 =  𝑢𝐺√𝜌𝐺 = (1.93)√4 = 3.86 (m s⁄ )(kg m3)⁄
1 2⁄

 

The average density of the liquid is 𝜌𝐿 = 800 kg m3⁄ . The average molecular weight is 𝑀𝐿 =
79.4 kg kmol⁄  
The volumetric liquid flow rate is 

𝐿′ =  𝐿𝑀𝑀𝐿 𝜌𝐿 = (0.125)(79.4) 800⁄ = 0.0124 m3 s⁄⁄            

Then the liquid rate per unit width of the outlet weir is obtained 

 𝐿 =  0.0124 1.5⁄ = 0.00827 m3 s m⁄  
Then Eq.(11.4-11) gives 

𝑁𝐺 = (0.72)−1 2⁄ (0.776 + 4.57 (0.08) − 0.238 (3.86) + 105𝑏 (0.00827)) = 1.286  

(Step Ⅱ) Calculation of 𝑁𝐿: From Eq.(11.4-12), the liquid holdup on the trays is calculated: 

ℎ𝐵 = 4.2 ×  10−2 + 0.19 (0.08) − 1.36 × 10−2 (3.86) + 2.49 (0.00827) = 0.0253 m 
The contact time of liquid should be calculated based on the bubbling area 

𝑡𝐿 = ℎ𝐵𝐿𝑡 𝐿⁄ =  (0.0253)(1.2) 0.00827⁄ = 3.67 𝑠 
The liquid-phase diffusivity is given by 

𝐷𝐿 = 6 × 10−9  m2 s⁄  
Then Eq.(11.4-13) gives 

𝑁𝐿 = (2.028 × 104) (6 ×  10−9)1 2⁄  (0.213 × 3.86 + 0.15)(3.67) = 5.605 

(Step Ⅲ) Calculation of 𝑁𝑂𝐺: 
The slope of the equilibrium curve gives 𝑚 = 0.5  at  𝑥 = 0.90.    Then 

𝜆 =  𝑚 𝐺𝑀 𝐿𝑀 = (0.50) (0.20) 0.125 = 0.80⁄⁄  
Eq.(11.3-12) gives 
1

𝑁𝑂𝐺
= 

1

𝑁𝐺
+ 

𝜆

𝑁𝐿
= 

1

1.286
+ 

0.80

5.605
= 0.920   or  𝑁𝑂𝐺 = 1.087   

(Step Ⅳ) Calculation of point efficiency: 

Eq.(11.4-7) gives 

𝐸𝑃𝐺 = 1 − exp(− 𝑁𝑂𝐺) = 1𝑏 − exp(−1.087) = 0.663 
For the case of completely mixed liquid flow the point and plate efficiencies become identical. 

The plate efficiency is given by 

𝐸𝑀𝐺 = 𝐸𝑃𝐺 =  0.663   or   66.3% 
 

 
 

11.5 Design Calculation Procedure of Distillation Columns 
 

The design calculation for the total number of actual plates required to accomplish a specified 

separation should be done in the following order: 

(i) Number of ideal plates 

The step-by-step calculation needs the following information: 

Vapor-liquid equilibrium relationship, material balances, optimum reflux ratio, operating 

lines, and McCabe-Thiele stage-by-stage method based on stage equilibrium model for ideal 

plate construction. 

(ii) Plate efficiency 

The plate efficiency should be considered from mass transfer information: 

Vapor-phase transfer unit, liquid-phase transfer unit, total number of transfer units, point 

efficiency, and plate efficiency taking into account the mixing effect. 

(iii) Overall efficiency 

The overall efficiency is defined as the ratio of the number of ideal plates to the number of 

actual plates. If the equilibrium and operating lines are straight, the overall efficiency 

𝐸𝑂𝑉 = 
ln[1+ 𝐸𝑀𝐺(𝜆−1)]

ln𝜆
 (11.5-1) 

As an alternative method, the modified McCabe-Thiele method can be used. The number of 
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actual plates can be computed replacing the true equilibrium curve 𝑦𝑒 by an effective curve 

𝑦𝑒
′ with the aid of known Murphree plate efficiencies in the McCabe-Thiele step-by-step 

method: 

𝑦𝑒
′ = 𝑦 + 𝐸𝑀𝐺(𝑦𝑒 − 𝑦) (11.5-2) 

Figure 11.5-2 shows the modified McCabe-Thiele method. 
 

 

11.6 Heat Balance of Distillation Column System 
 

  A continuous distillation column shown below is designed to separate 𝐹 (kmol/h) of a binary 

mixture of 𝑥𝐹 (mole fraction) of the more volatile component X and (1 − 𝑥𝐹) of the less volatile 

component Y into an overhead product containing 𝑥𝐷 of component X and a bottom product 

containing (1 − 𝑥𝐵) of component Y. 

 

 
 
Fig.11.6-1. Flow sheet of distillation column system 
 

 

(i) Calculate the overhead and bottom products. 

A reflux ratio 𝑟 =  𝑅 𝐷⁄  is to be used and the reflux is at its bubbling point. The 

feed is to be heated from 𝑡𝐹0 to 𝑡𝐹1 (K) by exchanger I, from 𝑡𝐹1 to 𝑡𝐹2 (K) by 

exchanger II, and from 𝑡𝐹2 to 𝑇𝐹 (K) by exchanger III, so that it can be introduced 

into the column as saturated liquid at its bubbling point. 

(ii) Obtain the equations of operating line and q-line. 

The molar latent heat and heat capacity of the mixture can be approximated as 

Δ𝐻𝑀 = 𝑥 Δ𝐻𝑋 + (1 − 𝑥)Δ𝐻𝑌 (J/kmol) 

𝐶𝑝𝑀 = 𝑥 𝐶𝑝𝑋 + (1 − 𝑥)𝐶𝑝𝑌   (J/kmol K) 

 The vapor leaving the top of the column is to be completely condensed at its dew 

point 𝑇𝐷 (K) by exchanger II and the overhead condenser,  

(iii) If cooling water enters the overhead condenser at 𝑡𝑖 (K) and leaves at  𝑡𝑜 (K), how 

much water is required? 

(iv) The bottom product leaves the reboiler at its bubbling point 𝑇𝐵 (K). If the heat 

released by steam at pressure 𝑃𝑆 (Pa) in the reboiler is assumed equal to the heat of 
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vaporization 𝐻𝑆 (J/kg), how much steam is required? 
(v) What is the temperature of the bottom product at the outlet of exchanger III? 

(vi) If a constant Murphree vapor-phase plate-efficiency 𝐸𝑀𝐺 (-) is given to each stage 

excluding the reboiler, how many actual plates are needed?  Where should the feed 

be introduced? 

 

Solution: 
(i) Overall mass balances: 

𝐹 = 𝐷 + 𝐵 (11.6-1) 

𝐹 𝑥𝐹 = 𝐷 𝑥𝐷 + 𝐵 𝑥𝐵 (11.6-2) 

From these equations, the overhead and bottom products 𝐷 and 𝐵 (kmol/h) are 
found: 

𝐷 = 
𝑥𝐹 − 𝑥𝐵

𝑥𝐷 − 𝑥𝐵
 𝐹,         𝐵 = 

𝑥𝐷 − 𝑥𝐹

𝑥𝐷 − 𝑥𝐵
 𝐹 

(ii) Since the feed is introduced as saturated liquid, 𝑞 = 1 and the q-line equation 

becomes 𝑥 =  𝑥𝐹. For 𝑞 = 1, the liquid and vapor flow rates are 

𝐿′ = 𝐿 + 𝐹  and  𝑉′ = 𝑉 
These quantities can be expressed in terms of the reflux ratio: 

𝐿′ −  𝐹 = 𝐿 = 𝑅 = 𝑟 𝐷 (11.6-3) 

𝑉′ = 𝑉 = 𝑅 + 𝐷 = (𝑟 + 1)𝐷 (11.6-4) 
Then the equations for the operating lines are found:  

(Rectifying section) 

𝑦 =  
𝐿

𝑉
 𝑥 +  

𝐷

𝑉
 𝑥𝐷 = 

𝑟

𝑟+1
 𝑥 + 

1

𝑟+1
 𝑥𝐷 (11.6-5) 

(Stripping section) 

𝑦 =  
𝐿′

𝑉′
 𝑥 −  

𝐵

𝑉′  𝑥𝐵 = 
𝑓+ 𝑟

𝑟+1
 𝑥 − 

𝑏

𝑟+1
 𝑥𝐵 (11.6-6) 

where 𝑓 =  𝐹 𝐷⁄  and 𝑏 =  𝐵 𝐷⁄ . 
(iii) The vapor flow rate in the rectifying section is 

𝑉 = (𝑟 + 1)𝐷      
The total rate of heat released in condensation of the vapor is 

(𝑟 + 1)𝐷 [𝑥𝐷∆𝐻𝑋 + (1 − 𝑥𝐷)∆𝐻𝑌] 
              Assuming the average heat capacity not to be a function of temperature, the 

 rate of heat transfer at exchanger II is given by  

𝐹 [𝑥𝐹𝐶𝑝𝑋 + (1 − 𝑥𝐹)𝐶𝑝𝑌](𝑡𝐹2 − 𝑡𝐹1) 

              By heat balance set up at the condenser, the water flow rate 𝑊 (kg/h) can be 

 calculated as 

(𝑟 + 1)𝐷 [𝑥𝐷∆𝐻𝑋 + (1 − 𝑥𝐷)∆𝐻𝑌] −  𝐹 [𝑥𝐹𝐶𝑝𝑋 + (1 − 𝑥𝐹)𝐶𝑝𝑌](𝑡𝐹2 − 𝑡𝐹1) 
                 = 𝑊 𝐶𝑝𝑤(𝑡𝑜 − 𝑡𝑖) (11.6-7) 

              Here 𝐶𝑝𝑤 is heat capacity of water in (J/kg K). 

(iv) The heat required for vaporizing 𝑉′ (kmol/h) of liquid is 

𝑉′[𝑥𝐵∆𝐻𝑋 + (1 − 𝑥𝐵)∆𝐻𝑌] = 𝑆 ∆𝐻′𝑆 (11.6-8) 

              From this equation, the steam needed, 𝑆 (kg/h) can be calculated. 

(v) By heat balance set up at exchanger III the outlet temperature 𝑡𝐵  (K) can be 
calculated. 

𝐹 [𝑥𝐹𝐶𝑝𝑋 + (1 − 𝑥𝐹)𝐶𝑝𝑌](𝑇𝐹 − 𝑇𝐹2) =  𝐵[𝑥𝐵𝐶𝑝𝑋 + (1 − 𝑥𝐵)𝐶𝑝𝑌](𝑇𝐵 − 𝑡𝐵)
 (11.6-9) 

(vi)   As shown in Fig.12.1-2, the effective equilibrium curve 𝑦′𝑒 vs. 𝑥 can be 

 obtained from the true equilibrium curve 𝑦𝑒 vs. 𝑥 by using the following  
equation: 

𝑦′𝑒 = 𝑦 + 𝐸𝑀𝐺  (𝑦𝑒 − 𝑦) (11.6-10) 
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Fig.11.6-2. Modified McCabe-Thiele step-by-step method 

 

As shown in Fig.11.6-2, the McCabe-Thiele step-by-step construction can be made between the 

effective equilibrium curve and the operating lines to determine the number of actual plates. The 

true equilibrium curve is used for the last step which corresponds to the reboiler. It is found that a 

reboiler and N actual plates are needed and the feed should be introduced on the i th plate from the 

top. 

 
 
Nomenclature 
 

𝑎 effective interfacial area per unit packed volume, [m2/m3] 

𝐶𝑝 heat capacity, [J/kmol K] 

𝐷 overhead product, [kmol/s] 

𝐷𝐺 , 𝐷𝐿 diffusivity in gas- and liquid-phase, [m2/s] 

𝐸𝑀𝐺 Murphree plate efficiency, [ - ] 

𝐸𝑃𝐺 , 𝐸𝑃𝐿 point efficiency for vapor- and liquid-phase, [ - ] 

𝐹 feed rate, [kmol/s]  or F-factor  [(m/s)(kg/m3)0.5] 

𝐺𝑀 superficial molar gas-mass velocity, [kmol/m2s]  

𝐻𝑋 , 𝐻𝑌 latent heat (enthalpy) of x- and y- component, [J/kmol] 

ℎ𝐸𝑇𝑃 HETP (Height Equivalent to a Theoretical Plate), [m] 

ℎ𝑤 outlet weir height, [m] 

𝐾 vapor-liquid equilibrium constant, [ - ] 

𝐾𝑥 , 𝐾𝑦  overall mass transfer coefficients defined by vapor-phase and liquid-phase concentrations [kmol/m2s] 

𝑘𝑥 , 𝑘𝑦 mass transfer coefficients of vapor-phase and liquid-phase film [kmol/m2s] 

𝑚 slope of equilibrium curve, 𝑑𝑦 𝑑𝑥⁄ ,  

𝑁𝑂𝐺 , 𝑁𝐺 , 𝑁𝐿number of transfer unit, OG:overall, G:gas phase, L:liquid phase, [ - ] 

𝑛 theoretical plate/stage number, [ - ] 

𝑅𝑒 Reynolds number, [ - ] 

𝑆𝑐 Schmidt number, [ - ] 

𝑇, 𝑡 temperature, [K] 

𝑥𝐴, 𝑦𝐴 mole fraction of component A, liquid- and vapor-phase, [ - ] 

𝑧 height of packing section, [m] 

𝛼𝐴𝐵 relative volatility, [ - ] 

𝛿𝐺 , 𝛿𝐿 thicknesses of gas-phase and liquid-phase film, [m] 

𝜆 stripping factor, [ - ] 

𝜇 viscosity, [kg/m s] 

 
Subscripts 
A, B component A, B 

G, L gas-phase, liquid-phase 

𝑖 interface   
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CHAPTER 12 
 

SIMULTANEOUS HEAT AND MASS TRANSFER - I 
 
 

12.1 Theory of Simultaneous Heat and Mass Transfer - I 
 

As distinct from gas absorption, a distillation process takes place in the form of non-isothermal 

counter-diffusion accompanied with the enthalpy releasing due to condensation of less-volatile 

component B and the enthalpy receiving vaporization of more-volatile component A in the 

neighborhood of vapor-liquid contacting interface. Even at present, however, it is still very difficult 

to confirm whether or not the enthalpy released by the component B is totally consumed for the 

vaporization of component A. This is an important theme for the investigators of non-equilibrium 

thermodynamics. 

In this chapter, we consider the distillation process by the simultaneous heat and mass transfer 

based on the assumption that the total molar enthalpy 𝑁𝐵∆𝐻𝐵  released by condensation of 
component B is consumed for the vaporization of component A. The following enthalpy balance 

should exist: 

𝑁𝐵∆𝐻𝐵 =  𝑁𝐴∆𝐻𝐴 (12.1-1) 

If ∆𝐻𝐵 = ∆𝐻𝐴, 𝑁𝐵 = 𝑁𝐴 .  
That is, this condition indicates the equimolar counter-diffusion. 

For example, benzene and toluene have approximately equal molar enthalpy for condensation 

and vaporization.  
 
 

 
 
 

 
Fig.12.1-1. Heat and mass transfer in a distillation process 
 

As shown in Fig.12.1-1, in the counter-current condition of vapor and liquid streams, less-volatile 

component B having enthalpy 𝐻𝐺𝐵in the vapor bulk arrives by convective mass transfer at the 

interface and then the latent heat 𝑁𝐵∆𝐻𝐵 released due to condensation of component B is absorbed 
for vaporization by more-volatile component A which arrives at the interface by convective mass 

transfer in the opposite direction from the liquid bulk. At the same time, thermal energy is 

transported by convective heat transfer accompanied with the counter-diffusion from the vapor bulk 

to the liquid bulk across the interface. Only for simplicity, it can be considered by the 



above-mentioned assumption that there is no temperature jump in the neighborhood of the interface. 

  We will pay attention to the mass transfer of component A from liquid to vapor phase in a packed 

column (cross-section area 𝑆). 

If their molar latent heats are equal: ∆𝐻𝐴 = ∆𝐻𝐵 (J/kmol), equimolar counter-diffusion takes place. 

The interphase mass transfer of component A can be expressed by the following mass-flux equation 

based on Fick’s law and the two film theory: 

𝑁𝐴 = − 𝜌𝐺𝐷𝐴𝐵𝐺
𝑑𝑦𝐴

𝑑𝑧
|
𝑧=0

= − 𝜌𝐿𝐷𝐴𝐵𝐿
𝑑𝑥𝐴

𝑑𝑧
|
𝑧=0

 (12.1-2) 

where 𝜌𝐺 and 𝜌𝐿 (kmol/m
3
) are molar densities of vapor and liquid, and 𝐷𝐴𝐵𝐺 and 𝐷𝐴𝐵𝐿 (m

2
/s) 

are vapor-phase and liquid-phase diffusivities of component A in B, respectively. 
 

 
 

Fig.12.1-2. Composition and temperature profiles in the neighborhood of vapor-liquid contacting 
interface 

 

Therefore the convective heat and mass transfer coefficients can be defined as 

𝑁𝐴 = − 𝜌𝐺𝐷𝐴𝐵𝐺
𝑑𝑦𝐴

𝑑𝑧
|
𝑧=0

= 𝜌𝐺(𝐷𝐴𝐵𝐺 𝛿𝐺⁄ )(𝑦𝐴𝑖 − 𝑦𝐴) =  𝑘𝑦𝐴(𝑦𝐴𝑖 − 𝑦𝐴) (12.1-3) 

𝑁𝐴 = − 𝜌𝐿𝐷𝐴𝐵𝐿  
𝑑𝑥𝐴

𝑑𝑧
|
𝑧=0

=  𝜌𝐿(𝐷𝐴𝐵𝐿 𝛿𝐿⁄ )(𝑥𝐴 − 𝑥𝐴𝑖) =  𝑘𝑥𝐴(𝑥𝐴 − 𝑥𝐴𝑖) (12.1-4) 

𝑄 = − 𝜅𝐺
𝑑𝑇𝐺

𝑑𝑧
|
𝑧=0

= (𝜅𝐺 𝛿𝐺⁄ )(𝑇𝐺 − 𝑇𝑖) =  ℎ𝐺(𝑇𝐺 − 𝑇𝑖) (12.1-5) 

𝑄 =  − 𝜅𝐿
𝑑𝑇𝐿

𝑑𝑧
|
𝑧=0

= (𝜅𝐿 𝛿𝐿⁄ )(𝑇𝑖 − 𝑇𝐿) =  ℎ𝐿((𝑇𝑖 − 𝑇𝐿)) (12.1-6) 

It should be noticed that as distinct from gas absorption, the mass transfer coefficients in 

distillation do not include the effect of bulk transfer owing to equimolar counter-diffusion. 

As shown in Fig.12.1-2, the overall driving force can be considered to be the liquid bulk 

concentration 𝑥𝐴𝑚 minus the vapor bulk concentration 𝑦𝐴𝑚. However it is necessary to use a 
concentration unit on the common basis. 

If we use vapor-phase concentration unit in mole fraction, the overall driving force is given by 

𝑦𝐴
∗ − 𝑦𝐴, where  𝑦𝐴

∗ is fictitious concentration in equilibrium with the liquid bulk concentration 

𝑥𝐴 . Usually the liquid-bulk concentration 𝑥𝐴  is converted into 𝑦𝐴
∗  by using a vapor-liquid 

equilibrium relation such as 𝑦𝐴 = 𝑚 𝑥𝐴. 
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12.2 Transport Phenomena in a Packed Column Distillation 
Process 
 

12.2-1 Simultaneous mass and energy transfer model  
Unless a process fluid mixture to be distilled has any problem in thermal processes such as 

fouling, polymerization, and/or thermal decomposition, a packed bed column is very often 

employed for distillation operation.   

Let us consider a packed column distillation. It is very instructive to reconsider a distillation 

process from a standpoint of simultaneous heat and mass transfer. It should be kept in mind that as 

distinct from gas absorption, a usual distillation process takes place under the condition of 

equimolar counter-diffusion. That is, there is no stagnant incondensable component near the 

vapor-liquid interface. 

Figure 12.2-1 shows a usual packed column, in which random packings or structured packings 

are equipped in the three packing sections. The upper packing section above the feed stage is called 

rectifying section and the lower one below the feed stage is called stripping section. In each empty 

space above the respective packing beds, a liquid collector and a liquid distributor are installed in 

order to avoid maldistribution of liquid stream in the packing section. 

 
Fig.12.2-1. Packed distillation column 

 
Fig.12.2-2. Shell balance of mass and enthalpy set up over a differential control volume of packed 
distillation columns 
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Fig.12.2-2 shows a schematic picture of control volume having differential height 𝑑𝑧 for setting 
up heat and mass balances. 

 

For distillation processes, molar rates of vapor and liquid 𝐺𝑀 and 𝐿𝑀 can be assumed to be 

kept constant due to equimolar counter-diffusion. 

Therefore, referring to Eqs.(12.1-3~6), the differential heat and mass balance equations can be 

written as 

𝑁𝐴𝑆 𝑑𝑧 =  𝐺𝑀 𝑑𝑦𝐴𝑆 =  𝑘𝑦𝐴𝑎 (𝑦𝐴𝑖 − 𝑦𝐴)𝑆 𝑑𝑧 =  𝑘𝑥𝐴𝑎 (𝑥𝐴 − 𝑥𝐴𝑖)𝑆 𝑑𝑧 (12.2-1) 

𝑄 𝑆 𝑑𝑧 = 𝐺𝑀 𝑑𝐻𝐺 𝑆 =  ℎ𝐺𝑎 (𝑇𝐺 − 𝑇𝑖)𝑆 𝑑𝑧 =  ℎ𝐿𝑎 (𝑇𝑖 − 𝑇𝐿)𝑆 𝑑𝑧 (12.2-2) 

where 𝐺𝑀 and 𝐿𝑀  (𝑘𝑚𝑜𝑙 𝑚2 𝑠)⁄  are superficial molar velocities of vapor and liquid streams.  

The molar mass-flux 𝑁𝐴  and enthalpy-flux 𝑄  have units of  (𝑘𝑚𝑜𝑙 𝑚2𝑠⁄ )  and (𝑊 𝑚2⁄ ) , 

respectively. 

Using the overall volumetric coefficients 𝐾𝑦𝐴𝑎 and 𝑈𝑎 

𝐺𝑀𝑑𝑦𝐴 = 𝐾𝑦𝐴𝑎 (𝑦𝐴
∗ − 𝑦𝐴)𝑑𝑧 (12.2-3) 

𝐺𝑀 𝑑𝐻𝐺 = 𝑈 𝑎 (𝑇𝐺 − 𝑇𝐿)𝑑𝑧 (12.2-4) 

In these equations, the effective interfacial area per unit packed-bed volume 𝑎  (m
2
/m

3
) is 

introduced. 

 Usually it is not so easy to measure vapor-liquid-contacting interfacial area 𝑎 (m
2
/m

3
), so the 

overall volumetric coefficients 𝐾𝑦𝐴𝑎 and 𝐾𝑥𝐴𝑎 are employed for the packed bed mass transfer.  

  Similarly it is possible to define the following overall coefficient 𝐾𝑥𝐴 based on liquid-phase 
concentration: 

𝑁𝐴𝑎 𝑆𝑑𝑧 = 𝐾𝑥𝐴𝑎(𝑥𝐴 −  𝑥𝐴
∗)𝑆𝑑𝑧 (12.2-5) 

where 𝑥𝐴
∗ is fictitious concentration in equilibrium with the vapor bulk concentration 𝑦𝐴. 

 According to Eq.(11.2-3),  

𝑑𝑧 =  
𝐺𝑀

𝐾𝑦𝐴𝑎
 

𝑑𝑦𝐴

𝑦𝐴
∗− 𝑦𝐴

 (12.2-6) 

Assuming the coefficient 
𝐺𝑀

𝐾𝑦𝐴𝑎
 to be constant, integration from column top to bottom gives 

𝑍𝑇 =  ∫ 𝑑𝑧
𝑍𝑇

0
= 

𝐺𝑀

𝐾𝑦𝐴𝑎
  

̅̅ ̅̅ ̅̅ ̅
∫

𝑑𝑦𝐴

𝑦𝐴
∗ − 𝑦𝐴

𝑦𝐴2

𝑦𝐴1
 (12.2-7) 

Here the quantity 𝐻𝑂𝐺 =
𝐺𝑀

𝐾𝑦𝐴𝑎

̅̅ ̅̅ ̅̅
  averaged over the column height is called “Height of a Transfer 

Unit.”  Strictly speaking, HTU actually increases in the vertical direction from the bottom toward 

the top of the packed bed. In order to calculate the total packed bed height 𝑍𝑇 required for a 

separation specification, however, the overall volumetric coefficient 𝐾𝑦𝐴𝑎 should be evaluated by 

considering the vapor-phase and the liquid-phase mass transfer, separately.  

The interphase mass transfer resistance based on two film theory is expressed by 
1

𝐾𝑦𝐴
= 

1

𝑘𝑦𝐴
+ 

𝑚

𝑘𝑥𝐴
 (12.2-8) 

where the slope of equilibrium curve 𝑚 is used for conversion of liquid-phase to vapor-phase 
concentration unit. 

  If the vapor-phase and liquid-phase volumetric coefficients 𝑘𝑦𝐴 and 𝑘𝑥𝐴 are given, the total 

height of the packed column can be calculated with the aid of Eq.(12.2-8). 

Concerning the mass transfer resistance, the following parameters are defined: Height of Overall 

Transfer Unit and Height of gas-phase and liquid-phase transfer units  

𝐻𝑂𝐺 = 
𝐺𝑀

𝐾𝑦𝐴𝑎
,    𝐻𝑂𝐿 = 

𝐿𝑀

𝐾𝑥𝐴𝑎
 (12.2-9) 

𝐻𝐺 = 
𝐺𝑀

𝑘𝑦𝐴𝑎
,     𝐻𝐿 = 

𝐿𝑀

𝑘𝑥𝐴𝑎
 (12.2-10) 

Therefore multiplying Eq.(11.2-8) by molar vapor velocity 𝐺𝑀, the following equation is obtained 

indicating the two mass transfer resistances in series in the neighborhood of the interface: 

𝐻𝑂𝐺 = 𝐻𝐺 +  𝜆 𝐻𝐿 (12.2-11) 
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where 𝜆 =  𝑚 (𝐿 𝑉⁄ )⁄  is the slope ratio of the equilibrium curve to the operating line, called 

“stripping factor.”. 

This equation is very important to check which phase resistance is predominant over the interphase 

mass transfer, vapor-phase or liquid-phase. 

  Although these mass transfer parameters are available in some degree in the correlation databank, 

we should consider it rather difficult to apply them for engineering column design without 

experiment for checking. 

 

12.2-2 Efficiency of packed distillation columns 
  The concept of plate efficiency cannot be applied to packed distillation columns. 

In place of the Murphree plate efficiency, the distillation efficiency of a packed column can be 

evaluated by the HETP (Height Equivalent to Theoretical Plate). This is defined as the total height 

of the packing section divided by the required number of theoretical stages. Therefore this 

characteristic value can be determined by comparing the result of distillation experiment conducted 

in a real packed column with the calculation result using the McCabe-Thiele stage-by-stage process 

simulation calculation based on the equilibrium-stage model in an ideal column. However if we 

consider local variation in distillation efficiency in a packed column, we should introduce a control 

volume approach for definition of the local HETP. Fig. 12.2-3 indicates the significance of HETP 

defined by using a control volume approach. In this case, the HETP can be defined as the control 

volume height of a real column required for the condition that the vapor (concentration 𝑦𝐴𝑛) 
leaving the control volume from the top should have an equilibrium relation with the liquid 

(concentration 𝑥𝐴𝑛) leaving from the bottom.  

  The mass balance of more volatile component A is set over the nth control volume as follows: 

𝐺𝑀𝑛𝑦𝐴𝑛 − 𝐺𝑀𝑛+1𝑦𝐴𝑛+1 = 𝐾𝑦𝐴,𝑛𝑎 (𝑦𝐴𝑛
∗ − 𝑦𝐴𝑛)𝑙.𝑚.ℎ𝐸𝑇𝑃,𝑛 (12.2-12) 

where logarithmic mean of the concentration difference as the mass transfer driving forces is used 

between the top and bottom of each control volume. The concentration 𝑦𝐴𝑛
∗  is the bulk 

concentration of the liquid phase 𝑥𝐴𝑛 converted with the units of the gas-phase concentration. 
This equation is similar to Eq. 12.2-3. 
 

 
 

Fig. 12.2-3. Interrelation of HETP for a real packed column with equilibrium stage in an ideal 
column 
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If the required number of theoretical stages (i.e., control volumes) is N, the total height of  

the packed column 𝑍𝑇 for the given separation specification can be calculated as 
 

𝑍𝑇 = ∑ ℎ𝐸𝑇𝑃,𝑛 = ∑
𝐺𝑀𝑛𝑦𝐴𝑛− 𝐺𝑀𝑛+1𝑦𝐴𝑛+1

𝐾𝑦𝐴,𝑛𝑎 (𝑦𝐴𝑛
∗ − 𝑦𝐴𝑛)

𝑙.𝑚.

𝑁
𝑛=1

𝑁
𝑛=1  (12.2-13) 

Usually 𝐻𝑂𝐺 = 𝐺𝑀 𝐾𝑦𝐴𝑎⁄  varies with vertical height of the packing section. For ideal solutions, 

𝐺𝑀𝑛 is kept almost constant. In addition, if we use an averaged value of 𝐻𝑂𝐺, the above equation 
can be simplified as 

𝑍𝑇 = ∑ ℎ𝐸𝑇𝑃,𝑛 =  (
𝐺𝑀

𝐾𝑦𝐴𝑎
)
𝑎𝑣

∑
𝑦𝐴𝑛− 𝑦𝐴𝑛+1

 (𝑦𝐴𝑛
∗ − 𝑦𝐴𝑛)

𝑙.𝑚.

𝑁
𝑛=1

𝑁
𝑛=1  (12.2-14) 

 

 This equation coincides with Eq.(12.2-7). 

 

[PROBLEM 12.2-P1]  Fig.12.2-P1 shows the relation of HETP with HOG. Derive the following 
relation between HETP and HTUOG: 

𝐻𝐸𝑇𝑃 = 
ln𝜆

𝜆−1
 𝐻𝑂𝐺 (12.2-P1) 

where 𝜆 is the stripping factor defined by the slope ratio of equilibrium curve and operating line. 

 

 
Fig. 12.2-P1. Relation of HETP with HTU. 
 
 

12.3 Analogy between Mass and Enthalpy Transfer in a Packed 
Column Distillation Process

1,2)
 

 

  A packed column distillation process takes place with non-isothermal and counter-diffusional 

interphase mass transfer accompanied with phase transformation. Essentially the distillation 

efficiency such as HETP should vary streamwise upward in the vertical direction. There is an 

experimental work observing such a complicated transport phenomenon inside the packed 

distillation column. This work
1)

 deals with a semi-empirical model by making up the mutual defects 

between the experiment in a real packed column and the computer-aided process simulation based 

on the equilibrium model. It is instructive to introduce here the experimental results obtained in a 

commercial-scale column equipped with wire-mesh corrugated structured packing.  

Let us consider the mass transfer of more-volatile component A from the liquid- to the 

vapor-phase through the interface. The total-reflux distillation experiment was performed with 

methanol-ethanol binary system. Similarly to Eq.12.2-12, the interphase transfer of mass and 

enthalpy can be expressed by the following equations defining a cylindrical control volume shown 

in Fig. 12.3-1: 
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Fig. 12.3-1. Control volume of j th ideal stage defined in a real column 
 

The shell balances of mass and enthalpy are set up over the j-stage control volume:  

(Mass transfer) 

𝐺𝑀𝑗𝑦𝐴𝑗 − 𝐺𝑀𝑗+1𝑦𝐴𝑗+1 = (𝑘𝑦𝐴𝑎)
𝑗
(𝑦𝐴𝑗,𝑖 − 𝑦𝐴𝑗)ℎ𝐸𝑇𝑃𝑗 (12.3-1) 

                                    =  (𝑘𝑥𝐴𝑎)𝑗(𝑥𝐴𝑗 − 𝑥𝐴𝑗,𝑖)ℎ𝐸𝑇𝑃𝑗 

                                    =  (𝐾𝑦𝐴𝑎)
𝑗
(𝑦∗

𝐴𝑗
− 𝑦𝐴𝑗)

𝑙.𝑚.
ℎ𝐸𝑇𝑃𝑗 

(Enthalpy transfer)  

𝐺𝑀𝑗+1𝐻𝐺𝑗+1 − 𝐺𝑀𝑗𝐻𝐺𝑗 = (ℎ𝐺𝑎)𝑗(𝑇𝐺𝑗 − 𝑇𝑖𝑗)ℎ𝐸𝑇𝑃𝑗 (12.3-2) 

                                      =  (ℎ𝐿𝑎)𝑗(𝑇𝑖𝑗 − 𝑇𝐿𝑗)ℎ𝐸𝑇𝑃𝑗 

                                      =  (𝑈𝑎)𝑗(𝑇𝐺 − 𝑇𝐿)𝑙.𝑚.ℎ𝐸𝑇𝑃𝑗 

It is a key point of modeling to give the height ℎ𝐸𝑇𝑃𝑗 for defining the control volume. 

Here 𝐺𝑀𝑗 , 𝐿𝑀𝑗  denote vapor and liquid molar velocity (kmol/m
2
s), 𝑘𝑦𝐴𝑎 , 𝑘𝑥𝐴𝑎 , 𝐾𝑦𝐴𝑎  the 

volumetric mass transfer coefficients (kmol/m
3
s), ℎ𝐺𝑎, ℎ𝐿𝑎 , 𝑈𝑎  the volumetric heat transfer 

coefficients (W/m
3
K), 𝑦𝐴, 𝑥𝐴 the vapor- and liquid-phase mole fractions of component A, and 𝑇𝐺, 

𝑇𝐿 the vapor- and liquid-phase temperatures (K). The subscript j indicates jth ideal stage and i 

implies the vapor-liquid interface. The asterisk 𝑦∗
𝐴𝑗

 is the bulk concentration of the liquid phase 

expressed with the units of the vapor-phase concentration. 

In this work, local variations of not only the mass and enthalpy transfer coefficients but also the 

HETPs are determined by the distillation experiment conducted in a real packed column with the 

aid of computer process simulation. An understanding of analogy between mass and enthalpy 

transfer is possible because the enthalpy transfer is fulfilled primarily by the transferring volatile 

components themselves. 

It can be considered that the superficial vapor velocity is kept almost constant in the vertical 

direction in the packing section, similarly to the free stream of the boundary layer flow over a flat 

plate. 

  In order to consider the interrelation between mass and enthalpy transfer in the vapor-phase, the 

local j-factors for mass and enthalpy transfer are defined respectively as 

𝑗𝐷𝐺 = 
𝑘𝑦𝐴𝑎 

𝑎𝑝𝐺𝑀
 𝑆𝑐𝐺

2 3⁄
 (12.3-3) 

𝑗𝐻𝐺 = 
ℎ𝐺𝑎

𝑎𝑝𝐶𝑝𝐺𝐺
 𝑃𝑟𝐺

2 3⁄
 (12.3-4) 

In a manner similar to the local analysis of boundary layer flow over a flat plate, the following local 

length Reynolds number is defined on the basis of superficial relative velocity 𝑢𝑠 = 𝑢𝐺𝑠 − 𝑢𝐿𝑠: 

𝑅𝑒𝑧𝐺 = 
𝑢𝑠𝜌𝐺(𝑍 𝑑𝑒𝑞)⁄

𝑎𝑝𝜇𝐺
 (12.3-5) 
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where 𝑍 is the vertically upward distance from the bottom of the packing section, 𝑑𝑒𝑞  the 

equivalent diameter of the structured packing, and 𝑎𝑝 the specific surface area per unit volume of 

the packing. 

  Fig.12.3-2 show one of the experimental results of the boundary-layer-like plot of j-factors 

against local Reynolds number. Here F is the F-factor defined at the top of the packing section for 

the experimental condition. 

The F-factor defined by using the superficial vapor velocity 𝑢𝐺𝑠 measured at the top and its vapor 

density 𝜌𝐺 is 

𝐹 =  𝑢𝐺𝑠√𝜌𝐺 (12.3-6) 

The position of the left-side ordinate shown in Fig.12.3-2 corresponds to the bottom of the packing 

section. It has been found that the local coefficients of mass and enthalpy transfer decrease 

downstream in the vertical direction like the boundary layer over a hot flat plate. If this control 

volume approach based on the superficial vapor velocity is approved, as shown in Fig.12.3-3, local 

variation of the j-factors in a packed distillation column resembles that of the single-phase boundary 

layer flow over a flat plate. Only the difference between the two cases is that the vapor stream with 

constant superficial velocity has streamwise variation of vapor composition in the packed column 

whereas the free stream has uniform constant concentration in the boundary layer flow. It can be 

conjectured that the same boundary-layer-like tendency can also be observed in the wetted-wall 

distillation column. 

 
Fig.12.3-2. Similarity plot of j-factors against length Reynolds number 
 

 
 

 
Fig.12.3-3. Comparison of packed column distillation with boundary layer flow over a flat plate 
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It is very interesting that the j-factors 𝑗𝐷𝐺, 𝑗𝐻𝐺 indicate the same dependency of local length 
Reynolds numbers. This suggests that local similarity exists between simultaneous mass and 

enthalpy transfer in the vapor-phase film. Therefore 𝑗𝐻𝐺 𝑗𝐷𝐺⁄ = C (constant) leads to :  

𝑗𝐻𝐺

𝑗𝐷𝐺
= 

(ℎ𝐺 𝐶𝑝𝐺⁄ )

𝑘𝑦𝐴
 (

𝑃𝑟𝐺

𝑆𝑐𝐺
)
2 3⁄

 (12.3-7) 

This implies that the distillation process takes place with the similar transfer processes expressed 

by 
ℎ𝐺 𝐶𝑝𝐺⁄

𝑘𝑦𝐴
= 𝐶 𝐿𝑒−2 3⁄  (12.3-8) 

The liquid-phase j-factors also indicate similar dependency but the results are omitted owing to 

the complicated mechanism beyond the scope of the book. 
  Although the bottom edge of the packing section should correspond to the sharp leading edge of 

the flat plate, it can be taken into account that the fictitious origin 𝑧 = 0 slightly shifts depending 

on the top F-factor.  
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2. Nishimura, G., Kataoka, K., Noda, H., and Ohmura, N., Journal of Advanced Chemical Engineering, Vol.11, Issue 2, (2021) 

 
 
Nomenclature 
 

𝑎 effective interfacial area per unit packed volume, [m2/m3] 

𝑎𝑝 specific surface area per unit packed volume, [m2/m3] 

𝐶𝑝 heat capacity, [J/kmol K] 

𝐷𝐴𝐵𝐺 , 𝐷𝐴𝐵𝐿 diffusivity in gas- and liquid-phase, [m2/s] 

𝑑𝑒𝑞 equivalent diameter, [m] 

𝐹 F-factor [(m/s)(kg/m3)0.5] 

𝐺 superficial vapor mass velocity, [kg/m2s]  

𝐺𝑀 superficial molar vapor velocity, [kmol/m2s]  

𝐻𝐴, 𝐻𝐵 latent heat (enthalpy) of component A, B, [J/kmol] 

𝐻𝑂𝐺 , 𝐻𝐺 , 𝐻𝐿height of transfer unit, OG:overall, G:vapor phase, L:liquid phase, [ - ] 

𝐻𝑉 , 𝐻𝐿 enthalpy of vapor and liquid, [J/kmol] 

ℎ𝐸𝑇𝑃 HETP (Height Equivalent to a Theoretical Plate), [m] 

ℎ𝐺 , ℎ𝐿 vapor-phase and liquid-phase heat transfer coefficient, [W/m2K] 

𝑗𝐷𝐺, 𝑗𝐻𝐺 j-factor for mass and enthalpy transfer in vapor phase, [ - ] 
𝐾𝑥 , 𝐾𝑦  overall mass transfer coefficients defined by vapor-phase and liquid-phase concentrations [kmol/m2s] 

𝑘𝑥 , 𝑘𝑦 mass transfer coefficients of vapor-phase and liquid-phase film [kmol/m2s] 

𝐿𝑀 superficial molar liquid velocity, [kmol/m2s] 

𝑚 slope of equilibrium curve, 𝑑𝑦 𝑑𝑥⁄ ,  

𝑁𝐴, 𝑁𝐵 molar mass flux of component A, B, [kmol/m2s] 

𝑛 control volume/stage number, [ - ] 

𝑄 enthalpy flux, [J/m2s] 

𝑅𝑒𝑥 , 𝑅𝑒𝑧 length Reynolds number, [ - ] 

𝑆 cross-sectional area of packed columns, [m2] 

𝑆𝑐 Schmidt number, [ - ] 

𝑇𝐺 , 𝑇𝐿 temperature of vapor- and liquid-phase, [K] 

𝑈 overall enthalpy transfer coefficient, [W/m2K] 

𝑥𝐴, 𝑦𝐴 mole fraction of component A in liquid- and vapor-phase, [ - ] 

𝑧 vertical distance from the bottom of packing section, [m] 

𝑍𝑇 total height of packing section, [m] 

𝛿𝐺 , 𝛿𝐿 thickness of gas-phase and liquid-phase film, [m] 

𝜅𝐺 , 𝜅𝐿 thermal conductivity of vapor- and liquid-phase, [J/m s K] 

𝜚𝐺 , 𝜌𝐿 molar density of vapor and liquid, [kmol/m3] 

 

Subscripts 
A, B component A, B 

G, L gas-phase, liquid-phase 

𝑖 interface   

T temperature 
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CHAPTER 13 
 

SIMULTANEOUS HEAT AND MASS TRANSFER - II 
 
 

13.1 Theory of Simultaneous Heat and Mass Transfer II  
(Humidification and Dehumidification) 

 

  When a condensable vapor A is condensed from a gas mixture, enthalpy transfer occurs by two 

effects: one is the conductive heat transfer due to the temperature gradient; the other is the enthalpy 

transfer due to the mass transfer. 

 
 

Fig.13.1-1. Schematic temperature and concentration profiles in the neighborhood of a cooling 
pipe wall 
 

  Fig-13.1 shows schematic picture of temperature and concentration profiles in the neighborhood 

of a cooling pipe wall, on which condensate liquid is falling filmwise. 

  Let us consider the enthalpy transfer through a gas-phase film of thickness 𝛿 on the gas-liquid 
interface. The total flux of enthalpy into the gas-phase film is made up of the conductive heat flux 

−𝜅(𝜕𝑇 𝜕𝑧⁄ ) and the enthalpy flux due to diffusion 𝑁𝐴𝐶𝑝𝐴(𝑇 − 𝑇0) + 𝑁𝐵𝐶𝑝𝐵(𝑇 − 𝑇0). 

Here 𝑇0 is a standard-state temperature to be selected later, and 𝐶𝑝𝐴, 𝐶𝑝𝐵  are the molar heat 

capacities of components A and B. The vertical variation in the thickness and composition of the 

gas-phase film is assumed to be small compared to the variation in the transverse z-direction. 

