

PDF issue: 2025-12-05

Origin of host-specificity resistance genes of common wheat against non-adapted pathotypes of Pyricularia oryzae inferred from D-genome diversity in synthetic hexaploid wheat lines

Inoue, Yoshihiro Vy, Trinh Thi Phuong Asuke, Soichiro Matsuoka, Yoshihiro Tosa, Yukio

(Citation)

Journal of General Plant Pathology, 87(4):201-208

(Issue Date) 2021-07

(Resource Type) journal article

(Version)

Accepted Manuscript

(Rights)

© The Phytopathological Society of Japan and Springer Japan KK, part of Springer Nature 2021. This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any…

(URL)

https://hdl.handle.net/20.500.14094/90008419

Origin of host specificity resistance genes of common wheat against non-adapted 1 pathotypes of Pyricularia oryzae inferred from a D genome diversity in synthetic 2 hexaploid wheat lines 3 4 Yoshihiro Inoue¹ · Trinh Thi Phuong Vy¹ · Soichiro Asuke¹ · Yoshihiro 5 6 Matsuoka² · Yukio Tosa¹ 7 ¹ Laboratory of Plant Pathology, Graduate School of Agricultural Science, Kobe 8 9 University, Nada, Kobe 657-8501, Japan ² Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui 910-1195, Japan 10 Current address of Y. Inoue: The Sainsbury Laboratory, Norwich NR4 7UH, UK 11 12 13 Corresponding author: Yukio Tosa E-mail: tosayuki@kobe-u.ac.jp 14 Phone: +81-78-803-6544 15 16 Total text pages: 16 17 Numbers of tables: 4 18 Numbers of figures: 2 19 20 21 22 23

Abstract

Wheat resistance genes, *Rwt3* and *Rwt4*, constitute host specificity barrier against non-wheat pathotypes of the blast fungus, *Pyricularia oryzae*. To understand the origin of these host specificity resistance genes, we examined their distribution in *Aegilops tauschii*, a wild wheat progenitor species with the D genome, using synthetic hexaploid lines derived from crosses between *Triticum turgidum* cv. Langdon and 54 *Ae. tauschii* accessions which cover natural habitat regions and lineages of the species. Infection assays with transformants carrying their corresponding avirulence genes (*PWT3* and *PWT4*) revealed different distribution patterns of the two resistance genes. *Rwt3* was present in the TauL1 and TauL2 lineages with wider geographic distribution, while *Rwt4* was mainly present in the TauL2 and TauL3 lineages with narrow geographic distribution. Co-occurrence of *Rwt3* and *Rwt4* was observed exclusively in a TauL2 sublineage which has been suggested to be a probable donor of the D genome to common wheat. This result suggests that *Rwt3* and *Rwt4* in common wheat is likely to have been derived from *Ae. tauschii* individual(s) carrying both genes, and that the common ancestor of common wheat had both genes when it was established through amphidiploidization.

Key words *Pyricularia oryzae*, *Magnaporthe oryzae*, *Aegilops tauschii*, resistance gene, avirulence gene

Introduction

To cope with biotic stresses imposed by pathogenic microorganisms, plants have developed immunity system that prevents infection by most of the potential pathogenic organisms (Cook et al. 2015). Only limited number of successful pathogens, which can suppress or circumvent host immunity by delivering 'effector' molecules, cause diseases on a plant species (Ayliffe and Sorensen 2019). As a counter defense against such successful pathogens, plants have resistance (*R*) genes which specifically recognize the presence of pathogen-derived effector molecules encoded by avirulence (*AVR*) genes and induce strong resistance to halt pathogen proliferation (Dodds and Rathjen 2010). *R* genes typically encode NBS-LRR receptors (NLRs) (Jones et al. 2016). In plant genomes, hundreds of NLRs with different signatures of selection are encoded, implying the arms race coevolution with rapidly evolving pathogens (de Vries et al. 2020; Frantzeskakis et al. 2020; Van de Weyer et al. 2019). Although genome sequence-based understanding of plant *R* gene repertoires and evolution are developing, knowledge on how *R* genes have evolved during the evolution of host species from its ancestral species is still limited.

Wheat blast, caused by fungal pathogen *Pyricularia oryzae* (syn. *Magnaporthe oryzae*) *Triticum* pathotype, is one of the most devastating diseases of wheat, which, under favorable climate conditions, leads to up to 100% yield losses (Cruz and Valent 2017). Although now becoming a threat to wheat cultivation in South America and South Asia, wheat blast is a relatively new disease that appeared \sim 35 years ago in Brazil. Emergence of the wheat blast fungus was attributed to the circumvention of recognition by wheat R genes involved in host specificity through loss or mutation of their corresponding AVR genes in its ancestral lineages of P. oryzae (Inoue et al. 2017). As wheat R genes against Avena and Lolium isolates (pathotypes) of P. oryzae, we have

