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Summary 1 

Broiler chickens eat more food and grow faster than layer chickens. However, hyperphagia-2 

induced excessive accumulation of body fat in broiler chickens has become a serious problem 3 

in the modern poultry industry. Species specificity in terms of the physiological role of 4 

appetite-regulating hormones and neuropeptides can make it difficult to understand the 5 

mechanisms underlying the central regulation of food intake in chickens. Therefore, although 6 

the appetite regulatory system of chickens has been a focus of research in recent decades, the 7 

mechanisms underlying the hyperphagia of broiler chickens is not fully understood. Our 8 

previous studies demonstrated that peripheral hormones significantly suppress food intake in 9 

chicks. These findings suggest that postprandial elevation of peripheral anorexigenic 10 

hormones play important roles in appetite regulation in chickens. This review provides an 11 

overview of recent findings on the role of peripheral hormones in the regulation of food 12 

intake in chickens and propose the new insight of avian-species specific system of peripheral 13 

regulation of food intake and promising strategies for reducing body fat mass in broiler 14 

chickens. 15 

Key words: adiposity, appetite, gut hormones, satiety 16 

 17 

Introduction 18 

Modern broiler chickens, which are bred for rapid growth and high meat yield, develop 19 

hyperphagia. Consequently, their overconsumption of food can lead to excessive 20 

accumulation of visceral fat, which is regarded as an animal by-product or as waste. In 21 

addition, excessive fat accumulation may lead to metabolic diseases, which are serious 22 
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problems for the poultry industry (Julian 2005). Thus, the appetite regulatory system of 23 

chickens has been a focus of research in recent decades (Denbow 1994; Richards and 24 

Proszkowiec-Weglarz, 2007; Boswell and Dunn 2017). In mammals, appetite is regulated in 25 

response to the energy demands of the body. For example, adiposity signals, such as leptin 26 

and insulin, provide information about body fat mass to the brain, and thereby suppress 27 

appetite (Schwartz et al. 2000). Satiety signals, such as cholecystokinin (CCK), peptide YY 28 

(PYY), and glucagon-like peptide-1 (GLP-1), provide information about meal intake to the 29 

brain, and thereby suppress appetite (Sam et al. 2012; Woods 2009). However, lines of 30 

evidence suggest that the physiological roles of these signals are different between mammals 31 

and chickens. The role of adiposity signals, satiety signals, and other signals in chickens is 32 

summarized herein, and new insight and future perspectives are provided. 33 

 34 

Adiposity signals 35 

 36 

Leptin 37 

The hyperphagic and obese phenotypes of ob/ob mice are a result of a lack of gene 38 

encoding leptin, a hormone secreted by adipocytes (Zhang et al. 1994). Lines of evidence 39 

revealed that leptin plays an important role as an adiposity signal in mammals (Schwartz et al. 40 

2000). In chickens, central administration of mammalian leptin suppressed food intake in 41 

broiler and layer chickens (Denbow et al. 2000). However, avian orthologs of leptin are 42 

densely expressed in the brain, but not in the adipose tissue, in chickens (Seroussi et al. 2016; 43 

Farkašová et al. 2016) and zebra finches (Huang et al. 2014). Miller (2014) concluded that the 44 
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orthologs are not compatible with an adipocyte signaler to appetite centers in the 45 

hypothalamus in mammals. Leptin receptors are densely expressed in the pituitary in chickens 46 

(Seroussi et al. 2016), rock doves (Friedman-Einat et al. 2014), zebra finches (Huang et al. 47 

2014), and Japanese quails (Wang et al. 2016). All these findings suggest that leptin does not 48 

function as an adiposity signal in chickens, although it may play other physiological roles in 49 

in the brain. 50 

 51 

Insulin 52 

In mammals, the pancreatic hormone insulin is known to be an adiposity signal (Schwartz 53 

et al. 2000). An orexigenic peptide neuropeptide Y (NPY) and an anorexigenic peptide α-54 

melanocyte stimulating hormone (α-MSH) are involved in the appetite suppressive pathway 55 

of insulin in the central nervous system (Schwartz et al. 2000; Woods 2009). There is 56 

evidence that central administration of insulin suppresses food intake in chicks (Honda et al. 57 

2007; Shiraishi et al. 2008). Shiraishi et al. (2011) demonstrated co-localization of the insulin 58 

receptor and α-MSH or NPY in the infundibular nucleus of the chick hypothalamus. We also 59 

showed that hypothalamic Akt-mediated signaling is involved in the anorexigenic action of 60 

insulin, the same as in mammals (Saneyasu et al. 2018). All these findings suggest that insulin 61 

plays an important role in appetite regulation in chickens. However, blood insulin levels were 62 

not correlated with abdominal fat mass in chickens (Honda et al. 2015a). It is therefore 63 

possible that insulin does not function as an adiposity signal in chickens. On the other hand, 64 

lines of evidence clearly demonstrated that plasma levels of insulin are elevated after 65 

refeeding in chickens (Bigot et al. 2003; Richards and McMurtry 2008). It seems likely that 66 
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insulin functions as a satiety signal in chickens. Further study is required to clarify the 67 

physiological importance of insulin in the regulation of food intake in chickens. 68 

 69 

Adipokines 70 

Adipokines play a pivotal role in the metabolic homeostasis of healthy subjects (Cao 71 

2014). Daković et al. (2014) suggested a loss of adipokine genes in the chicken genome. 72 