  From the mass balance over a differential control volume of thickness 𝑑𝑧 × 1 × 1 
 

𝑁𝐴|𝑧+𝑑𝑧 − 𝑁𝐴|𝑧 = 0  →  
𝜕𝑁𝐴

𝜕𝑧
= 0 

𝑁𝐵|𝑧+𝑑𝑧 − 𝑁𝐵|𝑧 = 0  →  
𝜕𝑁𝐵

𝜕𝑧
= 0 (13.1-1) 

Therefore 

𝑁𝐴 = 𝑁𝐴0 = 𝑐𝑜𝑛𝑠𝑡 

𝑁𝐵 = 𝑁𝐵0 = 𝑐𝑜𝑛𝑠𝑡 (13.1-2) 
According to the Fick’s law 



𝑁𝐴 − 𝑦𝐴(𝑁𝐴 + 𝑁𝐵) =  −𝑐 𝐷𝐴𝐵  
𝜕𝑦𝐴

𝜕𝑧
 (13.1-3) 

where  𝑦𝐴 is mole fraction of component A and  𝑐 the molar density of the gas-phase film. 

Since 𝑁𝐴 = 𝑁𝐴0 and 𝑁𝐵 = 𝑁𝐵0, the equation becomes 

𝑁𝐴0 − 𝑦𝐴(𝑁𝐴0 + 𝑁𝐵0) =  −𝑐 𝐷𝐴𝐵  
𝜕𝑦𝐴

𝜕𝑧
  

Then the equation to be solved for the concentration distribution is 
𝑑𝑦𝐴

𝑑𝑧
− 

𝑁𝐴0+ 𝑁𝐵0

𝑐𝐷𝐴𝐵
 𝑦𝐴 = − 

𝑁𝐴0

𝑐𝐷𝐴𝐵
 (13.1-4) 

Integration gives 

𝑦𝐴 = 
𝑁𝐴0

𝑁𝐴0+ 𝑁𝐵0
+ 𝐶1 𝑒𝑥𝑝 (

𝑁𝐴0+ 𝑁𝐵0

𝑐𝐷𝐴𝐵
 𝑧) (13.1-5) 

The integration constant 𝐶1 can be evaluated using the boundary condition 𝑦𝐴 = 𝑦𝐴0 at 𝑧 = 0: 

𝐶1 = 𝑦𝐴0 − 
𝑁𝐴0

𝑁𝐴0 + 𝑁𝐵0
 

Then the solution for concentration distribution in the gas film is 

𝑦𝐴 = 
𝑁𝐴0

𝑁𝐴0+ 𝑁𝐵0
+ (𝑦𝐴0 − 

𝑁𝐴0

𝑁𝐴0+ 𝑁𝐵0
)  𝑒𝑥𝑝 (

𝑁𝐴0+ 𝑁𝐵0

𝑐𝐷𝐴𝐵
 𝑧) (13.1-6) 

That is 

𝑦𝐴− 
𝑁𝐴0

𝑁𝐴0+ 𝑁𝐵0

𝑦𝐴0− 
𝑁𝐴0

𝑁𝐴0+ 𝑁𝐵0

=  𝑒𝑥𝑝 (
𝑁𝐴0+ 𝑁𝐵0

𝑐𝐷𝐴𝐵
 𝑧) (13.1-7) 

On the other hand, setting up the enthalpy balance over the same control volume, 

− 𝜅 (
𝜕𝑇

𝜕𝑧
+ 

𝜕2𝑇

𝜕𝑧2  𝑑𝑧) +  𝜅 
𝜕𝑇

𝜕𝑧
 +  𝑁𝐴𝐶𝑝𝐴(𝑇 − 𝑇0)|𝑧+𝑑𝑧 + 𝑁𝐵𝐶𝑝𝐵(𝑇 − 𝑇0)|𝑧+𝑑𝑧 

 −  𝑁𝐴𝐶𝑝𝐴(𝑇 − 𝑇0)|𝑧 − 𝑁𝐵𝐶𝑝𝐵(𝑇 − 𝑇0)|𝑧 = 0 
Then  

− 
𝑑2 𝑇

𝑑𝑧2 + 
𝑁𝐴𝐶𝑝𝐴+ 𝑁𝐵𝐶𝑝𝐵 

𝜅
 
𝑑𝑇

𝑑𝑧
= 0 (13.1-8) 

The equation to be solved for the temperature distribution is 
𝑑2 𝑇

𝑑𝑧2 −  𝐾 
𝑑𝑇

𝑑𝑧
= 0 (13.1-9) 

where 𝐾 = 
𝑁𝐴𝐶𝑝𝐴+ 𝑁𝐵𝐶𝑝𝐵 

𝜅
 

The boundary conditions are 

𝑇 =  𝑇𝑏  at  z =  δ 

𝑇 =  𝑇0          at  z =  0 (13.1-10) 
The solution is 

𝑇 =  𝑇0 + (𝑇𝑏 − 𝑇0) 
1−exp(𝐶0𝑧 𝛿)⁄

1−exp(𝐶0)
 (13.1-11) 

where  

𝐶0 = 
𝑁𝐴𝐶𝑝𝐴 + 𝑁𝐵𝐶𝑝𝐵 

𝜅 𝛿⁄
 

The temperature gradient can be calculated as 
𝜕𝑇

𝜕𝑧
= (𝑇𝑏 − 𝑇0) 

− (𝐶0 𝛿⁄ )exp(𝐶0𝑧 𝛿)⁄

1− exp(𝐶0)
 (13.1-12) 

Using the heat transfer coefficient of the gas-phase film defined by the film theory, the heat flux at 

the interface is 

𝑞𝑤 = 𝜅 
𝜕𝑇

𝜕𝑧
|
𝑧=0

= − (𝜅 𝛿⁄ )(𝑇𝑏 − 𝑇0)
𝐶0

1− exp(𝐶0)
= ℎ (𝑇𝑏 − 𝑇0) 

𝐶0

exp(𝐶0)−1
  (13.1-13) 

𝜓 = 
𝐶0

exp(𝐶0)−1
 (13.1-14) 

If we take the interface temperature 𝑇0 as the standard-state temperature, 𝑞𝑤 becomes equal to the 

total enthalpy flux at the interface.  The function 𝜓 is called the Ackermann correction factor for 

the mass transfer. If the Ackermann correction factor is plotted against the mass transfer rate factor 

𝐶0 , we get Figure 13.1-2 . 
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Fig. 13.1-2. Variation of the Ackermann correction factor with the mass transfer rate factor 
 
 

In the case when the mass transfer of A and B is toward the interface, as in condensation, 𝐶0 is 

negative. Then 𝜓 > 1. This suggests that the apparent heat transfer coefficient ℎ 𝜓 is increased by 
the mass transfer. In the case when the mass transfer of A and B is in opposite directions, as in 

evaporation, 𝐶0 is positive. Then 𝜓 < 1. This suggests that the apparent heat transfer coefficient 

ℎ 𝜓 is decreased by the mass transfer. 
  For processes in which a phase change occurs at the interface, as in evaporation or condensation, 

an additional latent enthalpy effect should be taken into account. The total flux of enthalpy into the 

surface of condensate film which receives mass fluxes 𝑁𝐴0 and 𝑁𝐵0 is the sum of 𝑞𝑤 and the 
latent enthalpy change 

𝑄 = 𝑞𝑤 − (𝑁𝐴∆𝐻𝐴 + 𝑁𝐵∆𝐻𝐵) (13.1-15)

  

Note that 𝑁𝐴 and 𝑁𝐵 are negative for condensation, but that 𝑄 and 𝑞𝑤 are positive. 

If only one component A condenses, 𝑁𝐵 = 0.  Then  

𝑁𝐴 = −𝑐 𝐷𝐴𝐵  
1

1 − 𝑦𝐴
 
𝜕𝑦𝐴

𝜕𝑧
 

Since 𝑁𝐴 = 𝑁𝐴0 = 𝑐𝑜𝑛𝑠𝑡 

∫ 𝑁𝐴0  𝑑𝑧 = 𝑐 𝐷𝐴𝐵  ∫ − 
𝑑𝑦𝐴

1 − 𝑦𝐴

𝑦𝐴𝑏

𝑦𝐴0

𝛿

0

 

That is  

𝑁𝐴0 = 
𝑐 𝐷𝐴𝐵

𝛿
ln

1− 𝑦𝐴𝑏

1− 𝑦𝐴0
= 𝑘𝑦 ln

1− 𝑦𝐴𝑏

1− 𝑦𝐴0
 (13.1-16) 

Here 𝑘𝑦 is the mass transfer coefficient in the gas-phase film in kmol A/m
2
 s. 

The total enthalpy flux at the interface where only one component A condenses is 

𝑄 = ℎ (𝑇𝑏 − 𝑇0)  
𝐶0

exp(𝐶0)−1
− ∆𝐻𝐴 𝑘𝑦 𝑙𝑛

1− 𝑦𝐴𝑏

1− 𝑦𝐴0
 (13.1-17) 

Here 𝐶0 = 𝑁𝐴  𝐶𝑝𝐴 ℎ⁄  .  Note that 𝑙𝑛
1− 𝑦𝐴𝑏

1− 𝑦𝐴0
 is negative for condensation. 

 

 

13.2 Simultaneous Heat and Mass Transfer for Humidification 
and Evaporative Cooling 

 
13.2-1 Theory of wet-bulb temperature 
  Let us consider a wet- and dry-bulb thermos meter shown in Fig.13.2-1. 
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Fig. 13.2-1. Wet- and dry-bulb thermometers 
 

  One thermometer bulb (dry bulb) is left bare, and the other (wet bulb) is wrapped with cotton 

wick that is kept wet with a pure liquid A (Usually water). A gas mixture of condensable gas A 

(Usually water vapor) and non-condensable gas B (Usually air) flows over the thermometer bulbs. 

  The dry-bulb temperature is the same as the temperature of the approaching gas mixture 𝑇∞. The 

wet-bulb temperature 𝑇𝑤𝑏, which is approximately equal to the surface temperature of the wet wick, 

is kept lower than  𝑇∞ owing to the steady evaporation of liquid A; heat is transferred to the 

gas-liquid interface of the wet wick and fresh liquid A is continuously supplied to the interface from 

the reservoir by capillary effect. At steady state the heat flux to the interface becomes equal to the 

enthalpy requirement for the evaporation of liquid A.  

The mass flux due to evaporation at the interface is given by Eq. (13.1-16) 

𝑁𝐴0 = 𝑘𝑦  ln
1− 𝑦𝐴∞

1− 𝑦𝐴𝑤𝑏
  

where 𝑘𝑦 is the mass transfer coefficient in the gas-phase film and 𝑦𝐴𝑤𝑏 is the gas concentration 

at the interface. The heat flux to the interface for evaporation is given by (13.1-13): 

𝑞𝑤 = ℎ𝐺 (𝑇∞ − 𝑇𝑤𝑏) 
𝐶0

exp( 𝐶0) − 1
 

where  𝑇𝑤𝑏 is the temperature at the interface.  Thus 

ℎ𝐺 (𝑇∞ − 𝑇𝑤𝑏) 
𝐶0

exp(𝐶0)−1
= ∆𝐻𝑒𝑣 𝑘𝑦  ln

1− 𝑦𝐴∞

1− 𝑦𝐴𝑤𝑏
 (13.2-1) 

where ∆𝐻𝑒𝑣  is the molar heat of evaporation. In this case 𝑁𝐵 = 0 and 𝐶0 = 𝑁𝐴 𝐶𝑝𝐴 ℎ𝐺⁄  is 

positive. According to the Colburn’s analogy between heat and mass transfer 

𝑗𝐻 = 𝑗𝐷  or  
ℎ𝐺

𝐶𝑝 𝐺
 𝑃𝑟2 3⁄ = 

𝑘𝑦

𝐺𝑀
 𝑆𝑐2 3⁄  (13.2-2) 

Here 𝐺𝑀 is the molar velocity having units of kmol/m
2
s. 

Substituting the analogy into the above equation 

(𝑇∞ − 𝑇𝑤𝑏) 
𝐶0

exp(𝐶0)−1
= 

∆𝐻𝑒𝑣

𝐶𝑝𝑚
 (

𝑃𝑟

𝑆𝑐
)
2/3

 ln
1− 𝑦𝐴∞

1− 𝑦𝐴𝑤𝑏
 (13.2-3) 

where 𝐶𝑝𝑚 = 𝑀𝑎𝑣 𝐶𝑝 is the molar specific heat of the approaching gas mixture. The ratio Pr/Sc  
is known as Lewis number 𝐿𝑒.  The mole fraction 𝑦𝐴𝑤𝑏  at the interface is the equilibrium 

concentration, which can be determined by the vapor pressure 𝑝𝐴𝑣𝑎𝑝 of liquid a at 𝑇𝑤𝑏 and the 

total pressure 𝑃: 

𝑦𝐴𝑤𝑏 = 𝑝𝐴𝑣𝑎𝑝 𝑃⁄  (13.2-4) 

The approaching gas concentration 𝑦𝐴∞ can be calculated using the above equation with the 
temperatures 𝑇∞ and 𝑇𝑤𝑏 measured by the dry- and wet-bulb thermometer. 
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  As a simpler example, consider the same wet- and dry-bulb thermometer for the air-water 
system. Since the Ackermann correction factor 𝜓 is very close to unity in usual mass transfer 
situations, the heat input to the interface is  
𝑞𝐺 = ℎ𝐺 (𝑇𝐺 − 𝑇𝑤𝑏)      (J m2s)⁄  (13.2-5) 
Introducing the humidity instead of the mole fraction of water vapor 𝑦𝐴, 

𝐻 = 
𝑀𝐴 𝑦𝐴

𝑀𝐵 (1− 𝑦𝐴)
                (

kg−water vapor

kg−dry air
) (13.2-6) 

where 𝑀𝐴 and 𝑀𝐵 are the molecular weights of water and air, respectively. 

The mass transfer of water vapor from the interface is 

𝑁𝐴 = 𝑘𝐻 (𝐻𝑤𝑏 − 𝐻𝐺) (13.2-7) 

where 𝐻𝑤𝑏 is the equilibrium humidity at the wet bulb temperature and 𝑘𝐻 the mass transfer 
coefficient in kg-dry air/m

2
s. At steady state all of the heat input is consumed for the evaporation of 

water and the interface temperature is kept at 𝑇𝑤𝑏. Then the steady-state enthalpy balance is 

ℎ𝐺 (𝑇𝐺 − 𝑇𝑤𝑏) =  Δ𝐻𝑒𝑣𝑘𝐻 (𝐻𝑤𝑏 − 𝐻𝐺) (13.2-8) 

where ∆𝐻𝑒𝑣 is the heat of evaporation of water at  𝑇𝑤𝑏 (J/kg-water). 
Introducing the mass humid heat capacity 

𝐶𝐻 = 𝐶𝑝𝑎 + 𝐻 𝐶𝑝𝑤        (
J

(kg−dry air)K
) (13.2-9) 

The Colburn’s analogy  (𝑗𝐻 = 𝑗𝐷) can be written as 
ℎ𝐺

𝐶𝐻𝐺
 𝑃𝑟2/3 =  

𝑘𝐻

𝐺
 𝑆𝑐2/3       or 

ℎ𝐺

𝑘𝐻𝐶𝐻
= 𝐿𝑒−2/3 (13.2-10) 

Here 𝐺 is the mass velocity of the approaching gas on dry basis. 
For the air-water system, the Lewis number is very close to unity. Then 
ℎ𝐺

𝑘𝐻𝐶𝐻
 ≅ 1     (air-water system) (13.2-11) 

This is known as the Lewis relation. 

Using the Lewis relation,  

𝑇𝐺 − 𝑇𝑤𝑏 = 
∆𝐻𝑒𝑣

𝐶𝐻
 (𝐻𝑤𝑏 − 𝐻𝐺)      or 

𝐶𝐻 𝑇𝐺 + ∆𝐻𝑒𝑣 𝐻𝐺 = 𝐶𝐻 𝑇𝑤𝑏 + ∆𝐻𝑒𝑣 𝐻𝑤𝑏 (13.2-12) 

This is an important equation for calculating the humidity 𝐻𝐺 of the approaching air at 𝑇𝐺 from 

the wet-bulb temperature 𝑇𝑤𝑏. 

The total enthalpy of humid air is defined as 

𝑖𝐻 = 𝐶𝐻 (𝑇 − 𝑇0) + ∆𝐻𝑒𝑣 𝐻 (13.2-13) 

where 𝑇0 is the standard-state temperature. Then the above equation becomes 

𝑖𝐻𝐺 = 𝑖𝐻𝑤𝑏 (13.2-14) 

The equation indicates that the enthalpy of the bulk humid air is equal to that of air saturated with 

water. The equation can be rewritten as  

𝐻𝐺 = − 
𝐶𝐻

∆𝐻𝑒𝑣
 (𝑇𝐺 − 𝑇𝑤𝑏) + 𝐻𝑤𝑏 (13.2-15) 

If unsaturated air is brought into contact with the surface covered with liquid water, the air-water 

interface will be kept at the constant wet-bulb temperature 𝑇𝑤𝑏 while 𝑇𝐺 and 𝐻𝐺 change. 
 

  Next consider a spray chamber shown in Fig.13.2-2. 

  Unsaturated air entering at 𝐻 and 𝑇 is cooled and humidified by sprayed water. Water is 

circulated by a pump and small amount of water is continuously supplied to make up the evaporated 

water.  At steady state the water temperature is kept at a definite saturation temperature 𝑇𝑎𝑠, and 
the air leaving the chamber is in equilibrium with the water. This is called “adiabatic-saturation 

temperature.” 

  For the air-water system, the adiabatic-saturation temperature becomes essentially equal to the 

wet-bulb temperature.  
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Fig.13.2-2. Spray chamber for air humidification  
 

 

13.2-2  Humidity chart 
  A humidity chart for the air-water system at 1 atm is shown in Fig.13.2-3. 

  The line marked 100% gives the humidity of saturated air as a function of air temperature. Any 

point (𝐻, 𝑇) below the saturation line represents an undersaturated mixture of air and water vapor. 
The slanting lines are called adiabatic-cooling lines, each of which is drawn with the slope of 

− 𝐶𝐻 ∆𝐻𝑒𝑣⁄  for a given constant adiabatic-saturation temperature. The relative humidity 𝐻𝑅 is 

defined as the ratio of the partial pressure of the water vapor to the vapor pressure of water at the 

gas temperature. 

 

 
Fig.13.2-3.  Humidity Chart (Air-water system at 1 atm) 
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[EXAMPLE 13.2-1]  A water droplet initially having a diameter 𝐷𝑝 = 3 mm is suspended in the 

humid hot air stream (temperature 𝑇𝑏 = 98 𝐶 = 371 𝐾, humidity 𝐻𝑏 = 0.03 kg-water/kg-dry air, 

pressure 𝑝 = 1 atm = 1.0133 ×  105  Pa, average velocity 𝑣∞ = 0.3 m/s). What are the 

temperature and humidity of the droplet surface? How long does it take for the droplet to be 

completely evaporated? The average mass transfer coefficient around a sphere is given by the Ranz 

and Marshall equation: 

𝑣𝑓𝑘𝐻𝐷𝑝

𝐷𝐴𝐵
=  2 + 0.6 (

𝜌𝑓𝑣∞𝐷𝑝

𝜇𝑓
)
1/2

𝑆𝑐1/3  

The physical properties for the humid air are given by 

𝜇 = 10.53 ×  10−6 √𝑇      

𝐷𝐴𝐵 𝑣 = 5.01 ×  10−9 √𝑇3   

𝑆𝑐 = 0.60 
 

 
Fig.13.2-E1. Water droplet surrounded by hot humid air stream 

 

Solution: 

The interface temperature should be the wet-bulb temperature 𝑇𝑤𝑏 and the interface humidity is 

the equilibrium humidity 𝐻𝑤𝑏 corresponding to 𝑇𝑤𝑏. From the humidity chart, 𝑇𝑤𝑏 = 42 C = 315 

K, and 𝐻𝑤𝑏 = 0.054 kg-water/kg-dry air.  The film temperature and humidity are 

𝑇𝑓 = (𝑇𝑤𝑏 + 𝑇𝑏) 2⁄ = 70 C = 343 K, 𝐻𝑓 = (𝐻𝑤𝑏 + 𝐻𝑏) 2 = 0.041⁄  kg-water/kg-dry air. At this 

film condition, the specific volume 𝑣𝑓 = 1.03 m
3
/kg-dry air. The density is 

𝜌𝑓 = (1  kg-dry air/kg-dry air + 0.041 kg-water/kg-dry air )/(1.03  m
3
 humid air/kg-dry 

air) = 1.01 kg/m
3
.  

The viscosity is 

𝜇𝑓 = 10.53 × 10−6 √343 = 1.95 × 10−5 kg/m s 

𝐷𝐴𝐵 = 5.01 ×  10−9 (343)3/2 = 0.318 ×  10−4 m
2
/s 

From the Ranz and Marshall equation 

𝑘𝐻 = 
𝐷𝐴𝐵

𝑣𝑓𝐷𝑝
(2 + 0.6 (

𝑣∞𝐷𝑝 𝜌𝑓

𝜇𝑓
)

1
2

𝑆𝑐
1
3) 

= 
0.318 × 10−4

1.03 𝐷𝑝
 (2 + 0.6 (

0.3×𝐷𝑝×1.01

1.95×10−5 )

1

2 (0.6)
1

3) =  
1

𝐷𝑝
 (0.6175 × 10−4 + 0.003245 √𝐷𝑝 )  (1)  

The mass transfer of water vapor can be expressed for the droplet: 
𝑑 

𝑑𝑡
 (

𝜋

6
 𝐷𝑝3 𝜌𝐿) =  𝑘𝐻(𝜋 𝐷𝑝2)(𝐻𝑤𝑏 − 𝐻𝑏)             (2) 

where 𝜌𝐿 is the water density. From the equation, 
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𝑑 𝐷𝑝 

𝑑𝑡
= 

2(𝐻𝑤𝑏− 𝐻𝑏)

𝜌𝐿
 𝑘𝐻 = 

2(0.054−0.03)

1000
 𝑘𝐻 = 4.8 ×  10−5 𝑘𝐻      (3) 

Substituting Eq. (1) into Eq. (3) 
𝑑 𝐷𝑝 

𝑑𝑡
= 

1

𝐷𝑝
 (2.964 × 10−9 + 1.5576 × 10−7 √𝐷𝑝 )       (4) 

This equation can be numerically integrated to get the required time. The result is given in the 

following table. 

 
 

Table 13.2-E1  Numerical calculation of time required for evaporation of a water droplet 

t  (min) T  (s) Δt  (s) Dp  (m) ΔDp  (m) 

0 0 60 0.003  

1 60 60 0.00277 0.000230 

2 120 60 0.00253 0.000242 

3 180 60 0.00227 0.000256 

4 240 60 0.00200 0.000274 

5 300 60 0.00170 0.000298 

6 360 60 0.00137 0.000331 

7 420 60 0.000988 0.000382 

8 480 60 0.000511 0.000477 

8.66 519.4 39.4 0 0.000511 

 

The time required for the evaporation of the droplet is 8.66 min. 

 

 

13.3  Evaporative Cooling  -----  Water Cooling Tower  ----- 
 

Water can be cooled by exposing its surface to air. Packed towers are widely used in order to get 

cool water to be recirculated for heat exchangers and other process equipment.  

Fig. 13.3-1 shows a water cooling tower. Water to be cooled is brought into contact with air 

whose adiabatic-saturation temperature is lower than the water temperature. The air entering at the 

side of the tower flows up across the water stream as it falls through the packing.  

 

 
 

Fig. 13.3-1. Water cooling tower 
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The material balances of water are 

𝐿2 − 𝐿1 = 𝐺 (𝐻2 − 𝐻1) (13.3-1) 

𝐿2 −  𝐿 = 𝐺 (𝐻2 −  𝐻) (13.3-2) 

where 𝐺 is the mass velocity of the air on dry basis. 
Similarly the enthalpy balances are 

𝐺 (𝑖𝐺2 − 𝑖𝐺1) =  𝐿2𝐶𝑝𝐿𝑇𝐿2 − 𝐿1𝐶𝑝𝐿𝑇𝐿1 (13.3-3) 

𝐺 (𝑖𝐺2 − 𝑖𝐺) =  𝐿2𝐶𝑝𝐿𝑇𝐿2 −  𝐿𝐶𝑝𝐿𝑇𝐿 (13.3-4) 

The rate of water evaporation (𝐿2 − 𝐿1) is small compared with the liquid flow rate 𝐿2: 

𝐿2 ≅ 𝐿1  ≅ 𝐿 (13.3-5) 
Then the above enthalpy balance equation can be approximated as 

𝐺(𝑖𝐺2 − 𝑖𝐺1)  ≅  𝐿2𝐶𝑝𝐿(𝑇𝐿2 − 𝑇𝐿1) (13.3-6) 

and 

𝐺(𝑖𝐺2 − 𝑖𝐺)  ≅  𝐿2𝐶𝑝𝐿(𝑇𝐿2 − 𝑇𝐿) (13.3-7) 
The last equation can be rewritten as 

𝑖𝐺 = 
𝐿2𝐶𝑝𝐿

𝐺
(𝑇𝐿 − 𝑇𝐿2) + 𝑖𝐺2 (13.3-8) 

This is called the operating line equation. 

The mass balance taken around a differential section of height 𝑑𝑧 is 

𝑑𝐿 = 𝐺 𝑑𝐻 = 𝑘𝐻𝑎 (𝐻∗ − 𝐻) 𝑑𝑧 (13.3-9) 

The transfer rate of sensible heat in the gas-phase film is 

𝑑𝑞𝐺 = ℎ𝐺𝑎 (𝑇∗ − 𝑇𝐺) 𝑑𝑧 = 𝐺 𝐶𝐻𝑑𝑇𝐺 
 (13.3-10) 

 
 
Fig. 13.3-2. Shell balance of mass and enthalpy  
 

 

  The rate of heat transfer in the liquid-phase film is 

𝑑𝑞𝐿 =  ℎ𝐿𝑎 (𝑇𝐿 − 𝑇∗)𝑑𝑧 = 𝐿 𝐶𝑝𝐿  𝑑𝑇𝐿                  (13.3-11) 
Introducing the total enthalpy of humid air 

𝑖𝐺 = 𝐶𝐻 (𝑇𝐺 − 𝑇0) + ∆𝐻𝑒𝑣𝐻                           (13.3-12)

  

The enthalpy transfer due to the evaporated water is 

𝐺 𝑑𝐻 [∆𝐻𝑒𝑣 + 𝐶𝑝𝑊 (𝑇∗ − 𝑇𝐺)]         (13.3-13) 

Here 𝑇∗ is the interface temperature, which is kept at the wet-bulb temperature. The 𝐶𝑝𝑊 is the 
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heat capacity of water vapor. The enthalpy balance around the same differential section of height 

𝑑𝑧 is  

𝐺 𝑑𝑖𝐺 = ℎ𝐺𝑎(𝑇∗ − 𝑇𝐺)𝑑𝑧 + 𝑘𝐻𝑎 (𝐻∗ − 𝐻)𝑑𝑧 [∆𝐻𝑒𝑣 + 𝐶𝑝𝑊(𝑇∗ − 𝑇𝐺)] 

= 𝑘𝐻𝑎 𝑑𝑧 [(𝑖𝐺
∗ − 𝑖𝐺) + (

ℎ𝐺

𝑘𝐻𝐶𝐻
 𝐶𝐻 − 𝐶𝑝𝑎)(𝑇

∗ − 𝑇𝐺))] (13.3-14) 

For the air-water system 
ℎ𝐺

𝑘𝐻𝐶𝐻
 𝐶𝐻 − 𝐶𝑝𝑎 ≅ 𝐶𝑝𝑎 (

ℎ𝐺

𝑘𝐻𝐶0𝐻
− 1)  ≅ 0 (13.3-15) 

Then we get 

𝐺 𝑑𝑖𝐺 = 𝑘𝐻𝑎(𝑖𝐺
∗ − 𝑖𝐺) 𝑑𝑧  (13.3-16) 

The required height of packing is 

𝑍𝑇 =  ∫ 𝑑𝑧 =  
𝐺

𝑘𝐻𝑎
 ∫

𝑑𝑖𝐺

𝑖𝐺
∗ − 𝑖𝐺

= 𝐻𝑇𝐺𝑁𝐺
𝑖𝐺2

𝑖𝐺1

𝑍𝑇

0
 (13.3-17) 

where  

𝑁𝐺 = ∫
𝑑𝑖𝐺

𝑖𝐺
∗ − 𝑖𝐺

𝑖𝐺2

𝑖𝐺1
   and   𝐻𝑇𝐺 =

𝐺

𝑘𝐻𝑎
  

The above equation can be approximated as 

𝑍𝑇 =
𝐺

𝑘𝐻𝑎
 

𝑖𝐺2− 𝑖𝐺1

(𝑖𝐺
`∗− 𝑖𝐺)

𝑙.𝑚.

  (13.3-18) 

 

Fig. 13.3-3 shows the relation between the equilibrium line and operating line. 

𝐺 𝑑𝑖𝐺 = 𝑘𝐻𝑎(𝑖𝐺
∗ − 𝑖𝐺) 𝑑𝑧  

𝐺 𝐶𝐻 𝑑𝑇𝐺 = ℎ𝐺𝑎 (𝑇∗ − 𝑇𝐺)𝑑𝑧 (13.3-19) 

Dividing the former equation by the latter equation 
𝑑𝑖𝐺

𝑑𝑇𝐺
= (

𝑘𝐻𝐶𝐻

ℎ𝐺
) 

𝑖𝐺
`∗− 𝑖𝐺

𝑇∗− 𝑇𝐺
 ≅  

𝑖𝐺
`∗− 𝑖𝐺

𝑇∗− 𝑇𝐺
  (13-.3-20) 

Similarly 

𝐺 𝑑𝑖𝐺 = 𝑘𝐻𝑎(𝑖𝐺
∗ − 𝑖𝐺) 𝑑𝑧  

𝐿 𝐶𝐿  𝑑𝑇𝐿 = ℎ𝐿𝑎 (𝑇𝐿 − 𝑇∗) 𝑑𝑧 (13.3-21) 
Dividing the former equation by the latter equation 
𝑑𝑖𝐺

𝑑𝑇𝐿
= 

𝐿 𝐶𝐿

𝐺
(
𝑘𝐻

ℎ𝐿
) 

𝑖𝐺
`∗− 𝑖𝐺

𝑇𝐿− 𝑇∗   (13.3-22) 

This is called the tie line equation which gives the relation between (𝑖𝐺 , 𝑇𝐿) and (𝑖𝐺
∗ , 𝑇∗). 

 

 
 Fig.13.3-3. Relation of operating line with equilibrium line  
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Nomenclature 
  

𝑎 effective interfacial area, [m2/m3 packed volume] 

𝐶𝐻 mass humid heat capacity, [J/(kg-dry air)K] 

𝐶𝑝 heat capacity, [J/kg K] 

𝐷𝐴𝐵 diffusivity, [m2/s] 

𝐷𝑝 diameter of droplet, [m] 

𝐺 flow rate of dry air, [kg/s] 

𝐻 humidity, [kg-water vapor/kg-dry air] 

𝐻𝑇𝐺 HTU (Height of Transfer Unit) of packed bed, [m] 

ℎ heat transfer coefficient, [W/m2K] 

ℎ𝐺  gas-film heat transfer coefficient, [W/m2K] 

𝑖𝐺 , 𝑖𝐻 total enthalpy of humid air, [J/kg-dry air] 

𝑘𝐻 mass transfer coefficient, [kg-dry air/m2s] 

𝑘𝑦 gas-film mass transfer coefficient, [kg/m2s/mass fraction] 

𝐿𝑒 Lewis number, [ - ] 

𝐿 liquid (water) flow rate, [kg/s] 

𝑁𝐺  NTU (Number of Transfer Unit) of packed bed, [ - ] 

𝑁𝐴, 𝑁𝐵 mass flux of component A, B, [kg/m2s] 

𝑝𝐴𝑣𝑎𝑝 vapor pressure of water 

𝑃𝑟 Prandtl number. [ - ] 

𝑞𝐺  enthalpy flux, [J/m2s] 

𝑞𝑤 heat flux at wall, [J/m2s] 

𝑆𝑐 Schmidt number, [ - ] 

𝑇𝐺 , 𝑇𝐿 gas and liquid temperature, [K]  

𝑇∞, 𝑇𝑤 temperature at gas bulk and wall, [K] 

𝑡 time, [s] 

𝑣 velocity  

𝑦 mass fraction, [ - ] 

𝑧 distance from condensate film surface, [m] 

∆𝐻𝑒𝑣 heat of evaporation of water, [J/kg] 

𝛿 thickness of gas-phase film, [m] 

𝜅 thermal conductivity of gas phase, [J/m s K] 

𝜓 Ackermann correction factor, [ - ] 

 
Subcripts 
 

𝑓 film 

H humid 
L liquid 

W water 
wb wet-bulb 

0 surface of condensate film 
1, 2 inlet, outlet 
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CHAPTER 14 
 

IONIC MASS TRANSPORT 
 
 

14.1 Electrolytic Cell 
 
  It should be kept in mind that the transport phenomena occurring during electrolysis are so 

complicated that we had better study a very simple case of ionic mass transfer in an aqueous 

electrolytic cell.   

Let us consider an electrolytic cell in which two electrodes are separated by an ionically 

conducting liquid such as an aqueous solution of electrolyte. If an electric current generated by an 

external emf (electromotive force such as potential difference or voltage) flows through the 

electrolytic cell, an electrode reaction takes place by the following three steps: 

(1) Transfer of ions from the bulk of the solution to the surface of either of the two electrodes 

(2) Electrochemical reactions at both electrodes 

(3) Formation of reaction products and their deposition on the surface of the electrodes or their 

removal from that surface 

This phenomenon can be considered as a special case of a heterogeneous chemical reaction.  

 

  Generally the diffusivity 𝐷𝐴𝐵 m
2
/s for a single electrolyte at infinite dilution is given by the 

Nernst-Haskell equation: 

𝐷𝐴𝐵 = 
𝑅𝑇

𝐹𝑎2
 
(1 𝑛+ + 1 𝑛−⁄⁄ )

(1 𝜆+
0 + 1 𝜆−

0⁄⁄ )
 

where 𝑇  is temperature (K), 𝑅  is gas constant (J/K kmol), 𝜆+
0 , 𝜆−

0  are the limiting ionic 

conductances of cation and anion, respectively (A/m
2
)(V/m)(kg-equiv/m

3
), 𝑛+ , 𝑛−  are the 

valences of cation and anion, respectively ( - ), and 𝐹𝑎 is Faraday constant (A s/kg-equiv.). 
 

  In a system of mixed electrolytes, the unidirectional diffusion of each ion species results from a 

combination of electrical potential and concentration gradients. 

 

 As shown in Fig. 14.1-1, an anode of metal M undergoes the dissolution by the anode reaction to 

generate M
+
 ions. The M

+
 ions arriving at the cathode receive electrons due to the cathode reaction 

(discharge of metal ions) and the deposition of the reduced M occurs on the cathode surface.  

The molar flux of M
+
 ions transferring in the electrolytic solution at rest is given by 

𝑁𝐴 = − 𝑐 𝐷𝐴𝐵  [∇𝑥𝐴 + 
𝑀𝐴𝑥𝐴

𝑅 𝑇
 
𝜖𝐴

𝑚𝐴
 ∇Φ] (14.1-1) 

where 𝑥𝐴 is mole fraction of M
+
 ions, 𝑀𝐴 the molecular weight, 𝜖𝐴 the ionic charge, and 𝑚𝐴 

the ionic mass. 

  



 
 
Fig. 14.1-1. Electrolytic cell (aqueous solution of electrolytic ions M

+
 and X

-
) 

 

The first term implies the ordinary diffusion due to the concentration gradient ∇𝑥𝐴 of ions and the 

second term the electric diffusion due to the electrostatic potential ∇Φ. The ions are moved by the 
Coulomb force generated due to the gradient of the electrostatic potential. 

The rate of the electrochemical reaction, i.e., the electric current flowing through the cell increases 

rapidly with the applied emf. 

 

 

14.2 Ionic Mass Transport in an Electrochemical Reaction 
System 

 

Let us consider an aqueous solution of salts in an electrolytic cell. In general, the individual 

species diffuse irreversibly when they are subjected to several unequal external forces. For 

simplicity, we neglect the effects of pressure, gravity, and thermal diffusions. Then we shall 

consider the ordinary diffusion due to the concentration gradients and the forced diffusion due to the 

electrostatic force. We shall furthermore confine our attention to a dilute solution of copper sulfate 

with sulfuric acid serving as the unreactive supporting electrolyte. 

 
Fig. 14.2-1. Electrolytic cell filled with aqueous solution of electrolytes: 𝐂𝐮++, 𝐇+, 𝐒𝐎𝟒

−−  
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Let us consider a simple cell (Fig. 14.2-1) filled with a ternary electrolytic solution of three ionic 

species: Cu++, H+, SO4
−−. A voltage is imposed upon the cell that is sufficient to cause the 

copper ion concentration at the cathode to drop essentially to zero.  The only electrode reactions 

are dissolution of the anode (copper plate) and deposition of Cu++ on the cathode. The molar flux 

of the Cu++, that is, the electrode reaction rate is proportional to the current density in the cell. 
When the voltage imposed between the anode and cathode is increased, the reaction rate is 

increased. The distribution of electrostatic potential shown in Fig.14.2-1 is formed in the condition 

when the electrical conductivity is not very high owing to the dilute solution. However the 

concentration of the unreactive supporting electrolyte becomes so high that the gradient of 

electrostatic potential reduces to almost zero owing to very high electrical conductivity of the 

solution. In this condition, the copper ions diffuse only due to the concentration gradient of the 

reactive ions Cu++.  
 

 

14.3 Mass Transfer Measurements by an Electrochemical  
Technique

1,2,3,4)
 

 

  If the concentration of sulfuric acid is sufficiently high, the electric conductivity becomes so 

high that the gradient of the electrostatic potential becomes negligibly small over the entire electric 

field in the cell. In this state the copper ions diffuse only due to the ordinary diffusion. Most of the 

voltage drop between the anode and cathode occurs in the electric double layers formed on the 

surfaces of these electrodes. The thickness of the electric double layers is negligibly small as 

compared to the diffusion layer. When the electrode voltage 𝐸 is increased, the current density 𝐼 

shows the variation shown in Fig.14.3-1. When the electrode potential 𝐸 exceeds the characteristic 

discharge potential 𝑉0, the deposition of Cu starts at the cathode. When 𝐸 becomes sufficiently 

large (larger than 𝐸𝑑), the current density no longer increases owing to the insufficient supply of 

Cu++ by mass transfer. This is called the diffusion-controlling condition or the limiting current 

condition. That is, the electrode reaction is controlled by the mass transfer of Cu++ ions.  

In this condition, the concentration of Cu++ becomes essentially zero on the cathode surface. 
 

 
Fig. 14.3-1. Variation of current density with electrode voltage 
 

If the applied emf becomes further greater than the next discharge potential 𝑉1, the next electrode 

reaction will occur, as shown by the dotted line in Fig.14.3-1. For example, in this case, hydrogen 

bubbles due to the discharge of hydrogen ions may be released from the cathode surface. 

 

It is possible to observe time-dependent, local coefficients of convective mass transfer if we 

utilize the electrochemical technique above mentioned.
1,4)

 

For example, the working fluid is an aqueous solution having equimolar concentrations (0.01 M) 
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of potassium ferri- and ferro-cyanide and a 1 M concentration of potassium hydroxide KOH as an 

unreactive supporting electrolyte.
2,3)

  
 

 
Fig. 14.3-2.  Position of main and isolated test cathodes.  Dimensions given are in mm. 
 

Its Schmidt number is kept at 𝑆𝑐 = 1,800 by controlling the fluid temperature.  
As shown in Fig. 14.3-2, a nickel plate is stuck on the surface of the test section serving as the 

main cathode. Another large plate is placed as the anode, usually somewhere on the downstream 

side.  

The following electrode reaction takes place under the diffusion-controlling condition: 

[cathode]  Fe(CN)6
3− + e−  → Fe(CN)6

4− [anode]  Fe(CN)6
4−  → Fe(CN)6

3− + e− 
In this case, an electrode reaction does not involve deposition of material, but merely a change in 

the valence of an ion. 

A small circular cathode made from nickel wire is embedded into a circular drilled hole drilled on 

the wall of the main cathode. The surface area of the main cathode is much smaller than that of the 

anode. Therefore the current density 𝐼 A/m
2
 at the anode becomes so small that the convective 

ionic mass transfer on the cathode only can be observed. In addition, if the small circular cathode 

(test cathode) is held at the same potential as the main cathode, local time-dependent mass transfer 

can be observed at the position of the test cathode.  

The ionic mass flux 𝑁𝐴 is given by 

𝑁𝐴 = 𝐼𝑑 𝐹𝑎⁄ = 𝑘(𝐶𝐴 − 𝐶𝐴𝑤) (14.3-1) 

Under the diffusion-controlling condition, the concentration of Fe(CN)6
3− on the cathode surface 

𝐶𝐴𝑤 becomes zero. Then the local mass transfer coefficient 𝑘 m/s is calculated by the equation: 

𝑘 =  𝐼𝑑 𝐹𝑎 𝐶𝐴⁄  (14.3-2) 

where 𝐼𝑑 (A/m
2
) is the limiting current density on the test cathode, 𝐹𝑎 the Faraday constant (= 

96,500 C/kg-equiv.) and 𝐶𝐴  the bulk concentration of Fe(CN)6
3−  in kg-equiv./m

3
. Since the 

concentration becomes zero on the cathode surfaces in the limiting current condition, the term 𝐶𝐴 

in Eq. (14.3-1) implies the concentration difference as the driving force. 
 

 
Fig. 14.3-3  Simple circuit for observing time-dependent ionic mass transfer 
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The fluctuating electric current which the Fe(CN)6
3− ions discharge on the test cathode (surface 

area 𝑆) can be observed as the time-dependent local mass flux of Fe(CN)6
3−ions. A simple circuit 

is shown in Fig. 14.3-3. The time-dependent current density 𝑖𝑑 = (𝑉𝑠 𝑅𝑠⁄ )/𝑆 at the point cathode 

can be observed from the voltage drop 𝑉𝑆 at the standard resistance 𝑅𝑆.  
                                                                                
1. Kataoka, K., H. Doi and T. Komai: Int. J. Heat Mass Transfer,  vol.20, pp.57-63 (1977). 

2. Kataoka, K., Y. Kamiyama, S. Hashimoto and T. Komai: J. Fluid Mech., vol.119, pp.91-105 (1982). 

3. Hanratty, T. J.: Phys. Fluids Suppl., vol.10, S126 (1967). 

4. Mizushina, T.: Advances in Heat Transfer (1971), Vol.7, p.87. Academic. 

 

14.4 Measurements of Velocity Gradient on a Wall
2,3,4)

 
 

In addition, this electrochemical method can also measure local, time-dependent values of the 

velocity gradient on a solid surface for liquid flow observation. As shown in Fig.14.4-1, rectangular 

test cathodes are fabricated by inserting L mm thick nickel sheets into 𝐿𝐵 mm long slits. The 

velocity-gradient measurement is carried out by measuring the limiting current between the test 

cathode and the anode. 