71 identified Rwt3 and Rwt4, which recognize corresponding AVR genes, PWT3 and PWT4, respectively (Takabayashi et al. 2002; Vy et al. 2014). Rwt3 was effective against both 72 pathotypes because PWT3 was present in both, while Rwt4 was effective against the 73 Avena pathotype alone because PWT4 was present in the Avena pathotype but absent in 74 the *Lolium* pathotype. *Rwt3* and *Rwt4* were widely distributed (> 75%) in common wheat 75 landraces from worldwide and thus considered to have served as host specificity barrier 76 against non-wheat pathotypes of *P. oryzae* (Inoue et al. 2017). Our previous researches 77 revealed that both Rwt3 and Rwt4 resided on the D genome (chromosome 1D) of common 78 wheat (Hirata et al. 2005; Vy et al. 2014). 79 Aegilops tauschii Coss. (2n = 2x = 14, genome DD) is a diploid self-pollinating 80 81 species and the D genome donor of common wheat (Kihara 1944; McFadden and Sears 82 1944). Ae. tauschii has a wide geographic range of distribution from northern Syria and Turkey to western China in Eurasia with its center of distribution in the southern coastal 83 region of the Caspian Sea and Azerbaijan. Previous studies suggested that the population 84 85 of Ae. tauschii was composed of three intraspecific lineages, named TauL1, TauL2, and TauL3 (Matsuoka et al. 2013). TauL1 and TauL2 lineages were further divided into 86 sublineage groups, which markedly differed in their patterns of geographic distributions 87 (Matsuoka et al. 2015). The D genome of Ae. tauschii is considered to have been 88 introduced into common wheat (*Triticum aestivum* (L.) Thell., 2n = 6x = 42, genome 89 AABBDD) through natural hybridization with tetraploid wheat (*Triticum turgidum* L., 2n 90 = 4x = 28, genome AABB) about 8,000 years ago (Nesbitt and Samuel 1996). 91 Allohexaploid wheat plants can be artificially produced through hybridization of 92 tetraploid wheat and Ae. tauschii, which are called synthetic hexaploid wheat (Kihara 93 1944; Kihara and Lilienfeld 1949; McFadden and Sears 1944). Recently, Matsuoka, 94 Takumi, and their colleagues developed synthetic hexaploid lines by crossing Ae. tauschii 95

core collections with *T. turgidum* cv. Langdon and used them to analyze a phenotypic diversity derived from *Ae. tauschii* D genomes in the hexaploid background (Kajimura et al. 2011; Matsuoka et al. 2007; Nishijima et al. 2014; Takumi et al. 2009).

In the present study, we surveyed the distribution of the two host specificity resistance genes, *Rwt3* and *Rwt4*, in *Ae. tauschii* accessions using those synthetic hexaploid lines. Based on responses of the synthetic hexaploid lines against fungal strains either with or without their corresponding *AVR* gene, we determined the presence/absence of *Rwt3* and *Rwt4* in 54 *Ae. tauschii* accessions which covered natural habitat regions and lineages of this species. We found accessions carrying both genes exclusively in a TauL2 sublineage at a high frequency. This result provided a clue to infer evolutionary trajectories of the host specificity *R* genes widely distributed in common wheat landraces.

Materials and Methods

Plant materials

Wheat cultivars used were *T. aestivum* cv. Norin 4 (N4), Chinese Spring (CS), Transfed (Tfed), Hope, and *T. turgidum* ssp. *durum* cv. Langdon (Ldn). Synthetic hexaploid wheat lines derived from crosses between Ldn and 54 *Ae. tauschii* accessions (Kajimura et al. 2011; Matsuoka et al. 2007; Takumi et al. 2009) were provided by Dr. S. Takumi, Kobe University.

Fungal materials

Fungal materials used were *Pyricularia oryzae Triticum* isolate Br48 [*pwt3;pwt4*], *Avena* isolate Br58 [*PWT3;PWT4*], and their derivatives, Br48+3 (a transformant of Br48 carrying transgene *PWT3* derived from Br58, strain M-16), Br48+4 (a transformant of Br48 carrying transgene *PWT4* derived from Br58, strain XB-6) (Inoue et al. 2017), and 61M2 [*pwt3;PWT4*] (an F₁ culture derived from a cross, Br58 x Br48) (Takabayashi et al. 2002). 61M2 had been used for the identification of *Rwt4* (Takabayashi et al. 2002). They were transferred from PDA slants to oatmeal agar media just before use and incubated at 25°C.

Infection assay

Wheat seeds were sown in vermiculite supplied with liquid fertilizer in a seedling case $(5.5 \times 15 \times 10 \text{ cm})$ and grown at 22°C in a controlled-environment room or growth chambers with a 12-h photoperiod of fluorescent lighting (50-100 μ mol m⁻² s⁻¹) at 50-70% relative humidity for 7-8 days. Primary leaves of the seedlings were fixed onto a hard plastic board with rubber bands just before inoculation.