 

 
Fig.14.4-1 Isolated cathode for measuring velocity gradient on the wall 

 

Owing to the high Schmidt number (𝑆𝑐 = 1,800 for an electrolytic solution of Fe(CN)6
3− and 

Fe(CN)6
4−), the concentration boundary layer developing from the leading edge of a test cathode is 

much smaller in the thickness than the velocity boundary layer. Therefore the velocity can be 

assumed to be linear near the wall. 

By measuring the current density 𝐼𝑑 on each test cathode under the limiting current condition, 

local time-dependent velocity gradient on the wall s can be determined as 

𝑠 = 1.90 (𝐼𝑑 𝐹𝑎 𝐶𝐴⁄ )3(𝐿 𝐷𝐴𝐵
2⁄ ) (14.4-1) 

where 𝐷𝐴𝐵 is the diffusivity of Fe(CN)6
3−ion. 

The above equation can be obtained by the boundary layer analysis, which will be described in 

Chapter 18. 

  This electrochemical method can observe fluctuating velocity-gradients within the viscous 

sublayer of turbulent flows. It should be kept in mind that there usually appear definite velocity 

fluctuations even in the viscous sublayer due to the influence of the turbulence generated in the 

buffer zone.  For an example,
1)

  by using this velocity-gradient measurement, local variation of 

the near-wall velocity gradient is observed in the impingement region struck by a free jet of an 

electrolytic solution of  Fe(CN)6
3− and Fe(CN)6

4−. If you refer to the journal shown below, you 
will find the lateral distribution of velocity-gradient on the wall of the impingement region and its 

turbulence intensity. 

                                                                       
1. Kataoka, K., Y. Kamiyama, S. Hashimoto and T. Komai: J. Fluid Mech., vol.119, pp.91-105 (1982). 
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 [PROBLEM 14-1] An aqueous solution of electrolytes consisting of 0.02 kg-equiv./m
3
 Fe(CN)6

3− 

and Fe(CN)6
4− with the supporting electrolyte of 1 kmol/m

3
 KOH is flowing at a flow rate of 0.001 

m
3
/s in a rectangular channel shown in Fig.14-P.1. The density, viscosity, and diffusivity of the 

solution are 1,010 kg/m
3
, 0.0015 Pa s, and 8.3 ×  10−10  m

2
/s, respectively. Owing to the 

supporting electrolyte the ionic diffusion of Fe(CN)6
3−  due to the electrical potential can be 

neglected. The bulk concentration of the reactant ion Fe(CN)6
3− can be assumed to be 0.02 

kg-equiv./m
3
. The active surface area of each test cathode is 0.5 mm x 3 mm = 1.5 mm

2
. 

(a) Examine whether this flow is turbulent or not. 

(b) When the main cathode is made active at the same as the EMF (V) of the test cathodes, the two 

test cathodes indicate the (time-averaged) limiting currents of 

8 × 10−2  and 5.3 ×  10−2 𝜇𝐴 , respectively.  

Calculate the local mass transfer coefficient 𝑘  (m s⁄ ) at the position of each test cathode. 
(c) When the main cathode is made inactive, those two test cathodes indicate the (time-averaged) 

limiting currents of 5.2  and 4.7 𝜇𝐴, respectively. 
Calculate the local velocity-gradient 𝑠  (1 s)⁄  at the position of each test cathode on the inside wall of the 

channel. 

 
Fig.14-P1. Measurement of mass transfer and velocity-gradient at wall by an electrochemical 
method 
 
 
 

Nomenclature 
  

𝑐 total molar density, [kmol/m3] 

𝐶𝐴 concentration of reactant ion, [kmol/m3] 

𝐷𝐴𝐵 diffusivity of ion A, [m2/s] 

𝐸 electrode potential, [V] 

𝐹𝑎 Faraday constant = 96,500 A s/kg-equiv. 

𝐼 current density, [A/m2] 

𝐼𝑑 limiting current density, [A/m2] 

𝑘 ionic mass transfer coefficient, [kmol/m2s] 

𝐿 length of test cathode in stream direction, [m] 

𝑀𝐴 molecular weight, [kg/kmol] 

𝑁𝐴 molar flux of reactant ion A, [kmol ion/m2s] 

𝑅 gas constant, [J/kmol K] 

𝑆 electrode surface area, [m2] 

𝑠 velocity gradient at electrode surface, [1/s] 

𝑇 temperature, [K] 

𝑥𝐴 molar concentration (fraction) of reactant ion, [kmol/kmol] 

𝜖 ionic charge 

𝛷 electrostatic potential, [EMF] 
 

Subcripts 
 

D limiting current 
w electrode surface 
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CHAPTER 15 
 

HEAT TRANSFER WITH PHASE 
TRANSFORMATION 

 
 

15.1 Condensation 
 

15.1-1  Heat transfer for condensation 
  Let us study the condensation of pure vapor.  

When a pure vapor saturated at a given pressure comes in contact with a cooled surface, the change 

from vapor to liquid occurs isothermally at the saturation or equilibrium temperature. 

  The pressure in the bulk of the vapor phase is very slightly greater than the saturation pressure of 

the condensate surface. As shown in Fig. 15.1-1, the mass transfer toward the vapor-liquid interface 

occurs due to the self-diffusion. The latent heat released must flow through the condensate to the 

cooled surface. The main resistance to heat transfer lies in the condensate film and the vapor phase 

is assumed at the uniform equilibrium temperature. 

 

 
Fig.15.1-1. Pure vapor condensation 
 

 If the condensate does not wet the cooled surface, individual droplets grow by coalescence and run 

down the surface under the influence of gravity. This is called “dropwise condensation.” If the 

condensate wets the cooled surface, a continuous liquid film is formed over the cooled surface. This 

is called “filmwise condensation.” Dropwise condensation gives much higher rate of condensation 

than filmwise condensation because bare cooled surface of the condenser is directly exposed to the 

vapor stream. Steam is the only one pure vapor known to condense in a dropwise manner in the 

particular condition of the cooled surface. The dropwise condensation is very difficult to achieve or 

maintain in commercial equipment; it is customary in condenser design to assume filmwise 

condensation.  
 

 



15.1-2  Film condensation of pure vapor on a vertical wall 
  Let us consider the problem of filmwise condensation of a pure saturated vapor on a vertical wall 

shown in Fig.15.1-2. 
 

 
 
Fig. 15.1-2. Laminar falling film of condensate in filmwise condensation 
 

  To illustrate the classical Nusselt approach the following assumptions are made: 

(1) The pure vapor is at the saturation temperature 𝑇𝑠𝑡 
(2) The heat delivered by the condensing vapor is latent heat only and the latent heat released  

at the interface is transported solely by the heat conduction through the condensate film. 

(3) The condensate film drains in non-rippling laminar flow. 

(4) The condensate film is so thin that the temperature distribution in it is linear. 

(5) The cooled surface of the solid is at a constant temperature 𝑇𝑤. 

(6) The shear at the liquid-vapor interface is negligible. 

(7) The curvature of the condensate film is negligible, so that the heat flux is very nearly normal to 

the wall. 

 

The film thickness increases from top to bottom cumulatively, so the condensing coefficient 

(heat transfer coefficient) for a vapor condensing on a vertical surface decreases from top to bottom.  

The equation of motion to be applied is 

𝜌𝐿 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑧

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑧

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  − 

𝜕𝑝

𝜕𝑧
+  𝜇𝐿 (

𝜕2𝑣𝑧

𝜕𝑥2 + 
𝜕2𝑣𝑧

𝜕𝑦2 +
𝜕2𝑣𝑧

𝜕𝑧2 ) + ( 𝜌𝐿 −  𝜌𝑉) 𝑔𝑧 

(1) The z- component velocity 𝑣𝑧 does not change in the transverse direction 𝑥,  

(2)  The static pressure does not change greatly in the flow direction; 
𝜕𝑝

𝜕𝑧
 ≅ 0, and 

(3) The velocity distribution does not change in the streamwise direction; 
𝜕𝑣𝑧

𝜕𝑧
 ≅ 0, 

Under steady-state conditions the equation of motion on the laminar falling film of the condensate 

is, neglecting inertia (convective) terms 

𝜇𝐿
𝜕2𝑣𝑧

𝜕𝑦2 =  ( 𝜌𝐿 −  𝜌𝑉) 𝑔𝑧     (15.1-1)

  

At high operating pressures, buoyancy forces occur in the liquid layer and the right side term has 

the density difference ( 𝜌𝐿 −  𝜌𝑉) in place of  𝜌𝐿. The equation of motion reduces to 
𝑑2 𝑣𝑧

𝑑𝑦2 = − (
 𝜌𝐿−  𝜌𝑉

𝜇𝐿
)𝑔 (15.1-2) 

Assuming the film thickness 𝛿 at 𝑧, the boundary conditions are 
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𝑣𝑧 = 0       at  𝑦 = 0  
𝑑 𝑣𝑧

𝑑𝑦
= 0      at  𝑦 = 𝛿 (15.1-3) 

Integration gives the velocity distribution in the condensate film: 

𝑣𝑧 = (
 𝜌𝐿−  𝜌𝑉

𝜇𝐿
)𝑔 (𝛿𝑦 − 

1

2
 𝑦2)  (15.1-4) 

Using the velocity profile, the mass flow rate per unit width perpendicular to yz plane is 

𝛤 =  ∫ 𝜌𝐿𝑣𝑧 𝑑𝑦 =  
𝜌𝐿( 𝜌𝐿−  𝜌𝑉)𝑔 𝛿3

3 𝜇𝐿

𝛿

0
 (15.1-5) 

Differentiating with respect to 𝛿 
 
𝑑 𝛤

𝑑𝛿
= 

𝜌𝐿( 𝜌𝐿−  𝜌𝑉)𝑔 𝛿2

𝜇𝐿
 (15.1-6)  

The following boundary conditions for applying the equation of energy to the condensate film are 

used: 

𝑇 =  𝑇𝑤       at  𝑦 = 0  

𝑇 =  𝑇𝑠𝑡      at  𝑦 = 𝛿 (15.1-7) 
As a result, the following linear temperature distribution can be obtained: 

𝑇 − 𝑇𝑤 = (𝑇𝑠𝑡 − 𝑇𝑤) 
𝑦

𝛿
 (15.1-8) 

To consider the temperature drop within the condensate film, the average enthalpy change 

(modified latent heat) Δ𝐻′𝑓𝑔  of the vapor in condensing to liquid and subcooling to the average 

liquid temperature of the condensate film can be calculated as 

Δ𝐻′𝑓𝑔 =  Δ𝐻𝑓𝑔 + 𝐶𝑝𝐿(𝑇𝑠𝑡 − 𝑇𝑚) =  Δ𝐻𝑓𝑔 + 
∫ 𝜌𝐿𝑣𝑧

𝛿

0
𝐶𝑝𝐿(𝑇𝑠𝑡 −  𝑇)𝑑𝑦

∫ 𝜌𝐿𝑣𝑧
𝛿

0
 𝑑𝑦

 

= Δ𝐻𝑓𝑔 + 
1

𝛤
 ∫ 𝜌𝐿𝑣𝑧

𝛿

0

𝐶𝑝𝐿(𝑇𝑠𝑡 −  𝑇)𝑑𝑦  

=  Δ𝐻𝑓𝑔 + 
3

8
 𝐶𝑝𝐿(𝑇𝑠𝑡 − 𝑇𝑤) (15.1-9) 

where Δ𝐻𝑓𝑔 is the latent heat at the saturation temperature. 

 

15.1-3  Condensation heat transfer coefficient 

In a segment of the falling film the vapor condenses at a rate of d𝛤 and the heat liberated 

∆𝐻′𝑓𝑔 d𝛤 must flow through the film 𝛿 from 𝑇𝑠𝑡 to 𝑇𝑤 by conduction. 

𝑞𝑦(𝑑𝑧 × 1) =  𝜅𝐿  
𝑇𝑠𝑡 − 𝑇𝑤

𝛿
 (𝑑𝑧 × 1) = Δ𝐻′𝑓𝑔 d𝛤 × 1  

Substituting Eq.(15.1-6) into the above equation 

𝛿3 𝑑𝛿 =  
𝜅𝐿𝜇𝐿(𝑇𝑠𝑡− 𝑇𝑤)

𝜌𝐿( 𝜌𝐿−  𝜌𝑉)𝑔 Δ𝐻′𝑓𝑔
 𝑑𝑧  (15.1-10) 

Integration from 𝛿 = 0 (at 𝑧 = 0) to 𝛿 =  𝛿 (at 𝑧 = 𝑧) gives 

𝛿 =  [
4𝜅𝐿𝜇𝐿(𝑇𝑠𝑡− 𝑇𝑤)

𝜌𝐿( 𝜌𝐿−  𝜌𝑉)𝑔 Δ𝐻′𝑓𝑔
 𝑧]

1/4

 (15.1-11) 

The local condensing coefficient can be defined as ℎ𝑐 = 𝜅𝐿 𝛿⁄ . Then 

ℎ𝑐 = [
𝜌𝐿( 𝜌𝐿−  𝜌𝑉)𝑔 Δ𝐻′𝑓𝑔𝜅𝐿

3

4𝜇𝐿(𝑇𝑠𝑡− 𝑇𝑤)𝑧
]
1/4

 (15.1-12) 

The average condensing coefficient ℎ𝑐
̅̅ ̅ for a vapor condensing on a vertical plate of height 𝐿 is 

obtained integrating the local value ℎ𝑐 over the height 𝐿: 

ℎ𝑐
̅̅ ̅ =  

1

𝐿
 ∫ ℎ𝑐

𝐿

0
 𝑑𝑧 =  

2 √2

3
 [

𝜌𝐿( 𝜌𝐿−  𝜌𝑉)𝑔 Δ𝐻′𝑓𝑔𝜅𝐿
3

𝜇𝐿(𝑇𝑠𝑡− 𝑇𝑤)𝐿
]
1/4

 (15.1-13) 

All the physical properties are evaluated at the arithmetic mean temperature 

𝑇𝑓 = (𝑇𝑠𝑡 + 𝑇𝑤) 2⁄  
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This is the analytical result Nusselt
1)

 first achieved. 

Although the foregoing analysis was made for a vertical flat plate, the development is also valid 

for the inside and outside surfaces of vertical tubes if the tubes are large in diameter, compared with 

the film thickness. 

                                                                              
1. Nusselt, W.; Z. Ver. Dtsch. Ing., 60, 541-546, 569-575 (1916) 

 

 

15.1-4  Engineering design of an overhead condenser 
  By using a vertical 1-1 condenser shown below, 3,000 kg/h of a saturated vapor mixture of 98 

mol% of n-pentane which comes from the top of a distillation column at 55℃ (= 327 K) and 1.7 

atm (= 0.172 MPa) is to be condensed completely at 51.7 ℃ (= 324.7 K).  
 

 
Fig. 15.1-3. Vertical 1-1 condenser 
 

As the cooling medium, 70,000 kg/h of water at 32℃ (= 305 K) will be used. Only for simplicity 

of calculation, shell baffles are omitted in the equipment. There will exist a short zone of subcooling 

at the bottom, but we neglect the contribution of heat transfer from this zone to heat balance. 

Determine the number of heat transfer tubes if 3 m long steel tubes of 25 mm OD and 22 mm ID are 

used.  

From enthalpy chart, the enthalpy difference between n-pentane vapor at 55 ℃ and liquid at 

51.7 ℃ is given by 

∆𝐻𝑓𝑔 = 3.37 × 105    J/kg 

This is a little higher than the latent heat of propane vapor at the saturation temperature owing to the 

effect of subcooling. 

Solution: 

The heat to be absorbed by cooling water is 

𝑄 = (3000 kg h⁄ )(h 3,600 s)(3.37 × 105  J kg⁄⁄ ) = 2.81 ×  105 W 

The outlet water temperature is 

𝑡2 = (𝑄 𝑊 𝐶𝑝𝑤⁄ ) + 𝑡1 

 = 
2.81 × 105

(70,000 kg h⁄ )(h 3,600 s)(1 kcal kg K)(4.184 × 103⁄  J kcal)⁄⁄
+ 32 = 35.5℃  

The average temperature of condensing vapor is 

𝑇𝑠𝑡 = (55 + 51.7) 2⁄ = 53.4 ℃ 
The average temperature of water is 

𝑡𝑐 = (35.5 + 32) 2⁄ = 33.8 ℃ 

Assume the overall heat transfer coefficient 

𝑈𝑜 = 525 J m2s K⁄  
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The logarithmic mean of temperature differences is 

(∆𝑇)𝑙.𝑚. = 
(𝑇𝑠𝑡 − 𝑡1) − (𝑇𝑠𝑡 − 𝑡2)

ln
𝑇𝑠𝑡 − 𝑡1
𝑇𝑠𝑡 − 𝑡2

 

= 
(53.4 − 32) − (53.4 − 35.5)

ln
53.4 − 32
53.4 − 35.5

= 19.6 𝐾 

The heat transfer surface for condensation is 

𝐴𝑜 = 
𝑄

𝑈𝑜(∆𝑇)𝑙.𝑚.
= 

2.81 ×  105  J s⁄

(525 J m2s K)(19.6 K)⁄
= 27.3 m2 

The outside surface of a tube for heat transfer is 

𝑎𝑜 =  𝜋𝑑𝑜𝐿 =  𝜋(0.025m)(3 m) = 0.236 m2 
The total number of tubes is 

𝑁 = 𝐴𝑜 𝑎𝑜 = (27.3 m2) (0.236 m2) = 115.6 < 116⁄⁄  

The following empirical equation is used to calculate the inside heat transfer coefficient: 

ℎ𝑖𝑑𝑖

𝜅𝑤
= 0.023 (

𝐺𝑖𝑑𝑖

𝜇𝑤
)
0.8

𝑃𝑟1 3⁄  

The mass velocity is 

𝐺𝑖 = 
𝑊

(𝜋 4)𝑑𝑖
2𝑁⁄

= 
(70,000 kg h⁄ )(h 3,600 s)⁄

(𝜋 4)(0.022 m)2(116)⁄
= 441 kg m2s⁄  

The physical properties of water at 𝑡𝑐 = 33.8 ℃  are 

𝜇𝑤 = 8 ×  10−4  kg m s⁄ ,  𝜅𝑤 = 0.622 J m s K⁄ ,  Pr = 4.5 

𝑅𝑒𝑖 = 𝐺𝑖𝑑𝑖 𝜇𝑤⁄ =  
(441 kg m2s)(0.022 m)⁄

8 × 10−4 kg m s⁄
= 1.21 × 104  (turbulent flow) 

The inside heat transfer coefficient is  

ℎ𝑖 = (0.023) (
0.622 J m s K⁄

0.022 m
) (12,100)0.8(4.5)1 3⁄ = 1,980 J m2s K⁄  

Assume the condensing coefficient  

ℎ𝑐
̅̅ ̅ = 737 J m2s K⁄  

The tube wall temperature can be calculated with omission of the resistance of the tube metal as 

𝑞 =  
𝑇𝑠𝑡 − 𝑡𝑐

1
ℎ𝑐
̅̅ ̅ +  

1
ℎ𝑖

 
𝑑𝑜

𝑑𝑖

= 
𝑇𝑤 − 𝑡𝑐
1
ℎ𝑖

 
𝑑𝑜

𝑑𝑖

 

From the equation 

𝑇𝑤 = 33.8 + 

1
1980 

0.025
0.022

1
737 +

1
1980 

0.025
0.022

(53.4 − 33.8) = 39.6℃  

The physical properties of liquid n-pentane at 𝑇𝑓 = (53.4 + 39.6) 2 = 46.6 ℃⁄  are 

𝜅𝐿 = 0.133 J m s K⁄ ,  𝜇𝐿 = 1.9 × 10−4  kg m s⁄ ,  𝜌𝐿 = 600 J m3⁄ ,  

𝐶𝑝𝐿 = 2.39 × 103  J kg K⁄  

At the operating pressure 

𝜌𝐿  ≅  𝜌𝐿 − 𝜌𝑉 

The average enthalpy change ∆𝐻"𝑓𝑔 is 

∆𝐻′𝑓𝑔 = ∆𝐻𝑓𝑔 + 
3

8
 𝐶𝑝𝐿(𝑇𝑠𝑡 − 𝑇𝑤) 

= 3.37 ×  105 + (3 8)(2.39 ×  103)(53.4 −  39.6) = 3.49 ×  105  J kg⁄⁄  

Using Eq. (15.1-13) 
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ℎ𝑐  ̅̅ ̅̅ =  
2√2

3
  [

𝜌𝐿( 𝜌𝐿−  𝜌𝑉)𝑔 Δ𝐻′𝑓𝑔𝜅𝐿
3

𝜇𝐿(𝑇𝑠𝑡− 𝑇𝑤)𝐿
]
1/4

 

= (0.943) [
(600 kg m3)⁄

2
(9.8 m s2)(3.49 ×  105  J kg⁄ )⁄

(1.9 × 10−4  kg m s⁄ )(3 m)(53.4 − 39.6)
 × (0.133 J m s K)⁄ 3]

1 4⁄

= 734.6 𝐽 𝑚2𝑠 𝐾⁄  

The calculated value is almost equal to the assumed value 737 J m2s K⁄  . 

Then the overall heat transfer coefficient can be obtained with the calculated ℎ𝑖 and ℎ𝑐: 

𝑈𝑜 = 
1

1
734.6 + 

1
1980 

0.025
0.022

= 519 J m2s K⁄  

The assumed value 525 J m2s K⁄  is within 2% of the calculated value. 

The total number of heat transfer tubes is 

𝑁 = 
𝑄

𝑈𝑜(∆𝑇)𝑙.𝑚.𝑎𝑜
= 117 

For simplicity we neglected the heat transfer resistance due to the fouling and tube metal effects, 

but the omission of these resistances should sometimes be checked in design calculation. 
 

 

15.2 Evaporation 
 

15.2-1  Heat transfer for boiling 
  Boiling is another example of heat transfer processes with phase change. 

There are two general boiling operations: pool boiling and forced boiling. Boiling water in a kettle, 

which is at or near saturation temperature without forced convective flow or agitation, is the first 

example, where many water vapor bubbles generating are agitating the liquid pool very strongly. 

Water, which flows in heat exchangers with vapor formation, is the second example. The heat flux 

is much larger than that obtainable without phase change.  

 

 
Fig. 15.2-1. Pool boiling and forced boiling 
 
 

15.2-2 Pool boiling 
The pool-boiling heat transfer can be understood in the form of the so-called boiling curve, i.e., 

the curve of heat flux versus the temperature difference ∆𝑇𝑒𝑥 between the heated wall and the 

surrounding saturated fluid (simply called the excess temperature). 
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Fig. 15.2-2. Nukiyama’s experimental system for observing various boiling regimes  

 

To acquire a physical understanding of pool boiling, we shall consider the famous Nikiyama’s 

experiment
1)

.  

His experimental setup is shown in Fig. 15.2-2. A thin platinum wire is immersed in a pool of 

distilled water controlled to be kept at a given temperature 𝑇𝑓  <  𝑇𝑠𝑡 at atmospheric pressure, 

which is not much lower than the saturation temperature. Let us consider the electrically heated 

platinum resistance wire. We can easily obtain the boiling curve by measuring the surface area of 

the wire, the electric power input, and the temperature of the wire with the aid of the 

temperature-resistance relationship.  

 

 
Fig. 15.2-3. A typical boiling curve for a wire immersed in a pool of water 
 

                                                                                 
1. Nukiyama, S., J. Soc. Mech. Eng., Japan, 37(206), 367 (1934) 

 

Fig. 15.2-3 is a schematically drawn typical boiling curve for a wire, where the heat flux is plotted 

as a function of the excess temperature. As long as the temperature of the wire does not exceed the 

boiling point by more than a few degrees (AB range), heat is transferred to the water bulk by free 

convection without phase change. As the temperature of the wire is increased, a point B is reached 

where the energy level of water adjacent to the wire surface becomes so high that water vapor 

bubbles are generated at a small number of discrete sites. This is the beginning of the nucleate 

boiling regime (BC Range). As vapor bubbles form and grow on the heating surface, they push hot 

water from the vicinity of the wire into the colder water bulk. As the heat flux is raised and the 

number of bubbles is increased, the bubbles begin to coalesce and the heat transfer by evaporation 
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becomes predominant. As the excess temperature further increases, the number of sites at which 

bubbles form increases rapidly, and then the bubbles coalesce to form continuous vapor columns 

which causes a reduction of effectiveness of each site. The heat flux no longer increases, i.e., when 

the heat flux reaches a maximum at point C, a further increase of the temperature causes a decrease 

in the rate of heat flow (dotted line). This maximum heat flux occurs at the critical excess 

temperature (referred to as the burnout point). When the excess temperature goes beyond Point C, 

provided that the melting point of the wire is sufficiently high, a transition from nucleate to film 

boiling will take place. This case corresponds to a transition from point C to E in Fig. 15.2-3. 

Provided that the wire heater has a low melting point, the heater will melt, i.e., burnout occurs. The 

remaining regime of the curve (beyond D) is the fully developed film boiling. The heat transport 

through the vapor film is by conduction and radiation to the vapor-liquid interface where 

vaporization takes place. 

The forced convective boiling curve is similar to that for pool boiling. But the regimes are made 

complicated by the effects of velocity, subcooling, and different vapor-liquid flow patterns.  
    

15.2-3  Heat transfer correlation for pool boiling 
  In boiling heat transfer, except for the physical properties of the vapor and liquid, the latent 

heat of vaporization, the surface tension, the surface characteristics, and the pressure should be 

considered. Owing to the great number of variables involved, there is no single correlation equation 

applicable to the entire range of pool boiling. Owing to the complicatedness, only the following 

widely accepted semiempirical equation proposed by Rohsenow
1)

 is introduced: 

𝑞 =  𝜇𝐿  ∆𝐻𝑓𝑔  √
(𝜌𝐿− 𝜌𝑉)𝑔

𝜎
 [

𝐶𝑝𝐿(𝑇𝑤− 𝑇𝑠𝑡)

∆𝐻𝑓𝑔𝑃𝑟𝐿
𝑠𝐶𝑠𝑓

]
3

 (15.2-1) 

where 𝐶𝑝𝐿: specific heat of saturated liquid in J/kg K 

      𝐶𝑠𝑓:  experimental constant, dimensionless 

      𝑔  ∶  gravitational acceleration in m/s
2
 

    ∆𝐻𝑓𝑔: enthalpy of vaporization in J/kg 

    𝑃𝑟𝐿  ∶ Prandtl number of saturated liquid, dimensionless 

    𝑞  ∶   heat flux per unit area of heated surface in J/m
2
s  

   𝑇𝑤 − 𝑇𝑠𝑡: excess temperature in K 

    𝜇𝐿  ∶  liquid viscosity in kg/m s 

    𝜎  ∶   surface tension in N/m 

  𝜌𝐿, 𝜌𝑉 ∶  densities of saturated liquid and vapor in kg/m
3
 

                                                                           
1. Rohsenow, W. M., Trans. ASME, 74, 969 (1952) 

 
Table 15.2-1 Experimental constants for nucleate boiling

1)
 

Fluid- Heated Surface Combination Constant  𝐶𝑠𝑓 Exponent 𝑠 

Water on Ground and Polished Stainless Steel 0.0080 1.0 

Water on Mechanically Polished Stainless Steel 0.0132 1.0 
Water – brass,  Water – nickel 0.0060 1.0 
Water – platinum 0.0130 1.0 

Water – copper 0.0130 1.0 
Ethanol – chromium 0.0027 1.7 

Isopropanol – copper 0.00225 1.7 
35% K2CO3 – copper 0.0054 1.7 
Benzene – chromium 0.0100 1.7 

n-Pentane – chromium 0.015 1.7 
 
 These constants are picked up from the table of Kreith’s book.  

                                                                              
1. Kreith, F.; “Principles of Heat Transfer,” 3trd ed., Intext Press, Inc., 1973  

 

176               Heat Transfer with Phase Transformation  



Eq.(15.2-1) indicates that the heat flux in nucleate boiling is proportional to the cube of the excess 

temperature. The experimental constant  𝐶𝑠𝑓  depends on the particular fluid- heated surface 

combination and is affected by the surface roughness of the heater.  

Table 15.2-1 gives the experimental values. The exponent 𝑠 of the Prandtl number is 1.0 for 
water but 1.7 for all other fluids. 

 

15.2-4  Critical Heat Flux1,2,3) 
  The critical heat flux is a very important characteristic giving the heat flux at which a transition 

occurs from nucleate to film boiling. The prediction of the critical heat flux is very important from 

two engineering viewpoints because this value indicates the maximum performance for many 

systems and the great drop in heat flux beyond this point sometimes results in the destruction 

(burnout) of the heating surface owing to the accompanied rise in surface temperature. 

  One of many proposed models is Zuber’s one
1)

: 

𝑞𝑚𝑎𝑥 = 
𝜋

24
 𝜌𝑉∆𝐻𝑓𝑔  [

𝜎(𝜌𝐿− 𝜌𝑉)𝑔

𝜌𝑉
2

]
1/4

(
𝜌𝐿

𝜌𝐿+ 𝜌𝑉
)
−1/2

 (15.2-2) 

This equation was obtained based on hydrodynamic instability theory postulating that the volume 

flow rate of vapor from the heated surface should be equal to that of liquid flow toward the surface. 

Any other correlations do not differ greatly in the form from Zuber’s equation. 
                                                                                        
1. Zuber, N. and M. Tribus; “Further Remarks on the Stability of Boiling Heat Transfer,” Rep.58-5, Dept of Eng., Univ. of 

Calif., Los Angeles (1958) 

2. Rohsenow, W. M.; “A Method of Correlating Heat-Transfer Data for Surface Boiling Liquids,” Trans. ASME, 74, pp. 969 

(1952) 

3. Rohsenow, W. M.; “Boiling Heat Transfer,” Dev. In Heat Transfer, W. M. Rohsenow, ed. (Cambridge, Massachusetts: MIT 
Press, 1964), pp.169-260 

 

[EXAMPLE 15.3-1]  Estimate the heat flux for water boiling on a mechanically polished clean 

stainless steel at 1 atm and 110℃ (= 383 K) surface temperature and compare it with the critical 
heat flux to confirm the nucleate boiling. 

Solution: 

From Table 15.3-1, 𝐶𝑠𝑓 = 0.0132 for the fluid-surface combination. 

The appropriate physical properties at 100℃ and 1 atm are 

∆𝐻𝑓𝑔 = 539  kcal/kg = 2.26 × 106  J/kg,  𝜌𝐿 = 961.8  kg/m
3
, 𝜌𝑉 = 0.598  kg/m

3
 (from 

steam table) 

𝑃𝑟𝐿 = 1.78,  𝜇𝐿 = 0.130 × 10−3 kg/m s,  𝐶𝑝𝐿 = 4.18 ×  103 J/kg K,  𝜎 = 0.0588  

The excess temperature ∆𝑇𝑒𝑥 = 110 − 100 = 10 𝐾. 

From Eq. (15.2-1) 

𝑞 = (0.130 × 10−3)(2.26 ×  106) [
(961.8 − 0.598)(9.8)

0.0588
]

1
2

[
(4.18 × 103)(10)

(2.26 ×  106)(1.78)(0.0132)
]

3

 

=  5.736 ×  104 J/m
2
s 

From Zuber’s equation 

𝑞𝑚𝑎𝑥 = 
𝜋

24
 (0.598)(2.26 ×  106) × [

(0.0588)(961.8 − 0.598)(9.8)

0.5982 ]

1
4

(
961.8

961.8 + 0.6
)

1
2

= 1.11 ×  106 

 

It has been confirmed that the assumption of nucleate boiling is valid because 𝑞 <  𝑞𝑚𝑎𝑥. 

 
 
Nomenclature 
  

𝐴𝑜 total heat transfer surface area, [m2] 

𝑎𝑜 outside surface area of a heat transfer tube, [m2] 

𝐶𝑝 heat capacity, [J/kg K] 

𝑑𝑖 inside diameter of heat transfer tube, [m] 
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𝑔        gravitational acceleration, [m/s2]  

ℎ𝑐 condensing coefficient, [J/m2sK] 

ℎ𝑖 inside heat transfer coefficient, [J/m2sK] 

𝐿 height of vertical plate, [m] or tube length, [m] 

𝑁 number of tubes, [ - ] 

𝑃𝑟 Prandtl number, [ - ] 

𝑝 pressure, [Pa] 

𝑞 heat flux, [J/m2s] 

𝑡 time, [s] or temperature, [K] 

𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  velocity components in rectangular coordinates, [m/s] 

𝑈𝑜 overall heat transfer coefficient on outside surface basis, [W/m2K] 

𝑊 mass flow rate, [kg/s] 

𝑥, 𝑦, 𝑧 rectangular coordinates, [m] 

Γ mass flow rate per unit width of falling condensate film, [kg/s m] 

𝛿 thickness of condensate film, [m] 

∆𝐻𝑓𝑔 latent heat of evaporation, [J/kg] 

𝛥𝑇 temperature difference, [K] 

𝜅 thermal conductivity of condensate liquid, [J/m s K] 

𝐺 mass velocity, [kg/m2s] 

𝜇 viscosity, [kg/m s] 

𝜌 density, [kg/m3] 

𝜎 surface tension, [N/m] 
 

Subcripts 
 

f film 
L liquid 

l.m. logarithmic mean 

st saturated 

V vapor 
W wall 
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CHAPTER 16 
 

MASS TRANSFER WITH CHEMICAL REACTION 
 
 

16.1 Diffusion with Homogeneous Chemical Reaction  
 

16.1-1  Diffusion with a homogeneous reaction in a stagnant fluid 
------- Penetration theory ------- 
 

  In gas absorption process, chemical reaction can be used to provide greater capacity of solvent 

for solute gas and greater rate of absorption than could be obtained by pure physical absorption 

only. 

Much industrial gas-liquid contacting equipment usually operates with repeated short contacts of 

the two phases. Therefore let us consider the unsteady diffusion of dissolved gas from interface into 

a semi-infinite stagnant liquid mixture by use of the Higbie’s penetration theory. The irreversible 

first-order chemical reaction occurs between the dissolved gas A and one component B in the liquid 

phase with the reaction - rate constant 𝑘1. 
 

 
 
Fig. 16.1-1. Gas absorption accompanied with a first-order chemical reaction in liquid phase 
 

Setting up mass balance over a differential control volume 𝑆 𝑑𝑦 apart 𝑦 from the interface 

(− 𝐷𝐴𝑚  
𝜕𝐶𝐴

𝜕𝑦
|
𝑦

+  𝐷𝐴𝑚  
𝜕𝐶𝐴

𝜕𝑦
|
𝑦+𝑑𝑦

) 𝑆 =  
𝜕𝐶𝐴

𝜕𝑡
 𝑆 𝑑𝑦 + 𝑘1𝐶𝐴𝑆 𝑑𝑦 

or 

𝐷𝐴𝑚
𝜕2𝐶𝐴

𝜕𝑦2 = 
𝜕𝐶𝐴

𝜕𝑡
+ 𝑘1𝐶𝐴 (16.1-1) 

Introducing a new variable 𝐶𝐴
′ = 𝐶𝐴 − 𝐶𝐴∞ 

𝐷𝐴𝑚
𝜕2𝐶𝐴′

𝜕𝑦2 =  
𝜕𝐶𝐴′

𝜕𝑡
+ 𝑘1𝐶𝐴′ (16.1-2) 

The boundary conditions are 



𝐶𝐴
′ = 𝐶𝐴𝑖 − 𝐶𝐴∞   at  𝑦 = 0 

𝐶𝐴
′ = 0           at  𝑦 =  ∞ (16.1-3) 

Taking the s-multiplied Laplace transform of Eq. (16.1-2) 

𝐷𝐴𝑚  
𝑑2𝐶𝐴′

𝑑𝑦2

̅̅ ̅̅ ̅̅
= 𝑠 𝐶𝐴′ + 𝑘1 𝐶𝐴′   or   

𝑑2𝐶𝐴′

𝑑𝑦2

̅̅ ̅̅ ̅̅
−  (

𝑘1+𝑠

𝐷𝐴𝑚
) 𝐶𝐴′ = 0 (16.1-4) 

The boundary conditions are  

 𝐶𝐴′  =  𝐶𝐴𝑖 − 𝐶𝐴∞   at  𝑦 = 0 

 𝐶𝐴′  = 0           at  𝑦 =  ∞ (16.1-5) 

The general solution to Eq. (16.1-4) is 

 𝐶𝐴′ = 𝑎 𝑒𝑥𝑝 (√
𝑘1+𝑠

𝐷𝐴𝑚
 𝑦) + 𝑏 𝑒𝑥𝑝 (− √

𝑘1+𝑠

𝐷𝐴𝑚
 𝑦) (16.1-6)  

Using the boundary conditions 

𝐶𝐴′ = (𝐶𝐴𝑖 − 𝐶𝐴∞)  𝑒𝑥𝑝 (− √
𝑘1+𝑠

𝐷𝐴𝑚
 𝑦) (16.1-7) 

The mass flux at the interface is expressible as 

𝑁𝐴 = − 𝐷𝐴𝑚
𝑑 𝐶𝐴′

𝑑𝑦
|
𝑦=0

= (𝐶𝐴𝑖 − 𝐶𝐴∞) √(𝑘1 + 𝑠)𝐷𝐴𝑚  (16.1-8) 

Taking the inverse Laplace transform, the mass flux becomes 

𝑁𝐴 = (𝐶𝐴𝑖 − 𝐶𝐴∞)√𝑘1𝐷𝐴𝑚  [erf(𝑘1𝑡)
1/2 + 

exp  (− 𝑘1𝑡)

√𝜋 𝑘1𝑡
]  (16.1-9) 

For pure physical diffusion, i.e., 𝑘1 = 0 

𝑁𝐴0 = (𝐶𝐴𝑖 − 𝐶𝐴∞) √𝑠 𝐷𝐴𝑚 

or 

𝑁𝐴0 = (𝐶𝐴𝑖 − 𝐶𝐴∞) √
𝐷𝐴𝑚

𝜋 𝑡
  (16.1-10) 

Note that Eq. (16.1-10) is equivalent with Eq. (6.7-10) if the exposure time 𝑡 is replaced by 𝑧 𝑉⁄ . 

The average rate of absorption over the total exposure time 𝑡 can be calculated as 

𝑊𝐴 = ∫ 𝑁𝐴 𝑑𝑡
𝑡

0 ∫ 𝑑𝑡 =  (𝐶𝐴𝑖 − 𝐶𝐴∞) √𝐷𝐴𝑚𝑘1
𝑡

0
 [(1 + 

1

2 𝑘1𝑡
) erf (𝑘1𝑡)

1 2⁄ + 
exp  (− 𝑘1𝑡)

√𝜋 𝑘1𝑡
]⁄ (16.1-11) 

The corresponding time-average mass transfer coefficient 𝑘𝐿 is 

𝑘𝐿 =  √𝐷𝐴𝑚𝑘1 [(1 + 
1

2 𝑘1𝑡
) erf (𝑘1𝑡)

1 2⁄ + 
exp  (− 𝑘1𝑡)

√𝜋 𝑘1𝑡
] (16.1-12) 

Taking the time-average of Eq. (16.1-10) 

𝑘𝐿0 = √
4 𝐷𝐴𝑚

𝜋 𝑡
  (16.1-13) 

Here 𝑘𝐿0 is the mass transfer coefficient without chemical reaction. 

Introducing a ratio 𝛽 of the mass transfer rate with and without reaction 

𝛽 =  √
𝜋 𝑘1𝑡

4
  [(1 + 

1

2 𝑘1𝑡
)erf (𝑘1𝑡)

1 2⁄ + 
exp  (− 𝑘1𝑡)

√𝜋 𝑘1𝑡
] (16.1-14) 

For small values of 𝑘1𝑡 

𝛽 = 1 + 
𝑘1𝑡

3
− 

(𝑘1𝑡)
2

30
+ − − − (16.1-15) 

This reaction factor indicates the deviation from the purely physical mass transfer (𝛽 = 1). 

For large values of 𝑘1𝑡 

𝛽 =  √
𝜋

4
 [√𝑘1𝑡 +  

1

2 √𝑘1𝑡
− − − −]  (16.1-16) 

If the exposure time and reaction-rate constant are given, the reaction factor can be calculated. The 

reaction factor calculated by the penetration theory is in good agreement with that calculated by 

other theories (Film theory and surface renewal theory).  
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16.1-2 Gas absorption with first-order chemical reaction 
  Let us consider a packed column gas absorber shown in Fig. 16.1-2, in which the first-order 

chemical reaction of a dissolved gas A is carried out with a continuous stream of liquid mixture.  

 

Setting up mass balance over a differential control volume 𝑆 𝑑𝑧 in the packing section 

𝑘𝐿𝑎 (𝐶𝐴𝑖 − 𝐶𝐴𝐿)𝑆 𝑑𝑧 + (𝐶𝐴𝐿|𝑧 − 𝐶𝐴𝐿|𝑧+𝑑𝑧 )𝐿𝑀 𝑆 𝜌𝑀 − 𝑘1𝐶𝐴𝐿  𝑆 𝑑𝑧 휀 = 0⁄   (16.1-17) 

or 

𝑘𝐿𝑎 (𝐶𝐴𝑖 − 𝐶𝐴𝐿) =  
𝐿𝑀

𝜌𝑀
 
𝑑 𝐶𝐴𝐿

𝑑𝑧
+  휀 𝑘1𝐶𝐴𝐿 (16.1-18) 

where 𝑘𝐿 is the liquid-phase mass transfer coefficient with reaction, 𝜌𝑀 the total molar density, 

and 휀 the volume fraction of liquid in the packing section.  

The total number of transfer units 𝑁𝐿 = 𝑍𝑇𝜌𝑀𝑘𝐿
°𝑎 𝐿𝑀⁄  and the number of transfer units 

𝑛𝐿 = 𝑧 𝜌𝑀𝑘𝐿
°𝑎 𝐿𝑀⁄  are introduced using the liquid-phase mass transfer coefficient 𝑘𝐿

°  for purely 

physical absorption. 
 

 
 
Fig. 16.1-2. Packed column gas absorber accompanied by a first-order homogeneous chemical 
reaction 
 

The total holdup time (i.e., the so-called residence time) is calculated as 

휃 =  휀 𝑆 𝑍𝑇𝜌𝑀 𝐿𝑀𝑆 =   휀 𝑍𝑇𝜌𝑀 𝐿𝑀 ⁄⁄  (16.1-19) 
The above equation becomes 
𝑑 𝐶𝐴𝐿

𝑑𝑧
+ 

𝑘𝐿𝜌𝑀

𝐿𝑀
 (𝑎 + 

𝑘1

𝑘𝐿
 휀) 𝐶𝐴𝐿 = 𝑘𝐿𝑎 𝐶𝐴𝑖  

𝜌𝑀

𝐿𝑀
 (16.1-20) 

Using the number of transfer units 𝑛𝐿 and the time of exposure 휃 
𝑑 𝐶𝐴𝐿

𝑑𝑛𝐿
+ (𝛽 + 

𝑘1

𝑁𝐿
 휃) 𝐶𝐴𝐿 =  𝛽 𝐶𝐴𝑖  (16.1-21) 

The boundary condition is  

𝐶𝐴𝐿 = 0  at  𝑧 = 0 
The following solution indicates the vertical variation in the bulk concentration of component A: 

𝐶𝐴𝐿 = 𝐶𝐴𝑖  (
𝛽 𝑁𝐿

𝑘1𝜃+ 𝛽 𝑁𝐿
) {1 − exp[− (𝑘1휃 +  𝛽 𝑁𝐿)(𝑛𝐿 𝑁𝐿⁄ )]}  (16.1-22) 

Then the total rate of absorption per unit cross-sectional area can be calculated as 

𝑁𝐴𝑇 = ∫ 𝑘𝐿𝑎(𝐶𝐴𝑖 − 𝐶𝐴𝐿) 𝑑𝑧 =  𝛽 
𝐿𝑀

𝜌𝑀
 ∫ (𝐶𝐴𝑖 − 𝐶𝐴𝐿) 𝑑𝑛𝐿

𝑁𝐿

0

𝑍𝑇

0
  

= 𝐶𝐴𝑖  
𝐿𝑀

𝜌𝑀
 (

𝛽 𝑁𝐿

𝛽 𝑁𝐿+ 𝑘1𝜃
) {𝑘1휃 + 

𝛽 𝑁𝐿

𝛽 𝑁𝐿+ 𝑘1𝜃
 [1 − exp(− (𝛽 𝑁𝐿 + 𝑘1휃))]} (16.1-23) 

  If the reaction factor 𝛽 and the total holdup time 휃 are given, the total rate of absorption can be 
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calculated using the physical absorption data. However the exposure time is generally difficult to 

estimate as for the film thickness in the film theory. 

  For practical design problem, the following equations can be used: 

𝑁𝐴 = 𝐾𝐺  (𝑝𝐴 − 𝑝𝐴
∗`) =  𝑘𝐺(𝑝𝐴 − 𝑝𝐴𝑖) = 𝛽 𝑘𝐿

° (𝐶𝐴𝑖 − 𝐶𝐴𝐿)  (16.1-24) 

and 
1

𝐾𝐺
= 

1

𝑘𝐺
+ 

𝐻

𝛽 𝑘𝐿
°  (16.1-25) 

Here 𝐻 is the Henry’s constant for purely physical equilibrium and 𝑝𝐴
∗` is the concentration of 

unreacted gas A expressed in units of gas-phase concentration, i.e., 𝑝𝐴
∗` = 𝐻 𝐶𝐴𝐿  . 

 

 

16.2 Gas Absorption with Instantaneous Bimolecular Reaction 
 

Many industrially important absorption processes are accompanied by bimolecular reaction 

A +   ν B  →   products 

The irreversible chemical reaction such as SO2  +   2 NaOH →   Na2SO3 + H2O occurs in the 

liquid phase between a dissolved gas reactant A and a nonvolatile reactant B which is initially 

present in the liquid phase. 

  The problem of liquid-phase diffusion with bimolecular reactions has not yet been solved 

analytically, except for some simple cases. One of the extreme cases occurs when the reaction rate 

is so large that A and B react immediately and completely on a plane (or a very thin zone) which 

moves with time. The reaction plane which was initially located at the interface is now at a distance 

𝑧𝑟(𝑡) from the interface.  
 

 
Fig. 16.2-1. Schematic composition profile of gas absorption with bimolecular reaction 
 

As shown in Fig.16.2-1, the reaction rate 𝑟 =  𝑘2𝐶𝐴𝐶𝐵 is zero everywhere, except at the reaction 
plane. In the region between the interface and the moving reaction plane, the concentration of A is 

obtained by solving the transient diffusion equation for A without reaction; the same is true for B in 

the semi-infinite liquid body on the right side of the moving reaction plane. Therefore the 

penetration theory will also be used. 

  The set of differential equations to be solved are 
𝜕 𝐶𝐴

𝜕𝑡
= 𝐷𝐴𝑤  

𝜕2 𝐶𝐴

𝜕𝑧2     𝐶𝐵 = 0    0 ≤ 𝑧 ≤  𝑧𝑟(𝑡) (16.2-1) 

𝜕 𝐶𝐵

𝜕𝑡
= 𝐷𝐵𝑤  

𝜕2 𝐶𝐵

𝜕𝑧2     𝐶𝐴 = 0    𝑧𝑟(𝑡)  ≤ 𝑧 ≤  ∞ (16.2-2) 
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where 𝐷𝐴𝑤 and 𝐷𝐵𝑤 are diffusivities of A and B in the solution, respectively. Note that any 
reaction does not appear in the above equations. 

  The general solutions to the above two equations are of the form 
𝐶𝐴

𝐶𝐴𝑖
= 𝐾1 + 𝐾2 erf  

𝑧

2 √𝐷𝐴𝑤𝑡
     0 ≤ 𝑧 ≤  𝑧𝑟(𝑡) (16.2-3) 

𝐶𝐵

𝐶𝐵∞
= 𝐾3 + 𝐾4 erf  

𝑧

2 √𝐷𝐵𝑤𝑡
    𝑧𝑟(𝑡)  ≤ 𝑧 ≤  ∞ (16.2-4) 

At the reaction plane, A and B react immediately. 

𝐶𝐴 = 𝐶𝐵 = 0     at  𝑧 =  𝑧𝑟(𝑡) (16.2-5) 

Therefore from perfect differentia 

𝑑𝐶𝐴 = (
𝜕𝐶𝐴

𝜕𝑧𝑟
)
𝑡
𝑑𝑧𝑟 + (

𝜕𝐶𝐴

𝜕𝑡
)
𝑧𝑟

𝑑𝑡 = 0 (16.2-6) 

From this equation 
𝑑𝑧𝑟

𝑑𝑡
= −  (

𝜕𝐶𝐴

𝜕𝑡
)
𝑧𝑟

 (
𝜕𝐶𝐴

𝜕𝑧𝑟
)
𝑡

⁄  (16.2-7) 

From Eq. (16.2-3) 

 

(
𝜕𝐶𝐴

𝜕𝑡
)
𝑧𝑟

= 𝐾2𝐶𝐴𝑖  
2

√𝜋
 (− 

1

2 𝑡
) exp(− 

𝑧𝑟
2

4 𝐷𝐴𝑤  𝑡
) 

𝑧𝑟

2 √𝐷𝐴𝑤  𝑡
 

(
𝜕𝐶𝐴

𝜕𝑧𝑟
)
𝑡

= 𝐾2𝐶𝐴𝑖  
2

√𝜋
 (

1

𝑧𝑟
) exp(− 

𝑧𝑟
2

4 𝐷𝐴𝑤  𝑡
) 

𝑧𝑟

2 √𝐷𝐴𝑤 𝑡
 

Substitute these relations into Eq. (16.2-7) 
𝑑𝑧𝑟

𝑑𝑡
= 

𝑧𝑟

2 𝑡
 (16.2-8) 

Integration gives 

𝑧𝑟(𝑡) =  √4 𝛼 𝑡 (16.2-9) 

where √4 𝛼  is an arbitrarily chosen integration constant. These five integration constants 

𝐾1, 𝐾2, 𝐾3, 𝐾4,  and 𝛼 can be evaluated by the following five initial and boundary conditions: 

I.C.  or  B.C.1  at 𝑡 = 0   𝐶𝐵 = 𝐶𝐵∞    0 ≤ 𝑧 ≤  ∞ 

     or        at  𝑧 =  ∞  𝐶𝐵 = 𝐶𝐵∞     𝑡 > 0 

B.C.2          at  𝑧 = 0   𝐶𝐴 = 𝐶𝐴𝑖 

B.C.3          at  𝑧 = 𝑧𝑟   𝐶𝐴 = 0 (16.2-10) 

B.C.4          at  𝑧 = 𝑧𝑟   𝐶𝐵 = 0 

B.C.5          at  𝑧 = 𝑧𝑟   − 𝜈 𝐷𝐴𝑤  
𝜕 𝐶𝐴

𝜕𝑧
= 𝐷𝐵𝑤   

𝜕 𝐶𝐵

𝜕𝑧
 

The last boundary condition comes from the stoichiometric requirement that one mole of A reacts 

with  𝜈 moles of B. 

From B.C.2   𝐾1 = 1 

From B.C.3   𝐾2 =  − 
1

erf  
𝑧𝑟

2 √𝐷𝐴𝑤𝑡

=  − 
1

erf  √
𝛼

𝐷𝐴𝑤

 

From B.C.1   𝐾3 = 1 − 𝐾4  

From B.C.4   0 = (1 − 𝐾4) + 𝐾4 erf  √
𝛼

𝐷𝐵𝑤
 

Therefore  𝐾4 = 
1

1−erf  √
𝛼

𝐷𝐵𝑤

 

Then 𝐾3 = 1 −
1

1−erf  √
𝛼

𝐷𝐵𝑤

    

𝜕𝐶𝐴

𝜕𝑧
|
𝑧𝑟

= − 
1

erf  √
𝛼

𝐷𝐴𝑤

 𝐶𝐴𝑖
2

√𝜋
 exp (− 

𝑧𝑟
2

4 𝐷𝐴𝑤 𝑡
) 

1

2 √𝐷𝐴𝑤 𝑡
  (16.2-11) 
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𝜕𝐶𝐵

𝜕𝑧
|
𝑧𝑟

=
1

1−erf  √
𝛼

𝐷𝐵𝑤

 𝐶𝐵∞
2

√𝜋
 exp (− 

𝑧𝑟
2

4 𝐷𝐵𝑤 𝑡
) 

1

2 √𝐷𝐵𝑤 𝑡
  (16.2-12) 

Substitute these relations with Eq. (16.2-9) into B.C.5 

exp (
𝛼

𝐷𝐵𝑤
) [1 − erf  √

𝛼

𝐷𝐵𝑤
 ] = exp (

𝛼

𝐷𝐴𝑤
) erf  √

𝛼

𝐷𝐴𝑤
 √

𝐷𝐵𝑤

𝐷𝐴𝑤
 

𝐶𝐵

𝜈 𝐶𝐴𝑖
  (16.2-13) 

This equation should be solved by trial and error method to determine 𝛼. 

The concentration profiles of A and B are given by 
𝐶𝐴

𝐶𝐴𝑖
= 1 − 

1

erf  √
𝛼

𝐷𝐴𝑤

erf  
𝑧

2 √𝐷𝐴𝑤 𝑡
     0 ≤ 𝑧 ≤  𝑧𝑟(𝑡) (16.2-14) 

𝐶𝐵

𝐶𝐵∞
= 1 − 

1

1−erf  √
𝛼

𝐷𝐵𝑤

+ 
erf  

𝑧

2 √𝐷𝐵𝑤 𝑡

1− erf  √
𝛼

𝐷𝐵𝑤

     𝑧𝑟(𝑡)  ≤ 𝑧 ≤  ∞ (16.2-15) 

Then the rate of absorption can be calculated as 

𝑁𝐴|𝑧=0 = − 𝐷𝐴𝑤  
𝜕𝐶𝐴

𝜕𝑧
|
𝑧=0

= 
1

erf  √
𝛼

𝐷𝐴𝑤

 √
𝐷𝐴𝑤

𝜋𝑡
𝐶𝐴𝑖  (16.2-16) 

The average rate of absorption over the total exposure time 𝑡 is 

𝑊𝐴 = ∫ 𝑁𝐴|𝑧=0𝑑𝑡
𝑡

0 ∫ 𝑑𝑡 =   
1

erf  √
𝛼

𝐷𝐴𝑤

 √
4 𝐷𝐴𝑤

𝜋𝑡
𝐶𝐴𝑖

𝑡

0
⁄   (16.2-17) 

The coefficient in front of 𝐶𝐴𝑖 is the mass transfer coefficient with bimolecular chemical reaction: 

𝑘𝐿 = √
4 𝐷𝐴𝑤

𝜋𝑡
erf  √

𝛼

𝐷𝐴𝑤
⁄  (16.2-18) 

Comparing with the result of purely physical diffusion, Eq. (16.1-13), the reaction factor is given by 

𝛽 =  
1

erf  √
𝛼

𝐷𝐴𝑤

 (16.2-19) 

From here, the case when 𝛼 is sufficiently small in comparison with 𝐷𝐴𝑤 and 𝐷𝐵𝑤 will be 
considered to obtain the reaction factor as a function of known variables. It will be shown later that 

this situation can be obtained when 𝐶𝐵∞ is sufficiently large with respect to 𝐶𝐴𝑖. 

For small 𝛼 

exp(
𝛼

𝐷𝐴𝑤
) = 1 + 

𝛼

𝐷𝐴𝑤
+ 

1

2
 (

𝛼

𝐷𝐴𝑤
)
2

+ − − − − − 

erf  √
𝛼

𝐷𝐴𝑤
= 

2

√𝜋
 [(

𝛼

𝐷𝐴𝑤
)
1 2⁄

− 
1

3
 (

𝛼

𝐷𝐴𝑤
)
3 2⁄

+ 
1

10
 (

𝛼

𝐷𝐴𝑤
)
5 2⁄

− − − −]  

1 − erf  √
𝛼

𝐷𝐵𝑤
= 1 − 

2

√𝜋
 [(

𝛼

𝐷𝐵𝑤
)
1 2⁄

− 
1

3
 (

𝛼

𝐷𝐵𝑤
)
3 2⁄

+ 
1

10
 (

𝛼

𝐷𝐵𝑤
)
5 2⁄

− − − −] 

Substitute these relations into Eq. (16.2-13) 

[1 − 
2

√𝜋
 [(

𝛼

𝐷𝐵𝑤
)
1 2⁄

− 
1

3
 (

𝛼

𝐷𝐵𝑤
)
3 2⁄

+ 
1

10
 (

𝛼

𝐷𝐵𝑤
)
5 2⁄

− − − −]]

= [1 + 
𝛼

𝐷𝐴𝑤
+ 

1

2
 (

𝛼

𝐷𝐴𝑤
)
2

+ − − −]
2

√𝜋
 [(

𝛼

𝐷𝐴𝑤
)
1 2⁄

− 
1

3
 (

𝛼

𝐷𝐴𝑤
)
3 2⁄

+ 
1

10
 (

𝛼

𝐷𝐴𝑤
)
5 2⁄

− −

− −] √
𝐷𝐵𝑤

𝐷𝐴𝑤
 
𝐶𝐵∞

𝜈 𝐶𝐴𝑖
[1 + 

𝛼

𝐷𝐵𝑤
+ 

1

2
 (

𝛼

𝐷𝐵𝑤
)
2

+ − − −] 

For 𝛼 ≪  𝐷𝐴𝑤 and 𝐷𝐵𝑤, the above equation can be approximated and rearranged as 

1 − 
2

√𝜋
 √

𝛼

𝐷𝐵𝑤
 ≅  

2

√𝜋
 √

𝛼

𝐷𝐴𝑤
 √

𝐷𝐵𝑤

𝐷𝐴𝑤
 
𝐶𝐵∞

𝜈 𝐶𝐴𝑖
 

The equation can be solved  
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𝛼 =  
𝜋

4
 [

1

√𝐷𝐵𝑤
+ 

1

√𝐷𝐴𝑤
 √

𝐷𝐵𝑤

𝐷𝐴𝑤
 
𝐶𝐵∞

𝜈 𝐶𝐴𝑖
]
−2

    for small 𝛼 (16.2-20) 

This equation suggests that 𝛼 becomes small when 𝐶𝐵∞ is sufficiently large compared with 𝐶𝐴𝑖. 

The larger 𝐶𝐵∞ is, the closer the reaction plane remains to the interface.  

The reaction factor can also be approximated for small 𝛼: 

𝛽 =  
1

erf  √
𝛼

𝐷𝐴𝑤

 ≅  
1

2

√𝜋
 √

𝛼

𝐷𝐴𝑤
  
 (16.2-21) 

Substitute Eq. (16.2-20) into the above equation 

β =  √
𝐷𝐴𝑤

𝐷𝐵𝑤
 +  √

𝐷𝐵𝑤

𝐷𝐴𝑤
 
𝐶𝐵∞

𝜈 𝐶𝐴𝑖
       for large 𝐶𝐵∞ (16.2-22) 

In the case when 𝐷𝐴𝑤  ≅  𝐷𝐵𝑤 

β =  1 +  
𝐶𝐵∞

𝜈 𝐶𝐴𝑖
     for the case of large 𝐶𝐵∞ and 𝐷𝐴𝑤  ≅  𝐷𝐵𝑤 (16.2-23) 

Unlike the results obtained for purely physical absorption or absorption with first-order reaction, the 

rate of absorption with second-order reaction is not proportional to the concentration of the 

substance being absorbed. It should be noticed that even when the interfacial concentration 𝐶𝐴𝑖 is 
very small owing to small concentration of A in the gas phase, the absorption rate may become 

large owing to the effect of 𝐶𝐵.  According to Eq. (16.2-22),  

The reaction factor is a function of diffusivities 𝐷𝐴𝑤 , 𝐷𝐵𝑤, bulk concentration 𝐶𝐵, and interfacial 

concentration 𝐶𝐴𝑖 only.  This result can be applied to any type of absorption equipment since 𝛼 
is not a function of equipment geometry and flow conditions. 

Regarding the global climate change by CO2 emission due to fossil fuel use, many chemical and 

electric power companies were challenging the technical development of reactive gas absorption 

using aqueous amine solvents for CO2 capture. One possible reaction between CO2 and 

monoethanol amine in the aqueous solution can be considered as 

2 RNH2 + CO2  ↔  RNHCOO− +  RNH3
+ 

This is an endothermic bimolecular reaction. This topic is not dealt with here owing to its difficult 

mechanism.  

 
 

16.3 Design of Packed Absorption Towers 
 

Let us study a practical design of gas absorbers by using the following example. 

 

[EXAMPLE 16.2-1]  A packed absorption tower is to be designed for the removal of SO2 from 

air by chemical absorption in an aqueous solution of sodium hydroxide. The tower has an 

inside diameter of 0.5 m and is packed with 1-in. ceramic Raschig rings. An absorption may be 

assumed isothermal at 25℃(= 298 K) and 1 atm (= 1.013 × 105  Pa). The air stream 

containing 10 mol% of SO2 enters the tower from the bottom at a rate of 40 kmol/m
2
h. The 

aqueous solution containing 2 M-NaOH (=7.4 wt% = 3.47 mol%) enters the tower from the top 

at a rate of 400 kmol/m
2
h. Estimate the height of packing required to remove 95% of SO2 from 

the airstream. 

 

Solution: 

(1) First step: Calculation of mass transfer coefficient 𝑘𝐺, 𝑘𝐿
°  for physical absorption 

(a) Gas-phase mass transfer coefficient 𝑘𝐺: 
Due to the low concentration of SO2 in air, the viscosity and density of air can be used for 

the airstream: 

   𝜇𝐺 = 1.85 × 10−5 kg/m s, 𝜌𝐺 = 1.19 kg/m
3
. The diffusivity of SO2 in air can be calculated 

by Hirschfelder et al. equation: 𝐷𝐴𝑔 = 1.27 ×  10−5 m2
/s. 
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   The Schmidt number is 

  𝑆𝑐𝐺 = 
𝜇𝐺

𝜌𝐺𝐷𝐴𝑔
= 1.22 

  The mass velocities are 

𝐺 = (40 kmol m2h⁄ )[(0.90)(29) + (1 − 0.90)(64)] kg kmol = 1,300 ⁄ kg m2h⁄   

L = (400 kmol m2h⁄ )[(0.965)(18) + (0.0347)(40)] kg kmol = 7,500 ⁄ kg m2h⁄  

Gas-phase mass transfer coefficient  

For these values of mass velocities, Eq. (10.4-6) can be used to estimate 𝑘𝐺: 

𝐻𝐺 = 𝑐 𝐺𝑝 𝐿𝑞  (
𝜇𝐺

𝜌𝐺𝐷𝐺
)
2 3⁄

 (16.3-1) 

   For 1-in. Raschig ring, 𝑝 = 0.32, 𝑞 =  −0.51, 𝑐 = 3.07. Then 

𝐻𝐺 = (3.07)(1300)0.32(7500)−0.51(1.22)2 3⁄ = 0.365 m  
From Table 10.4-2, 𝐷𝑝 = 0.0254 m, 𝑎𝑡 = 190 m2 m3⁄ .  

The surface tension of water at 25℃ is  

𝜎 = 72.0 dyne cm⁄ =  0.072 N m.⁄   

The interfacial area 𝑎 is calculated by using Eq. (10.4-5) as follows: 

𝑎 = 0.0406 (7500)0.455(72.0)−0.83(2.54)−0.48 = 46.2 m2 m3⁄  (16.3-2) 

From the definition of 𝐻𝐺:  𝐻𝐺 = 𝐺𝑀 𝑘𝑦𝑎⁄  

Assuming 𝐺𝑀 = 𝐺𝑀1 

𝑘𝑦 = 
𝐺𝑀

𝐻𝐺𝑎
=  

(40 kmol m2h)⁄

(0.365 m)(46.2 m2 m3⁄ )
= 2.37 kmol m2h⁄   

Therefore 

𝑘𝐺 = 𝑘𝑦
∗ 𝑝𝐵 = 𝑦𝐵𝑘𝑦 𝑝𝐵 =  𝑘𝑦 𝑃 = 2.37 kmol m2h atm⁄⁄⁄⁄  (16.3-3) 

(b) Liquid-phase mass transfer coefficient 𝑘𝐿
° : 

The viscosity and density of water at 25℃ can be used: 

𝜇𝐿 = 0.895 cP = 0.895 × 10−3  kg m s⁄ , 𝜌𝐿 = 997 kg m3⁄ .  

The diffusivity of SO2 in water 𝐷𝐴𝑤 = 1.85 ×  10−9  m2 s⁄ . 

The Schmidt number is 

𝑆𝑐𝐿 = 
0.895 × 10−3

(997)(1.85 × 10−9)
= 485 

Liquid-phase mass transfer coefficient 

𝐿 =  7500 3600⁄ = 2.083 kg m2s⁄ . Eq. (10.4-1) can be used to estimate 𝑘𝐿
°  for 1-in. Raschig 

rings (𝛼 = 430, 𝑛 = 0.22): 

𝐻𝐿 = 
1

430
 (

2.083

0.895 × 10−3)
0.22

(485)0.5 = 0.282 m  

From the definition of 𝐻𝐿:  𝐻𝐿 = 𝐿𝑀 𝑘𝑥𝑎⁄ .  Assume 𝐿𝑀 = 𝐿𝑀2 

𝑘𝑥 =  
𝐿𝑀

𝐻𝐿𝑎
=  

400 kmol m2h⁄

(0.282 𝑚)(46.2 m2 m3⁄ ) 
= 30.7 kmol m2h⁄  

Therefore 

𝑘𝐿 = 𝑘𝑥
∗ 𝐶𝐵 =  𝑥𝐵𝑘𝑥 𝐶𝐵 = 𝑘𝑥 𝑐⁄ = (18 m3 1000 kmol)(30.7 kmol m2h) = 0.553 m h⁄⁄⁄⁄⁄  (16.3-4) 

(2)  Second step: Equilibrium relationship of SO2 – electrolytic solution system: 

 Strictly speaking, the SO2 – water system does not follow Henry’s law. For simplicity, over a 

range of very low partial pressure (0_  ≤  𝑝𝐴  ≤ 0.1) the equilibrium curve can be roughly 
approximated by a linear relationship, i.e., Henry’s law: 

𝑝𝐴 = 0.54 𝐶𝐴 (16.3-5) 

Here the Henry’s constant 𝐻𝑤 = 0.54 atm m3/kmol. 
(a) Effect of ions in an electrolytic solution 

  In general, the solubility of gas is decreased by the presence of ions in an electrolytic solution. 

According to van Krevelen and Hoftijzer
1,2)

, the Henry’s constant for the solution can be related 

by the following empirical equation: 
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Table 16.3-1 Equilibrium relation of SO2 – water system 

𝑝𝐴   atm 𝐶𝐴   kmol m3⁄  

0.793 1.17 
0.519 0.783 
0.248 0.391 

0.143 0.243 
0.0908 0.156 

0.0599 0.109 
0.0408 0.0779 
0.0223 0.0469 

0.0134 0.0312 
0.00917 0.0235 
0.00520 0.0156 

0.00191 0.00783 
0.000724 0.00312 

 

 
Fig. 16.3-1. Approximation of equilibrium curve 

 

log  
𝐻𝑤

𝐻
= − ∑ ℎ𝑗 𝐼𝑗𝑗  (16.3-6) 

Here 𝐼𝑗 is the ionic strength and ℎ𝑗 =  ℎ+ + ℎ− + ℎ𝐺  is the empirical constant. 

The ionic strength can be calculated by 

𝐼 =  
1

2
 ∑ 𝑧𝑖

2𝐶𝑖𝑖  (16.3-6) 

where 𝑧𝑖 is the number of positive or negative charges on an ion having molarity 𝐶𝑖 . 
                                                                                       
1. Van Krevelen, D. W. and P.J. Hoftijzer: Rec. Trav. Chim., vol.67, 563 (1943) 

2. Van Krevelen, D. W. and P.J. Hoftijzer: Chim. Ind. XXI Congr. Int., Chim. Ind., p.168 (1948) 

3. Sherwood, T. K., R. L. Pigford, and C.R. Wilke: “Mass Transfer,” p. McGraw-Hill, New York (1975) 

 

The ℎ values are listed in Table 16.3-2. 
 

Table 16.3-2 Constants in Eq. (16.3-6) 

cations ℎ+  m3 kg − ion⁄  anions ℎ−  m3 kg − ion⁄  gas ℎ𝐺   m3 kmol⁄  

𝐻+ 0.0 𝑂𝐻− 0.066 𝐻2 -0.002 

𝑁𝑎+ 0.091 𝐶𝑙− 0.021 𝑂2 0.022 

𝐾+ 0.074 𝑆𝑂4
−− 0.022 𝐶𝑂2 -0.019 

𝑁𝐻4
+ 0.028 𝐶𝑂3

−− 0.021 𝑁𝐻3 -0.054 

𝑀𝑔++ 0.051 𝐵𝑟− 0.012 𝑆𝑂2 -0.103 

𝐶𝑎++ 0.053 𝑆𝑂3
−− 0.001 𝐻2𝑆 -0.033 
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The above ℎ𝐺 values were picked up from the data taken at 25℃. 
                                                                                   
1. Danckwerts, P.V.: “Gas‒Liquid Reaction,” p.19, McGraw‒Hill, Nerw York (1970) 

 

(b) At the top of the tower 

For NaOH  𝐶1 = 2 kg − ion Na+/m3      𝑧1 = 1 

           𝐶2 = 2 kg − ion OH−/m3       𝑧2 = 1 

𝐼 =  
1

2
 ((2)(1)2 + (2)(1)2) = 2 

From Table 16.2-2, 

ℎ =  ℎ𝐺 + ℎ+ + ℎ− = −0.103 + 0.091 +  0.066 = 0.054 

log  
𝐻𝑤

𝐻
= − ∑ ℎ𝑗 𝐼𝑗 = −(0.054)(2) =  −0.108𝑗  (16.3-7) 

Then the Henry’s constant for the electrolytic solution is calculated as 
𝐻𝑤

𝐻
= 0.78 → 𝐻 = 𝐻𝑊/0.78 = 0.54/0.78 = 0.69 atm m

3
/kmol 

Molar velocity of NaOH at the top = (400)(0.0347) = 13.88 kmol/m
2
h 

Rate of SO2 removed from air = (40)(0.10)(0.95) = 3.8 kmol/m
2
h 

Molar velocity of SO2 at the top = (40)(0.10)(1 – 0.95) = 0.2 kmol/m
2
h 

Rate of NaOH consumed for the reaction = (2)(3.8) = 7.6 kmol/m
2
h 

(c)  At the bottom of the tower 

Molar velocity of NaOH = 13.88 – 7.6 = 6.28 kmol/m
2
h 

Concentration of NaOH ≅ 6.28 400 = 0.0157⁄   (mole fraction) 

𝐶𝑁𝑎𝑂𝐻 ≅ 
1000

18
 

0.0157

1−0.0157
= 0.89 kmol/m3  

 

Molar velocity of Na2SO3 = 3.8 kmol/m
2
h 

Concentration of Na2SO3 ≅ 3.8 400 = 0.0095⁄   (mole fraction) 

𝐶𝑁𝑎2𝑆𝑂3
≅ 

1000

18
 

0.0095

1−0.0095
= 0.53 kmol/m3  

For NaOH  ℎ =  −0.103 + 0.091 + 0.066 = 0.054 

           𝐼 = (1 2)((0.89)(1)2 + (0.89)(1)2) = 0.89⁄  

For Na2SO3  ℎ =  −0.103 + 0.091 + 0.001 = − 0.011 

           𝐼 = (1 2)((0.53)(2)2 + (0.53 × 2)(1)2) = 1.59⁄  

Then  

        log  
𝐻𝑤

𝐻
= − ((0.054)(0.89) + (−0.011)(1.59)) =  −0.0306  (16.3-8) 

Averaging between the top and bottom 

log  
𝐻𝑤

𝐻
= − 

0.108 + 0.0306

2
=  −0.0693 

The Henry’s constant averaged over the tower is calculated as 
𝐻𝑤

𝐻
= 0.852 → 𝐻 = 𝐻𝑊/0.78 = 0.54/0.852 = 0.634 atm m

3
/kmol (16.3-9) 

 

(3) Third step:  Absorption rate 

𝑁𝐴 = 𝑘𝐺(𝑝𝐴 − 𝑝𝐴𝑖) =  𝛽 𝑘𝐿
°  𝐶𝐴𝑖 =   [ √

𝐷𝐴𝑤

𝐷𝐵𝑤
 +  √

𝐷𝐵𝑤

𝐷𝐴𝑤
 
𝐶𝐵∞

𝜈 𝐶𝐴𝑖
] 𝑘𝐿

°  𝐶𝐴𝑖  = 𝑘𝐿
° [ √

𝐷𝐴𝑤

𝐷𝐵𝑤
  𝐶𝐴𝑖 +

 √
𝐷𝐵𝑤

𝐷𝐴𝑤
 
𝐶𝐵∞

𝜈
]  (16.3-10) 

Diffusivity of NaOH in water is given from literature: 𝐷𝐵𝑤 =  1.25  10−9  m2 s  (at 25℃)⁄ . 

The effect of Na2SO3 on the liquid-phase diffusivities 𝐷𝐴𝑤, 𝐷𝐵𝑤 is assumed negligibly 
small due to the low concentration. 

For the present case 𝐷𝐴𝑤  ≅  𝐷𝐵𝑤. 
Therefore  
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𝑁𝐴 = 𝑘𝐺(𝑝𝐴 − 𝑝𝐴𝑖) =  𝑘𝐿
°  (𝐶𝐴𝑖 +  

𝐶𝐵∞

𝜈
) 

= 
𝑝𝐴− 𝑝𝐴𝑖

1

𝑘𝐺

= 
𝐻 𝐶𝐴𝑖+𝐻 𝐶𝐵∞/𝜈

𝐻

𝑘𝐿
°

= 
𝑝𝐴+𝐻 𝐶𝐵∞/𝜈 

1

𝑘𝐺
 + 

𝐻

𝑘𝐿
°  

 (16.3-11) 

(4) Fourth step: Overall mass transfer coefficient 𝐾𝐺 

  
1

𝐾𝐺
= 

1

𝑘𝐺
+ 

𝐻

𝑘𝐿
° = 

1

2.37
+ 

0.66

0.553
= 1.62 

 𝐾𝐺 = 0.62 kmol m2h atm⁄  
(5) Fifth step: Mass balance 

  Mass balance can be set up over the packing section between 𝑧 = 0 and 𝑧 to get the 

operating-line equation: 

2 × (molar rate of SO2 absorbed) = ( molar rate of NaOH consumed) 

  𝜈 𝐺𝑀
′  (

𝑝𝐴

1− 𝑝𝐴
− 

𝑝𝐴2

1− 𝑝𝐴2
) =  𝐿𝑀2𝑥𝐵2 − 𝐿𝑀(𝐶𝐵∞ 𝑐⁄ ) (16.3-12) 

where 𝑐 is the molar density of the solution in kg/m
3
. 

Due to the very low concentration of ions, the molar velocity 𝐿𝑀 and molar density 𝑐 can be 
considered constant over the whole height of the packing section. 

 

𝑐 ≅  
1000

18
+ 2 = 57.6 kmol m3   at the top⁄  

𝑐 ≅  
1000

18
+ 0.89 + 0.53 + 0.53 = 57.5 kmol m3   at the bottom⁄  

𝐿𝑀  ≅  𝐿𝑀2 = 400 kmol m2h⁄  

    Mass balance over the differential volume element 𝑑𝑧 is 

𝜈 𝐺𝑀
′  𝑑 (

𝑝𝐴

1− 𝑝𝐴
) =  𝜈 𝐺𝑀

′  
𝑑𝑝𝐴

(1− 𝑝𝐴)2
=  𝐾𝐺𝑎 𝑑𝑧 (𝑝𝐴 + 

𝐻 𝐶𝐵∞

𝜈
) (16.3-13) 

The height of the packing section is given by 

𝑍𝑇 =  
 𝜈 𝐺𝑀

′

𝐾𝐺𝑎
 ∫

𝑑𝑝𝐴

(𝑝𝐴+  
𝐻 𝐶𝐵∞

𝜈
)(1− 𝑝𝐴)2

𝑝𝐴1

𝑝𝐴2
 (16.3-14) 

Using the HTU = 
 𝜈 𝐺𝑀

′

𝐾𝐺𝑎
 averaged over the packing section from the top through the bottom  

𝑍𝑇 =  
 𝜈 𝐺𝑀

′

𝐾𝐺𝑎
 ∫

𝑑𝑝𝐴

(𝑝𝐴+  
𝐻 𝐶𝐵∞

𝜈
)(1− 𝑝𝐴)

𝑝𝐴1

𝑝𝐴2
 (16.3-15) 

The reaction has the following form of irreversible bimolecular reaction 

SO2 + 2 NaOH →  Na2SO3 + H2O  

Therefore 𝜈 = 2 

The modified Henry’s constant 𝐻 = 0.66  atm m3/kmol  

and the overall coefficient 𝐾𝐺 = 0.62 kmol m2h atm⁄  

𝐺𝑀 =  (𝐺𝑀1 + 𝐺𝑀2) 2⁄ =  (40 + 36.2) 2⁄ = 38.1 kmol m2h⁄  
First the bulk concentration of NaOH corresponding to the partial pressure of SO2 is 

calculated at each section by using the operating-line equation: 

𝐶𝐵∞ = 
𝑐

𝐿𝑀
 {𝐿𝑀2𝑥𝐵2 −  𝜈 𝐺𝑀

′ [
𝑝𝐴

1− 𝑝𝐴
− 

𝑝𝐴2

1− 𝑝𝐴2
]} = 2.06 − 10.4

𝑝𝐴

1− 𝑝𝐴
 (16.3-16) 

Next the equation shown below can be integrated numerically or graphically to get the height of 

packing: 

𝑍𝑇 = 
(2)(38.1 kmol m2h⁄ )

(0.62 kmol m2h⁄  atm)(46.2 m2 m3)⁄
 ∫

𝑑𝑝𝐴

(𝑝𝐴 +  
0.66 𝐶𝐵∞

2
) (1 − 𝑝𝐴)

0.10

0.00552

 

Here 𝑝𝐴2 = 0.2 (⁄ 𝐺𝑀
′ + 0.2) =  0.2 (36⁄ + 0.20) = 0.00552  atm 
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𝑝𝐴 𝐶𝐵∞ 1 (𝑝𝐴 + 0.33 𝐶𝐵∞)(1− 𝑝𝐴) ⁄  

0.00552 2.00 1.511 
0.010 1.955 1.542 
0.015 1.902 1.580 

0.020 1.848 1.620 
0.025 1.793 1.663 
0.030 1.738 1.708 

0.035 1.683 1.755 
0.040 1.627 1.806 

0.045 1.570 1.860 
0.050 1.513 1.916 
0.055 1.455 1.977 

0.060 1.396 2.043 
0.065 1.337 2.113 
0.070 1.277 2.188 

0.075 1.217 2.268 
0.080 1.156 2.355 
0.,085 1.094 2.450 

0.090 1.031 2.554 
0.095 0.968 2.666 

0.100 0.904 2.789 

 

       ∑
∆𝑝𝐴

(𝑝𝐴 + 0.33 𝐶𝐵∞)(1 − 𝑝𝐴)

= (
1

2
) (1.511 + 1.542)(0.01 − 0.00552) + (

1

2
) (1.542 + 1.580)(0.015 − 0.01)  

+ ⋯⋯⋯+ (
1

2
) (2.666 + 2.789)(0.1 − 0.095) = 0.190 atm−1 

 

Finally the required height of the packing section is 

𝑍𝑇 = (2.66 m atm)(0.190 atm−1) = 0.505 m 
From a viewpoint of practical engineering design, this result seems to be smaller than 

expected. It is usually necessary to take into account the safety factor. 
 

 
 
Nomenclature 
  

𝑎 effective interfacial area in packing section, [m2/m3] 

𝐶𝐴 molar concentration of component A, [kmol/m3] 

𝐻 Henry’s constant, [ - ] 

𝐷𝐴𝑚 ,𝐷𝐴𝑤 diffusivity of component A, [m2/s] 

𝐷𝐵𝑤 diffusivity of component B, [m2/s] 

𝐺 mass velocity of gas, [kg/m2s] 

𝐻𝐺  HTU (Height of Transfer Unit) of gas phase, [m] 

𝐼𝑗  ionic strength,  

𝑘1 reaction-rate constant of first-order reaction,  [1/s] 

𝑘𝐿 liquid-phase mass transfer coefficient, [m/s] 

𝐾𝐺 , 𝑘𝐺 overall and gas-phase mass transfer coefficient, [m/s] or [kmol/m2s Pa] 

𝐿 mass velocity of liquid, [kg/m2s] 

𝐿𝑀 superficial molar velocity of liquid, [kmol/m2s] 

𝑁𝐴 mass flux, [kmol/m2s] 

𝑁𝐿 liquid-phase number of transfer units, [ - ] 

𝑝 partial pressure, [Pa] 

𝑟𝐴 rate of first-order reaction, [kmol/m3s] 

𝑆 area of surface perpendicular to mass transfer, [m2] 

𝑆𝑐 Schmidt number, [ - ] 

𝑊 mass flow rate, [kg/s] 

𝑡 time, [s] 

𝑦 liquid-side coordinate perpendicular to interface, [m] 

190                Mass Transfer with Chemical Reaction 



𝑧 vertical coordinate of packed column, [m] 

𝑍𝑇 height of packed column, [m] 

𝑧𝑖 number of positive or negative charges, [ - ] 

𝑧𝑟 position of reaction plane, [m] 

 

𝛼 integration constant, [m2/s] 

𝛽 reaction factor, [ - ] 

휀 volume fraction of liquid in packing section, [ - ] 

휃 total holdup time, [s] 

∞ bulk 

 
Subcripts 
 

A component A 

B component B 
f film 

G gas phase 

i interface 

L liquid phase 
M molar 
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CHAPTER 17   

 

TURBULENT TRANSPORT PHENOMENA 
 
 

17.1 Fundamental Equations of Turbulent Transport 

 

17.1-1 Fundamental properties of turbulent flows   
  Most flows occurring in practical engineering processes are turbulent. Turbulent flow always 

occurs at high Reynolds number. We know that laminar motion in a circular tube tends to become 

unstable at Reynolds numbers above about 2,100 in the presence of small disturbances, and a 

transition to turbulent flow will occur. 

  One characteristic of turbulent flows is the irregularity: the velocity at any point varies with time 

in both magnitude and direction. Turbulence is rotational and three dimensional. Fig.17.1-1 is a 

fluctuating curve  imitating the real oscillogram of one component of the fluctuating velocities 

taken by a hot-wire anemometer placed at a point in the turbulent flowfield. Regarding the principle 

of hot-wire anemometry, you can refer to Section 9.7-2 of Chapter 9. The static pressure has also 

similar fluctuations, which can be observed by using a piezo-electric pressure transducer.  

 

 
Fig.17.1-1. Oscillogram of velocity and pressure of turbulent flow 
 

We can notice from these fluctuating oscillograms that they are not without a certain degree of 

regularity from a statistical point of view. The instantaneous velocity 𝑣 can be decomposed into a 

time-averaged velocity �̅� and velocity fluctuations 𝑣′, such that 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) =  �̅� (𝑥, 𝑦, 𝑧) + 𝑣′(𝑥, 𝑦, 𝑧, 𝑡)  (17.1-1) 

The time average is defined by 

�̅� =  lim𝑇→∞
1

𝑇
 ∫ 𝑣 𝑑𝑡

𝑡0+𝑇

𝑡0
  (17.1-2) 

At steady state  
𝜕�̅�

𝜕𝑡
= 0 

The velocity measured by a pitot tube is approximately equal to the time-averaged velocity, except 

for turbulent flows which have extremely high turbulence intensity. Turbulence consists of the 



superposition of various, small periodic motions on large-scale intermittent motions. It is like the 

orchestral sound consisting of the superposition of various, high-frequency sounds on 

low-frequency sounds. 

The instantaneous velocity fluctuations can become negative very often. 

Therefore the time-averaged value of a fluctuating quantity is zero by definition, for example, 

𝑣′̅ = lim𝑇→∞
1

𝑇
 ∫ (𝑣 − �̅�)𝑑𝑡 = 

𝑡0+𝑇

𝑡0
lim𝑇→∞

1

𝑇
 ∫ 𝑣 𝑑𝑡

𝑡0+𝑇

𝑡0
− �̅� =  0   (17.1-3) 

However the squared values cannot be negative. As a measure of the magnitude of the turbulence, 

the intensity of turbulence is defined as 

𝑇𝑢 =  
√𝑣′2

𝑣
    (17.1-4) 

, which may have values 0.01 to 0.10 in typical turbulent pipe flows. 

 Of many methods for the measurement of turbulent velocity, the hot-wire anemometer is the most 

useful. As described in Section 9.7-2, the principle of hot-wire anemometry is based on the 

convective heat transfer from a very fine heated wire to the approaching stream. The detecting 

element consists of a very fine short metal wire (e.g. 5 μm dia. And 5 mm long platinum wire for 

air stream), which is heated by an electric current to a constant temperature above the stream 

temperature. The wire is placed perpendicular to the velo0city component to be measured. The rate 

of heat loss to the ambient stream from the wire is proportional to the square root of the stream 

velocity √𝑣  in the usual stream condition. The wire is of such low heat capacity that the 

temperature of the wire can follow the rapid velocity fluctuations. The rate of heat loss is equal to 

the rate of heat generated by the electric current through the wire, 𝐼2𝑅, where 𝐼 is the electric 

current and 𝑅 the electric resistance of the wire. In the usual measuring method, the electric 
resistance is controlled to be kept constant as far as possible by using an electronic feedback system. 

Instead, the feedback system changes the current through the wire as soon as a variation in electric 

resistance occurs. The response time to the change in approach velocity is of the order shorter than 

0.1 ms.  

Then we have the relation between 𝐼2 and 𝑣: 

𝐼2𝑅 =  𝛼 +  𝛽 √𝑣    (17.1-5) 

where 𝛼 and 𝛽 are usually determined by experiment.  

If we substitute 𝐼 =  𝐼 + 𝐼′ and 𝑣 =  𝑣 + 𝑣′ into the Eq.(17.1-5), we get the approximate relation 

between 𝐼′ and 𝑣′: 

𝐼
2
𝑅 =  𝛼 +  𝛽 √𝑣   (mean velocity) 

𝐼′ = 
𝛽

4 𝐼 𝑅
 
√𝑣

𝑣
 𝑣′     (velocity fluctuation)     (17.1-6) 

The last equation is obtained as the first approximation when 𝑣′ ≪ 𝑣, i.e. 𝐼′ ≪ 𝐼. 
The usual block diagram of hot-wire anemometry is shown in Fig.17.1-2. 