Conidial suspensions (1×10^5 spores/ml) with 0.01% (v/v) Tween 20 prepared as described previously (Vy et al. 2014) were sprayed on the adaxial surface of primary leaves (5-10 ml suspension / 20 leaves) with an air compressor. The inoculated plants were put in trays, covered by cling wrap to maintain high humidity, and incubated in darkness for 24 h at 22-25°C. They were then transferred to the dry condition with the fluorescent lighting and incubated further at 22-25°C. Symptoms were evaluated at five days after inoculation based on the size and the color of lesions. The size was rated using six progressive grades from 0 to 5: 0, no visible evidence of infection; 1, pinhead spots; 2, small lesions (<1.5 mm); 3, lesions with an intermediate size (<3 mm); 4, large typical

lesions; and 5, complete shriveling of leaf blades. These lesions were classified into two categories based on their color: B, brown; and G, green. Infection types were represented by the combination of the size score and the color code. For example, infection type 2B indicated small lesions accompanied by brown tissues. Infection types 0 and those with "B" were considered resistant (avirulent), while infection types with "G" were considered susceptible (virulent). Five seedlings were employed for each fungal strain/wheat line combination in one replication. All infection assays were repeated twice.

Results

Establishment of a system for wheat genotyping based on specific recognition of corresponding AVR genes

To survey the distribution of *Rwt3* and *Rwt4*, we first established a system for rapid genotyping based on responses to transformants carrying avirulence genes. Inoue et al. (2017) already applied this system to the survey of these resistance genes in common wheat accessions, but did not mention the process of its establishment. Here, we describe the process in detail. *Rwt3* and *Rwt4* correspond to *PWT3* and *PWT4*, respectively, in a one-to-one manner. Therefore, if an accession responds to *PWT3*, we can infer that it carries *Rwt3*. If another accession responds to *PWT4*, we can infer that it carries *Rwt4*. The presence/absence of these specific responses can be detected by comparing a response of an accession against Br48 with its responses against a Br48 transformant carrying *PWT3* (strain M-16, hereafter called Br48+3) and a Br48 transformant carrying *PWT4* (strain XB-6, hereafter called Br48+4). Actually, N4, which is known to carry both resistance genes (Takabayashi et al. 2002; Vy et al.

2014), is susceptible to Br48 but resistant to Br48+3 and Br48+4 (Table 1). CS, which is known to carry *Rwt3* but lack *Rwt4* (Takabayashi et al. 2002; Vy et al. 2014), is susceptible to Br48 and Br48+4 but resistant to Br48+3 (Table 1).

To complete this system, we looked for a cultivar that responded to Br48+4 but

not to Br48+3. Consequently, we found Tfed, a cultivar that showed this type of response (Table 1). Tfed should obviously lacks *Rwt3* because it is susceptible to Br48+3, but is expected to carry *Rwt4* because it is resistant to Br48+4. To check if this inference is correct, a segregation analysis was performed using 61M2 which had been used for the identification of *Rwt4* in N4 (Takabayashi et al. 2002). 61M2 is an F₁ culture derived from Br58 x Br48 that carries *PWT4* alone. Against this culture, Tfed was resistant while Hope was susceptible (Table 1). When F₂ seedlings derived from Tfed x Hope were inoculated with 61M2, resistant and susceptible seedlings segregated in a 3:1 ratio (Table 2), suggesting that the resistance of Tfed to 61M2 is controlled by a single gene. However, a cross between Tfed and N4 produced no susceptible seedlings even when the population size was expanded to more than 400 (Table 2). These results suggest that Tfed carries *Rwt4* as expected from its contrastive reactions to Br48 and Br48+4. Taken together, we concluded that the presence/absence of *Rwt3* and *Rwt4* can be determined based on the infection assay with the set of tester strains (Br48, Br48+3, and Br48+4).

Genotyping of Ae. tauschii accessions through infection assays with synthetic wheat lines

Rwt3 and *Rwt4* are both located on the 1D chromosome of common wheat (Hirata et al. 2005; Vy et al. 2014), and therefore assumed to be derived from the D genome donor, *Ae*.

tauschii. Ae. tauschii is a wild wheat progenitor, and due to its wild nature, difficult to handle compared with cultivated wheat. In addition, its first leaf is too thin and small to determine infection types. To overcome these shortcomings of Ae. tauschii, we employed synthetic hexaploid wheat lines derived from crosses between a tetraploid wheat cultivar Ldn and Ae. tauschii accessions (Kajimura et al. 2011; Matsuoka et al. 2007; Takumi et al. 2009) for infection assays with the tester strains. Because Ldn is susceptible to the tester strains (Table 1), resistance responses in synthetic hexaploid lines, if they occur, should be attributable to Ae. tauschii accessions used for their production. Actually, we detected differential responses against the tester strains in the synthetic hexaploid lines, which enabled us to determine the presence/absence of Rwt3 and Rwt4 in Ae. tauschii accessions used for the crosses. Reactions of four representative lines are shown in Fig. 1 as examples.