 

 
 
Fig. 17.1-2. Block diagram of hot-wire anemometer for constant temperature method 
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Fig. 17.1-3. Distribution of velocity fluctuations and Reynolds stress in a rectangular channel 
 
 

As shown in Fig.17.1-3, the turbulence intensity in a rectangular channel becomes maximum near 

the wall.  

The fluctuations √𝑣𝑧′2 in the streamwise direction, or in the z direction, are greater than the 

fluctuations  √𝑣𝑥′2  in the transverse direction, or in the x direction. In the vicinity of the wall, 

molecular momentum transport becomes important but the fluctuations become very small. 

Turbulent flow in a pipe also has similar tendency. 

Such properties and structure of turbulent flows are described in detail in Sec. 17.2~ 17.5. 
 

17.1-2 Equation of motion for turbulent flows 
  Turbulence is a continuum phenomenon taking place in a continuum fluid. It is true that the 

equation of motion applies to turbulent flow, for example, 
𝜕(𝜌𝑣𝑥)

𝜕𝑡
+ 

𝜕(𝜌𝑣𝑥𝑣𝑥)

𝜕𝑥
+

𝜕(𝜌𝑣𝑥𝑣𝑦)

𝜕𝑦
+ 

𝜕(𝜌𝑣𝑥𝑣𝑧)

𝜕𝑧
= − 

𝜕𝑝

𝜕𝑥
+  𝜇 (

𝜕2 𝑣𝑥

𝜕𝑥2
+ 

𝜕2 𝑣𝑥

𝜕𝑦2
+ 

𝜕2 𝑣𝑥

𝜕𝑧2
)  (17.1-7)  

The instantaneous velocity and pressure can be decomposed into a time-averaged value and its 

fluctuations, such that 
𝑣𝑥 = 𝑣𝑥̅̅ ̅ + 𝑣𝑥′ 
𝑣𝑦 = 𝑣𝑦̅̅ ̅ + 𝑣𝑦′ 

𝑣𝑧 = 𝑣�̅� + 𝑣𝑧′ 
𝑝 =  �̅� +  𝑝′  (17.1-8) 

Substituting these instantaneous quantities into Eq.(17.1-7) and averaging the resultant equation 

with respect to time, we get the equation of motion governing the mean (time-averaged) flow: 
𝜕(𝜌𝑣𝑥)̅̅ ̅̅

𝜕𝑡
+ 

𝜕(𝜌𝑣𝑥̅̅ ̅ 𝑣𝑥̅̅ ̅)

𝜕𝑥
+

𝜕(𝜌𝑣𝑥̅̅ ̅ 𝑣𝑦̅̅ ̅)

𝜕𝑦
+ 

𝜕(𝜌𝑣𝑥̅̅ ̅ 𝑣𝑧)̅̅ ̅̅

𝜕𝑧
= − 

𝜕�̅�

𝜕𝑥
+  𝜇 (

𝜕2 𝑣𝑥̅̅ ̅

𝜕𝑥2 + 
𝜕2 𝑣𝑥̅̅ ̅

𝜕𝑦2 + 
𝜕2 𝑣𝑥̅̅ ̅

𝜕𝑧2 )  

− (
𝜕(𝜌𝑣𝑥′𝑣𝑥′̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
+

𝜕(𝜌𝑣𝑥′𝑣𝑦′̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝜕𝑦
+ 

𝜕(𝜌𝑣𝑥′𝑣𝑧′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑧
)  (17.1-9) 

In steady turbulent flow field, 
𝜕(𝜌𝑣𝑥)̅̅ ̅̅̅

𝜕𝑡
 

In the averaging process, the terms consisting of a product of a mean value and a fluctuation vanish 

in the following way: 

𝑣𝑥𝑣𝑦 = (𝑣𝑥 + 𝑣𝑥
′)(𝑣𝑦 + 𝑣𝑦

′ ) = 𝑣𝑥 𝑣𝑦 + 𝑣𝑥 𝑣𝑦
′ + 𝑣𝑥

′𝑣𝑦 + 𝑣𝑥′ 𝑣𝑦
′  =  𝑣𝑥 𝑣𝑦 + 𝑣𝑥′ 𝑣𝑦

′  

Here the mean value is regarded as a mere constant coefficient as far as the averaging is concerned. 
 

17.1-3 Equations of energy and mass transport for turbulent flows 
The equation of energy can also be used for turbulent heat transport with constant properties: 
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𝜕(𝜌𝐶𝑝𝑇)

𝜕𝑡
+ 

𝜕(𝜌𝐶𝑝𝑣𝑥𝑇)

𝜕𝑥
+

𝜕(𝜌𝐶𝑝𝑣𝑦𝑇)

𝜕𝑦
+ 

𝜕(𝜌𝐶𝑝𝑣𝑧𝑇)

𝜕𝑧
=  𝜅 (

𝜕2 𝑇

𝜕𝑥2 + 
𝜕2 𝑇

𝜕𝑦2 + 
𝜕2 𝑇

𝜕𝑧2)  (17.1-10) 

The instantaneous temperature can be decomposed as 

𝑇 =  𝑇 + T′  (17.1-11) 

In similar manner of averaging, we get 
𝜕(𝜌𝐶𝑝𝑇)̅̅ ̅

𝜕𝑡
+ 

𝜕(𝜌𝐶𝑝𝑣𝑥̅̅ ̅ �̅�)

𝜕𝑥
+

𝜕(𝜌𝐶𝑝𝑣𝑦̅̅ ̅ �̅�)

𝜕𝑦
+ 

𝜕(𝜌𝐶𝑝𝑣�̅� 𝑇)̅̅ ̅

𝜕𝑧
=  𝜅 (

𝜕2 �̅�

𝜕𝑥2
+ 

𝜕2 �̅�

𝜕𝑦2
+ 

𝜕2 �̅�

𝜕𝑧2 )  

− (
𝜕(𝜌𝐶𝑝𝑣𝑥′𝑇′̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
+

𝜕(𝜌𝐶𝑝𝑣𝑦′𝑇′̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑦
+ 

𝜕(𝜌𝐶𝑝𝑣𝑧′𝑇′)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
)  (17.1-12) 

In steady turbulent temperature field, 
𝜕(𝜌𝐶𝑝𝑇)̅̅ ̅

𝜕𝑡
= 0 

Similarly for turbulent mass transport without chemical reaction 
𝜕 𝐶𝐴

̅̅ ̅

𝜕𝑡
+ 

𝜕(𝑣𝑥̅̅ ̅ 𝐶𝐴
̅̅ ̅)

𝜕𝑥
+

𝜕(𝑣𝑦̅̅ ̅ 𝐶𝐴
̅̅ ̅)

𝜕𝑦
+ 

𝜕(𝑣�̅� 𝐶𝐴)̅̅ ̅̅

𝜕𝑧
=  𝐷 (

𝜕2 𝐶𝐴
̅̅ ̅

𝜕𝑥2 + 
𝜕2 𝐶𝐴

̅̅ ̅

𝜕𝑦2 + 
𝜕2 𝐶𝐴

̅̅ ̅

𝜕𝑧2 )  

− (
𝜕(𝑣𝑥′𝐶𝐴′̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥
+

𝜕(𝑣𝑦′𝐶𝐴′̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝜕𝑦
+ 

𝜕(𝑣𝑧′𝐶𝐴′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑧
)  (17.1-13) 

In steady turbulent concentration field, 
𝜕 𝐶𝐴̅̅ ̅̅

𝜕𝑡
= 0 

 

 

17.2 Phenomenological Understanding of Turbulent Transport 
 

17.2-1 Effect of Nonlinear interaction of turbulence 

In those three equations Eqs.(17.1-6), (17.1-9), and (17.1-10), new terms indicated by underlines 

arise. 

They are concerned with the turbulent transport by eddy motion coming from nonlinear 

interaction of fluctuations. If these nonlinear effects of turbulence were not existent, the 

time-averaged distributions of velocity, temperature, and concentration would become the same as 

those for laminar transport.  

The following group forms nine components of the turbulent momentum-flux tensor: 

𝜏𝑥𝑥
(𝑡)

= − 𝜌𝑣𝑥′𝑣𝑥′
̅̅ ̅̅ ̅̅ ̅̅   𝜏𝑥𝑦

(𝑡)
= 𝜏𝑦𝑥

(𝑡)
= − 𝜌𝑣𝑦′𝑣𝑥′

̅̅ ̅̅ ̅̅ ̅̅   𝜏𝑥𝑧
(𝑡)

= 𝜏𝑧𝑥
(𝑡)

= − 𝜌𝑣𝑧′𝑣𝑥′
̅̅ ̅̅ ̅̅ ̅  

𝜏𝑦𝑦
(𝑡)

= − 𝜌𝑣𝑦′𝑣𝑦′
̅̅ ̅̅ ̅̅ ̅̅   𝜏𝑦𝑧

(𝑡)
= 𝜏𝑧𝑦

(𝑡)
= − 𝜌𝑣𝑦′𝑣𝑧′

̅̅ ̅̅ ̅̅ ̅̅   𝜏𝑧𝑧
(𝑡)

= − 𝜌𝑣𝑧′𝑣𝑧′
̅̅ ̅̅ ̅̅ ̅  

 

These are usually referred to as the Reynolds stresses. The diagonal components 𝜏𝑥𝑥
(𝑡)

, 𝜏𝑦𝑦
(𝑡)

, 𝜏𝑧𝑧
(𝑡)

 

are turbulent normal stresses. In many turbulent flows they contribute little to the momentum 

transfer. The off-diagonal components 𝜏𝑥𝑦
(𝑡)

= 𝜏𝑦𝑥
(𝑡)

, 𝜏𝑦𝑧
(𝑡)

= 𝜏𝑧𝑦
(𝑡)

, 𝜏𝑥𝑧
(𝑡)

= 𝜏𝑧𝑥
(𝑡)

 are turbulent shear stresses. 

They play a dominant role in momentum transfer, except in the viscous sublayer near the wall 

where molecular transport is predominant. 

We know that the distribution of time-averaged velocity for turbulent flow in a circular pipe is 

much flatter in the main flow region than for laminar flow. That fact is due to the Reynolds stresses. 

We can interpret the effect of mixing due to eddy motion large in the transverse direction in main 

flow region. 

 

The following group forms three components of turbulent heat-flux vector: 

𝑞𝑥
(𝑡)

 =  − 𝜌𝐶𝑝𝑣𝑥′𝑇′̅̅ ̅̅ ̅̅   𝑞𝑦
(𝑡)

 =  −  𝜌𝐶𝑝𝑣𝑦′𝑇′̅̅ ̅̅ ̅̅ ̅  𝑞𝑧
(𝑡)

 =  −  𝜌𝐶𝑝𝑣𝑧′𝑇′̅̅ ̅̅ ̅̅  

They play an important role in heat transfer.  

Similarly the following group forms three components of turbulent mass-flux vector: 

𝑗𝑥
(𝑡)

 =  − 𝑣𝑥′𝐶𝐴′
̅̅ ̅̅ ̅̅ ̅̅   𝑗𝑦

(𝑡)
 =  −  𝑣𝑦′𝐶𝐴′

̅̅ ̅̅ ̅̅ ̅̅   𝑗𝑧
(𝑡)

 =  −  𝑣𝑧′𝐶𝐴′
̅̅ ̅̅ ̅̅ ̅̅  
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17.2-2 Mixing length theory and eddy diffusivity 

A complete understanding of turbulent transport phenomena needs a quantitative description of 

turbulence, including the turbulence intensity and the size of eddies. Many direct numerical 

analyses based on physical models have been developed. Unfortunately, however, these approaches 

are beyond the level of this course.  

Historically speaking, the Prandtl’s mixing length model continues to serve as a background 

useful for the understanding of turbulent transport. One approach to the solution of turbulent 

momentum transport problems is to postulate a relation between the turbulent momentum-flux 𝜏𝑥𝑦
(𝑡) 

and the mean rate of strain (velocity gradient) 𝜕𝑣𝑥 𝜕𝑦⁄ . It is clear that the greater the velocity 

gradient, the larger will be the 𝑣𝑥′ induced by a 𝑣𝑦′, and hence the larger will be 𝜏𝑦𝑥
(𝑡)

= − 𝜌𝑣𝑦′𝑣𝑥′
̅̅ ̅̅ ̅̅ ̅̅ .  

The random motion of fluid lumps (eddies) in turbulent flow results in turbulent transfer of 

momentum, energy, and mass. In analogy with the mean free path in the gas kinetic theory, the 

so-called Prandtl mixing length 𝑙 is a measure of the distance a large scale eddy travels before it 

breaks up and loses its identity. 

Fig. 17.2-1 indicates a model of eddy interchange between two parallel layers set apart by a 

mixing length. 

 
Fig.17.2-1 Mixing length theory 
 

The transverse transport of momentum, energy, and mass is caused as a result of eddy 

interchange between two parallel layers as follows: 

𝜏𝑦𝑥
(𝑡)

=  𝜌𝑣𝑥|𝑦 𝑣𝑦
′ −   𝜌𝑣𝑥|𝑦+∆𝑦 𝑣𝑦

′ = − 𝜌𝑣𝑦
′ 𝑙𝑀  

𝑑 𝑣𝑥

𝑑𝑦
  (17.2-1) 

𝑞𝑦
(𝑡)

 =   𝜌𝐶𝑝𝑇|
𝑦
 𝑣𝑦

′ −   𝜌𝐶𝑝𝑇|
𝑦+∆𝑦

 𝑣𝑦
′ = − 𝜌𝐶𝑝𝑣𝑦

′ 𝑙𝐻  
𝑑 𝑇

𝑑𝑦
    (17.2-2) 

𝑗𝑦
(𝑡)

 =  𝐶𝐴|𝑦 𝑣𝑦
′ − 𝐶𝐴|𝑦+∆𝑦

 𝑣𝑦
′ = − 𝑣𝑦

′ 𝑙𝐷  
𝑑 𝐶𝐴

𝑑𝑦
  (17.2-3) 

in which the mixing length 𝑙 is defined as the differential distance between the two layers ∆𝑦. 

If we assume that 𝑣𝑥|𝑦+∆𝑦  −  𝑣𝑥|𝑦  ≅ 𝑣𝑥
′ ,  𝑇|

𝑦+∆𝑦
 −  𝑇|

𝑦
 ≅ 𝑇′,  and 𝐶𝐴|𝑦+∆𝑦

 −  𝐶𝐴|𝑦  ≅ 𝐶𝐴′,  

the turbulent transport fluxes can be obtained as 

𝜏𝑦𝑥
(𝑡)

= − 𝜌𝑣𝑦′𝑣𝑥′  (17.2-4) 

𝑞𝑦
(𝑡)

 =  −  𝜌𝐶𝑝𝑣𝑦′𝑇′  (17.2-5) 

𝑗𝑦
(𝑡)

 =  −  𝑣𝑦′𝐶𝐴′  (17.2-6) 

In Eqs. (17.2-1), (17.2-2), and (17.2-3), the products of velocity fluctuation and mixing length 

𝑣𝑦
′ 𝑙𝑀, 𝑣𝑦

′ 𝑙𝐻, 𝑣𝑦
′ 𝑙𝐷  have the unit of diffusivity 𝑚2 𝑠⁄ . Therefore the eddy diffusivities are defined as 

𝜏𝑦𝑥
(𝑡)

= − 𝜌휀𝑀  
𝑑 𝑣𝑥

𝑑𝑦
  (17.2-7) 

𝑞𝑦
(𝑡)

 = − 𝜌𝐶𝑝휀𝐻
𝑑 𝑇

𝑑𝑦
  (17.2-8) 

𝑗𝑦
(𝑡)

 =  − 휀𝐷  
𝑑 𝐶𝐴

𝑑𝑦
  (17.2-9) 

They are not a property of the fluid but vary with the flow conditions. They are much greater than 

molecular diffusivities ν, 𝛼, 𝐷𝐴𝐵 in the turbulent flow region. These eddy diffusivities 휀𝑀, 휀𝐻 , 휀𝐷 

are not only a property of fluids but a flow parameter as well. When molecular motion still prevails, 
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the total momentum-flux can be expressed as 

𝜏𝑦𝑥 = 𝜏𝑦𝑥
(𝑙)

+   𝜏𝑦𝑥
(𝑡)

= − 𝜌(𝜈 +  휀𝑀) 
𝑑 𝑣𝑥

𝑑𝑦
  (17.2-10) 

Similarly 

𝑞𝑦 = 𝑞𝑦
(𝑙)

+  𝑞𝑦
(𝑡)

 = − 𝜌𝐶𝑝(𝛼 + 휀𝐻)
𝑑 𝑇

𝑑𝑦
  (17.2-11) 

𝑗𝑦 = 𝑗𝑦
(𝑙)

+  𝑗𝑦
(𝑡)

 =  −(𝐷𝐴𝐵 + 휀𝐷) 
𝑑 𝐶𝐴

𝑑𝑦
  (17.2-12) 

  In a fully-developed pipe flow, the shear stress distribution is linear whether the flow is 

laminar or turbulent: 

𝜏𝑟𝑧 = 
𝑟

𝑅
 𝜏𝑤  (17.2-13) 

Therefore the eddy diffusivity 휀𝑀 can be evaluated from the measured velocity distribution by 

using the following equation: 

𝑀

𝜈
= 

𝜏𝑤
𝑟

𝑅

− 𝜇 
𝑑 𝑣𝑧
𝑑𝑟

− 1  (17.2-14) 

Fig. 17.2-2 shows the radial distribution of eddy diffusivity in the fully developed flow region in 

a circular pipe. These curves are schematically drawn taking into consideration many empirical data. 

The maximum of 휀𝑀 𝜈⁄  occurs at the intermediate position between the axis and wall. This may be 

due to the fact that the turbulent eddy motion is produced there. As the axis is approached, 휀𝑀 𝜈⁄  

decreases from the maximum value. In the neighborhood of the pipe axis, it is too difficult to 

determine the eddy diffusivity owing to the fact that both the denominator and numerator of Eq. 

(17.2-14) become almost zero. Still  휀𝑀 𝜈⁄  is much larger than unity, except very near the pipe wall. 

We should notice that these 휀𝑀 𝜈⁄  distribution curves resemble the turbulence intensity curves in 

Fig. 7.1-3. However it should be kept in mind that the turbulent kinetic energy is generated much 

closer to the pipe wall. 

 

 
Fig. 17.2-2. Radial distribution of eddy diffusivity for momentum in a circular tube flow 

 

17.2-3 Mixing length model based on turbulence correlation 

We have already understood a qualitative explanation of the generation of turbulent motion in 

Chapter 3. At this section, let us consider the concept of “mixing length” again by using the more 

rigorous theory of turbulence. 

Consider a traveling fluid element which starts from a level 𝑦 = 0 at time 𝑡 = 0 and passes an 

arbitrary level 𝑦 at time 𝑡. Figure 18.2-3 is the turbulent velocity field for explanation of the 

mixing length theory. 
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Fig. 17.2-3. Mixing length model based on turbulence correlation 
 

If the fluid element does not lose its original momentum 𝜌 𝑣𝑥(0,0) as it moves in the transverse 

direction, a momentum deficit at 𝑦 and 𝑡 is 

Δ𝑀 =  𝜌 𝑣𝑥(𝑦, 𝑡) −  𝜌 𝑣𝑥(0, 0) =  𝜚(𝑣𝑥(𝑦) − 𝑣𝑥(0)) + 𝜚(𝑣𝑥
′(𝑦, 𝑡) − 𝑣𝑥′(0, 0))  (17.2-15) 

Since the intensity of turbulence in many turbulent flows has values in the neighborhood of 1 to 

10%, the second term is small compared to the first one: 

Δ𝑀 ≅   𝜚(𝑣𝑥(𝑦) − 𝑣𝑥(0)) 

For small values of 𝑦, the velocity difference can be approximated by the first term of the Taylor 

series: 

Δ𝑀 ≅   𝜚[𝑣𝑥(𝑦) − 𝑣𝑥(0)]  =  𝜌 
𝑑 𝑣𝑥

𝑑𝑦
|
𝑦=0

𝑦  (17.2-16) 

The volume of the fluid transported per unit area and unit time is the transverse component 𝑣𝑦′ of 

the instantaneous velocity of the traveling fluid element. 

From Lagrangian viewpoint 

𝑣𝑦
′ = 

𝑑 𝑦

𝑑𝑡
  (17.2-17) 

where 𝑦 is the position of the fluid element. Since the momentum flux has dimensions of 

(momentum/volume)(volume/area/time), the average turbulent momentum-flux at 𝑦 = 0 can be 

expressed as 

𝜏𝑦𝑥
(𝑡)

|
𝑦=0

= ∆𝑀 𝑣𝑦′ =  𝜌 
𝑑 𝑣𝑥

𝑑𝑦
|
𝑦=0

𝑣𝑦′𝑦 =  𝜌 
𝑑 𝑣𝑥

𝑑𝑦
|
𝑦=0

𝑦
𝑑 𝑦

𝑑𝑡
|
𝑦=0

= 
1

2
 𝜌 

𝑑 𝑣𝑥

𝑑𝑦
|
𝑦=0

𝑑 𝑦2

𝑑𝑡
|
𝑦=0

  (17.2-18) 

The overbar denotes an average taken over a large number of moving fluid elements starting from 

𝑦 = 0. 

 

 
Fig. 17.2-4  Significance of length scale and time scale 

 

198                        Turbulent Transport Phenomena 



Therefore we can assume that the correlation 𝑣𝑦′𝑦 becomes essentially zero at a distance 𝑦 

comparable to a transverse length scale 𝑙. If the RMS velocity √𝑣𝑦′
2 is denoted by 𝑢𝑦′, the 

correlation  𝑣𝑦′𝑦 is of order 𝑢𝑦′𝑙: 

𝑣𝑦′𝑦 = 𝐾1𝑢𝑦′𝑙  (17.2-19) 

This transverse length scale is called “mixing length.”  Therefore the turbulent momentum-flux 

can be written as 

𝜏𝑦𝑥
(𝑡)

= 𝐾1𝜌𝑢𝑦
′ 𝑙  

𝑑 𝑣𝑥

𝑑𝑦
  (17.2-20) 

Usually the mixing length 𝑙 absorbs the unknown numerical coefficient because it is of order one: 

𝐾1𝑙 =  𝑙𝑀. 

If the mixing length 𝑙 and the RMS velocity turbulence 𝑢𝑦′ were known over the entire flow field, 

the equation of motion could be solved. The mixing length can be considered to be proportional to 

the size of the larger eddies which play a predominant role in the turbulent momentum transport. 

  The distance 𝑦 traveled for time 𝑡 by the fluid element is 

𝑦 = ∫ 𝑣𝑦
′(𝑡′)𝑑𝑡′

𝑡

0
  (17.2-21) 

The correlation  𝑣𝑦′𝑦 becomes 

𝑣𝑦′(𝑡)𝑦 = 𝑣𝑦
′(𝑡) ∫ 𝑣𝑦

′(𝑡′)𝑑𝑡′𝑡

0
= ∫ 𝑣𝑦

′(𝑡)𝑣𝑦
′(𝑡′)𝑑𝑡′𝑡

0
   (17.2-22) 

The averaging is performed with respect to the number of the moving fluid elements starting from 
𝑦 = 0. 

The correlation  𝑣𝑦
′ (𝑡)𝑣𝑦

′ (𝑡′) does not depend on the reference time but on the time difference 

𝑡 − 𝑡′ =  𝜏. 
Then the correlation becomes a Lagrangian correlation coefficient: 

𝑅𝐿2(𝜏) =
𝑣𝑦

′ (𝑡)𝑣𝑦
′ (𝑡− 𝜏)

𝑢𝑦′2
   (17.2-23) 

The Lagrangian integral time scale ℑ2 can be regarded as a measure of the time interval which is 
long enough for fluid elements to travel the length scale (mixing length) 𝑙: 

 ℑ2 = ∫ 𝑅𝐿2(𝜏) 𝑑𝜏
∞

0
  (17.2-24) 

The Lagrangian correlation implies that as the time interval 𝜏  becomes large, the velocity 

fluctuation 𝑣𝑦′(𝑡) does not resemble 𝑣𝑦′(𝑡 − 𝜏) in wave form, that is, the degree of correlation 

between 𝑣𝑦′(𝑡) and 𝑣𝑦′(𝑡 − 𝜏) falls. 

Then the turbulent momentum-flux is expressed as 

𝜏𝑦𝑥
(𝑡)

=  𝜌 
𝑑 𝑣𝑥

𝑑𝑦
 ∫ 𝑣𝑦

′(𝑡)𝑣𝑦
′(𝑡 − 𝜏)𝑑𝜏 = 

∞

0
 𝜌 

𝑑 𝑣𝑥

𝑑𝑦
 ∫ 𝑢𝑦′

2∞

0
𝑅𝐿2(𝜏)𝑑𝜏 =   𝜌 

𝑑 𝑣𝑥

𝑑𝑦
 𝑢𝑦′

2ℑ2  (17.2-25) 

A Lagrangian integral length scale 𝑙𝐿 is used as 

𝑙𝐿 = 𝑢𝑦
′  ℑ2  (17.2-26) 

On the other hand, the Eulerian integral scale 𝑙 is defined by 

𝑢𝑦′
2𝑙 =  ∫ 𝑣𝑦′(𝑦)𝑣𝑦′(0)

∞

0
 𝑑𝑦  (17.2-27) 

The overbar denotes an average taken over a long time interval with zero time delay between the 

two velocity fluctuations. If the 𝑙𝐿 and 𝑙 are assumed of the same order of magnitude, 

𝜏𝑦𝑥
(𝑡)

= 𝐾𝑀𝜌 𝑢𝑦
′  𝑙 

𝑑 𝑣𝑥

𝑑𝑦
   (17.2-28) 

This suggests that the turbulent momentum-flux can be estimated using the Eulerian integral scale 𝑙. 

From the definition of Reynolds stresses 

  𝜏𝑦𝑥
(𝑡)

=  𝜌 𝑣𝑦′𝑣𝑥′   (17.2-29) 

Comparing these equations, it is found that 

𝑢𝑥
′ = 𝐾 𝑙 

𝑑 𝑣𝑥

𝑑𝑦
  (17.2-30) 

We can obtain similar expressions of turbulent heat- and mass-fluxes: 
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𝑞𝑦
(𝑡)

= 𝐾𝐻𝜌𝐶𝑝 𝑢𝑦
′  𝑙  

𝑑 𝑇

𝑑𝑦
   (17.2-31) 

𝑗𝑦
(𝑡)

= 𝐾𝐷𝑢𝑦
′  𝑙 

𝑑 𝐶

𝑑𝑦
  (17.2-32) 

The numerical coefficients 𝐾𝑀, 𝐾𝐻, 𝐾𝐷 are of order one. 

Finally it has been found that the eddy diffusivities are of order 𝑢𝑦
′  𝑙: 

휀𝑀 = 𝑢𝑦
′ 𝑙𝑀   (17.2-33) 

휀𝐻 = 𝑢𝑦
′ 𝑙𝐻  (17.2-34) 

휀𝐷 = 𝑢𝑦
′ 𝑙𝐷  (17.2-35) 

The ratio of the Reynolds stress to the laminar viscous stress is usually very large in most part of the 

flow field except near the wall. 

𝜏𝑦𝑥
(𝑡)

𝜏𝑦𝑥
(𝑙) = 

 𝜌 𝑀 
𝑑 𝑣𝑥
𝑑𝑦

 𝜌𝜈 
𝑑 𝑣𝑥
𝑑𝑦

=  𝑀

𝜈
=  𝐾1  

𝑢𝑦
′  𝑙

𝜈
  (17.2-36) 

The term 𝑢𝑦′𝑙 𝜈⁄  is sometimes called “eddy Reynolds number.”  

 
 

17.3 Structure of Turbulence 
 

17.3-1  Energy spectrum of kinetic energy 
  It will be instructive to find the regularity in seemingly-chaotic turbulent flows by a statistical 

approach. If the statistical properties such as 𝑣𝑥′
2, 𝑣𝑥′𝑣𝑦′, etc. are time-independent, the turbulent 

flow is characterized as being stationary. If the statistical properties do not vary in space, it is said 

that the turbulent flow is homogeneous. If the statistical properties are invariant with direction, it is 

said that the turbulent flow is isotropic: 𝑣𝑥′
2 = 𝑣𝑦′

2 = 𝑣𝑧′
2. 

  It is well known that the turbulent flow behind a uniform grid has a turbulent structure close to 

locally homogeneous isotropic turbulence. Turbulent flow in a circular pipe, especially that near to 

the wall, is neither homogeneous nor isotropic. 

  A constant average value of 𝑣′2 exists in the flowfield statistically homogeneous with respect to 
time.  

The kinetic energy of turbulence is expressible as 
1

2
 𝜌 (𝑣𝑥′

2 + 𝑣𝑦′
2 + 𝑣𝑦′

2) 

To describe turbulent motion quantitatively, it is necessary to introduce a concept of the intensity 

and scale of turbulence. The intensity of the turbulent velocity fluctuations is defined as the 

root-mean-square value divided by the mean flow velocity: 

𝑇𝑢𝑣 =  
√𝑣𝑥′2

𝑣𝑥
 (17.3-1) 

We usually use the velocity fluctuation component in the same direction as the main flow. 

Turbulence consists of the superposition of various, small periodic motions on large-scale motions. 

The small periodic motions come from a certain vortex motion, the extent of which is called “eddy.” 

In other words, turbulence consists of the superposition of eddies of various sizes. The eddy size 

corresponds to the frequency of the periodic motion. The smaller an eddy, the higher the frequency. 

 As shown in Fig. 17.3-1, a large scale eddy consists of a large number of small eddies. All eddies 

are moving approximately at the average velocity 𝑣𝑥. They can be considered to be transported by 

the mean flow.  When a hot-wire is placed perpendicular to the velocity 𝑣𝑥, the time required for a 

small eddy to pass by the wire is shorter than that for a large eddy. Each amplitude of the 

oscillations corresponds to the turbulent kinetic energy each eddy has. 

  

200                Turbulent Transport Phenomena 



 

 
Fig. 17.3-1. Structure of a large-scale eddy containing various-sized small eddy motions 
 

Fig. 17.3-2 explains the relation between eddy size and fluctuation frequency. An energy spectrum 

describes the distribution of the kinetic energy 𝑣𝑥′
2 of the turbulence in the frequency domain. This 

analysis of turbulence is similar to the frequency analysis applied to light waves and sound waves. 
 

 
Fig. 17.3-2. Relation between eddy size and fluctuation frequency 
 

 
Fig. 17.3-3. Schematic curve of energy spectrum 
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Fig. 17.3-3 is a one-dimensional energy spectrum, where the distribution function 𝐸1(𝑛) is similar 

to a probability density function.  

 

The contribution to 𝑣𝑥′
2 of the frequencies between 𝑛 and 𝑛 + 𝑑𝑛 is given by 𝑣𝑥′

2𝐸1(𝑛)𝑑𝑛.  

By definition,  ∫ 𝐸1(𝑛)𝑑𝑛 = 1
∞

0
  

The one-dimensional energy spectrum can be measured by a hot-wire anemometer. Signals from the 

wire are time-averaged to get 𝑣𝑥 and the original signals 𝑣𝑥 are subtracted 𝑣𝑥 to get 𝑣𝑥′. Then the 

fluctuations 𝑣𝑥′ are passed through a filter circuit which can filtrate the oscillations between 𝑛 and 

𝑛 + 𝑑𝑛. The filtrated oscillations are squared and time-averaged to get 𝑣𝑥′
2𝐸1(𝑛).  

At the present time, a digital computer is often used for the statistical analyses of this kind. Signals 

of fluctuating velocities are first digitalized by an AD converter and stored as a time history into the 

memory of the computer. The energy spectrum can be obtained from the Fourier transforms of the 

fluctuating velocity vs. time record. 

 

  Turbulence is dissipative. The smaller an eddy, the greater the velocity gradient within the eddy. 

Therefore the viscous shear stress counteracts the very high frequency eddying motion. There is a 

statistical lower limit to the size of the smallest eddy. The highest frequency range in the energy 

spectra corresponds to the smallest eddies. Even the smallest eddies are far larger than the mean 

free path of the molecules of the fluid. That is, turbulence is a continuum phenomenon. The kinetic 

energy of turbulence is always converted into the internal energy (heat) of the fluid owing to the 

deformation work by viscous shear stresses in the smallest eddies. 

  Therefore turbulence needs a continuous supply of energy to make up for the kinetic energy loss. 

The kinetic energy is extracted from the mean flow by large eddies which correspond to low 

frequency range in energy spectra.   The generation of small-scale fluctuations is due to the 

nonlinear interaction of large-scale fluctuations. 

  Suppose two components of velocity fluctuations to be of the form: 

𝑣𝑥
′ = ∑ 𝐴𝑚 𝑚 cos 2𝜋𝑚𝑡 (17.3-2) 

 

𝑣𝑦
′ = ∑ 𝐵𝑛 𝑛 cos 2𝜋𝑛𝑡 (17.3-3) 

The product of these two functions implies the nonlinear interaction as follows: 

𝑣𝑥
′𝑣𝑦′ =  ∑ ∑ 𝐴𝑚𝐵𝑛  cos 2𝜋𝑚𝑡 cos 2𝜋𝑛𝑡𝑛𝑚  (17.3-4) 

      =  ∑ ∑
1

2
𝐴𝑚𝐵𝑛 (cos 2𝜋(𝑚 + 𝑛)𝑡 + cos 2𝜋(𝑚 − 𝑛)𝑡𝑛𝑚 ) 

Here the higher frequency fluctuations cos 2𝜋(𝑚 + 𝑛)𝑡  and the lower frequency fluctuations 

cos 2𝜋(𝑚 − 𝑛)𝑡 are produced due to the nonlinear interactions cos 2𝜋𝑚𝑡 and  cos 2𝜋𝑛𝑡. In the case 

when 𝑚 = 𝑛, the time-average lower frequency component cos 2𝜋(𝑚 − 𝑛)𝑡 implies the effect of 

velocity fluctuations on the mean motion: 

𝑣𝑥
′𝑣𝑦′ = 0                         (𝑚 ≠ 𝑛)  

= ∑
1

2
 𝐴𝑛𝐵𝑛𝑛       (𝑚 = 𝑛) (17.3-5) 

This suggests that the mean velocity distribution is distorted owing to the nonlinear interaction. As 

shown in Fig. 17.3-4, in this manner, a spectral energy transfer from the energy-containing eddies 

(large eddies) to smaller eddies occurs. Finally the viscous dissipation occurs by the smallest eddies 

approximately at the same rate as the production of the kinetic energy. This also suggests that the 

structure of turbulence is in dynamical equilibrium in which local inputs (production) of kinetic 

energy balance local losses of kinetic energy. 

Therefore we need a measure of eddy size and often determine the extent of the flowfield where the 

fluid motion (e.g. velocities) have a certain correlation with each other.  
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Fig. 17.3-4. Spectral energy transfer by nonlinear interaction of velocity fluctuations  
 
 

17.3-2  Spatial and temporal correlations ----- Definition of  eddy sizes 

  The size and orientation of eddies can be defined with the aid of the spatial correlation between 

fluctuations measured simultaneously at two positions. 

  From the Eulerian point of view, a longitudinal velocity correlation coefficient 𝑓(𝑟) is defined 

between the longitudinal velocity fluctuation components measured at two points, the distance of 

which is 𝑟: 

𝑓(𝑟) =  
𝑣𝑥′(𝑥)𝑣𝑥′(𝑥+𝑟)

√𝑣𝑥′(𝑥)2 √𝑣𝑥′(𝑥+𝑟)2
 (17.3-6) 

 

In homogeneous turbulent flowfield 

√𝑣𝑥′(𝑥)
2 = √𝑣𝑥′(𝑥 + 𝑟)2 

Then  

𝑓(𝑟) =  
𝑣𝑥′(𝑥)𝑣𝑥′(𝑥+𝑟)

𝑣𝑥′2
 (17.3-7) 

 

Fig.17.3-5 is a qualitative sketch of longitudinal velocity correlation. 

 
 
Fig. 17.3-5. Longitudinal velocity correlation 
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Similarly a lateral velocity correlation coefficient 𝑔(𝑟) is defined between the lateral velocity 

fluctuation components measured at two points, the distance of which is 𝑟: 

𝑔(𝑟) =  
𝑣𝑦′(𝑥)𝑣𝑦′(𝑥+𝑟)

𝑣𝑦′2
 (17.3-8) 

 

Fig.17.3-6 is a sketch of lateral velocity correlation. 
 

 
Fig.17.3-6. Lateral velocity correlation 
 

These space correlations can be measured by using two sets of hot-wire anemometers. One 

hot-wire is fixed at a position 𝑥 and the other is placed at any arbitrary position 𝑥 + 𝑟. Signals 

𝑣𝑥(𝑥) and 𝑣𝑥(𝑥 + 𝑟)  from the two hot-wires are subtracted their time-averaged values 

𝑣𝑥(𝑥)  and  𝑣𝑥(𝑥 + 𝑟) to get their fluctuations 𝑣𝑥′(𝑥) and 𝑣𝑥′(𝑥 + 𝑟). Their fluctuations are multiplied 

each other with zero time delay and averaged with respect to time to get the correlation 

𝑣𝑥′(𝑥)𝑣𝑥′(𝑥 + 𝑟). If the two fluid elements are very close together, they must be moving at nearly the 
same velocities. That is, there is a high degree of correlation between the two fluid elements. 

From definition,  𝑓(0)  =  1     and     g(0)  =  1 

As the distance 𝑟 increases, the correlation becomes low. We often need a measure of the size of 

larger eddies which contribute very much to convective transfer of momentum, heat, and mass. In 

particular, the surface renewal motion due to those large-scale eddies in the neighborhood of the 

interface is very effective in interphase heat and mass transport. 

  As the Eulerian macroscale of turbulence, two integral length scales are defined: 

Λ𝑓 =  ∫ 𝑓(𝑟)𝑑𝑟
∞

0
 (17.3-9) 

Λ𝑔 = ∫ 𝑔(𝑟)𝑑𝑟
∞

0
 (17.3-10) 

They are considered to be a measure of the largest space interval in which two velocity fluctuations 

are correlated with each other, i.e., the fluid elements at two points move substantially in the same 

direction. 

  From Lagrangian point of view, another correlation coefficient can be defined between velocity 

fluctuations of the same fluid particle at different times: 

𝑅𝐿(𝜏) =  
𝑣𝑥′(𝑥,𝑦,𝑧,𝑡)𝑣𝑥′(𝑥,𝑦,𝑧,𝑡+𝜏)

𝑣𝑥′(𝑥,𝑦,𝑧)2
 (17.3-11) 

This is known as the Lagrangian autocorrelation coefficient.  
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Fig. 17.3-7. Lagrangian autocorrelation 
 

Fig. 17.3-7 is a sketch of Lagrangian autocorrelation. This autocorrelation can be calculated with 

the aid of time-delay circuit from the fluctuations measured by a hot-wire anemometer.  

  A Lagrangian integral time scale is defined by 

ℑ = ∫ 𝑅𝐿(𝜏) 𝑑𝜏
∞

0
 (17.3-12) 

This can be considered to be a measure of the longest time interval during which 𝑣𝑥′(𝑡) is 
correlated with itself, i.e., a fluid element persists in a motion in a given direction. 

  If a homogeneous turbulent flowfield has a constant mean velocity 𝑣𝑥, 

Λ𝑓 =  ℑ 𝑣𝑥 (17.3-13) 

These macroscales of turbulence are of great importance in connection with turbulent transport of 

momentum, heat, and mass. 

 
 

17.4 Velocity Distribution of Turbulent Flow inside a Circular 
Pipe 
 

  Let us derive the turbulent velocity distribution in the fully-developed region. 

The total shear stress has a linear distribution whether the flow is laminar or turbulent: 

𝜏𝑟𝑧 =  
𝑟

𝑅
𝜏𝑤 (17.4-1) 

We may use three layer concept although the velocity change in the radial direction is continuous: 

the viscous sublayer, where viscous effect is predominant; the buffer layer, where the viscous and 

turbulent effects are of comparable importance; and the turbulent core, where purely viscous effect 

is of negligible importance. It can be considered that the time-smoothed velocity at a point is a 

function of local conditions from the wall of the pipe. Therefore the distance from the wall 

𝑦 = 𝑅 − 𝑟 is used instead of 𝑟 as the transverse coordinate. 

 

[EXAMPLE 17.4-1]  Dimensional Analysis 
  Show that the time-smoothed velocity distribution in turbulent shear layer should be a function 

of two dimensionless groups by application of dimensional analysis: 
𝑣𝑥

 √𝜏𝑤 𝜌⁄
= 𝑓 (

𝑦 √𝜏𝑤 𝜌⁄

𝜈
) (17.4-E1) 

Solution:  If we denote characteristic velocity and length by 𝑈 and 𝑌, respectively, we can 

formally express the velocity distribution as 
𝑣𝑥

𝑈
= 𝑓 (

𝑦

𝑌
) (17.4-E2)  

The time-smoothed velocity is a function of local conditions from the nearest wall. Thus 
𝑦

𝑌
= 𝑦 𝜏𝑤

𝑎 𝜚𝑏𝜇𝑐 = 𝐿 (
𝑀

𝐿 𝑇2)
𝑎
 (

𝑀

𝐿3)
𝑏
 (

𝑀

𝐿 𝑇
)
𝑐
= 𝐿1−𝑎−3𝑏−𝑐  𝑀𝑎+𝑏+𝑐  𝑇−2𝑎−𝑐 (17.4-E3) 

Spatial and Temporal Correlations  ---   Definition of Eddy Sizes                  205 



In order that the right side of Eq.(17.3-E3) should be dimensionless, 𝑎 = 1 2⁄ , 𝑏 =  1 2⁄ ,
and  𝑐 =  −1.  

This implies 
𝑦

𝑌
= 

𝑦 √𝜏𝑤 𝜚⁄

𝜈
= 𝑦+                                                                  (17.4-E4) 

Similarly 
𝑣𝑥

𝑈
= 𝑣𝑥 𝜏𝑤

𝐴 𝜚𝐵𝜇𝐶 = 𝐿1−𝐴−3𝐵−𝐶  𝑀𝐴+𝐵+𝐶  𝑇−1−2𝐴−𝐶                                       (17.4-E5) 

The right side should be dimensionless. Then A =  −1 2⁄ , B=  1 2⁄ , and  𝐶 =  0.  

This implies 
𝑣𝑥

𝑈
= 

𝑣𝑥 

√𝜏𝑤 𝜚⁄
= 𝑢+                                             (17.4-E6)   

As a result 

𝑢+ = 𝑓(𝑦+)                                                                    (17.4-E7) 

We have found that the velocity distribution should be expressed using the above functional 

form. 

 

Viscous sublayer 

  In the region very close to the pipe wall, the shear stress will vary only slightly from 𝜏𝑤 and 
the turbulent effect is negligibly small. Thus 

𝜏𝑤 =  𝜚 𝜈 
𝑑 𝑣𝑧

𝑑𝑦
     (17.4-2) 

Rearranging the terms d𝑣𝑧 = 
𝜏𝑤

 𝜚 𝜈
 𝑑𝑦 and integrating in dimensionless form, 

𝑣𝑧 

√𝜏𝑤 𝜚⁄
= 

𝑦 √𝜏𝑤 𝜚⁄

𝜈
+ 𝐶1  

Using the boundary condition that  𝑣𝑧 = 0   at   𝑦 = 0,  𝐶1 must be zero. 

We get the velocity distribution in the viscous sublayer: 

𝑢+ = 𝑦+    (17.4-3) 

The term √𝜏𝑤 𝜚⁄ , which has the dimension of velocity, is called the friction velocity. 

The friction velocity is denoted by 𝑢∗. 
 

Buffer layer 

  In this layer, the laminar and turbulent effects are both important. We cannot derive analytically 

the velocity distribution. One of empirical equations is 

𝑢+ = −3.05 + 5.00 ln 𝑦+ (17.4-4) 
 

Turbulent core 

  In this region, the turbulent effect is predominant. The total shear stress can be written as 

𝜏𝑟𝑧 = 𝜏𝑟𝑧
(𝑡)

=  𝜚 𝑢𝑦
′ 𝑙𝑀  

𝑑 𝑣𝑧

𝑑𝑦
   (17.4-5) 

Assuming that the RMS velocity  𝑢𝑦
′  in the transverse direction is proportional to the RMS velocity 

 𝑢𝑧
′  in the axial direction: 

𝑢𝑦
′ = 𝐶2  𝑢𝑧

′  (17.4-6) 

For small 𝑦, 

𝑢𝑧
′  ≅ 𝐾 𝑙𝑀   

𝑑 𝑣𝑧

𝑑𝑦
   (17.4-7) 

Then we obtain 

𝜏𝑟𝑧 = 𝜏𝑟𝑧
(𝑡)

=  𝜚 𝑙𝑀
2 ( 

𝑑 𝑣𝑧

𝑑𝑦
)
2

  (17.4-8) 

The numerical coefficients 𝐶2 and 𝐾 are absorbed in the unknown mixing length 𝑙𝑀. 
From the shear stress distribution 

  𝜏𝑟𝑧 = 𝜏𝑤  (
𝑅−𝑦

𝑅
) =   𝜚 𝑙𝑀

2 ( 
𝑑 𝑣𝑧

𝑑𝑦
)
2

   (17.4-9) 

The equation of motion for turbulent pipe flows can also be written as 
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0 =  
𝑃0− 𝑃𝐿

𝐿
− 

1

𝑟
 
𝑑 

𝑑𝑟
 (𝑟 𝜏𝑟𝑧)   (17.4-10) 

where 𝜏𝑟𝑧 = 𝜏𝑟𝑧
(𝑙)

+ 𝜏𝑟𝑧
(𝑡)

   

Integrating with the boundary condition  𝜏𝑟𝑧 = 0  at  𝑟 = 0, 

𝜏𝑟𝑧 =  
(𝑃0 − 𝑃𝐿)𝑅

2𝐿
 
𝑟

𝑅
=  𝜏𝑤  

𝑟

𝑅
 

That is 

𝜏𝑤 =  
(𝑃0− 𝑃𝐿)𝑅

2𝐿
   (17.4-11) 

This implies that the frictional force at the wall balances the pressure force acting on the flow 

cross-section whether the flow is laminar or turbulent. It is known that the turbulent velocity profile 

is almost flat in most part of the flow cross-section and that the steep velocity change takes place 

near the wall. 

  Then Prandtl assumed that 𝜏𝑟𝑧 do not vary markedly from its wall value 𝜏𝑤 

𝜏𝑟𝑧 ≅ 𝜏𝑤 =   𝜚 𝑙𝑀
2 ( 

𝑑 𝑣𝑧

𝑑𝑦
)
2

     (17.4-12) 

This assumption made in the turbulent core should be considered as a very rough estimation. 

Further, he assumed that the mixing length 𝑙𝑀 is simply proportional to the distance from the wall, 
that is 

𝑙𝑀 =  𝜅 𝑦   (17.4-13) 

Thus the equation to be solved becomes 

𝜏𝑤

𝜌
= 𝜅2𝑦2 ( 

𝑑 𝑣𝑧

𝑑𝑦
)
2

    (17.4-14) 

Taking the square root 
𝑑 𝑣𝑧

𝑑𝑦
= 

𝑢∗

𝜅 𝑦
   (17.4-15) 

Integrating from the outer edge of the buffer layer 𝑦𝑏, 

𝑣𝑧 − 𝑣𝑧,𝑏 =  
1

𝜅
 𝑢∗ ln

𝑦

𝑦𝑏
    (17.4-16) 

In dimensionless form 

𝑢+ − 𝑢𝑏
+ =  

1

𝜅
ln

𝑦+

𝑦𝑏
+   (17.4-17) 

We may expect that experimental turbulent velocity profiles will give a universal curve in 𝑢+, 𝑦+ 

coordinates that is logarithmic over the turbulent core and linear immediately adjacent to the pipe 

wall. 

The universal velocity profile empirically obtained is expressed by 

Viscous sublayer          𝑦+  ≤ 5         𝑢+ = 𝑦+   (17.4-18) 

Buffer layer            5 ≤  𝑦+  ≤ 30     𝑢+ = −3.05 + 5.0 ln 𝑦+   (17.4-19) 

Turbulent core           𝑦+ ≥ 30        𝑢+ =  5.5 + 2.5 ln 𝑦+ (17.4-20) 

  From many experimental data, it is known that the universal constant 𝜅 is given by 0.4. The 

above semi-empirical universal velocity distribution law is valid over a wide range 𝑅𝑒 > 20,000 
in the magnitude of time-smoothed velocity. However the three-layer model involves discontinuities 

in eddy diffusivity 휀𝑀 and non-zero velocity gradient at the pipe axis because the model does not 
take into consideration the continuity in velocity gradients at the boundaries of these three layers.  

In particular, Eq.(17.4-20) cannot meet the real  boundary condition 𝜕𝑣𝑧 𝜕𝑟 = 0    at  𝑟 = 0⁄ . 
 

[PROBLEM 17.4-P1]  As a set of universal velocity distribution for a circular tube flow, Eqs. 
(17.4-18~20) were obtained. Plot the dimensionless velocity against the dimensionless distance 

from the wall 𝑢+ vs.  log 𝑦+  in a semi-logarithmic coordinates. A Newtonian fluid 

(𝜌 = 1,000 kg m3,    𝜇 = 0.0012  Pa s)⁄   is flowing in at an average velocity 〈𝑣𝑧〉 = 1.5  m s⁄  in a 

circular tube (inside diameter 𝐷𝑖 = 1.0 m). What is the friction factor?  What is the wall shear 

stress 𝜏𝑤?  In this fully-developed turbulent flow region, obtain a radial distribution of the 

time-averaged axial velocity 𝑣𝑧 〈𝑣𝑧〉 vs.  𝑟 𝑅⁄⁄ .  
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17.5 Turbulent Structure and Role of Eddies 
 
17.5-1  Turbulent structure in a circular pipe flow 
  Let us study again a turbulent flow in a circular pipe from a viewpoint of chemical engineering 

processes. Fig. 17.5-1 shows the radial distributions of the turbulence intensity and the Reynolds 

stress. 

 
 

Fig. 17.5-1. Schematic picture of radial distributions of turbulence intensity and Reynolds stress 

 

The turbulence intensity of the axial component velocity fluctuations 𝑣𝑧′
2 is much larger than those 

of other components 𝑣𝜃′
2 and 𝑣𝑟′

2 in the main part of the flowfield and becomes a maximum in 
the vicinity of the pipe wall. However, as the pipe axis is approached, the flow becomes nearly 

isotropic: 𝑣𝑧′
2 = 𝑣𝜃′

2 = 𝑣𝑟′
2. 

  The Reynolds stress also shows a maximum in the vicinity of the wall. The buffer layer can be 

considered as a constant source for the turbulent kinetic energy. The turbulent kinetic energy  𝑣𝑧′
2 

is produced from the gradient of the mean velocity 𝜕𝑣𝑧 𝜕𝑟⁄  through the Reynolds stress − 𝑣𝑟′𝑣𝑧′ 

mainly in the buffer layer (𝑦+ ≅ 15), where both 𝜕𝑣𝑧 𝜕𝑟⁄  and − 𝑣𝑟′𝑣𝑧′ are very large. Large eddies 
generated in this region are called “the energy-containing eddies” since they have the largest energy 

density 𝐸1(𝑛)𝑚𝑎𝑥 in the energy spectrum. 

  The integral scale Λ𝑓 is determined mainly by the size of the larger energy-containing eddies. 

Even in the fully-developed flow, there exist more permanent largest eddies, which contain much 

less energy than the energy-containing eddies. In the vicinity of the wall the spectral energy-transfer 

occurs from the energy-containing eddies (low frequency) to smaller and smaller eddies (higher and 

higher frequencies). 

  The rate of energy production is nearly in dynamical equilibrium with the rate of energy 

dissipation. We should know that this kinetic energy balance is utilized for the principle of scale-up 

design of an agitated vessel. (see Section 20.3) 

Still there is a turbulent diffusion flux of the residual kinetic energy from the energy-producing zone 

toward the pipe axis. This is the only supply of kinetic energy in the central part where there is no 

source of turbulence energy. Thus the energy transferred by turbulent diffusion is consumed by 

dissipation. This implies that the energy-containing eddies in the energy-producing zone are much 

larger than those in the central part and that the dissipating eddies in the energy-producing zone are 
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much smaller than those in the central part. In the turbulent core large eddies are elongated in the 

z-direction: the integral scale Λ𝑓 in the z-direction is larger than the integral scales Λ𝑔 in the r- and 

θ-direction. It is known that at high Reynolds numbers, for example, Λ𝑓 becomes of the order of 

0.5 R whereas Λ𝑔 is of the order of 0.2 R. 

 

17.5-2 Roles of turbulent eddies in transport processes 
  When we study various processes involving heat and mass transports, it is necessary to 

distinguish fluid particles (small eddies) from fluid lumps (large eddies). 

  Fluid particle is a very small volume of the fluid (of the order of microscale), but far larger than 

the mean free path of the fluid molecules. Within such a fluid particle, the velocity, temperature, and 

concentration can be assumed uniform. Fluid lump is a much larger volume of the fluid which 

consists of a large number of fluid particles. The size of such a fluid lump is of the order of the 

integral scale and as big as the width of turbulent flowfield (e.g. the radius for pipe flows, the 

half-radius for free jet flows, and the thickness for boundary layer flows). 

In usual turbulent flows, the turbulent transport of momentum, heat, and mass is controlled 

mainly by fluid lumps. However the size of the eddies which play a predominant role in heat and 

mass transfer may be slightly different from that of the eddies controlling momentum transfer. 

  Turbulent diffusion is one of the most important factors in chemical engineering. Chemical 

engineers make use of turbulence to mix and homogenize fluid mixtures as well as to accelerate the 

rates of heat and mass transfer. Chemical reaction rates are often accelerated by turbulent mixing. 

For heterogeneous chemical reactions such as the liquid-liquid reaction in an agitated vessel, the 

relative size between the discrete liquid particles and the surrounding eddies is an important factor 

in relation with the rate of reaction. If the Reynolds number is raised in an apparatus, the integral 

scale remains almost constant but the microscale tends to become small: a turbulent flow at a 

relatively high Reynolds number has a relatively “fine” small-scale structure. Combustion processes 

also involve turbulence and often depend on the turbulent mixing and diffusion of fuel gases and 

oxidizer. For mist flow in pipes of boiler, the relative size between small water droplets and 

turbulent eddies of steam stream may be an important factor in consideration of the turbulent 

diffusion of water droplets toward the heat transfer wall.  

  In this text, the film theory was mainly adopted for the study of heat and mass transfer across the 

interfaces separating phases.  

  However it should be kept in mind that the recent hydrodynamic studies pay attention to the 

turbulent eddying motion near the interface. There are many attempts to relate the turbulent energy 

spectrum to mass transport behavior near the gas-liquid interface from a viewpoint of large 

energy-containing eddies which control the mass transport rate. 

  Very recently various sophisticated statistical studies have demonstrated with the aid of 

visualization techniques the existence of “coherent” (or well-ordered) structure in the wall layer of 

wall-bounded turbulent flows: there are intermittent large-scale interactions between wall layer and 

outer layer. The low-speed streaks of fluid are lifted up (ejected) from the wall by the stretched 

vortex-like structure, and then the high-speed outer layer appears by the sweep motion called 

“bursting.” It plays an important role in the production of turbulence and the turbulent transport 

processes. There are some attempts to relate the interphase transport rates to the intermittent 

renewal of fluid lumps near the interface by bursting motion. 
 
 
Nomenclature 
  

𝐶𝐴 molar concentration of component A, [kmol/m3] 

𝐶𝑝 heat capacity, [J/kg K] 

𝐸1(𝑛) one-dimensional energy spectrum, [ - ] 

𝑓(𝑟) longitudinal velocity correlation coefficient, [ - ] 

𝑔(𝑟) lateral velocity correlation coefficient, [ - ] 

𝐼 electric current, [A] 
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𝑗 mass flux, [kmol/m2s] 

𝑙𝑀 , 𝑙𝐻 , 𝑙𝐷 mixing length of momentum, heat, and mass, [m] 

𝑙𝐿 Lagrangian integral length scale, [m] 

𝑝 pressure, [Pa] 

𝑞 heat flux, [J/m2s] 

𝑅 electric resistance, [Ω] or pipe radius, [m] 

𝑅𝑒 Reynolds number, [ - ] 

𝑅𝐿2 Lagrangian correlation, [ - ] 

𝑟 radial coordinate, [m], or distance between two points of lateral correlation, [m] 

𝑇 temperature, [K] 

𝑇𝑢 turbulence intensity, [ - ] 

𝑡 time, [s] 

𝑢∗ friction velocity, [m/s] 

𝑢+ dimensionless velocity = 
𝑣𝑧 

√𝜏𝑤 𝜚⁄
 

𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  velocity component in rectangular coordinates, [m/s] 

x, y, z rectangular coordinates, [m] 

𝑦+ dimensionless distance from wall = 
𝑦 √𝜏𝑤 𝜚⁄

𝜈
 

Δ𝑀 momentum deficit, [kg/m2s] 

휀𝑀 , 휀𝐻 , 휀𝐷 eddy diffusivity of momentum, heat, and mass, [m2/s]  

𝜅 thermal conductivity, [W/m K] 

Λ𝑓 Eulerian integral longitudinal length scale, [m] 

Λ𝑔 Eulerian integral lateral length scale, [m] 

𝜇 viscosity, [kg/m s] 

𝜈 kinematic viscosity or diffusivity of momentum, [m2/s]: 

𝜌 density, [kg/m3] 

𝜏 momentum flux or shear stress, [kg/s2m] or [N/m2] or time difference, [s] 

ℑ2 time scale, [s] 

 

Superscripts 
‘ fluctuation 

 time-averaged 
(l) laminar 

(t) turbulent 

 

Subcripts 
 

A component A 

w wall 
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CHAPTER 18   

 

BOUNDARY LAYER THEORY 
 
 

18.1 Stream Function1) 
 

  For a two-dimensional, incompressible flow, i.e., ρ = const , 𝑎𝑛𝑑  𝜕 𝜕𝑧⁄ = 0, the equations of 

continuity and motion are given by 
𝜕𝑣𝑥

𝜕𝑥
+ 

𝜕𝑣𝑦

𝜕𝑦
= 0 (18.1-1) 

𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
= − 

1

𝜌

𝜕𝑝

𝜕𝑥
+  𝜈 (

𝜕2𝑣𝑥

𝜕𝑥2 + 
𝜕2𝑣𝑥

𝜕𝑦2 ) (18.1-2) 

𝑣𝑥
𝜕𝑣𝑦

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑦

𝜕𝑦
= − 

1

𝜌

𝜕𝑝

𝜕𝑦
+  𝜈 (

𝜕2𝑣𝑦

𝜕𝑥2 + 
𝜕2𝑣𝑦

𝜕𝑦2 ) (18.1-3) 

  The set of equations can be simplified into one equation with one unknown variable by 

introducing a new function 𝜓(𝑥, 𝑦) called “stream function.”  
The function is defined so that the equation of continuity is satisfied automatically: 

𝑣𝑥 = 
𝜕𝜓

𝜕𝑦
   and   𝑣𝑦 =  − 

𝜕𝜓

𝜕𝑥
 (18.1-4) 

Since 𝜓 is a function of 𝑥  and  𝑦, the total derivative is 

𝑑𝜓 = 
𝜕𝜓

𝜕𝑥
 dx +

𝜕𝜓

𝜕𝑦
 dy =  − 𝑣𝑦  dx + 𝑣𝑥 dy  

If 𝜓 = const (i.e., 𝑑𝜓 = 0) 
𝑑𝑦

𝑑𝑥
|
𝜓=𝑐𝑜𝑛𝑠𝑡

= 
𝑣𝑦

𝑣𝑥
 (18.1-5) 

The path 𝜓 = 𝑐𝑜𝑛𝑠𝑡 is seen to represent a streamline since the streamline is tangent to the velocity 

vector 

𝑣 =  𝑣𝑥 𝑖 +  𝑣𝑦 𝑗  (18.1-6) 

 

Fig. 18.1-1 indicates definition of stream function. 

 
 

Fig. 18.1-1. Definition of stream function 𝜓 

 



Differentiating Eq. (18.1-2) with respect to 𝑦 and Eq. (18.1-3) with respect to 𝑥 and combining 
these two equations to eliminate the pressure terms, we get 

(
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
)(

𝜕𝑣𝑥

𝜕𝑦
− 

𝜕𝑣𝑦

𝜕𝑥
) + (𝑣𝑥

𝜕  

𝜕𝑥
+ 𝑣𝑦

𝜕  

𝜕𝑦
)(

𝜕𝑣𝑥

𝜕𝑦
− 

𝜕𝑣𝑦

𝜕𝑥
) 

=  𝜈 (
𝜕2  

𝜕𝑥2 + 
𝜕2  

𝜕𝑦2)(
𝜕𝑣𝑥

𝜕𝑦
− 

𝜕𝑣𝑦

𝜕𝑥
)           (18.1-7) 

 

Substituting 𝜓 into Eq. (18.1-6) 

(
𝜕𝜓

𝜕𝑦
 
𝜕  

𝜕𝑥
−  

𝜕𝜓

𝜕𝑥
 
𝜕  

𝜕𝑦
) (

𝜕2𝜓

𝜕𝑥2 + 
𝜕2𝜓

𝜕𝑦2) =  𝜈 (
𝜕2  

𝜕𝑥2 + 
𝜕2  

𝜕𝑦2)(
𝜕2𝜓

𝜕𝑥2 + 
𝜕2𝜓

𝜕𝑦2) 

Then we get a fourth-order differential equation with one unknown, 𝜓: 

− 
𝜕(𝜓,∇2𝜓)

𝜕(𝑥,𝑦)
=  𝜈 ∇4𝜓  (18.1-8) 

Still its general solution is very difficult owing to its nonlinearity. 

Here 

∇2=
𝜕2  

𝜕𝑥2 + 
𝜕2  

𝜕𝑦2    and  ∇4= (
𝜕2  

𝜕𝑥2 + 
𝜕2  

𝜕𝑦2)(
𝜕2  

𝜕𝑥2 + 
𝜕2  

𝜕𝑦2)  (18.1-9) 

𝜕(𝑓,𝑔)

𝜕(𝑥,𝑦)
= |

𝜕𝑓 𝜕𝑥⁄ 𝜕𝑓 𝜕𝑦⁄

𝜕𝑔 𝜕𝑥⁄ 𝜕𝑔 𝜕𝑦⁄
| = 

𝜕𝑓

𝜕𝑥
 
𝜕𝑔

𝜕𝑦
− 

𝜕𝑓

𝜕𝑦
 
𝜕𝑔

𝜕𝑥
 

The equation for two-dimensional flow (i.e.,  𝑣𝑧 = 0  and  𝜕 𝑣𝑟 𝜕𝑧⁄ = 𝜕 𝑣𝜃 𝜕𝑧⁄ =  0) can be 
expressed in cylindrical coordinates: 

− 
1

𝑟
 
𝜕(𝜓,∇2𝜓)

𝜕(𝑟,𝜃)
=  𝜈 ∇4𝜓  (18.1-10) 

∇2=
𝜕2  

𝜕𝑟2 + 
1

𝑟
 
𝜕  

𝜕𝑟
+ 

1

𝑟2

𝜕2  

𝜕휃2  

Here the stream function 𝜓 is defined as 

𝑣𝑟 = 
1

𝑟
 
𝜕𝜓

𝜕𝜃
    and  𝑣𝜃 = − 

𝜕𝜓

𝜕𝑟
     

 

[PROBLEM 18.1-1]  

For an inviscid uniform fluid flow over a stationary cylinder (radius 𝑅), the stream function can  

 
be expressed as 

𝜓 = 𝑣∞ (𝑟 − 
𝑅2

𝑟
) sin 휃 

The circle 𝑟 = 𝑅 itself must be a streamline. 

Draw the streamlines around the cylinder and obtain the velocity components 𝑣𝑟 and 𝑣𝜃.  
 

 

18.2 Boundary Layer Solution of Laminar Flow along a Flat Plate2) 
 

This example is instructive for the understanding of local variations of friction factor and Nusselt 

number in developing flows. 

As shown in Fig. 18.1-2, the flat plate is heated at constant wall temperature 𝑇𝑤.  
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The approaching fluid has uniform velocity 𝑣∞ and uniform temperature 𝑇∞.  
The thickness of the velocity boundary layer is defined as follows. 

Usually the thickness 𝛿 is taken as the distance away from the surface of the flat plate where the 

velocity reaches 99% of the free-stream velocity. Similarly the thickness of the temperature 

boundary layer 𝛿𝑇 is defined as the distance away from the surface (the outer edge of the boundary 
layer) where the fluid temperature reaches 99% of the free-stream temperature. 

Obtain the expressions of local friction factor and local Nusselt number in terms of local 

Reynolds number. 
                                            
1. Bird, R. B., Stewart, W. E., and Lightfoot, E. N., “Transport Phenomena,” Wiley, New York (1960) 

2. Schlichting, H., “Boundary Layer Theory,” 4th ed., McGraw-Hill, New York (1960) 

 

 
 

 
 
Fig. 18.2-1. Boundary layer flow along a heated flat plate 
 

The local Reynolds number called “length Reynolds number” is defined using the distance 𝑥 
from the leading edge: 

𝑅𝑒𝑥 = 
𝑣∞ 𝑥

𝜈
  (18.2-1)  

 

The following two-dimensional flow equations can be applied: 

𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
= − 

1

𝜌

𝜕𝑝

𝜕𝑥
+  𝜈 (

𝜕2𝑣𝑥

𝜕𝑥2 + 
𝜕2𝑣𝑥

𝜕𝑦2 )  (18.2-2) 

𝑣𝑥
𝜕𝑇

𝜕𝑥
+ 𝑣𝑦

𝜕𝑇

𝜕𝑦
=  𝛼 (

𝜕2𝑇

𝜕𝑥2 + 
𝜕2𝑇

𝜕𝑦2)  (18.2-3) 

where 𝜈 =  𝜇 𝜌⁄    𝑎𝑛𝑑   𝛼 =  𝜅 𝜌 𝐶𝑝⁄ . 

The free stream velocity outside the boundary layer and pressure are kept at 

𝑣∞ = 𝑐𝑜𝑛𝑠𝑡  and  
𝑑 𝑃

𝑑𝑥
= 0 

For convenience, the temperature 𝑇 is replaced by the temperature difference 𝑇𝑤 − 𝑇. 

When the Reynolds number is sufficiently large, the thickness of the boundary layer is very small 

as compared to the x-directed (streamwise) distance. Therefore the variation of the x-velocity and 

temperature is very small in the x direction than in the y direction. 
𝜕𝑣𝑥

𝜕𝑥
 ≪  

𝜕𝑣𝑥

𝜕𝑦
  and  

𝜕𝑇

𝜕𝑥
 ≪  

𝜕𝑇

𝜕𝑦
 

The boundary layer equations to be solved become 
𝜕𝑣𝑥

𝜕𝑥
+ 

𝜕𝑣𝑥

𝜕𝑦
= 0  (18.2-4) 

𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
=   𝜈 

𝜕2𝑣𝑥

𝜕𝑦2   (18.2-5) 
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𝑣𝑥
𝜕(𝑇𝑤− 𝑇)

𝜕𝑥
+ 𝑣𝑦

𝜕(𝑇𝑤− 𝑇)

𝜕𝑦
=  𝛼 

𝜕2(𝑇𝑤− 𝑇)

𝜕𝑦2    (18.2-6) 

If the Prandtl number is unity, i.e., Pr = 1, Eqs. (18.2-5) and (18.2-6) are the same in form. This 
suggests that the dimensionless velocity profiles are coincident with the dimensionless temperature 

profiles. 

From the equation of continuity Eq. (18.2-4), 

𝑣𝑦 = − ∫
𝜕𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0
  (18.2-7) 

Substituting this equation into Eqs. (18.2-5) and (18.2-6), 

𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
− 

𝜕𝑣𝑥

𝜕𝑦
 ∫

𝜕𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0
 =   𝜈 

𝜕2𝑣𝑥

𝜕𝑦2   (18.2-8) 

𝑣𝑥
𝜕(𝑇𝑤− 𝑇)

𝜕𝑥
− 

𝜕(𝑇𝑤− 𝑇)

𝜕𝑦
 ∫

𝜕𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0
=  𝛼 

𝜕2(𝑇𝑤− 𝑇)

𝜕𝑦2   (18.2-9) 

The boundary conditions are 

B.C.1  𝑦 = 0:  𝑣𝑥 = 0 

B.C.2  𝑦 = 𝛿:  𝑣𝑥 = 𝑣∞  (18.2-10) 

B.C.3  𝑦 = 0:  𝑇𝑤 − 𝑇 = 0 

B.C.4  𝑦 = 𝛿𝑇:  𝑇𝑤 − 𝑇 = 𝑇𝑤 − 𝑇∞  (18.2-11) 

  It is reasonable to assume that the velocity profiles and the temperature profiles are 

respectively similar at various distances from the leading edge. This implies that the velocity 

distribution curves and the temperature distribution curves for various distances can be made 

coincident with one another by selecting the free-stream quantities 𝑣∞ and 𝑇𝑤 − 𝑇∞, and the 

boundary layer thickness 𝛿 and 𝛿𝑇, respectively. The principle of similarity in the velocity and 
temperature profiles can be analytically expressed as 

𝜙 (휂) =  
𝑣𝑥

𝑣∞
      휂 =  

𝑦

𝛿(𝑥)
  (18.2-12) 

Θ(휂𝑇) =  
𝑇𝑤−𝑇

𝑇𝑤− 𝑇∞
   휂𝑇 = 

𝑦

𝛿𝑇(𝑥)
  (18.2-13) 

 

 
Fig. 18.2-2 Velocity and temperature profiles based on similarity transformation 
 

The boundary layer thickness 𝛿 and 𝛿𝑇  are a function of x. Eqs. (18.2-12) and (18.2-13) 
constitute a very important set of variables for a variable transformation, known as the similarity 

transformation. It is further assumed that the ratio of 𝛿𝑇 to 𝛿 is a constant independent of the 

developing distance 𝑥: 

Δ =  𝛿𝑇 𝛿⁄ = 𝑐𝑜𝑛𝑠𝑡  (18.2-14) 

Using the new variables, the boundary layer equations can be transformed as follows. 

 𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
= − 휂 𝜙′𝜙 

𝑣∞
2

𝛿
 
𝑑 𝛿

𝑑𝑥
 

− 
𝜕𝑣𝑥

𝜕𝑦
 ∫

𝜕𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0

=  (𝜙′  ∫ 휂 𝜙′𝑑휂 
𝜂 

0

)
𝑣∞

2

𝛿
 
𝑑 𝛿

𝑑𝑥
 

𝜈 
𝜕2𝑣𝑥

𝜕𝑦2
=  𝜈 

𝑣∞

𝛿2
 𝜙"  
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Then Eq. (18.2-8) becomes 

(𝜙′  ∫ 휂 𝜙′𝑑휂 
𝜂 

0
−   휂 𝜙′𝜙)𝛿

𝑑 𝛿

𝑑𝑥
= 

𝜈

𝑣∞
 𝜙"   (18.2-15) 

where 𝜙′ = 𝑑𝜙 𝑑⁄ 휂. 

  Using 𝛿𝑇 =  𝛿 ∆, 

𝑣𝑥
𝜕(𝑇𝑤− 𝑇)

𝜕𝑥
= −  휂𝑇Θ

′𝜙 
𝑣∞(𝑇𝑤−𝑇∞)

𝛿
  

𝑑 𝛿

𝑑𝑥
 

− 
𝜕(𝑇𝑤− 𝑇)

𝜕𝑦
 ∫

𝜕𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0
= Θ′  ∫ 휂 𝜙′𝑑휂 

𝜂 

0

𝑣∞(𝑇𝑤−𝑇∞)

∆𝛿
  

𝑑 𝛿

𝑑𝑥
  

𝛼 
𝜕2(𝑇𝑤 −  𝑇)

𝜕𝑦2 = 
𝛼(𝑇𝑤 − 𝑇∞)

∆2𝛿2 Θ" 

Then Eq. (18.2-9) becomes 

∆2  [
Θ′

∆
 ∫ 휂 𝜙′𝜙 𝑑휂 −  휂𝑇Θ

′𝜙
𝜂 

0
] 𝛿

𝑑 𝛿

𝑑𝑥
= 

𝛼

𝑣∞
Θ"   (18.2-16) 

where 𝛩′ =  𝑑𝛩 𝑑휂𝑇⁄ . 

  If Eq. (18.2-15) is integrated over the boundary layer thickness (from 휂 = 0  to 1), a 

first-order ordinary differential equation for 𝛿 can be obtained: 

∫ (𝜙′  ∫ 휂 𝜙′𝑑휂 
𝜂 

0
−   휂 𝜙′𝜙)

1

0
𝑑휂 𝛿

𝑑 𝛿

𝑑𝑥
= −  

𝜈

𝑣∞
 𝜙′(0)   (18.2-17) 

in which the boundary condition 𝜕𝑣𝑥 𝑦 = 0⁄  at 𝑦 =  𝛿  has been applied. If the velocity 

distribution function 𝜙(휂) is known, the above equation can be solved. Therefore a polynomial of 
the fourth degree is assumed: 

 𝜙(휂) = 𝑎 + 𝑏  휂 + 𝑐  휂2 + 𝑑  휂3 + 𝑒  휂4  (18.2-18) 

Five boundary conditions necessary to evaluate the five unknown constants, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are 

considered for an approximate distribution function, shown in Fig. 18.2-3.  

 

 
Fig. 18.2-3.  Approximate velocity distribution function 
 
 

The second boundary condition can be obtained by taking the limit of the boundary layer equation 

as 𝑦 goes to zero.  The condition states that the second derivative of the velocity 𝑣𝑥 at the wall is 
equal to the pressure gradient. The fifth condition implies that the velocity curve has a point of 

inflexion at the outer edge of the boundary layer. 

Thus the approximate velocity distribution is obtained: 

𝜙(휂) = 2 휂 − 2  휂3 +  휂4  (18.2-19) 

Substituting the above function into Eq. (18.2-17) 

𝛿
𝑑 𝛿

𝑑𝑥
= 

630

37
 

𝜈

𝑣∞
  (18.2-20) 

Integrating with respect to 𝑥 

𝛿 =  √
1260

37

𝜈

𝑣∞
𝑥   (18.2-21) 

in which the initial condition (at 𝑥 = 0, 𝛿 = 0) has been used. The local friction factor 𝑓𝑥 can be 

defined as 

B.C.1  휂 = 0  ∶   𝜙 = 0 

B.C.2  휂 = 0  ∶   𝜙" = 0 

B.C.3  휂 = 1  ∶   𝜙 = 1 

B.C.4  휂 = 1  ∶   𝜙′ = 0 

B.C.5  휂 = 1  ∶   𝜙" = 0 
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𝑓𝑥 = 
𝜏𝑤(𝑥)

1

2
 𝜌 𝑣∞

2
  (18.2-22) 

Applying the polynomial velocity function to the Newton’s law of viscosity, 

𝜏𝑤(𝑥) =  𝜇 
𝜕𝑣𝑥

𝜕𝑦
|
𝑦=0

=  
𝜇 𝑣∞

𝛿(𝑥)
 𝜙′(0) =  √

37

315
 
𝜌𝜇 𝑣∞

3

𝑥
  (18.2-23) 

Substituting into Eq. (18.2-22), the local friction factor can be obtained in a function of length 

Reynolds number: 

𝑓𝑥 = 
√148 315⁄

√𝑣∞𝑥 𝜈⁄
 ≅  

0.685

𝑅𝑒𝑥
1/2  (18.2-24) 

Regarding the temperature boundary layer, in the same manner as in the approximation of velocity 

function, we get the following polynomial function for the temperature distribution: 

𝛩(휂𝑇) = 2 휂𝑇 − 2 휂𝑇
3 + 휂𝑇

4  (18.2-25) 

The boundary layer thickness ratio ∆ has two possibilities : ∆ ≤ 1   and   ∆ ≥ 1.  If Pr = 1, ∆ 
becomes unity. We consider the case when the temperature boundary layer is thinner than the 

velocity boundary layer: ∆ ≤ 1. 

The relation between 휂 and 휂𝑇 is 

휂 =  휂𝑇∆  (18.2-26) 

Integrating Eq.(18.2-16) over the temperature boundary layer thickness (from 휂𝑇 = 0 to 1), 

∆2  ∫ [
Θ′

∆
 ∫ 휂 𝜙′𝜙 𝑑휂 −  휂𝑇Θ

′𝜙(휂𝑇∆)
𝜂𝑇∆ 

0
] 𝑑휂𝑇 

1

0
𝛿

𝑑 𝛿

𝑑𝑥
= − 

𝛼

𝑣∞
Θ′(0)  (18.2-27) 

in which the boundary condition (𝜕𝑇 𝜕𝑦⁄ = 0  at  𝑦 =  𝛿𝑇) has been applied. 

Dividing Eq.(18.2-27) by Eq.(18.2-17) 

∆2  ∫ [
Θ′

∆
 ∫ 𝜂 𝜙′𝜙 𝑑𝜂−  𝜂𝑇Θ′𝜙(𝜂𝑇∆)

𝜂𝑇∆ 
0 ]𝑑𝜂𝑇 

1
0

∫ (𝜙′  ∫ 𝜂 𝜙′𝑑𝜂 
𝜂 
0 −  𝜂 𝜙′𝜙)

1
0 𝑑𝜂

= 
1

𝑃𝑟
 
Θ′(0)

𝜙′(0) 
  (18.2-28) 

Substituting Eqs.(18.2-19) and (18.2-25) into Eq.(18.2-28) and calculating the integrations, we get 
1

15
 ∆3 − 

3

280
 ∆5 + 

1

360
 ∆6= 

37

630
 
1

𝑃𝑟
      (∆ ≤ 1)  (18.2-29) 

The six-order algebraic equation can be approximated within 5% error by 

∆ =  𝑃𝑟−1 3⁄   (18.2-30) 

According to Fourier’s law 

𝑞𝑥(𝑥) =  𝜅 
𝜕𝑇

𝜕𝑦
|
𝑦=0

= 
2 𝜅

∆ 𝛿
 (𝑇𝑤 − 𝑇∞)  (18.2-31) 

The local heat transfer coefficient and the local Nusselt number are defined as 

𝑞𝑤 = ℎ𝑥(𝑇𝑤 − 𝑇∞)  (18.2-32) 

𝑁𝑢𝑥 = 
ℎ𝑥𝑥

𝜅 
= 

𝑞𝑤 𝑥

𝜅 (𝑇𝑤− 𝑇∞)
  (18.2-33) 

By using Eqs. (18.2-21), Eq.(18.2-30), and (18.2-31), Eq.18.2-33) becomes 

𝑁𝑢𝑥 = 
2

∆ 𝛿
= 2 √

37

1260
 𝑅𝑒𝑥

1 2⁄  𝑃𝑟1 3⁄ = 0.343 𝑅𝑒𝑥
1 2⁄  𝑃𝑟1 3⁄   (18.2-34) 

  It has been found that the local friction factor is inversely proportional to the square root of the 

local Reynolds number (length Reynolds number) and that the local Nusselt number is proportional 

to the square root of the local Reynolds number and the 1/3 power of the Prandtl number. 

The j-factor for heat transfer is defined as 

𝑗𝐻𝑥 = 
𝑁𝑢𝑥

𝑅𝑒𝑥 𝑃𝑟1 3⁄   (18.2-35) 

If the j-factor is calculated from Eq.(18.2-34) 

𝑗𝐻𝑥 = 
0.343

𝑅𝑒𝑥
1 2⁄   (18.2-36) 

From Eq.(17-2-24) 
𝑓𝑥

2
=

0.343

𝑅𝑒𝑥
1 2⁄    (18.2-37) 

It has been demonstrated that the analogy 𝑗𝐻 = 𝑓𝑥 2⁄  between momentum and heat transfer holds 
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exactly between momentum and heat transfer for laminar boundary layer flow over a flat plate. 

If we continue this approach of the boundary layer over a flat plate similarly for mass transfer, the 

following result can be obtained for laminar flow: 

𝑆ℎ𝑥 =  0.343 𝑅𝑒𝑥
1 2⁄  𝑆𝑐1 3⁄  (18.2-38) 

where the Sherwood number is defined as  

𝑆ℎ𝑥 =  
𝑐 𝑘𝑥𝑥

𝐷𝐴𝐵
 (18.2-39) 

It has been confirmed that the Chilton-Colburn analogy relation exists between heat and mass 

transfer  

𝑗𝐷 = 𝑗𝐻  (18.2-40) 

where the j-factor for mass transfer is defined as 

𝑗𝐷𝑥 = 
𝑆ℎ𝑥

𝑅𝑒𝑥 𝑆𝑐1 3⁄   (18.2-41) 

Similar method is available for turbulent boundary layer flow. 

This boundary layer theory gives a valuable concept for the analogy between momentum and heat 

transfer. The section of convective heat transfer in a circular pipe flow in Chapter 8 also gives the 

same analogy relation Eq.(8.2-14). 
 
 

18.3 Integral Equation of Boundary Layer Flow 

 
18.3-1 Momentum integral equation of boundary layer flow over a flat plate 

  It is usually difficult to obtain an exact solution of the boundary layer equations. 

An approximate method is available to overcome this difficulty. 

The boundary layer equation for steady two-dimensional flow in the x-direction is 

𝜌 (𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦  

𝜕𝑣𝑥

𝜕𝑦
) =  −

𝑑𝑝

𝑑𝑥
+  𝜇 

𝜕2𝑣𝑥

𝜕𝑦2   (18.3-1) 

The equation of motion for external flow (potential flow) is  

𝜌 𝑣∞
𝑑𝑣∞

𝑑𝑥
= − 

𝑑 𝑝

𝑑𝑥
 (18.3-2) 

Substituting Eq. (18.3-2) into Eq. (18.3-1) 

𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦  

𝜕𝑣𝑥

𝜕𝑦
= 𝑣∞

𝑑𝑣∞

𝑑𝑥
+  𝜈

𝜕2𝑣𝑥

𝜕𝑦2  (18.3-3) 

Integrating this equation with respect to y from y = 0 (wall) to 𝑦 =  𝛿 (the outer edge of the 
boundary layer) 

∫ (𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦  

𝜕𝑣𝑥

𝜕𝑦
− 𝑣∞

𝑑𝑣∞

𝑑𝑥
)

𝛿

0
 𝑑𝑦 =  𝜇

𝜕𝑣𝑥

𝜕𝑦
|
0

𝛿

=  − 
𝜏𝑤

𝜌
 (18.3-4) 

Substituting the equation of continuity: 𝑣𝑦 = − ∫
𝜕𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0
 

∫ (𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
− 

𝜕𝑣𝑥

𝜕𝑦
∫

𝜕𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0
− 𝑣∞

𝑑𝑣∞

𝑑𝑥
)

𝛿

0
 𝑑𝑦 =  − 

𝜏𝑤

𝜌
 (18.3-5) 

The second term is integrated by parts 

 

∫ ( 
𝜕𝑣𝑥

𝜕𝑦
∫

𝜕𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0

)
𝛿

0

 𝑑𝑦 =  𝑣∞ ∫
𝜕𝑣𝑥

𝜕𝑥
 𝑑𝑦 − 

𝛿

0

∫ 𝑣𝑥

𝜕𝑣𝑥

𝜕𝑥
 𝑑𝑦 

𝛿

0

 

Then Eq. (18.3-5) becomes 

∫ (2𝑣𝑥

𝜕𝑣𝑥

𝜕𝑥
− 𝑣∞  

𝜕𝑣𝑥

𝜕𝑥
− 𝑣∞

𝑑𝑣∞

𝑑𝑥
)

𝛿

0

 𝑑𝑦 =  − 
𝜏𝑤

𝜌
 

This equation can be contracted to 

∫
𝜕 

𝜕𝑥
(𝑣𝑥(𝑣∞ − 𝑣𝑥))

𝛿

0
 𝑑𝑦 + 

𝑑𝑣∞

𝑑𝑥
∫ (𝑣∞ − 𝑣𝑥)𝑑𝑦

𝛿

0
= 

𝜏𝑤

𝜌
 (18.3-6) 

The following two meaningful thicknesses can be introduced 
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𝑣∞𝛿𝐷 =  ∫ (𝑣∞ − 𝑣𝑥)𝑑𝑦
𝛿

0

 

𝜌𝑣∞𝑣∞𝛿𝑚 =  𝜌 ∫ 𝑣𝑥(𝑣∞ − 𝑣𝑥)𝑑𝑦
𝛿

0

 

where 𝛿𝐷 and 𝛿𝑚 are the displacement thickness and momentum thickness. 

The integral equation becomes 
𝜏𝑤

𝜌
= 

𝑑  

𝑑𝑥
  𝑣∞

2𝛿𝑚 + 𝑣∞𝛿𝐷
𝑑𝑣∞

𝑑𝑥
 (18.3-7) 

This is the boundary-layer equation in integral form, which is valid both for laminar and turbulent 

flows. 

Therefore this equation is useful for a macroscopic analysis of turbulent flows. 