Distinct patterns of the distribution of Rwt3 and Rwt4 in Ae. tauschii lineages

To reveal the distribution of *Rwt3* and *Rwt4* in *Ae. tauschii* population, the tester strains were sprayed onto synthetic hexaploid lines with the D genomes derived from 54 *Ae. tauschii* accessions that covered the diversity of natural habitat ranges and intraspecific lineages/sublineages of the species (Table 3). *Rwt3* and *Rwt4* were detected in 17 (31.5%) and 26 (48.1%) lines, respectively (Table 4). *Rwt3* was detected in two major lineages, TauL1 and TauL2, and distributed across the species habitat range, while *Rwt4* was mainly detected in TauL2 and TauL3, and restricted to the Transcaucasus and Middle East region (Fig. 2).

Detection of accessions carrying both genes at a high frequency and exclusively in

the TauL2b sublineage

Our previous research with ~500 common wheat landraces suggested that both *Rwt3* and *Rwt4* were widely distributed in more than 75% of the landraces (Inoue et al. 2017). The rate of co-occurrence of the two genes (percentage of accessions carrying both genes) was ~70%, which led us to a hypothesis that both genes were harbored by a common ancestor of common wheat when it was established by amphidiploidization of the AB and D genomes, but have been degraded differentially in ~30% of landraces. If this is the case, the actual D genome donor should carry both genes. To verify this hypothesis, we checked if any accession/lineage/sublineage of *Ae. tauschii* carried both *Rwt3* and *Rwt4*. The co-occurrence of *Rwt3* and *Rwt4* was observed at high frequency (58.8%) and exclusively in the TauL2b sublineage (Table 4). The accessions carrying both genes were mainly distributed in the southern coast of the Caspian Sea (Fig. 2b).

Discussion

In the present study, the distribution of *Rwt3* and *Rwt4* in *Ae. tauschii*, a progenitor species of common wheat, was verified by using synthetic hexaploid wheat lines derived from crosses between a tetraploid wheat cultivar (Ldn) and a panel of *Ae. tauschii* accessions covering the natural habitat and lineages. We found accessions carrying both *R* genes among those collected in the southern coast of the Caspian Sea (Fig. 2), which had been suggested to be the birthplace of common wheat based on comparative gene analysis (Tsunewaki 1966). In addition, all these two gene-carriers belonged to the TauL2b sublineage which has been suggested to be involved in the establishment of common

wheat. Nishijima et al. (2014) reported, through the genetic analysis of glaucous phenotype and cuticular wax loci in Ae. tauschii, that glaucous Ae. tauschii accessions in the TauL2 lineage (including the TauL2b sublineage in the present study) were likely involved in the origin of hexaploid common wheat. Recently, Matsuoka and Takumi (2017) showed that TauL2 accessions had actually higher potential for natural hybridization with *T. turgidum*. Considering their geographical distribution together, they concluded that the southern coastal region of the Caspian Sea is a good candidate for the place of origin of common wheat. Taken together, we suggest that the D genome donor to common wheat was Ae. tauschii individual(s) carrying both R genes. This implies that the common ancestor of common wheat gained the two R genes simultaneously from such Ae. tauschii individual(s). This idea may explain why Rwt3 and Rwt4 are widely distributed in common wheat landraces with a high rate of co-occurrence (Inoue et al. 2017). An alternative scenario is that a common ancestor of common wheat gained Rwt3 from an accession of Ae. tauschii carrying Rwt3 alone while another common ancestor gained Rwt4 from an accession of Ae. tauschii carrying Rwt4 alone, and that following hybridization between these two common ancestors resulted in the establishment of common wheat carrying both genes. However, this seems unlikely because Ae. tauschii accessions carrying Rwt3 alone were not detected in the TauL2 lineage (Table 3, Fig. 2). In contrast to Rwt4, Rwt3 was found not only in the TauL2 lineage but also in the TauL1 lineage, including the TauL1b sublineage which has spread eastwards (Fig. 2). This may suggest that Rwt3 may have provided some adaptive advantages to Ae. tauschii in eastern habitats. Since PWT3 corresponding to Rwt3 is widely conserved in the population of P. oryzae, Rwt3 may have prevented various strains of the blast fungus from infecting Ae. tauschii. Alternatively, Rwt3 may have defended this species against other pathogens than P. oryzae. This may be one factor which enabled the TauL1 lineage to

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

270 expand its distribution from the Transcaucasus-Middle East region to Central Asia (Matsuoka et al. 2015; Mizuno et al. 2010). Further analyses are needed to understand the 271 evolutionary trajectories or the origin of the two R genes in wheat and its wild relatives. 272 Cloning of these R genes would facilitate the evolutionary analysis based on nucleotide 273 274 sequences. 275 **Acknowledgments** We would like to express our sincere gratitude to Dr. S. Takumi, 276 Kobe University, for providing the synthetic hexaploid lines and valuable suggestions. 277 278 He was supposed to be a coauthor of this article, but passed away before we started writing the manuscript. We also thank Dr. M. Moscou, The Sainsbury Laboratory, 279 Norwich UK, for useful suggestions on the title of this article. 280 281 Compliance with ethical standards 282 283 284 **Conflict of interest** The authors declare that they have no conflict of interest. **Ethical approval** This article does not contain any studies with human participants or 285 286 animals performed by any of the authors. 287