 

18.3-2 Energy integral equation of boundary layer flow  

  The thermal boundary layer equation is given by 

𝑣𝑥  
𝜕 𝑇

𝜕𝑥
+ 𝑣𝑦  

𝜕 𝑇

𝜕𝑦
=  𝛼 

𝜕2 𝑇

𝜕𝑦2  (18.3-8) 

Substituting the equation of continuity 

𝑣𝑥  
𝜕 𝑇

𝜕𝑥
− 

𝜕 𝑇

𝜕𝑦
 ∫

𝜕 𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0
=  𝛼 

𝜕2 𝑇

𝜕𝑦2  (18.3-9) 

Integrating from 𝑦 = 0 to 𝑦 =  𝛿𝑇  (the outer edge of the thermal boundary layer) 

∫ (𝑣𝑥  
𝜕 𝑇

𝜕𝑥
− 

𝜕 𝑇

𝜕𝑦
 ∫

𝜕 𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0

)
𝛿𝑇

0

𝑑𝑦 =  𝛼  
𝜕 𝑇

𝜕𝑦
|
0

𝛿𝑇

= − 
𝑞𝑤

𝜌𝐶𝑝
 

Using a temperature difference 𝛩 =  𝑇∞ − 𝑇 in place of 𝑇 

∫ (𝑣𝑥  
𝜕 𝛩

𝜕𝑥
− 

𝜕 𝛩

𝜕𝑦
 ∫

𝜕 𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0
)

𝛿𝑇

0
𝑑𝑦 =  − 

𝑞𝑤

𝜌𝐶𝑝
 (18.3-10) 

The second term is integrated by parts 

∫ (
𝜕 𝛩

𝜕𝑦
 ∫

𝜕 𝑣𝑥

𝜕𝑥
 𝑑𝑦

𝑦

0

)
𝛿𝑇

0

𝑑𝑦 = 𝛩∞  ∫
𝜕 𝑣𝑥

𝜕𝑥
 𝑑𝑦 − 

𝛿𝑇

0

∫ 𝛩 
𝜕 𝑣𝑥

𝜕𝑥
 𝑑𝑦 

𝛿𝑇

0

 

Since the first term becomes zero, the equation reduces to 

∫ (𝑣𝑥  
𝜕 𝛩

𝜕𝑥
+  𝛩 

𝜕 𝑣𝑥

𝜕𝑥
)𝑑𝑦 =  − 

𝑞𝑤

𝜌𝐶𝑝

𝛿𝑇

0

 

That is 
𝑑 

𝑑𝑥
 ∫ 𝛩 𝑣𝑥 𝑑𝑦 =  − 

𝑞𝑤

𝜌𝐶𝑝
 

𝛿𝑇

0
 (18.3-11) 

This is the boundary-layer energy equation in integral form, which is also valid both for laminar and 

turbulent flows. 

 

 

18.3-3 Turbulent boundary layer flow1) 
As shown in Fig. 18.3-1, in the initial section of laminar boundary layer, the boundary layer 

thickness increases with the length Reynolds number 𝑅𝑒𝑥. Eventually its instabilities cause the 

boundary layer to become turbulent. For the level of free-stream turbulence 0.5%, the critical length 

Reynolds number for transition on a smooth flat plate with a sharp leading edge can be assumed as 
3 × 105  ≤  𝑅𝑒𝑥  ≤  5 ×  105 

 
 

                                            
1. Schlichting, H., “Boundary Layer Theory,” 4th ed., McGraw-Hill, New York (1960) 
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Fig. 18.3-1. Transition to turbulent boundary layer on a flat plate 

 

The transition region, which is unstable and oscillatory in nature, has a finite length. Owing to the 

transverse exchange of fluid elements, the velocity distribution in the turbulent boundary layer is 

much flatter than that in the laminar boundary layer. 

  If a thin wire (called “tripping wire”) is mounted near the leading edge of the flat plate, a 

turbulent boundary layer starts to grow from the beginning.  

The integral form of the boundary layer equation can be used as a simple tool for analyzing 

difficult turbulent boundary layer flows.  In addition, a simple solution can be obtained if a 

one-seventh power law is assumed for the velocity profile in the turbulent boundary layer.  

 

  For moderately high Reynolds numbers, the one-seventh power law is of the form: 

𝑢+ = 8.74 𝑦+1/7
 

From the definition of 𝑢+ and 𝑦+ 

𝑣𝑥 = 8.74 𝑣∗  (
𝑦 𝑣∗

𝜈
)
1 7⁄

  (18.3-12) 

where 𝑣∗ =  √𝜏𝑤 𝜌⁄  is called “friction velocity.” 

At the outer edge of the boundary layer 

𝑢+ = 𝑣∞
+   at   𝑦 =  𝛿 

Applying Eq. (18.3-12) at the outer edge (𝑦 =  𝛿), the wall shear stress is calculated as 

𝜏𝑤 = 0.0225 𝜌 𝑣∞
2  (

𝛿 𝑣∞

𝜈
)
−1 4⁄

  (18.3-13) 

Substituting the power law into the defining equations of displacement and momentum thicknesses, 

𝑣∞ 𝛿𝑑 = ∫ (𝑣∞ − 𝑣𝑥) 𝑑𝑦 = 
1

8
 𝑣∞𝛿

𝛿

0

 

𝜌 𝑣∞
2 𝛿𝑚 =  ρ ∫ 𝑣𝑥(𝑣∞ − 𝑣𝑥)𝑑𝑦 = 0.0972 

𝛿

0
𝜌 𝑣∞

2 𝛿    

For this case (uniform constant velocity free stream) 
𝑑 𝑣∞

𝑑𝑥
= 0  (18.3-14) 

Therefore the integral momentum equation becomes 
𝜏𝑤

𝜌
= 

𝑑  

𝑑𝑥
 𝑣∞

2 𝛿𝑚  (18.3-15) 

Substituting Eq.(18.3-13) into Eq.(18.3-15) 

𝛿1 4⁄  
𝑑 𝛿

𝑑𝑥
 = 0.231 (

𝜈

𝑣∞
)
1 4⁄

  (18.3-16) 

Integrating this with the boundary condition 𝛿 = 0   at   𝑥 = 0, 
4

5
 𝛿5 4⁄ = 0.231 (

𝜈

𝑣∞
)
1 4⁄

𝑥 

From this equation, the following equation is obtained as a result: 
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𝛿

𝑥
= 0.37 𝑅𝑒𝑥

− 1 5⁄
  (18.3-17) 

It has been found that the dimensionless thickness of the turbulent boundary layer 𝛿 𝑥⁄  decreases 

with 𝑅𝑒𝑥
− 1 5⁄

. 
Combining the defining equation of local friction factor with Eq.(18.3-13), 

𝑓𝑥 = 
𝜏𝑤

1

2
 𝜌 𝑣∞

2
= 2 × 0.0225  (

𝛿

𝑥

𝑥 𝑣∞

𝜈
)
−1 4⁄

= 0.058 𝑅𝑒𝑥
− 1 5⁄

  (18.3-18) 

This is a very important result. As distinct from the laminar boundary layer, the local friction factor 

is correlated well with 𝑅𝑒𝑥
− 1 5⁄

.  

This equation is in good agreement with experiments for 𝑅𝑒𝑥 up to several millions. 
For the case of turbulent heat transfer from a heated flat plate,  

𝑗𝐻 = 
𝑁𝑢𝑥

𝑅𝑒𝑥𝑃𝑟1 3⁄ ~𝐶 𝑅𝑒𝑥
− 1 5⁄   

It should be kept in mind that the analogy between momentum and heat transfers still holds for 

turbulent boundary layer flow. The empirical coefficient C is difficult to determine because of the 

uncertainty in the location of the transition region. 
 
 

18.4 Application of Stream Function (Impinging Flow) 
 

Plane stagnation flow shown in Fig.18.4-1 can be solved using the stream function. Fluid 

approaching from the positive y direction is turned aside by the plane 𝑦 = 0. The free stream 
outside the boundary layer has the following velocity parallel to the plane: 

𝑣𝑥𝑝  → 𝑐 𝑥    as    𝑦 → ∞  (18.4-1) 

This velocity can be obtained by the potential flow theory assuming non-viscous flow. 

However the no-slip” condition should be satisfied at the surface of the plane.  
 

 
 

Fig.18.4-1 Stagnation flow impinging on a flat plane 
 

The stream function is defined by Eq. (18.1-4): 

𝑣𝑥 = 
𝜕𝜓

𝜕𝑦
   and   𝑣𝑦 =  − 

𝜕𝜓

𝜕𝑥
  

The equation to be solved is 

− 
𝜕 (𝜓,∇2𝜓)

𝜕 (𝑥,𝑦)
=  𝜈 ∇4𝜓 (18.4-2) 
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The boundary conditions are 
𝜕𝜓

𝜕𝑦
 → 𝑐 𝑥      as   𝑦 →  ∞ (18.4-3) 

𝜕𝜓

𝜕𝑥
= 

𝜕𝜓

𝜕𝑥
= 0    at    𝑦 = 0 (18.4-4) 

The first boundary condition suggests that the solution should be of the form 

𝜓 = 𝑥 𝑓(𝑦) (18.4-5) 
With this assumption, the main differential equation reduces to 

− 𝑓 𝑓′′′ + 𝑓′𝑓′′  =  𝜈 𝑓𝑖𝑣 (18.4-6) 

where the primes denote differentiation with respect to 𝑦. This can be integrated once with respect 

to 𝑦 
(𝑓′)2 − 𝑓 𝑓′′ −  𝜈 𝑓′′′ = 𝐾2 (18.4-7) 

where 𝐾2 is an integration constant. This equation can be simplified by a variable transformation. 

Let us define 

𝜑 =
𝑓 

√𝐾𝜈
    and    휂 =  √

𝐾

𝜈
 𝑦  (18.4-8) 

Then Eq.(18.3-7) becomes 

φ′′′ +  𝜑 𝜑′′ − (𝜑′)2 + 1 = 0 (18.4-9) 

Here the primes denote differentiation with respect to 휂. 

The corresponding boundary conditions are 

𝜑′ → 1    as    휂 →  ∞ (18.4-10) 

𝜑 = 𝜑′ = 0    at    휂 = 0 (18.4-11) 
The solution numerically calculated from Eq. (18.4-9) is shown in Fig.18.4-2. 

 

 
Fig.18.4-2. Numerically calculated solution of Eq.(18.4-9)  
 

The x-component velocity 𝜑′ = 𝑣𝑥 𝑣𝑥𝑝⁄  becomes 0.99 when 휂 = 2.4. This indicates that the 

thickness of the boundary layer is given by 

𝛿 =  휂𝛿√𝜈 𝐾⁄ = 2.4 √𝜈 𝐾⁄  (18.4-12) 

It should be noted that the boundary layer thickness remains constant in the impingement region. 

This velocity boundary layer thickness 𝛿 also has a relation with the thermal boundary layer 

thickness 𝛿𝑇. The integration constant 𝐾 depends on the flow condition such as the approach 

velocity 𝑣𝑦∞. 
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18.5  Impinging Jet Heat Transfer1,2) 
 

This kind of impinging flows are very often practically applied for heating/cooling and drying 

technologies such as the drying of paper or film. For example, a free air jet issuing from a 

convergent nozzle is made striking normally onto a large flat plate, as shown in Fig.18.5-1.  

 

 
Fig.18.5-1. Schematic picture of jet impingement on a flat plate with heat transfer 

 

When the nozzle-to-plate spacing is small, the free jet impinges on the flat plate without loss of 

its initial velocity before it becomes developed. The central jet impingement region around the 

stagnation point resembles the central region of impinging flow above-mentioned.  An important 

question arises as to where the flat plane as a heat transfer surface should be placed to maximize the 

stagnation-point heat flux. When the spacing is large, the free jet becomes fully developed before it 

impinges. In the fully developed free jet region, the jet velocity decays in inverse proportional to the 

axial distance from the nozzle exit. The following impingement jet heat transfer correlation at the 

stagnation point is available as an example
1,2)

: 
𝑁𝑢𝑠

𝑅𝑒𝑠
1 2⁄ 𝑃𝑟1 2⁄

= 𝐶 (1 +  𝜖) (
𝑁𝑢

𝑅𝑒𝑠
1 2⁄ 𝑃𝑟1 2⁄

)
𝑇𝐹

 (18.4-13) 

where the constant 𝐶 was empirically obtained to be 0.88 for gas flow Pr ≤ 1 in our research. 

The Reynolds number 𝑅𝑒𝑠 = 𝜌𝐷 𝑈 𝜇⁄  and the turbulence intensity 𝑇𝑢 =  √𝑢′2 𝑈⁄  are defined as 

the quantities of free jet at the position of the heat transfer plate. 

The coefficient 𝜖 gives a factor of heat transfer enhancement due to the turbulence effect, which 

can be considered as a function of 𝑇𝑢 √𝑅𝑒𝑠  defined on the centerline of the approaching jet. The 

subscript TF implies the turbulence-free condition (laminar flow solution). 

 

We should know that it is one of the appropriate methods effective for the augmentation of 

convective heat transfer to strike a turbulent stream on a heat transfer surface like the above 

example. 

For example, a shell-and-tube heat exchanger usually has the shell-side structure striking the 

shell-side stream on the tube bundles perpendicularly by the installed baffle plates. 
                                                                                  
1. Kataoka, K., Sahara, R., Ase, H. and Harada, T., J. Chem. Eng. Japan, 20(1), 71 (1987)f 

2. Kataoka, K., Suguro, M., Degawa, H., Maruo, K. and Mihata, I., Int. J. Heat Mass Transfer, 30(3), 559 (1987) 
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18.6 Boundary-layer Analysis for Velocity-gradient Measurement 

 

  In Chapter 14.4 it was introduced that an electrochemical method can measure local 

velocity-gradient on the wall of liquid flow. A rectangular test cathode has ionic mass transfer on its 

surface under the diffusion-controlling condition, where the bulk concentration of reacting ion is 𝐶𝐴 

but the concentration at the wall (cathode surface) 𝐶𝐴𝑤 becomes zero. Therefore the ionic mass 

flux on the cathode is given by 

𝑁𝐴 = 𝐼𝑑 𝐹𝑎 =  𝑘𝐶𝐴⁄   
The velocity gradient s on the wall is given by 

𝑠 = 1.90 (𝐼𝑑 𝐹𝑎 𝐶𝐴⁄ )3(𝐿 𝐷𝐴𝐵
2⁄ ) = 1.90 𝑘3(𝐿 𝐷𝐴𝐵

2⁄ ) (14.4-1) 

Let us study again how this equation can be obtained by using the boundary layer theory in this 

section. 

The two-dimensional boundary equation of laminar mass transfer can be written as 

𝑣𝑥

𝜕𝐶𝐴

𝜕𝑥
+ 𝑣𝑦  

𝜕𝐶𝐴

𝜕𝑦
=  𝐷𝐴𝐵  

𝜕2𝐶𝐴

𝜕𝑦2  

Using the equation of continuity 

𝑣𝑥
𝜕𝐶𝐴

𝜕𝑥
−  

𝜕𝐶𝐴

𝜕𝑦
 ∫

𝜕𝑣𝑥

𝜕𝑥
𝑑𝑦

𝑦

0
= 𝐷𝐴𝐵  

𝜕2𝐶𝐴

𝜕𝑦2  (18.6-1) 

 

 

 
Fig.18.6-1 Velocity profile and concentration profile on an isolated cathode  
 

As shown in Fig.18.6-1, the concentration boundary layer begins from the leading edge of the 

cathode while the velocity boundary layer has been developing from far ahead. Therefore within the 

concentration boundary layer on the test cathode the velocity profile can be assumed linear: 

𝑣𝑥 = 𝑠 𝑦, where s is the velocity gradient on the wall. In addition, the velocity change over the 

streamwise length of the test cathode is very small: 𝜕𝑣𝑥 𝜕𝑥⁄  ≅ 0. 

The boundary layer equation reduces to 

 𝑠𝑦 
𝜕𝐶𝐴

𝜕𝑥
= 𝐷𝐴𝐵  

𝜕2𝐶𝐴

𝜕𝑦2  (18.6-2) 

Dividing the equation by y to define a new (mass flux) function 𝑓 = 𝐷𝐴𝐵(𝜕𝐶𝐴 𝜕𝑦⁄ )  and then 
differentiating with respect to y: 

𝑠 
𝜕𝑓

𝜕𝑥
= 𝐷𝐴𝐵  

𝜕 

𝜕𝑦
 (

1

𝑦
 
𝜕𝑓

𝜕𝑦
) (18.6-3) 

By the following variable transformation  
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𝜓 = 𝑓 𝑓0,   휂 =  𝑦 𝛿𝑐⁄ ,    𝜆 =  𝐷𝐴𝐵𝑥 𝑠 𝛿𝑐
3⁄⁄  (18.6-4) 

where 𝛿𝐶  is the concentration boundary layer thickness 
The above equation is made dimensionless: 
𝜕𝜓

𝜕𝜆
= 

𝜕 

𝜕𝜂
 (

1

𝜂
 
𝜕𝜓

𝜕𝜂
)  (18.6-5) 

With boundary conditions 

B.C. 1:      at  𝜆 = 0,      𝜓 = 0 (18.6-6) 

B.C. 2:      at  휂 = 0,      𝜓 = 1 

B.C. 3:      at  휂 =  ∞,   𝜓 = 0 
 

This equation can be solved analytically by the combination of variables by using then following 

independent variable: 

χ =  
𝜂

√9 𝜆
3  (18.6-7) 

Finally the mass flux equation becomes 

𝜒 𝜓" +  (3 𝜒3 − 1) 𝜓′ = 0 (18.6-8) 

The boundary conditions become: 

B.C. 1:      at  𝜒 = 0,      𝜓 = 1 (18.6-9) 

B.C. 2:      at  𝜒 = ∞,      𝜓 = 0 

The primes mean differentiation with respect to  : 𝜓′ =  𝑑𝜓 𝑑𝜒⁄  
The solution is 

𝜓 = 
∫ 𝜒 𝑒−𝜒3

 𝑑𝜒 
∞

𝜒

∫ 𝜒 𝑒−𝜒3
 𝑑𝜒

∞
0

= 
3

Γ(2 3⁄ )
 ∫ 𝜒 𝑒−𝜒3

 𝑑𝜒 
∞

𝜒
 (18.6-10) 

Here the calculation procedure for solving Eq.(18.6-8) by the method of combination of variables is 

omitted owing to the limitation of page allocation. 

The concentration profile can be obtained by integration: 

∫ 𝑑𝐶𝐴 = − 
1

𝐷𝐴𝐵
 ∫ 𝑓 𝑑𝑦

∞

𝑦
 

𝐶𝐴∞

𝐶𝐴
= (𝐶𝐴∞ −  𝐶𝐴(𝑦)) (18.6-11) 

The dimensionless concentration is given by 

𝛬 =  
𝐶𝐴− 𝐶𝐴∞

𝛿𝑐𝑓0 𝐷𝐴𝐵⁄
= √9𝜆

3
 ∫ 𝜓 𝑑𝜒

∞

𝜒
 (18.6-12) 

where  

𝑓0 =  𝐷𝐴𝐵
𝜕𝐶𝐴

𝜕𝑦
|
𝑦=0

 (18.6-13) 

Substituting Eq.(18.6-10) into the integration of Eq.(18.6-12), the following equation is obtained: 

𝛬 =  √9𝜆
3

[
𝑒−𝜒3

Γ(2 3⁄ )
−  𝜒 {1 − 

Γ(
2

3
,𝜒3)

Γ (
2

3
)
}] (18.6-14) 

where Γ(𝑝, 𝑥) is called “incomplete gamma function,” which is defined as 

Γ(𝑝, 𝑥) =  ∫ 𝑡𝑝−1∞

𝑥
𝑒−𝑡  𝑑𝑡 (18.6-15) 

Since the mass transfer wall lies at 𝜒 = 0,  Γ(
2

3
, 𝜒3) becomes  Γ(2 3⁄ ) and the second term 

disappears. 

The gamma function is also defined as 

Γ(𝑝) =  ∫ 𝑥𝑝−1∞

0
𝑒−𝑥 𝑑𝑥 (18.6-16) 

, which gives Γ(2 3⁄ )  ≅ 1.35411. 

Then Eq.(18.6-13) can be written at the wall 𝜒 = 0 as 

𝛬𝜒=0 = 
𝐶𝐴∞− 𝐶𝐴𝑤

𝛿𝑐𝑓0 𝐷𝐴𝐵⁄
= 

√9𝜆
3

Γ(2 3⁄ )
= 

√9
3

(
𝐷𝐴𝐵𝑥

𝑠 𝛿𝑐
3 )

1 3⁄

Γ(2 3⁄ )
= 1 (18.6-17) 

because according to the film theory the following relation is valid at any position x   
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𝑓0 =  𝐷𝐴𝐵
𝜕𝐶𝐴

𝜕𝑦
|
𝑦=0

=  𝐷𝐴𝐵
𝐶𝐴∞− 𝐶𝐴𝑤

𝛿𝑐
 

Then from Eq.(18.6-14) 

𝑠 =   [
√9
3

Γ(2 3⁄ )
]
3

(
𝐷𝐴𝐵

𝛿𝑐
3 ) 𝑥 =  [

√9
3

Γ(2 3⁄ )
]
3

(
𝐷𝐴𝐵

𝛿𝑐
)
3 𝑥

𝐷𝐴𝐵
2 = [

√9
3

Γ(2 3⁄ )
]
3

𝑘3  
𝑥

𝐷𝐴𝐵
2  (18.6-18) 

The velocity-gradient at the wall of the test cathode averaged over the electrode length from x = 0 to 

x = L is,  

𝑠 =  [
√9
3

Γ(2 3⁄ )
]
3

𝑘3  
1

𝐷𝐴𝐵
2  

1

𝐿
 ∫ 𝑥 𝑑𝑥

𝐿

0
= 

1

2
 [

√9
3

Γ(2 3⁄ )
]
3

𝑘3  
𝐿

𝐷𝐴𝐵
2  ≅ 1.8124 𝑘3  

𝐿

𝐷𝐴𝐵
2  (18.4-19) 

This result coincides to Eq. (14.4-1) but the coefficient 1.8124 is slightly different from the 

coefficient 1.90 of Eq. (14.4-1). 

It is interesting that this electrochemical method can observe fluctuating velocity gradients in the 

viscous sublayer of various turbulent flows. 
 
 
Nomenclature 
  

𝐶𝐴 molar concentration of reactant ion A, [kmol/m3] 

𝐶𝑝 heat capacity, [J/kg K] 

𝐷𝐴𝐵 diffusivity of component A, [m2/s] 

𝐹𝑎 Faraday constant (96,500 C/kg-equiv.),  

𝑓 mass-flux function, [kmol/m2s] 

𝑓𝑥 local friction factor, [ - ] 

𝐼𝑑 limiting current density, [A/m2] 

𝑗𝐷𝑥 local j-factor for mass transfer, [ - ] 

𝑗𝐻𝑥 local j-factor for heat transfer, [ - ] 

𝐿 length of rectangular electrode in flow direction, [m] 

𝑁𝑢𝑥 local Nusselt number, [ - ] 

𝑃𝑟 Prandtl number, [ - ] 

𝑝 pressure, [Pa] 

𝑞𝑥 local heat flux, [J/m2s] 

𝑅𝑒𝑥 local length Reynolds number, [ - ] 

𝑟, 휃, 𝑧 cylindrical coordinates, [m, - , m] 

Sc Schmidt number, [ - ] 

𝑆ℎ𝑥 local Sherwood number, [ - ] 

𝑠 velocity gradient at wall, [1/s] 

𝑇 temperature, [K] 

𝑢+ dimensionless velocity = 
𝑣𝑧 

√𝜏𝑤 𝜚⁄
 

𝑢∗ friction velocity, [m/s] 

𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  velocity component in rectangular coordinates, [m/s] 

𝑣∞ free-stream velocity, [m/s] 

x, y, z rectangular coordinates, [m] 

𝑦+ dimensionless distance from wall = 
𝑦 √𝜏𝑤 𝜚⁄

𝜈
 

𝛼 thermal diffusivity, [m2/s] 

∆ thickness ratio of thermal to velocity boundary layer, [ - ] 

𝛿, 𝛿𝑇 thickness of velocity and temperature boundary layer, [m] 

𝛿𝑐 concentration boundary layer thickness, [m] 

𝛿𝐷 displacement thickness of boundary layer, [m] 

𝛿𝑚 momentum thickness of boundary layer, [m] 

ϵ heat transfer enhancement factor, [ - ] 

𝛩 temperature difference, [K] 

𝛬 dimensionless concentration difference, [ - ] 

𝜈 kinematic viscosity or diffusivity of momentum, [m2/s]: 

𝜌 density, [kg/m3] 

𝜓 stream function, [m2/s]  
 

Subcripts 
p potential flow 

s stagnation point of impinging jet 
w wall 

∞ free stream 
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CHAPTER 19 
 

FREE COVECTION 
 
 

19.1 Boundary Layer Approach 
 

Fluid motion caused by the gradients of the fluid density is called “natural or free convection.” 

As a simple example we shall consider a natural laminar flow along a vertical flat plate which is 

heated at a constant temperature 𝑇𝑤 and surrounded by a large volume of the gas fluid at a constant 

temperature 𝑇∞. When 𝑇𝑤 >  𝑇∞,  in the neighborhood of the plate the fluid flows upward due to 
the buoyancy force and has a boundary layer structure as shown in Fig.19.1-1. For simplicity the 

physical properties are assumed constant except for the fluid density in the buoyancy term. 

 

 
 

Fig. 19.1-1. Natural flow along a vertical hot plate 
 

(The following theoretical approach is not so easy to follow for this course. This section can be 

skipped, except for the heat transfer correlations given in the latter part, which are useful for 

engineering calculations.)   

The following two-dimensional flow equations can be applied
1,2)

: 

𝜌∞ ( 𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
) =  −

𝜕𝑝

𝜕𝑥
+  𝜇 (

𝜕2𝑣𝑥

𝜕𝑥2 + 
𝜕2𝑣𝑥

𝜕𝑦2 ) −  𝜌𝑔  (19.1-1) 

The pressure in each horizontal plane is equal to the gravitational pressure  

𝑝 =  − 𝜌∞𝑔 𝑥 



where 𝜌∞ is the density at 𝑇∞. The density 𝜌 at 𝑇 can be expanded in a Taylor series about 

the reference temperature 𝑇∞: 

𝜌 =  𝜌∞ + 
𝜕𝜌

𝜕𝑇
|
𝑇∞

(𝑇 − 𝑇∞) + − − − ≅  𝜌∞ − 𝜌∞𝛽(𝑇 − 𝑇∞)   (19.1-2) 

where 𝛽 =  − 
1

𝜌∞
 
𝜕𝜌

𝜕𝑇
|
𝑇∞

 is the coefficient of volume expansion.  For gases 𝛽 =   
1

𝑇∞
 

Therefore the buoyancy force is given by 

 

−
𝜕𝑝

𝜕𝑥
−  𝜌𝑔 =  𝜌∞𝛽(𝑇 − 𝑇∞)𝑔 =  𝜌∞𝑔 

𝑇− 𝑇∞

𝑇∞
   (19.1-3) 

Thus we get the following set of equations: 
𝜕𝑣𝑥

𝜕𝑥
+ 

𝜕𝑣𝑦

𝜕𝑦
= 0   

𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
=  𝜈 (

𝜕2𝑣𝑥

𝜕𝑥2 + 
𝜕2𝑣𝑥

𝜕𝑦2 ) +  𝑔 
𝑇− 𝑇∞

𝑇∞
   

𝑣𝑥
𝜕𝑇

𝜕𝑥
+ 𝑣𝑦

𝜕𝑇

𝜕𝑦
=  𝛼 (

𝜕2𝑇

𝜕𝑥2 + 
𝜕2𝑇

𝜕𝑦2)  (19.1-4) 

where 𝜈 =  𝜇 𝜌⁄    𝑎𝑛𝑑   𝛼 =  𝜅 𝜌 𝐶𝑝⁄ . 

By the boundary layer approximation 
𝜕2𝑣𝑥

𝜕𝑥2 ≅ 0   and   
𝜕2𝑇

𝜕𝑥2  ≅ 0   

Here in place of 𝑇 , the dimensionless local temperature 𝛩 = (𝑇 − 𝑇∞) (𝑇𝑤 − 𝑇∞)⁄  is 
introduced. 

Thus the equations to be solved are 
𝜕𝑣𝑥

𝜕𝑥
+ 

𝜕𝑣𝑦

𝜕𝑦
= 0    (19.1-5) 

𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
=  𝜈 

𝜕2𝑣𝑥

𝜕𝑦2 +  𝑔 
(𝑇𝑤− 𝑇∞)

𝑇∞
 𝛩    (19.1-6) 

𝑣𝑥
𝜕𝛩

𝜕𝑥
+ 𝑣𝑦

𝜕𝛩

𝜕𝑦
=  𝛼 

𝜕2𝛩

𝜕𝑦2    (19.1-7) 

The boundary conditions are 

𝑣𝑥 = 𝑣𝑦 = 0, 𝛩 = 1        at  𝑦 = 0 

 𝑣𝑥 = 0     𝛩 = 0     at  𝑦 =  ∞  (19.1-8) 
Firstly we should consider what similarity transformation is appropriate for this problem. 

The stream function is introduced  
𝜓(𝑥,𝑦)

𝑓(𝑥)
=  휁(휂)       휂 =  

𝑦

𝐿(𝑥)
  (19.1-9) 

This is a kind of the similarity transformation. Here 휁(휂) is a dimensionless stream function 

which is a function of 휂 alone, 휂 the dimensionless y-coordinate, 𝐿 an unknown characteristic 

length relating to the boundary layer thickness, and  𝑓(𝑥) the unknown function to be determined.  

The velocity components are 

𝑣𝑥 = 
𝜕𝜓

𝜕𝑦
= 𝑓(𝑥)휁′  

1

𝐿
   (19.1-10) 

𝑣𝑦 = − 
𝜕𝜓

𝜕𝑥
= −𝑓′(𝑥) 휁(휂) +  휂휁′  

𝑓(𝑥)

𝐿
 
𝑑𝐿

𝑑𝑥
  (19.1-11) 

where 휁′ = 𝑑휁 𝑑휂⁄   and  𝑓′(𝑥) =  𝑑𝑓 𝑑𝑥⁄ . 
Substituting into the equation of motion, 
𝑓 𝑓′

𝐿2  [(휁′)2 − 휁′′휁] − 
𝑓2

𝐿3  
𝑑𝐿

𝑑𝑥
(휁′)2 = 

𝜈 𝑓

𝐿3 
 휁′′′ +  𝑔 

𝑇𝑤− 𝑇∞

𝑇∞
 𝛩    (19.1-12) 

Dividing through by  𝑓 𝑓′ 𝐿2⁄  

[(휁′)2 − 휁′′휁] − 
𝑓

𝑓′𝐿
 
𝑑𝐿

𝑑𝑥
 (휁′)2 = 

𝜈

𝐿 𝑓′  휁
′′′ +  𝑔 

𝑇𝑤− 𝑇∞

𝑇∞

𝐿2

𝑓 𝑓′
 𝛩   (19.1-13) 

Each term should be dimensionless. Thus 
𝑓

𝑓′𝐿
 
𝑑𝐿

𝑑𝑥
= 𝐾1 ,    

𝜈

𝐿 𝑓′ =  𝐾2,    𝑔 
𝑇𝑤− 𝑇∞

𝑇∞

𝐿2

𝑓 𝑓′
= 𝐾3  (19.1-14) 

From the three equations of Eq. (19.1-14) 
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𝐿3  
𝑑𝐿

𝑑𝑥
= 

𝐾1𝐾3

𝐾2
2  

𝜈2

𝑔 
𝑇𝑤− 𝑇∞

𝑇∞

  (19.1-15) 

The arbitrary constant 𝐾1𝐾3 𝐾2
2⁄  can be taken as unity without loss of generality. Integration 

with the initial condition 𝐿 = 0   at   𝑥 = 0 gives 

𝐿 =  √
4 𝜈2 𝑇∞  

𝑔 (𝑇𝑤− 𝑇∞)

4
 √𝑥
4

= 
1

𝛾
 √𝑥
4

   (19.1-16) 

This suggests that the velocity and temperature boundary layer thicknesses are proportional to 

𝑥1 4⁄ . For convenience 𝐾2 is taken as 1/3 in the second equation of Eq.(19.1-14). Then 

𝑓(𝑥) = 4 𝜈 𝛾 𝑥3 4⁄   (19.1-17) 

It has been found that the similarity transformation is of the form: 

휂 = 𝛾  
𝑦

√𝑥
4   (19.1-18) 

𝜓(𝑥, 𝑦) =  4 𝜈 𝛾 𝑥3 4⁄   휁(휂)  (19.1-19) 
The velocity components become 

𝑣𝑥 =  4 𝜈 𝛾2 𝑥1 2⁄  휁′   (19.1-20)  

𝑣𝑦 =  𝜈 𝛾 𝑥−1 4⁄ (휂휁′ − 3 휁)  (19.1-21) 

The boundary layer equations to be solved become a set of ordinary differential equation: 

휁′′′ + 3 휁′ 휁 − 2 (휁′)2 +  𝛩 = 0  (19.1-22) 

𝛩′′ + 3 𝑃𝑟 휁 𝛩′ = 0  (19.1-23) 

where primes denote differentiation with respect to 휂. 
The boundary conditions are 

 휁 =   휁′ = 0     𝛩 = 1       at   휂 = 0  (19.1-24) 

 휁′ = 0     𝛩 = 0       at   휂 = ∞  (19.1-25) 
This set of equations is very difficult to solve analytically. Owing to the limitation of this course, 

the numerical solutions are not shown here. It is known that the numerical solutions are in good 

agreement with the experimental distributions obtained by Schmidt and Beckmann
1)

.  
                                                                               
1. Schmidt, E. and Beckmann, W., Tech. Mech. U. Thermodynamik, 1, 341 and 391 (1930) 

2. Schuh, H., Boundary Layers of Temperature, in W. Tollmien (ed.), “Boundary Layers,” British Ministry of Supply, German 

Document Center, Ref. 3220T (1948)   
  

 

19.2 Free Convection Heat Transfer 
 

  By using the numerical solutions, the wall heat-flux can be calculated as  

𝑞𝑤 = − 𝜅 
𝜕𝑇

𝜕𝑦
|
𝑦=0

= − 𝜅 
𝜕𝑇

𝜕𝛩
 
𝑑𝛩

𝑑𝜂

𝜕𝜂

𝜕𝑦
|
𝑦=0

=  − 𝜅(𝑇𝑤 − 𝑇∞) 
𝛾 

√𝑥
4  

𝑑𝛩

𝑑𝜂
|
 𝜂=0

  (19.2-1) 

For Pr = 0.73 (air) the dimensionless temperature gradient at the wall is given by the numerical 
solution: 

𝑑𝛩

𝑑𝜂
|
 𝜂=0

= −0.508  (19.2-2) 

The heat transfer coefficient can be defined as 

ℎ𝑥 = 
𝑞𝑤

𝑇𝑤− 𝑇∞
  (19.2-3) 

Then the local Nusselt number becomes 

𝑁𝑢𝑥 = 
ℎ𝑥 𝑥

𝜅
= 0.508𝛾 𝑥3 4⁄ = 

0.508

41 4⁄  [
𝑔 𝑥3(𝑇𝑤− 𝑇∞)

 𝜈2𝑇∞
]
1 4⁄

= 0.359 𝐺𝑟𝑥
1 4⁄

  (19.2-4) 

where 𝐺𝑟𝑥 is the local Grashof number. 
 

The average Nusselt number can be determined by the following integration: 

𝑁𝑢,𝑚 = 
ℎ𝑚 𝐻

𝜅
= 0.508 𝛾 ∫ 𝑥− 1 4⁄  𝑑𝑥 = 0.677 𝐺𝑟𝐻

1 4⁄𝐻

0
  (19.2-5) 
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Here the Grashof number is the ratio of the buoyant to the viscous force: 

𝐺𝑟𝐻 = 
𝑔 𝐻3(𝑇𝑤− 𝑇∞)

 𝜈2𝑇∞
  (19.2-6) 

This result, Eq.(19.2-5) is very important to understand the empirical heat transfer correlations 

for the laminar free convection. This suggests that the average Nusselt number is proportional to 
one-fourth power of the Grashof number for laminar free convection.   

The transition from laminar to turbulent flow occurs in the range 108  <  𝐺𝑟𝐻 Pr <  1010.  

The following empirical equations are recommended by Eckert and Jackson
1)

: 

𝑁𝑢𝑚 = 0.555 (𝐺𝑟𝐻𝑃𝑟)1 4⁄         𝐺𝑟𝐻 Pr <  109     (Laminar flow)  (19.2-7) 

𝑁𝑢𝑚 = 0.021 (𝐺𝑟𝐻𝑃𝑟)2 5⁄         𝐺𝑟𝐻 Pr >  109     (Turbulent flow)  (19.2-8) 
                                                                              
1. Eckert, E. R. G., and Jackson, T. W., NACA RFM 50 D25, July (1950) 

 

These correlation equations Eqs.(19.2-7) and (19.2-8) are also applicable to a vertical hot 

cylinder. 

For a long horizontal hot cylinder, experimental data have been correlated by McAdams
1)

: 

𝑁𝑢𝑚 =
ℎ𝑚 𝐷

𝜅
=  0.525 (𝐺𝑟𝐷𝑃𝑟)1 4⁄         𝐺𝑟𝐷 Pr >  104  (19.2-9) 

where 𝐺𝑟𝐷 = 
𝑔 𝐷3(𝑇𝑤− 𝑇∞) 

 𝜈2𝑇∞
 

                                                                              
1. McAdams, W. A., Heat Transmission, Second ed., McGraw-Hill, New York (1942) 

 

 

[EXAMPLE 19.2-1]  
Calculate the heat loss from the outside surface of a big cylindrical furnace, which consists of the 

composite wall of three materials: fire-clay brick, insulating brick, and iron. As shown in Fig. 

19.2-E1, the melted iron well mixed at a constant temperature 𝑇𝑖 keeps the inside surface of the 

fire-clay brick at 𝑇𝑖. The surrounding air is assumed to be stationary at a constant temperature 𝑇∞. 

In the neighborhood of the furnace, the air rises owing to the buoyancy force. The furnace is 𝐻 in 

height and 𝐷𝑜 in outside diameter. The heat loss from the top of the furnace is neglected only for 
simplicity. For this case there exist four heat-transfer resistances in series. 

 

 
 
Fig.19.2-E1. Heat loss from the outside vertical wall of a furnace 
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  The overall heat-transfer resistance is expressed as 
1

𝑈𝑜
= 

1

ℎ𝑜
+ 

(𝐷𝑜−𝐷3) 2⁄

𝜅3
 

𝐷𝑜

𝐷3𝑎𝑣
+

(𝐷3−𝐷2) 2⁄

𝜅2
 

𝐷𝑜

𝐷2𝑎𝑣
+ 

(𝐷2−𝐷𝑖) 2⁄

𝜅1
 

𝐷𝑜

𝐷1𝑎𝑣
   (19.2-E1) 

where 

𝐷3𝑎𝑣 = 
𝐷𝑜 − 𝐷3

ln(𝐷𝑜 𝐷3⁄ )
 ,    𝐷2𝑎𝑣 = 

𝐷3 − 𝐷2

ln(𝐷3 𝐷2⁄ )
 ,     𝐷1𝑎𝑣 = 

𝐷2 − 𝐷𝑖

ln(𝐷2 𝐷𝑖⁄ )
 

Here the outside heat-transfer coefficient ℎ𝑜 can be obtained by calculating from Eq. (19.2-7) or 

Eq.(19.2-8).    

The temperature 𝑇𝑜 at the outside surface of the furnace is necessary to determine the Grashof 
number.  

The following heat-balance equation can be used: 

𝑈𝑜 𝜋𝐷𝑜𝐻 (𝑇𝑖 − 𝑇∞)   

=  
𝜋𝐷𝑜𝐻(𝑇𝑖− 𝑇∞) 

(𝐷𝑜−𝐷3) 2⁄

𝜅3
 

𝐷𝑜
𝐷3𝑎𝑣

+ 
(𝐷3−𝐷2) 2⁄

𝜅2
 

𝐷𝑜
𝐷2𝑎𝑣

+ 
(𝐷2−𝐷𝑖) 2⁄

𝜅1
 

𝐷𝑜
𝐷1𝑎𝑣

 
           (19.2-E2) 

The outside surface temperature  𝑇𝑜 can be calculated by the use of trial and error method in the 

above equation. 

Then the total heat-loss is given by 

𝑄 = 𝑈𝑜 𝜋𝐷𝑜𝐻 (𝑇𝑖 − 𝑇∞)  (19.2-E3) 
 

 

 

[PROBLEM] 
An LD converter is a furnace used for reduction of the carbon concentration in melted iron. A 

supersonic oxygen gas jet impinges on the melted iron to remove carbon as CO from it. The wall 

consists of three layers: refractory brick layer (𝜅1= 6.1 W/m K), insulating brick layer (𝜅2= 3.1 

W/m K), and a steel plate (𝜅3= 44 W/m K). Their thicknesses are 450 mm, 200 mm, and 50 mm, 

respectively. The melted iron is kept at uniform temperature 1,800 K owing to the strong jet 

agitation. The surrounding air is at 𝑇∞ = 313 𝐾. 
Calculate the heat loss from the vertical wall of this LD converter. What is the surface 

temperature of the steel plate? 

 

 
 

 

Fig. 19.2-P1.  Heat Loss from an LD converter.  Dimensions given are in mm 
  

 
 

230                      Free Convection 



Nomenclature 
  

𝐷 cylinder diameter, [m] 

𝑔 gravitational acceleration, [m/s2] 

𝐺𝑟𝐻 Grashof number, [ - ] 

𝐺𝑟𝑥  local Grashof number, [ - ] 

ℎ𝑥 local heat transfer coefficient, [W/m2K] 

𝐿 unknown characteristic length, [m] 
𝑁𝑢𝑥 local Nusselt number, [ - ] 

𝑃𝑟 Prandtl number, [ - ] 

𝑝 pressure, [Pa] 

𝑄 heat loss, [J/s] 

𝑞𝑤 wall heat flux, [J/m2s] 

𝑅𝑒𝑥 length Reynolds number, [ - ] 

𝑇 temperature, [K] 

𝑈 overall heat transfer coefficient, [W/m2K] 

𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  velocity component in rectangular coordinates, [m/s] 

x, y, z rectangular coordinates, [m] 

𝛼 thermal diffusivity, [m2/s] 

𝛽 coefficient of volume expansion, [1/K] 

𝛩 dimensionless local temperature, [ - ] 

𝜅 thermal conductivity, [W/m K] 

μ viscosity, [kg/m s] 

𝜈 kinematic viscosity, [m2/s]: 

𝜌 density, [kg/m3] 

𝜓 stream function, [m2/s]  

 

Subcripts 
D cylinder 
h hot plate 

m averaged 

w wall 

∞ bulk fluid 
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CHAPTER 20 
 

AGITATION 
 
 

20.1 Agitation and Mixing of Liquids 
 

Agitation technology is very often utilized for the following purposes: 

(1) Suspending solid particles or dissolving solid into liquid, (2) blending miscible liquids, (3) 

dispersing a second liquid, immiscible with the first one to form an emulsion, (4) dispersing a 

gas as the bubbles through the liquid, and (5) promoting heat transfer or chemical reaction. 

 

20.1-1 General structure of agitation equipment 
A typical agitation vessel is shown in Fig.20.1-1. An impeller is mounted on an overhung shaft, 

which is driven by a motor. The proportions of the tank vary widely, depending on various purposes. 

For the case of a standardized practical design, accessories such as inlet and outlet nozzles, coils, 

jackets, measuring-device wells are necessary. 

 

 
 
Fig.20.1-1. Standard structure of agitation vessel 
 

The impeller agitators are classified into two types: the axial-flow impeller generates currents 

parallel with the impeller shaft axis and the radial-flow impeller generates currents in a tangential or 

radial direction.     

Several propeller designs efficient in liquids of low viscosity are illustrated in Fig.20.1-2: (a) 

standard screw-type, three blades, (b) open straight blade-type, four blades, (c) turbine bladed 

disk-type, eight blades, (d) vertical curved blade-type, eight blades. 



Two agitators employed for high viscosity or non-Newtonian liquids are shown in Fig.20.1-3: (a) 

anchor-type, (b) helical ribbon-type. 