288	References
289	
290	Ayliffe M, Sørensen CK (2019) Plant nonhost resistance: paradigms and new
291	environments. Curr Opin Plant Biol 50:104–113
292	Cook DE, Mesarich CH, Thomma BPHJ (2015) Understanding plant immunity as a
293	surveillance system to detect invasion. Annu Rev Phytopathol 53:541-563
294	Cruz CD, Valent B (2017) Wheat blast disease: danger on the move. Trop Plant Pathol
295	42:210–222
296	de Vries S, Stukenbrock EH, Rose LE (2020) Rapid evolution in plant-microbe
297	interactions – an evolutionary genomics perspective. New Phytol 226:1256–1262
298	Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-
299	pathogen interactions. Nat Rev Genet 11:539-548
300	Frantzeskakis L, Di Pietro A, Rep M, Schirawski J, Wu C-H, Panstruga R (2020) Rapid
301	evolution in plant-microbe interactions – a molecular genomics perspective. New
302	Phytol 225:1134–1142
303	Hirata K, Tosa Y, Nakayashiki H, Mayama S (2005) Significance of PWT4-Rwt4
304	interaction in the species specificity of Avena isolates of Magnaporthe oryzae on
305	wheat. J Gen Plant Pathol 71:340-344
306	Inoue Y, Vy TTP, Yoshida K, Asano H, Mitsuoka C, Asuke S, Anh VL, Cumagun CJR,
307	Chuma I, Terauchi R, Kato K, Mitchell T, Valent B, Farman M, Tosa Y (2017)
308	Evolution of the wheat blast fungus through functional losses in a host specificity
309	determinant. Science 357:80–83
310	Jones JDG, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices
311	in plants and animals. Science 354:aaf6395

312	Kajimura T, Murai K, Takumi S (2011) Distinct genetic regulation of flowering time and
313	grain-filling period based on empirical study of D-genome diversity in synthetic
314	hexaploid wheat lines. Breed Sci 61:130-141
315	Kihara, H (1944) Discovery of the DD-analyser, one of the ancestors of <i>Triticum vulgare</i> .
316	Agric Hort 19: 889–890 (in Japanese)
317	Kihara H, Lilienfeld F (1949) A new synthesized 6x-wheat. In: Proceedings of the 8th
318	International Congress of Genetics, Hereditas, Supplement, pp. 307–319
319	Matsuoka Y, Takumi S, Kawahara T (2007) Natural variation for fertile triploid F ₁
320	hybrid formation in allohexaploid wheat speciation. Theor Appl Genet 115:509-
321	518
322	Matsuoka Y, Nasuda S, Ashida Y, Nitta M, Tsujimoto H, Takumi S, Kawahara T (2013)
323	Genetic basis for spontaneous hybrid genome doubling during allopolyploid
324	speciation of common wheat shown by natural variation analyses of the paternal
325	species. PLoS ONE 8:e68310
326	Matsuoka Y, Takumi S, Kawahara T (2015) Intraspecific lineage divergence and its
327	association with reproductive trait change during species range expansion in
328	central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae). BMC Evol Biol
329	15:213
330	Matsuoka Y, Takumi S. (2017) The role of reproductive isolation in allopolyploid
331	speciation patterns: empirical insights from the progenitors of common wheat.
332	Sci Rep 7: 16004
333	McFadden ES, Sears ER (1944) The artificial synthesis of <i>Triticum spelta</i> . Rec Genet Soc
334	Am 13:26–27
335	Mizuno N, Yamasaki M, Matsuoka Y, Kawahara T, Takumi S (2010) Population
336	structure of wild wheat D-genome progenitor Aegilops tauschii Coss.:

337	implications for intraspecific lineage diversification and evolution of common
338	wheat. Mol Ecol 19:999-1013
339	Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history
340	of hulled wheats. In: Padulosi S, Hammer K, Heller J (eds.) Hulled wheats:
341	Promoting the conservation and use of underutilized and neglected crops. Int.
342	Plant Genet. Resources Institute, Rome, pp. 41–100
343	Nishijima R, Iehisa JCM, Matsuoka Y, Takumi S (2014) The cuticular wax inhibitor locus
344	Iw2 in wild diploid wheat Aegilops tauschii: phenotypic survey, genetic analysis,
345	and implications for the evolution of common wheat. BMC Plant Biol 14:246
346	Takabayashi N, Tosa Y, Oh HS, Mayama S (2002) A gene-for-gene relationship
347	underlying the species-specific parasitism of Avena/Triticum isolates of
348	Magnaporthe grisea on wheat cultivars. Phytopathology 92:1182–1188
349	Takumi S, Naka Y, Morihiro H, Matsuoka Y (2009) Expression of morphological and
350	flowering time variation through allopolyploidization: an empirical study with 27
351	wheat synthetics and their parental Aegilops tauschii accessions. Plant Breed
352	128:585–590
353	Tsunewaki K. (1966) Comparative gene analysis of common wheat and its ancestral
354	species, II. waxiness, growth habit and awnedness. Jpn J Bot 37: 175-229
355	Van de Weyer A-L, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones
356	JDG, Dangl JL, Weigel D, Bemm F (2019) A species-wide inventory of NLR
357	genes and alleles in Arabidopsis thaliana. Cell 178:1260-1272.e14
358	Vy TTP, Hyon G-S, Nga NTT, Inoue Y, Chuma I, Tosa Y (2014) Genetic analysis of
359	host-pathogen incompatibility between Lolium isolates of Pyricularia oryzae and
360	wheat. J Gen Plant Pathol 80:59-65

Figure	legends
--------	---------

Fig. 1. Reactions of wheat primary leaves to *Pyricularia oryzae* Br48 (*Triticum* isolate), a Br48 transformant carrying *PWT3* (Br48+3, strain M-16), and a Br48 transformant carrying *PWT4* (Br48+4, strain XB-6). Ldn, *T. turgidum* ssp. *durum* cv. Langdon. The other four wheat lines are synthetic hexaploids derived from crosses between Ldn and different *Aegilops tauschii* accessions. Wheat (on the left) and fungal (on the top) genotypes are indicated in the parentheses. The minus (-) symbols represent recessive/nonfunctional alleles. Inoculated leaves were incubated at 25°C for five days.

Fig. 2. Geographic distribution of *Aegilops tauschii* accessions with different *Rwt3/Rwt4* genotypes. (a) The TauL1 sublineages. TauL1a, TauL1b, and TauL1x are represented by square, circle, and triangle symbols, respectively. (b) The TauL2 and TauL3 sublineages. TauL2a, TauL2b, TauL2x, and TauL3 are represented by square, circle, triangle, and diamond symbols, respectively. Each accession is color-coded according to its *Rwt3* and *Rwt4* genotypes. Numbers on x and y axes indicate Longitude and Latitude, respectively.

Table 1. Reaction of representative hexaploid and tetraploid wheat cultivars to *Triticum* isolate Br48 of *Pyricularia oryzae* and its transformants carrying *PWT3* or *PWT4*.

				Infection type ^a with			
Species	Cultivar	Genomes	Genotype	Br48	Br48+3 ^b	Br48+4 ^b	61M2
T. aestivum	Norin 4 (N4)	ABD	Rwt3/Rwt4	4-5G	1B	0	1B
T. aestivum	Chinease Spring (CS)	ABD	Rwt3/rwt4	4G	1-2B	4G	4G
T. aestivum	Transfed (Tfed)	ABD	rwt3/Rwt4	5G	4-5G	1B	0
T. aestivum	Норе	ABD	rwt3/rwt4	5G	3G	5G	4G
T. turgidum ssp. durum	Langdon (Ldn)	AB	rwt3/rwt4	5G	4G	4-5G	ND

^a After 5-day incubation at 22°C. 0, no visible infection; 1, pinhead spots; 2, small lesions (<1.5 mm); 3, scattered lesions of intermediate size (<3 mm); 4, large typical lesions; and 5, complete shriveling of leaf blades. B, brown lesion; G, green lesion. Resistant reactions are shown in bold. Representative infection type scores from two independent experiments (total n = 10) are shown. ND, not determined.

^b Br48+3, a Br48 transformant (M-16) carrying *PWT*3; Br48+4, a Br48 transformant (XB-6) carrying *PWT4*; 61M2, an F₁ culture derived from a cross, Br58 (*Avena* isolate) x Br48.

Table 2. Segregation of reactions to 61M2, an F₁ culture derived from Br58 x Br48, in $\ensuremath{\mathsf{F}}_2$ populations derived from crosses between wheat cultivars

No. of F ₂ seedlings							
Cross	Resistant ^a	Susceptible ^b	Total	X ² (3:1)	Р		
Tfed x Hope (rwt3/rwt4)	148	38	186	2.1	0.15		
Tfed x N4 (Rwt3/Rwt4)	419	0	419	-			

^a Infection type 0-5B ^b Infection type 3G-5G

Table 3. Reaction of synthetic hexaploid wheat lines derived from crosses between *Triticum turgidum* cv. Langdon and *Aegilops tauschii* accessions against *Triticum* isolate Br48 of *Pyricularia oryzae* and its transformants carrying *PWT3* or *PWT4*.