Flows in these kinds of agitating vessels are three-dimensional and very complicated. Therefore 

to obtain theoretical solutions by using the equation of motion is very difficult, especially for 

turbulent flows. In addition, the structure of agitated vessels is so complicated that it is also very 

difficult to specify the boundary conditions.  The commercial simulator packages based on the 

CFD models (computational fluid dynamics) are available for very viscous or laminar Newtonian 

fluid flows. Although the main flow caused by the rotation of an impeller is tangential, the 

tangential velocity component is not so effective for mixing. The radial and longitudinal 

components are important for the mixing action. In addition, the rotational fluid flow following a 

circular path around the shaft creates an undesirable vortex at the surface of the liquid.  

In addition, a ring doughnut-shaped isolated mixing region having independent circular motion 

is formed in each central region above and below the impellers for unbaffled tanks. The effect of 

mixing is not so good in the isolated mixing region. Generally the preferable method of suppressing 

the vortex formation is to install baffles.   

Usually several vertical baffle plates are fixed to the inner wall of the tank. 
 

 
 

(a)              (b)                (c)                 (d)                  (e) 
 

Fig.20.1-2. Impellers for low viscosity fluids: (a) marine-type propeller, three blades, (b) open 
straight blade turbine, four blades, (c) bladed disk turbine, eight blades, (d) vertical curved blade 
turbine, eight blades, (e) pitched-blade turbine, four blades 

 
(a)                          (b) 

 

Fig.20.1-3. Impellors for high viscosity or non-Newtonian fluids: (a) anchor, (b) helical ribbon 
 
 

20.1-2 Flow patterns in agitated vessels 
Let us consider the flow pattern of a turbine-type agitated vessel as an example. It is necessary to 
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observe the radial and longitudinal velocity components. Figure 20.1-4 shows the flow currents 

formed in a cylindrical, baffled agitated vessel equipped with a turbine agitator. The plane of 

observation passes through the impeller shaft and in front of baffle plates. Fluid leaves the impeller 

outward in a radial direction, separates into longitudinal streams flowing upward or downward over 

the baffle, flows inward toward the rotation axis, and ultimately returns to the impeller intake. In the 

bottom region below the agitator, similar circulating flow is formed.  

 

 
 
Fig.20.1-4. Schematic picture of circulation flow pattern in a turbine agitator tank 
 
 

20.2 Power Consumption in Agitated Vessels 
 

20.2-1 Dimensional analysis 
In the design of an agitated vessel, it is very important to consider the power required to drive the 

impeller. 

The power consumption 𝑃 in agitation for a certain type of impeller can be obtained by the 

following dimensional analysis. When the impeller of the lever length 𝑅 is rotated at an angular 

velocity 𝜔, the form drag acting on the blade is proportional to the kinetic energy per unit volume 

(1 2⁄ )𝜌𝑣𝜃
2 (i.e., a kind of pressure) and the acting surface area 𝐴, where 𝑣𝜃 = 𝑅𝜔 and 𝐴 are the 

characteristic (peripheral) velocity and area, respectively. The torque acting on the impeller can be 

considered as (torque) = (force)·(lever length), i.e., (1 2⁄ )𝜌𝑣𝜃
2𝐴 × 𝑅. Therefore the power input 

(work/time) should be a function of torque times angular velocity, i.e., (1 2⁄ )𝜌𝑣𝜃
2𝐴 × 𝑅𝜔. 

 

 
 

Fig.20.2-1. Relation of torque with rotating impeller 
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Fig.20.2-2. Dimensions of rotating turbine impeller in a tank 
 

 Since the peripheral speed of the tip of the impeller is given by 2𝜋 (𝑑 2⁄ )𝑁, the Reynolds 
number of agitators is defined as 

𝑅𝑒 =  
𝑑2𝑁 𝜌

𝜇
 (20.2-1) 

where 𝑑 is the impeller diameter and 𝑁 the rotation number. Thus the power consumption 
should have the following functional form: 

𝑃 = 𝐶 (1 2⁄ )𝜌 𝑣𝜃
3 𝐴 

In the dimensional analysis, the common variables are: the length (blade diameter), 𝑑; the  

velocity (peripheral velocity), 𝑑 𝑁; the fluid viscosity, 𝜇; the density, 𝜌; the acceleration of gravity, 

𝑔; the area, 𝐴 ~ 𝑑2 ;  

Here the power consumption is made dimensionless as 

𝑁𝑝 = 
𝑃

𝜌𝑁3𝑑5  (20.2-2) 

This is called “the power number,” which can be considered to be analogous in physical meaning 

to the friction factor in a circular pipe flow.  

 

(Dimensional analysis) 

Many chemical engineering problems cannot be solved theoretically unless enough is known 

about the physical situations. The physics of mixing in an agitated tank is also so difficult that we 

cannot help relying on the following dimensional analysis. It may be expected that the power 

consumption depends on the following variables: 

𝑁𝑝 = 𝑎′ 𝑑𝑏′𝑁𝑐′𝜌𝑑′𝜇𝑒′𝑔𝑓′ 

       = 𝑎′𝐿𝑏′𝑡−𝑐′(𝑀 𝐿3⁄ )𝑑′(𝑀 𝐿𝑡⁄ )𝑒′(𝐿 𝑡2⁄ )𝑓′ (20.2-3) 

where 𝑀, 𝐿, 𝑡 are the dimensions of mass, length, and time, respectively. 
Buckingham’s theorem states: if an equation is dimensionally homogeneous, it can be reduced to 

a relationship among a complete set of dimensionless products. 

 

In order for the above equation to be dimensionally homogeneous, the following conditions 

should hold: 

M:  0 = 𝑑′ + 𝑒′  

L:  0 =  𝑏′ − 3𝑑′ − 𝑒′ +  𝑓′ 
t:  0 =  −𝑐′ − 𝑒′ − 2𝑓′ 
From these equations, the three of the five unknowns can be expressed in terms of the remaining 

two unknowns: 

𝑐′ = 2𝑏′ − 3𝑑′  

𝑒′ = −𝑑′  

𝑓′ = −𝑏′ + 2𝑑′   
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Finally it has been found that the power number equation should have the following functional 

form: 

𝑁𝑝 = 𝑎′𝑑𝑏′𝑁2𝑏′−3𝑑′𝜌𝑑′𝜇−𝑑′𝑔−𝑏′+2𝑑′
 

   = 𝑎′ (
𝜌𝑑2𝑁

𝜇
)
𝑑′

  (
𝑑 𝑁2

𝑔
)
(𝑏′−2𝑑′)

 (20.2-4) 

The first term is the Reynolds number and the second term is called “Froude number.” These 

dimensionless groups have the physical meanings: the Reynolds number 𝑅𝑒 =  
inertial force

viscous force
= 

𝑑2𝑁𝜌

𝜇
 

and the Froude number 𝐹𝑟 =  
inertial force

gravity force
= 

𝑉2

𝐿𝑔
= 

𝑑 𝑁2

𝑔
. (20.2-5) 

The effect of the Froude number is usually very small if baffles are installed. 

The unknowns 𝑎′, 𝑑′, 𝑏′ − 2𝑑′  should be determined by experiment. 

Except for the Reynolds number and the power number, the pumping number sometimes called 

the flow number used as one more dimensionless key variable is defined as  

𝑁𝑞 = 
𝑞

𝑁 𝑑3 (20.2-6) 

The volumetric flow rate 𝑞 through the impeller can be assumed proportional to the peripheral 

velocity 𝜋𝑑 𝑁  times the area 𝜋𝑑 𝑏  swept out by the tips of the impeller blades: 𝑞 ~ 𝑁 𝑑3 

because of 𝑏~𝑑. As the pumping number is increased, the time required for one round of the 
circulating stream is decreased. Therefore the pumping number is also very important for promoting 

the mixing effect. 

The pumping number tends to increase with the Reynolds number, and becomes almost constant 

in the turbulent flow, where it depends on the ratio of impeller diameter to tank diameter 𝑑 𝐷⁄ .  
 

20.2-2 Power correlations 
In the last section (20.2-1), we have learnt that the power number is a function of the Reynolds 

number and the Froude number. However if baffle plates are installed in a tank, almost flat 

horizontal liquid level is kept. In this condition, the power number does not depend on the Froude 

number. Only for simplicity, Fig.20.2-3 shows the empirical correlations of the power number for 

some different impellers given for the case of baffled tanks. 

 

 
 

Fig. 20.2-3. Correlations of Impeller power number with Reynolds number for agitator tanks. 
(Np for baffled, Ф for unbaffled.)  
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In the range of high Reynolds numbers 𝑅𝑒 ≥ 10,000, the power number becomes almost 

constant and independent of the Reynolds number. This effect due to baffles may be similar to the 

constant friction factor in the range of high Reynolds numbers for circular rough pipes. For the 

radial-flow type impellers, at low Reynolds numbers 𝑅𝑒 ≤ 500, the lines of 𝑁𝑝 vs. 𝑅𝑒 for both 
baffled and unbaffled tanks coincide, and the slope of the line on logarithmic coordinates is – 1. 

This implies the laminar flow range. When the power requirement is calculated, we should consider 

the effect of system geometry in the terms of shape factors such as 

𝑆1 = 𝐷 𝑑⁄ ,   𝑆2 = 𝐻𝑝 𝑑,   𝑆3 = 𝑙 𝑑,   𝑆4 = 𝑏 𝑑⁄ ,   𝑆5 = 𝐻 𝑑⁄⁄⁄ . These dimensions are given in 
Fig.20.2-2. 

Usually typical proportions of agitated tanks are given to dimensions of the agitated tank and 

location and dimensions of the impeller for standardization. 

For vigorous agitation in a baffled tank, the liquid surface is slightly disturbed but usually kept 

flat, so that the effect of the Froude number on the power number is not necessary to consider. 

For the case of low-viscosity liquid in an unbaffled agitated tank, there is vortex formation on the 

liquid surface owing to centrifugal force. The effect of radially-varying liquid depth is related with 

the Froude number. Therefore the effect of the Froude number on the power number should be 

taken into account by the following modified power number: 

𝛷 = 𝑁𝑝 𝐹𝑟𝑚 (20.2-7) 

Here 𝑚 is a function of the Reynolds number. 

𝑚 = 
𝑎−log𝑅𝑒

𝑏
 (20.2-8) 

For example, for propellers ( 𝑑 𝐷⁄ =  1 3⁄ ) ,  𝑎 = 2.1  and  𝑏 = 18.0  and for disk turbine 
(𝑑 𝐷⁄ =  1 3⁄ ), 𝑎 = 1.0  and  𝑏 = 40.0. 
 

 

20.3 Heat Transfer in an Agitated Tank  
 
  Generally a chemical tank reactor has complicated structures of not only the heating jacket but 

also the tube coils shown in Fig.20.3-1. The tube coils are often used for the heat input into or 

removal from the central region of reacting fluids. In the engineering book specialized for agitation 

and mixing, various heat transfer correlations are available. Owing to the limitation of this book 

scope, many heat transfer correlations cannot be treated. 

 

 
 

Fig.20.3-1 Ordinary chemical batch reactor 

Heat Transfer in an Agitated Tank                               237 



 

In this section, let us consider a simple flow reactor of jacketed agitated vessel without coils and 

baffle plates shown in Fig.20.3-2. No chemical reaction is assumed to take place in the vessel only 

for simplicity and convenience. There is neither endothermic nor exothermic reaction within the 

vessel.  

 

 
 
Fig.20.3-2 Heat transfer in a continuous flow reactor of jacketed tank unbaffled 
 

A liquid is being continuously heated by the steam jacket of an agitated tank. Heat is supplied by 

condensation of steam from the outside jacket (i.e. from the inside wall of the vessel.). Usually the 

thermal resistance of the condensate film and tank wall can be assumed small compared to that of 

the liquid in the tank. Therefore the main resistance lies in the convective heat transfer on the inside 

wall of the reactor. The unjacketed portion of the tank is also assumed to be well insulated.  

One example of heat correlation for constant physical properties is given by the following 

equation
1, 2)

: 

𝑁𝑢 = 
ℎ𝑖𝐷

𝜅
=  𝛼 𝑅𝑒2 3⁄ 𝑃𝑟1 3⁄ (

𝜇

𝜇𝑤
)
0.14

 (20.3-1) 

Depending on various agitators and arrangements of the vessels, the coefficient 𝛼  varies 

considerably. For the case of pitched-blade turbine agitator tank unbaffled , 𝛼 = 0.44 can be used 
in the above equation. 

                                                                                   
1. Uhl, V. W., and Gray, J. B., “Mixing,” vol.1, p.284, Academic, New York (1966) 
2. Chilton, T. H., Drew, T. B., and Jebens, R.H., Ind. Eng. Chem., 36, 510 (1944) 

 
 

20.4 Scale-up of Agitated Tank Design 
 

  The performance characteristics are generally determined empirically by correlating measured 

data as a function of dimensionless numbers. Those correlation equations consisting of 

dimensionless groups are employed for scale-up design. Under the condition of geometric similarity, 

appropriate correlations or rules should be selected depending on the physical purpose of the 

chemical equipment to be scaled-up.  We know that the power given by an impeller is 

continuously dissipated in the form of irreversible degradation of mechanical energy to thermal 

energy of the liquid in a tank. Therefore the amount of power consumed by the specified impeller 

per unit volume of liquid can be considered as a measure of mixing effectiveness. Usually many 

power correlations are available for scale-up of various agitators and vessels.  
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 Let us consider the scale-up design of low-viscosity liquid mixing. The subscript of variables 1 

denotes the smaller-scale system such as laboratory and/or pilot-plant tanks and 2 denotes the 

larger-scale system to be scaled-up.  

The following three conditions should be considered as the fundamental rule of scale-up from the 

smaller-scale to the larger-scale system, i.e. (1) to (2): 

The power numbers and flow numbers of the system 1 and 2 should be equal to each other 

𝑁𝑝1 = 𝑁𝑝2  (20.4-1) 

𝑁𝑞1 =  𝑁𝑞2  (20.4-2) 

 

(1) Low-viscosity homogeneous liquid solution:  

The power consumption per unit volume 𝑃𝑣  (W m3)⁄  should be equal to each other: 

𝑃𝑣1 = 𝑃𝑣2 (20.4-3) 
    This scale-up condition implies that the rate of the mechanical energy dissipated per unit 

volume of liquid should be equal to each other between the smaller-scale and larger-scale systems. 

In other words, the flow condition in a unit volume should be the same in the both systems. 

However strictly speaking, even in this condition, it is too difficult to make the flow structure same 

between the two systems because the rotation number obtained by the scale-up rules is usually 

much smaller in the larger-scale system than in the smaller-scale system.  

The liquid level is assumed equal to the tank diameter: 𝐻 𝐷⁄ = 1.  If the ratio of the impeller 

diameter to the tank diameter is given by 𝑘 =  𝑑 𝐷⁄ , the power consumption per unit volume can be 

expressed as 

𝑃𝑣 = 𝑃 [(𝜋 4⁄ )𝐷2𝐻]⁄ =  𝜌𝑁3𝑑5𝑁𝑝 [(𝜋 4⁄ )(𝑑 𝑘⁄ )2(𝑑 𝑘)⁄ ] ~ ⁄ 𝑁3𝑑2𝑁𝑝 (20.4-4) 

Therefore the rotation number of the larger-scale system is given by  

𝑁2 = (𝑑1 𝑑2⁄ )2 3⁄ (𝑁𝑝2 𝑁𝑝1⁄ )1 3⁄ 𝑁1  (20.4-5) 
As can be seen in Fig.20.2-3, the power number becomes almost constant in the wide range of the 

Reynolds number in the turbulent flow condition. Therefore even if the Reynolds numbers of the 

two systems are different, the power numbers can be assumed to be equal to each other: 𝑁𝑝2 =
 𝑁𝑝1 
By using this relation, the Reynolds number and power consumption become 

𝑅𝑒2 = 𝑑2
2𝑁2𝜌 𝜇 =  (𝑑2 𝑑1⁄ )2(𝑁2 𝑁1⁄ ) 𝑅𝑒1 =  (𝑑2 𝑑1⁄ )4 3⁄ 𝑅𝑒1⁄   (20.4-6) 

𝑃2 = 𝑁𝑝2𝜌𝑁2
3𝑑2

5 = (𝑁2 𝑁1⁄ )3(𝑑2 𝑑1⁄ )5𝑃1 =  (𝑑2 𝑑1⁄ )3𝑃1   (20.4-7) 

According to these results, when the impeller diameter is scale-upped by eight times, i.e., 

𝑑2 = 8 × 𝑑1with the tank diameter 𝐷2 = 8 × 𝐷1, the rotation number reduces to 𝑁2 = (1 4)⁄ × 𝑁1. 

However the Reynolds number and power consumption should become very large as 𝑅𝑒2 = 16 ×
 𝑅𝑒1  𝑎𝑛𝑑  𝑃2 = 512 × 𝑃1.  

In scale-up of tanks assuming equal power consumption per unit volume (sometimes called 

agitation intensity), there is a possibility of forming the weak mixing regions here and there in the 

larger-scale system owing to  small rotation number of the agitator of the larger-scale system. 

 

(2) Mixing of liquid-liquid dispersion: 

The gradient of the peripheral velocity near the tips of the impeller is important to break liquid 

lumps into small droplets. Therefore the scale-up rule for this purpose is given by 

𝑁2 = (𝑑1 𝑑2⁄ )𝑁1  (20.4-8) 

In the turbulent flow region, we can assume 𝑁𝑝2 = 𝑁𝑝1 
Therefore the power consumption is given by 

𝑃2 = (𝑁2 𝑁1⁄ )3(𝑑2 𝑑1⁄ )5𝑃1 =  (𝑑2 𝑑1⁄ )2𝑃1   (20.4-9) 

The Reynolds number also becomes 

𝑅𝑒2 = (𝑑2 𝑑1⁄ )2(𝑁2 𝑁1⁄ ) 𝑅𝑒1 = (𝑑2 𝑑1⁄ )𝑅𝑒1   (20.4-10) 

Emulsified polymerization reactors belong to this case. However the reactor tank should be 

unbaffled because a baffled reactor has a problem of undesirable polymer deposition in the concave 
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stagnant region between the baffle plates. 

 

(3) Heat transfer of jacketed vessels   
Firstly we should consider the power consumption per unit volume to be equal between the 

systems 1 and 2.  

The flow condition will be fully turbulent. Therefore 𝑁𝑝2 =  𝑁𝑝1. 
The rotation number for the larger-scale system is given by using Eq. (20.4-5): 

𝑁2 𝑁1⁄ =  (𝑑1 𝑑2⁄ )2 3⁄  (20.4-5) 

In usual scale-up of jacketed vessels with heating or cooling jackets, the heat exchange rate 

requirement can be expressed as  

𝑄2 𝑄1 = ⁄ ℎ2 𝐷2𝐻2(𝑇𝑤 − 𝑇𝐿)2 ℎ1 𝐷1𝐻1(𝑇𝑤 − 𝑇𝐿)1⁄  (20.4-11) 

where ℎ1, ℎ2 are the heat transfer coefficients of the two systems, respectively. 

  From the purpose of scale-up, the temperature difference ∆𝑇 =  𝑇𝑤 − 𝑇𝐿 should be equal to 
each other between the smaller-scale and the larger-scale systems.  

The geometric similarity is adopted for standardization of system design: 𝑑 ~ 𝐷  and  𝐻 ~ 𝑑. 
 The new length ratio of scale-up is given by 

𝜆 =  𝐷2 𝐷1⁄ =  𝑑2 𝑑1⁄    
 (20.4-12) 

Therefore  

𝑄2 𝑄1 = ⁄ ℎ2𝐷2
2 ℎ1𝐷1

2⁄  (20.4-13) 
According to the heat transfer correlation equation Eq. (20.3-1), 

𝑁𝑢 =  
ℎ𝑖𝐷

𝜅
=  𝛼 𝑅𝑒2 3⁄ 𝑃𝑟1 3⁄ (

𝜇

𝜇𝑤
)
0.14

 

In these two systems, 𝑃𝑟2 = 𝑃𝑟1   and   (𝜇 𝜇𝑤⁄ )2 = (𝜇 𝜇𝑤⁄ )1 . Then from the above equation, the 

heat transfer coefficient is 

ℎ2

ℎ1
= (

𝐷1

𝐷2
) (

𝑅𝑒2

𝑅𝑒1
)
2 3⁄

 (20.4-14) 

From Eq. (20.4-5), 𝑁2 𝑁1 = (𝑑1 𝑑2⁄ )2 3⁄⁄  under the condition of 𝑁𝑝2 = 𝑁𝑝1. Then Eq.(20.4-6) 
becomes 

𝑅𝑒2

𝑅𝑒1
= (

𝑑2

𝑑1
)
2

 (
𝑁2

𝑁1
) =  (

𝑑2

𝑑1
)
4 3⁄

= 𝜆4 3⁄   (20.4-15) 

The Reynolds number becomes large but the rotation number of the agitator is made small. 

Finally  

𝑄2

𝑄1
=

ℎ2

ℎ1
 (

𝐷2

𝐷1
)
2

=  [(
𝐷1

𝐷2
) (

𝑅𝑒2

𝑅𝑒1
)
2 3⁄

] (
𝐷2

𝐷1
)
2

= (
𝑑2

𝑑1
)
8 9⁄

(
𝐷2

𝐷1
) =  𝜆17 9⁄ ~ 𝜆1.89 (20.4-16) 

From Eq.(20.4-14), the heat transfer coefficient is given by 

ℎ2

ℎ1
= (

𝐷1

𝐷2
) (

𝑅𝑒2

𝑅𝑒1
)
2 3⁄

= (
𝐷1

𝐷2
) [(

𝑑2

𝑑1
)
4 3⁄

]
2 3⁄

= 𝜆−1 9⁄  (20.4-17) 

It has been found that the heat transfer coefficient for the larger-scale system becomes a little bit 

smaller than that for the smaller-scale system. 

 
 
 
Nomenclature 
  

𝐷 agitated tank/vessel diameter, [m] 

𝐹𝑟 Froude number, [ - ] 

𝑔 gravitational acceleration, [m/s2] 

𝑏 impeller width, [m] 

𝑑 diameter of impeller, [m] 

𝐻 depth of liquid in vessel, [m] 

𝐻𝑝 height of impeller above vessel floor, [m] 

ℎ𝑖 heat transfer coefficient on the inside surface of vessel, [W/m2K] 

𝐽 width of baffles, [m] 
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𝑙 length of impeller blades, [m] 

𝑁 rotation number of agitator, [1/s] 

𝑁𝑝 power number, [ - ] 

𝑁𝑞 flow number, [ - ] 

𝑁𝑢 Nusselt number, [ - ] 

𝑃 power consumption, [W] 

𝑃𝑟 Prandtl number, [ - ] 

𝑃𝑣 power consumption per unit volume, [W/m3] 

𝑄 heat exchange rate, [W] 

𝑅 length of rotating lever (= d/2), [m] 

𝑅𝑒 Reynolds number, [ - ] 

𝑇 temperature, [K] 

𝑣𝜃 peripheral velocity, [m/s] 

𝜅 thermal conductivity, [W/m K] 

𝜆 scale-up length ratio, [ - ] 

μ viscosity, [kg/m s] 

𝜌 density, [kg/m3] 

𝛷 modified power number, [ - ] 

𝜔 angular velocity, [1/s] 
 

Subscripts 
w wall 

1 small-scale system 
2 large-scale system scaled up 
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INDEX 
 

 
Absorption, 109, 110 

  Chemical absorption, 179~190, 

  Design (chemical absorber), 161, 

Gas solubility in electrolytic solution, 187, 

  Higbie’s penetration theory, 67, 

  HTU, 114, 115, 

  Limiting liquid-gas ratio, 113, 

  in liquid jet, 65, 

Mass transfer model, 110, 

  Mass transfer coefficient, 106, 109, 114,  

Mass transfer correlations, 114~116, 

  NTU, 114, 

  Packed columns, 111, 114, Column diameter, 116,  

Pressure drop, 116, 

  Packing, 110, (random, structured) 

  Reaction factor, 185, 

  with chemical reaction, 179~190, 

Ackermann correction factor, 153,  

(see Humidification) 

Agitation/agitators, 232, 

  Agitators, 233, 

  Dimensional analysis, 235, 

  Flow pattern, 233, Froude number, 236, 

  Heat transfer correlation, 238, 

  Power consumption, 235, Power correlation, 236,, 

Power number, 235, modified, 237, 

  Reynolds number, 235, 

  Scale-up, 238, 

Analogy 

  between momentum and heat transfer, 216, 

  between heat and mass transfer, 150, 216, 

  in packed column distillation, 145, 150, 

  Chilton-Colburn, 217, Colburn, 156, 

  Length Reynolds number, 149, 213, 216, 

Annulus/Annular flow passage 

    Double tube exchanger, 89, 93, 

    Heat transfer, 93, 

    Rotating cylinders, 9, 50, 

Bend, 23, 79, (see Pipe fittings) 

Bernoulli equation, 26, 77, (see Mechanical energy) 

Bingham model, 14, (see non-Newtonian) 

  Bingham plastic, 14, 52, 

Blasius formula, 76, (see Friction factor) 

Boiling, 174, 

  Boiling curve, 175, Boiling heat transfer, 176, 

  Critical heat flux, 177, 

  Heat transfer correlation, 176, 

  Nucleate boiling, 175, Pool boiling, 175, 

Boundary layer, 211, 

  Analogy theory, 216, Energy boundary layer, 213,  

Energy integral equation, 218, 

  Free convection boundary layer, 226, 

  Friction factor, 216,  

  Integral boundary layer equation,217, 

  of Ionic mass transfer, 223,  j-factor, 216, 

  Laminar flow over a flat plate, 212, 

Length Reynolds number, 213, 

Stream function, 211, 

Thermal boundary layer, 213, 

Turbulent boundary layer, 218, 

Buffer zone/layer, 206, (see Universal velocity profile) 

Buoyancy forces, 226,  (see Free convection) 

  in flow near heated plate, 226, 228, 

Chemical reaction, 181~185, 

  Electrochemical reaction, 164~165, 

  Gas absorption, 179, Reaction factor, 181, 184, 185, 

Condensation, 169, 

  Dropwise, 169, Filmwise, 169, 170, 

  Heat transfer, 169, 171, 

  Overhead condenser, 171, 

Conduction 

  Conductivity, 9, 

  Steady, 60, Unsteady, 62, 

Conservation law, 20,  (see Macroscopic balance) 

Control volume/control volume approach, 20, 

  Energy balance, 24, Mass balance, 20, Momentum 

balance, 22,  

 Packed column model, 147, 

Convective heat transfer 

  Circular pipe, 87, 93, Submerged objects, 102,  

Cylinder, 102, sphere, 104, 

Convergent nozzle, 24, 222, 

Critical heat flux, 177,  (see Boiling), 

Cylinder 

  Coaxial rotating cylinder, 50,  

Heat transfer in cross flow, 102,  

Submerged cylinder, 102,  

Differential balance, 37,  (see Microscopic balance) 

Diffusion 

  Diffusion-controlling, 165, 

  Equimolar counter, 145, Fick’s law, 12, 

  Limiting current, 165, Unsteady diffusion, 182, 

  with chemical reaction, 182, 

Diffusivity (Fick’s law), 12,  

Definition, 12, Ionic diffusion, 163, Mass flux, 13, 

Molar flux, 13, 

Dimensional analysis, 

  of Agitated tanks, 235, 

  of Channel/pipe flows, 75,  

Dissipation, 203,  (see Turbulence) 

Distillation,  

  Analogy, mass and enthalpy, 150, 

  Boiling-point diagram, 125,  

  Column design 139, Condenser, 171, 

  Continuous distillation, 123, 

  Control volume approach, 147, 149, (packed column) 

  Design calculation, 139, 

  Efficiency 

HETP, 147, 149, (packed column) 

  Murphree efficiency, 136, modified 141, 

  Enthalpy balance, 131, 143, 146,  

  F-factor, 137, 138, 

  Heat/enthalpy balance, 140, (plate), 149, (packed) 

  Ideal plate or stage, 125, 

j-factor, 149, 

  Mass transfer model,  

Plate column, 133, 136, Packed column, 145~148,  

HTU, 146, NTU, 137,  

  McCabe-Thiele method, 128, 129, 

  Operating line, 127, 128,  
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  Overall transfer coefficient, 146, 

  Overhead condenser, 123, 171, 

  Packed column, 145, 

Phase rule, 121, 

Plate column, 123, 135, 

Ponchon-Savarit method, 131, 

  q-line, 129, 

  Raoult’s law, 121, Reboiler 123, 

Rectifying section, 127, Reflux ratio, 130, 

Relative volatility, 122, 128, 

Reynolds numbers, 137, (tray), 149, (packed) 

Stripping factor, 135, 147, Stripping section, 127, 

  Tray model, 136, Two-film theory, 135, 146, 

  Vapor-liquid equilibrium constant, 121, 

Downcomer, 124,  (see Tray) 

Eddy 

  Eddy diffusivity, 196, 

  Eddy scales, 204, Length scale, 204, Time scale, 206, 

Elbow, 32, 79, (see Pipe fittings) 

Electrolytic reaction, 164, 166, 

  Electrochemical reaction method, 165~168, 223, 

  Electrolytic cell, 164, Limiting current, 165, 

  Mass transfer measurement, 165, 

  Velocity-gradient measurement, 167, 

Energy spectrum, 200, (see Turbulence) 

Enthalpy balance, 156, 160,  (see Humidification) 

Equations of change 

  Differential balances (Microscopic balance), 37, 

Continuity, 37 Energy, 42, Mass, 43, 

Momentum, 38,  

Application (momentum): Circular pipe flow, 46, 

Rotating cylinders, 49, Non-Newtonian, 52, 53, 

Application (energy): Circular pipe, 56, Hollow 

cylinder, 60, 

Application (mass): Liquid jet, 65,  

Turbulent flows: motion, 194, energy, 194, mass, 194, 

Equivalent diameter, 81, 

  Definition, 81, Hydraulic diameter, 81,  

  Non-circular channel, 81, Shell side 94, 

Equivalent length, 77, 

Eulerian viewpoint, 3, 204, 

Evaporation 174,  (see Boiling) 

Evaporative cooling, 159, 

  Operating line, 161, 

  Wet-bulb temperature, 154, 

F-factor, 137 (plate), 150 (packed), (see Distillation) 

Fick’s law of diffusion, 12, 44, 106, 

Flooding, 117,  (see Packed column) 

Flow work, 25, (see Macroscopic energy balance) 

Fluid flows 

  Body force, 4, surface force, 4, static pressure, 4 

  Force balance, 23, 24, Tube flow, 23,  

Bend, 23, Convergent nozzle, 24, 

  Reynolds number, 16, 18,  

  Laminar, Newtonian fluids, 17, 

           Non-Newtonian fluids, 52, 53, 

           Velocity profile in pipe flow, 16, 48, 

  Turbulent, Energy spectrum, 200, 

Intensity, 71, 193, 

           Kinetic energy, 193, in pipe flow, 193, 

           Reynolds stress, 195, 

            Scale of turbulence, 203, 

            Transport flux, 195, 

            Turbulent fluctuations, 18, 70, 84, 192, 

            Velocity distribution, 205, 

Flux 5, (cf. rate) 

  Definition, 5, Heat, 10, Mass, 11, Molar, 11,  

  Momentum, 8, Ionic mass flux, 166, 

  Turbulent: heat, 195, mass, 195, momentum, 195, 

Fouling, 88,  (see Heat exchanger) 

Fourier’s law of heat conduction, 9, 

Free convection, 226, 

  Boundary layer theory, 226, 

  Convective heat transfer, 228, Grashof number, 228, 

  Heat loss, 229, Heat transfer correlations, 228, 

  Nusselt number, 228, 

Friction factor/Friction loss, 73, 

  Definition, 73, 74, Drag coefficient, 82,  

Fanning, 49, 74, Friction loss, 26,  

Friction loss factor, 77,  

  of laminar pipe flow,74, 75, 

  for noncircular channels, 81, 96, 

  for heat exchangers, 96, 

  for dry packed column, 118, 

for turbulent boundary layer, 220, 

Froude number, 236,  (see Agitation) 

Grashof number, 228, (see Free convection) 

Hagen-Poiseuille equation, 48, 

Heat conduction, 9,  

  Steady, 60, Unsteady, 62, 

Heat exchangers, 92, 

  Engineering design, 96, 

Double-pipe, 89, 93,  

Design, 89, Heat transfer 93, 

  LMTD (logarithmic mean overall temperature 

difference), 89, 

  Overall heat transfer, 87, 88, 

  Heat transfer pipe layout, 94, 

  Shell-and-Tube 92, 

Baffles, 94, Correction factor, 96, Design, 96,  

Overhead condenser, 171, 

    Shell-side heat transfer, 94,  

Shell-side pressure drop, 96, 

True temperature difference, 95, 

Tube-side heat transfer, 93, 

Heat transfer 

  in boiling, 174, 

  in circular pipe flow, 56, 93, 

  Circular cylinder in cross flow, 102, 

  Coefficient (definition), 59, 85, 86, Correlation, 171, 

Pool boiling heat transfer, 176, 

  in condensation, 171, in distillation, 149, 

Condensation heat transfer, 170, 

Free convection, 226, Heat loss, 229, 

Henry’s law, 68, 108, 

Hot-wire anemometry, 71, 103, 193,  

HETP (height equivalent to a theoretical plate),  

147, 149,  (see Packed column distillation) 

HTU (height of a transfer unit), 113, 146, 

(see Packed column absorption & distillation) 

Humidification, 152,  

  Adiabatic cooling line, 157, Enthalpy balance, 153, 

Humidity, 157, Lewis relation, 156, Operating line, 

160, Water-cooling, 159, Wet-bulb temperature, 

154, 

Hydrostatics, 4 

Ideal plate/ideal stage, 125, 

Impinging flow, 220, 

  Stream function analysis, 220, 

Impinging jet flow, 222, Heat transfer, 222, 
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Instability 

  Boundary layer, 218, Circular pipe flow, 17, 

  Rotating coaxial cylinders, 51, 

Integral equation, 2117, (see Boundary layer) 

Interphase transfer 

  Momentum transfer, 70, 73, 

  Heat or enthalpy transfer, 85, 143, 145, 

Mass transfer, 106, 146, 155, 

Ionic mass transfer, 163, 

  Electrode reaction, 163, 164, 

  Electric double layer, 165, 

  Limiting current, 165, 

  Molar-flux of ions, 163, 

  Supporting electrolyte, 165, 

Jet 

  Impinging jet, 222, Liquid, 65,  

j-factor 

  j-factor for heat transfer, 87, 93, 108, 149, 216, 

  j-factor for mass transfer, 108, 149, 156, 217, 220, 

  in boundary layer, 217, 220, 

Lagrangian viewpoint, 3, 205, 

Laminar flow, 16, 

  in boundary layer, 212, 

  in circular pipe, 16, 47, 

  in rotating coaxial cylinders, 50, 

Length Reynolds number, 216,, (see Boundary layer) 

Lewis number, 13, 156, (see Humidification) 

Limiting current, 165,  (see Ionic mass transfer) 

LMTD (Logarithmic Mean Temperature Difference),  

89, 90, (see Heat exchangers) 

Macroscopic balance 

  of mass, 20, of momentum, 22, of thermal energy, 24, 

31, of mechanical energy, 26, of individual component, 

34, 

Mass-averaged, 11, (cf. Molar-averaged) 

Mass balance 

  in humidification, 152, 153, 

  in packed column, 111, 

  in plate column, 133, 

Mass transfer 

  Coefficient (definition),106, 109, 114, 

  correlations, 114~116, 

  interphase transfer, 106, 

  Model for gas absorption, 110, 113,   

Penetration theory, 67,  

  Model for distillation, 133 (plate), 145~147) (packed), 

McCabe-Thiele method, 128, (see Distillation) 

Mechanical energy 

  Balance, 26, Bernoulli equation, 26, 77, 

Mechanical energy loss, 26, 77, Pipe fittings, 77, 

Microscopic balance (Differential balance), 32, 

  of energy, 42, of mass, 37, 43, of momentum 38,  

Mixing length theory, 196, 197, 

  Eddy diffusivity, 196,  

Molecular or molar 

  Diffusion, 12, Fick’s law, 12, 44, 106, 

Flux, 5,  Molar-average velocity, 11,  

Natural convection (see Free convection) 

Navier-Stokes equation, 38, 41, 

Newton’s law of viscosity, 6, 

Non-Newtonian fluid, 14, 

  Bingham model, 14, 52, 

  For circular pipe flow, 52, 

  Power law model, 14, 53, (Ostwald-de Waele Model) 

  Yield stress, 14, 52, 

NTU (number of transfer unit),  

114, (see Packed column), 117, (see Plate column) 

Nucleate boiling, 175, 

Nusselt number 

  of laminar pipe flow, 56, 93, 

  of turbulent pipe flow, 87, 93, 

  of free convection, 228, 

One-seventh power law, 18, 219, 

in boundary layer, 219, in tube flow, 18,  

Operating line 

  in gas absorption, 112, (see Absorption) 

  in distillation, 127, 128, (see Distillation) 

  in water cooling, 161, 

Overall heat-transfer coefficient, 88, 90, 149, 

Overall mass-transfer coefficient 

  of absorption, 110, 

  of distillation, 146, 

Packed column 

  Absorption, 109, 

Design, column diameter,116,  

Pressure drop, 116 (wet), 118 (dry), 

    Column height, 113, HTU,114, 115, 

  Distillation, 145, Flooding, 117, 

  Heat or enthalpy transfer, 146, 

  Limiting liquid-gas ratio, 113, 

  Mass transfer, 114, correlations, 114~116, 

Packings, 110, 

  Random packings, 110, Structured packings, 111, 

Penetration theory, 67,  

Piping 

  Equivalent length, 77,  

  Fittings, 77, Friction loss factor, 77,  

Pipeline, 32, 79, Valves, 78, 

Pitot tube, 29, 

Plate column 

  Bubble-cap plate, 124, Sieve plate, 124, 

  Downcomer, 124,  

Reboiler, 123, Overhead condenser, 171, 

Ponchon-Savarit method, 131, 

Power law model, 14, (see non-Newtonian) 

  Ostwald-de Waele model, 53, 

Power number, 235, (see Agitation) 

Prandtl number, 13, (definition) 

Pressure 

  Static pressure, 4, 

Pressure drop  

  Circular pipe, 49 (laminar), 74 (turbulent), 

 Packed column, 116 (wet), 118 (dry), 

  Shell-and-tube exchanger, 96, 

Pumps (see Mechanical energy balance) 

  Power requirement, 26, 33, 

Raoult’s law, 121, (see Distillation) 

Rate  (cf. flux) 

  Definition, 4,  

  Rate of momentum,22, energy, 25, mass, 21, 

Rectifying section, 127,  (see Distillation) 

Reflux and reflux ratio, 130, (see Distillation) 

Relative volatility, 122, 

Resistance 

  Thermal resistance, 62  

  Mass transfer resistance, 67, 110, 

Reynolds number 

  Definition, 16, 18, 

  in agitation, 235, 

  in boundary-layer flow, 213,  
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(Length Reynolds number) 

  in circular pipe flow, 16, 

  in coaxial rotating cylinder, 51, 

  in heat exchangers(tube-side, 93, shell-side, 94, 96, 

     double-tube, 93) 

in packed column flow, 149, in plate column, 137, 

  Length Reynolds number, 149, 213, 216, 218, 

Reynolds stresses, 195, (cf. turbulent momentum flux) 

Roughness  

  Relative roughness in pipes, 76, 

Schmidt number, 13,  (definition) 

Shaft work, 25, (see Macroscopic energy balance) 

Shear stress, 6, 7,  

Shells 

  Shell-and-tube exchangers, 92, 

    Shell-side heat transfer, 94, 

    Shell-side pressure drop, 96, 

    True temperature difference, 95, 

Sherwood number, 115, (definition) 

SI units (Systeme International), 3, 

Similarity 

  among molecular transports of momentum,  

energy, and mass, 13,  

Simultaneous transfer,  

143 (distillation), 152 (humidification),  

  Chilton-Colburn analogy, 217, 

  Mass and enthalpy, 143, 152, 

Sphere 

  Drag force, 82, Heat transfer, 104, 

Stage-by-stage calculation, 128, 

  ( see McCabe-Thiele method) 

Stagnation point,  

  Heat transfer, 222, Impinging jet, 222, 

Stanton number, 59,  (definition) 

Stream function, 211, application, 226, 

Stripping factor, 135, 148, ( see Distillation) 

Stripping section, 127, (see Distillation) 

Superficial velocity, 118, 137, 149, (see Packed column) 

Taylor vortex flow, 51, Taylor number, 51, 

Tensor, 3,  

Thermal 

  Conductivity (Fourier’s law), 8, 

  Diffusivity, 8, 

Resistance 62,  

Time-averaged, 84, 192, 

Torque 

  Rotating cylinder, 51, Agitator, 234, 

Transfer Units (see HTU, packed column) 

Transition 

  Laminar to turbulent flow, 17, 

  Boundary layer flow, 218, 

Transport intensity, flux and rate, 4 

Tray, 124, (see Distillation) 

  Crossflow tray, 124, Dual-flow tray, 124, 

  Bubble-cap, 124, Sieve, 124, 

  Downcomer, 124, 

  Plate efficiency/ Murphree efficiency, 136, 

Turbine impeller, 233, 

Turbulence 

  Correlation functions, spatial/temporal, 203, 

  Energy spectrum, 200, Intensity, 71, 193,  

  Generation, 17, Kinetic energy, 193,  

  Length/time scale, 203, Scale of turbulence, 203, 

  Sizes of eddies, 203, Structure, 200, 

Viscous dissipation, 203, 

Turbulent flow 

  Boundary-layer flow, 211, 

  Circular tube flow, 17,  

  Fluctuation, 18, 70, Intensity, 71, 193, 

  Turbulent core, 206, 

  Turbulent flux of heat and mass, 195, 

  Turbulent transport, 194, 

Two-film theory, 67,  

Vapor-liquid equilibrium constant,  

      (see Distillation) 

Valves, 78, 

Check, 79, Diaphragm, 78, 

  Gate, 78, Globe, 28, 79,  

Vector, 3,  

  Unit vector, 21, Vector equation, 38, 41, 43, 44, 

Velocity 

  F-factor, 137, 150, (see Distillation) 

  Friction velocity, 206, 

  Velocity fluctuation, 18, 70, 84, 192, 

  Velocity profile: 1/7th power law, 18, 219, 

Mass-average velocity, 11 (see Diffusivity) 

Molar-average velocity, 11 (see Diffusivity) 

Non-Newtonian, 53, 54, 

Superficial velocity, 118, 137, 149,  

Universal velocity profile, 207, 

Viscous sublayer, 206, buffer layer, 206, turbulent 

core, 206, 

Viewpoints 

  Eulerian, 3, 204, Lagrangian, 3, 205, 

Viscosity 

  Definition (Newton’s law), 7, Kinematic, 8, 

Volumetric transfer coefficient 

   Absorption, 113, Distillation, 146~149,  

Vortex 

  Cellular vortex, 51, (Taylor vortex) 

Water-cooling, 159, (Packed bed) 

  Enthalpy balance, 161, 

  Operating line, 161, Tie line, 161, 

Wet-bulb temperature, 154, (see Humidification), 

Yield stress, 14, 52,  (see non-Newtonian fluid) 
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