Code of	Ae. tauschii accession			Infection type ^c with			Genotype ^e		
synthetic hexaploid	Code	Locality	Source ^a	Lineage ^b	Br48	Br48+3 ^d	Br48+4 ^d	Rwt3	Rwt4
026	KU-2816	Armenia	KYOTO	TauL1a	3-5G	2B	3-4G	+	_
067	KU-2810	Armenia	KYOTO	TauL1a	5G	3B	5G	+	_
068	KU-2814	Armenia	KYOTO	TauL1a	5G	3B	5G	+	_
069	KU-2824	Armenia	KYOTO	TauL1a	5G	2B	5G	+	_
057	KU-2144	Iran	KYOTO	TauL1a	5G	4-5G	0-1B	_	+
086	KU-2152	Iran	KYOTO	TauL1a	5G	4G	5G	_	_
6027	PI 476874	Afghanistan	USDA	TauL1b	5G	3-4G	5G	_	_
031	KU-2059	Afghanistan	KYOTO	TauL1b	5G	2B	4G	+	_
064	KU-2022	Afghanistan	KYOTO	TauL1b	5G	2B	4G	+	_
6029	PI 499262	China	USDA	TauL1b	5G	3G	5G	_	_
030	PI 508262	China	USDA	TauL1b	5G	4G	5G	_	_
001	AE 1090	Kazakhstan	IPK	TauL1b	5G	3-4G	5G	_	_
6045	IG 131606	Kyrgyzstan	ICARDA	TauL1b	4-5G	2B	4-5G	+	_
6088								•	_
	IG 46663	Pakistan	ICARDA	TauL1b	5G	3-4G	5G	_	_
093	CGN 10768	Pakistan	CGN	TauL1b	5G	3G	5G	-	_
094	CGN 10770	Pakistan	CGN	TauL1b	5G	4G	5G	_	_
091	IG 48554	Tajikistan	ICARDA	TauL1b	5G	4G	5G	-	_
044	IG 126387	Turkmenistan	ICARDA	TauL1b	5G	3-4G	5G	-	-
047	IG 48042	India	ICARDA	TauL1x	5G	5G	5G	_	_
087	KU-2157	Iran	KYOTO	TauL1x	5G	4G	5G	_	_
002	IG 47259	Syria	ICARDA	TauL1x	5G	4-5G	5G	-	-
032	KU-2811	Armenia	KYOTO	TauL2a	5G	4G	0	-	+
023	KU-2155	Iran	KYOTO	TauL2a	5G	3-4G	0	_	+
024	KU-2156	Iran	KYOTO	TauL2a	5G	4-5G	0	-	+
051	KU-20-8	Iran	KYOTO	TauL2a	5G	4G	5G	_	_
075	KU-2083	Iran	KYOTO	TauL2a	5G	3-5G	5G	_	_
083	KU-2118	Iran	KYOTO	TauL2a	5G	4G	5G	_	_
021	KU-2132	Turkey	KYOTO	TauL2a	5G	4-5G	5G	_	_
022	KU-2136	Turkey	KYOTO	TauL2a	5G	4-5G	5G	_	_
004	KU-20-10	Iran	KYOTO	TauL2b	4-5G	2B	0	+	+
010	KU-2088	Iran	KYOTO	TauL2b	5G	2B	0	+	+
012	KU-2090	Iran	KYOTO	TauL2b	5G	2-3B	0	+	+
013	KU-2091	Iran	KYOTO	TauL2b	5G	2-3B 2B	0	+	+
014	KU-2091	Iran	KYOTO	TauL2b	5G 5G	4G	0		+
016	KU-2098		KYOTO	TauL2b TauL2b	5G 5G	4G 3G	0	_	· -
		Iran						_	T.
017	KU-2103	Iran	KYOTO	TauL2b	3-4G	2B	0	+	Ŧ
019	KU-2109	Iran	KYOTO	TauL2b	5G	4G	5G	-	-
025	KU-2158	Iran	KYOTO	TauL2b	4G	2B	0	+	+
035	KU-2106	Iran	KYOTO	TauL2b	5G	2B	0	+	+
052	KU-2092	Iran	KYOTO	TauL2b	5G	4G	0	-	+
053	KU-2105	Iran	KYOTO	TauL2b	3-4G	2B	0	+	+
059	KU-2159	Iran	KYOTO	TauL2b	5G	3G	0	-	+
060	KU-2160	Iran	KYOTO	TauL2b	5G	3-4G	0	-	+
080	KU-2102	Iran	KYOTO	TauL2b	5G	4-5G	0	-	+
082	KU-2108	Iran	KYOTO	TauL2b	5G	2B	0	+	+
089	IG 46623	Syria	ICARDA	TauL2b	3G	2B	0	+	+
006	KU-2076	Iran	KYOTO	TauL2x	5G	3-4G	5G	_	_
007	KU-2078	Iran	KYOTO	TauL2x	5G	3-5G	5G	_	_
008	KU-2079	Iran	KYOTO	TauL2x	5G	4G	0	_	+
011	KU-20-9	Iran	KYOTO	TauL2x	5G	3-4G	0	_	+
050	KU-2075	Iran	KYOTO	TauL2x	5G	3-4G 4G	0	_	+
039	AE 454		IPK	TauL2X	5G 5G	4G 4G	0		· -
		Georgia					_	_	T _
040	AE 929	Georgia	IPK	TauL3	5G	4G	0	_	+
063	KU-2829A	Georgia	KYOTO	TauL3	5G	4-5G	0	_	+

^a CGN, Centre for Genetic Resources, The Netherlands; ICARDA, International Center for Agricultural Research in the Dry Areas; IPK, Institut für Pflanzengenetik und Kulturpflanzenforschung; KYOTO, Plant Germ-plasm Institute of Kyoto University; USDA, US Department of Agriculture.

^b Refer to Matsuoka et al. (2015).

^c After 5-day incubation at 22°C. 0, no visible infection; 1, pinhead spots; 2, small lesions (<1.5 mm); 3, scattered lesions of intermediate size (<3 mm); 4, large typical lesions; and 5, complete shriveling of leaf blades. B, brown lesion; G, green lesion. Resistant reactions are shown in bold. Representative infection type scores from two independent experiments (total n = 9-10) are shown.

^d Br48+3, a Br48 transformant (M-16) carrying *PWT*3; Br48+4, a Br48 transformant (XB-6) carrying *PWT4*.

^e+, present; –, absent. Genotypes were determined based on the reactions to Br48+3 and Br48+4.

Table 4. Distribution of *Rwt3* and *Rwt4* in *Aegilops tauschii* accessions inferred from genotyping of synthetic hexaploid lines

Linoago ^a	Number (percen	tage) of accessions		
Lineage ^a	Rwt3	Rwt4	Rwt3 and Rwt4	Total
TauL1a	4 (66.7 %)	1 (16.7 %)	0 (0.0 %)	6
TauL1b	3 (25.0 %)	0 (0.0 %)	0 (0.0 %)	12
TauL1x	0 (0.0 %)	0 (0.0 %)	0 (0.0 %)	3
TauL2a	0 (0.0 %)	3 (37.5 %)	0 (0.0 %)	8
TauL2b	10 (58.8 %)	16 (94.1 %)	10 (58.8 %)	17
TauL2x	0 (0.0 %)	3 (60.0 %)	0 (0.0 %)	5
TauL3	0 (0.0 %)	3 (100.0 %)	0 (0.0 %)	3
Total	17 (31.5 %)	26 (48.1 %)	10 (18.5 %)	54

^a Refer to Matsuoka et al. (2015).

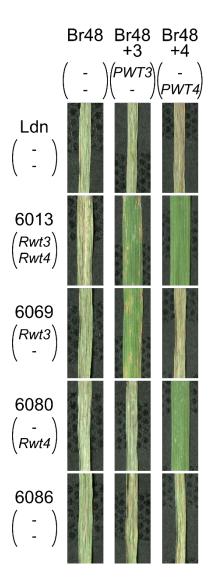


Fig. 1

Fig. 1. Reactions of wheat primary leaves to *P. oryzae* Br48 (*Triticum* isolate), a Br48 transformant carrying *PWT3* (Br48+3, strain M-16), and a Br48 transformant carrying *PWT4* (Br48+4, strain XB-6). Ldn, *T. turgidum* ssp. *durum* cv. Langdon. The other four wheat lines are synthetic hexaploids derived from crosses between Ldn and different *Ae. tauschii* accessions. Wheat (on the left) and fungal (on the top) genotypes are indicated in the parentheses. The minus (-) symbols represent recessive/nonfunctional alleles. Inoculated leaves were incubated at 25°C for five days.

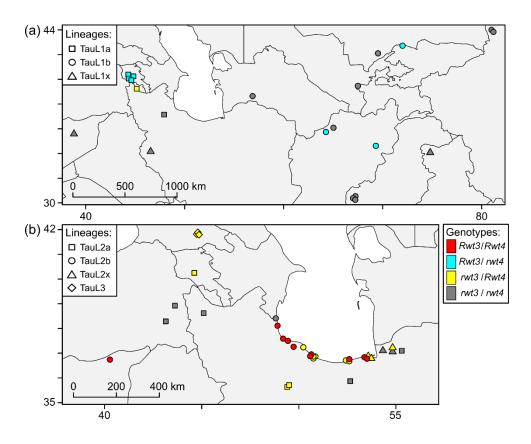


Fig. 2

Fig. 2. Geographic distribution of *Ae. tauschii* accessions with different *Rwt3/Rwt4* genotypes. (a) The TauL1 sublineages. TauL1a, TauL1b, and TauL1x are represented by square, circle, and triangle symbols, respectively. (b) The TauL2 and TauL3 sublineages. TauL2a, TauL2b, TauL2x, and TauL3 are represented by square, circle, triangle, and diamond symbols, respectively. Each accession is color-coded according to its *Rwt3* and *Rwt4* genotypes. Numbers on x and y axes indicate Longitude and Latitude, respectively.