Thus, the physiological roles of adiposity signals in the appetite regulatory system could be 73 

lost in birds and may have developed subsequently in mammals. However, Resnyk et al. 74 

(2013) reported that chicken abdominal fat serves a dual function as both an endocrine organ 75 

and an active metabolic tissue. Nesfatin-1, an adipokine in mammals, was detected in the 76 

serum of chickens (Morton et al. 2018) and has an anorectic effect in broiler chicks 77 

(Heidarzadeh et al. 2018). Tumor necrosis factor-like ligand 1A was expressed in adipose 78 

tissue in chickens (Takimoto et al. 2005) and its central administration suppressed food intake 79 

in layer chicks (Tachibana et al. 2018). Expression of adiponectin and its receptors in avian 80 

species have been well investigated (Ramachandran et al. 2013), but there is no evidence 81 

indicating that adiponectin regulates food intake in chickens. Further study is required to 82 

clarify the physiological role of adipokines in the regulation of food intake in chickens. 83 

 84 

Satiety signals 85 

 86 

Cholecystokinin 87 

CCK has long been known as a satiety signal in mammals (Woods 2013). In chickens, 88 
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both central and peripheral administration of CCK suppressed food intake (Tachibana et al. 89 

2012). Dunn et al. (2013) reported that decreased expression of the satiety signal receptor 90 

CCKAR was responsible for increased growth and body weight following the domestication 91 

of chickens. These findings suggest that CCK plays a physiological role in chickens. 92 

However, potent stimulators of CCK release did not alter the food intake in chickens (Furuse, 93 

1999). Devazepide, a cholecystokinin-A receptor antagonist, did not increase the food intake 94 

in chickens (Choi et al. 1994). CCK mRNA was densely expressed in the distal small intestine 95 

in chickens (Honda et al. 2017), although the proximal small intestine is the CCK production 96 

area in mammals (CÔTÉ et al. 2012). Therefore, the physiological importance of CCK in the 97 

regulation of food intake in chickens has not yet been clarified. 98 

 99 

Glucagon-like peptides 100 

GLP-1 and GLP-2 are brain gut peptides resulting from cleavage of the precursor 101 

preproglucagon in mammals and chickens (Janssen et al. 2013; Richards and McMurtry 102 

2008). GLP-1 functions as a satiety signal, and GLP-2 plays a physiological role as an 103 

intestinal growth factor in mammals (Janssen et al. 2013; Sam et al. 2012). In chickens, 104 

central administration of GLP-1 strongly suppressed food intake (Honda et al. 2015b). 105 

Intestinal L cells secrete GLP-1 in response to food ingestion in chickens, and proteins and 106 

amino acids such as lysine and methionine in the diet triggered GLP-1 secretion from the 107 

chicken intestinal L cells (Hiramatsu 2019). However, plasma levels of GLP-1 were not 108 

changed by 24 h of fasting or refeeding in chickens (Richards MP, McMurtry 2008). On the 109 

other hand, we found that central and peripheral administration of GLP-2 significantly 110 
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suppressed food intake in chicks (Honda et al. 2015b, 2015c). There is evidence that GLP-2 111 

colocalized with GLP-1 in the same secretory granules in the ileum (Nishimura et al. 2013). 112 

These findings suggest that GLP-2 plays an important role as a satiety signal in chickens. 113 

 114 

Peptide YY 115 

PYY was regarded as an orexigenic peptide in mammals (Hagan 2002). However, 116 

Baterham et al. (2002) clearly demonstrated that PYY physiologically suppresses food intake 117 

via the NPY Y2 receptor (Y2R) in mammals. Therefore, PYY is regarded as a satiety signal in 118 

mammals. In chickens, PYY mRNA levels were significantly higher under ad libitum feeding 119 

conditions than under a 12-h-fasting condition (Aoki et al. 2017). An in vitro binding assay 120 

demonstrated that chicken PYY preferentially binds to Y2R (Salaneck et al. 2000). Y2R 121 

mRNA was expressed in the brain and peripheral tissues of chickens (Bromée et al. 2006). We 122 

recently found that the intravascular administration of chicken PYY significantly decreased 123 

the food intake of chicks in a dose-dependent manner (Aoki et al. 2017). These findings 124 

suggest that PYY functions as a satiety signal in chickens as well as in mammals. 125 

PYY-immunoreactive cells were detected in the duodenum and jejunum of chickens (El-126 

Salhy et al. 1982). We recently found that chicken PYY mRNA was densely expressed in the 127 

small intestine but not in the large intestine (Aoki et al. 2017). Reid et al. (2017) found that 128 

the pancreas is the major site of PYY transcription and that the major site of gastrointestinal 129 

PYY expression is around the distal jejunum in broiler chickens. In contrast, PYY was 130 

abundantly expressed in the large intestine rather than the small intestine in mammals (Ekblad 131 

and Sundler 2002; Zhou et al. 2006; Ueno et al. 2008). These findings suggest a species-132 
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specific difference in the physiological roles of PYY between mammals and chickens. 133 

 134 

Other signals 135 

Ghrelin 136 

Ghrelin functions as an orexigenic hormone in mammals; it suppresses food intake and 137 

ghrelin plasma levels of it decrease after meals (Sam et al. 2012). However, the role of ghrelin 138 

in appetite regulatory systems seems to be different between mammals and chickens. For 139 

example, central and peripheral administration of ghrelin significantly suppressed food intake 140 

in chickens (Kaiya et al. 2013), while plasma ghrelin levels were elevated after fasting, and 141 

the elevation of plasma ghrelin was reversed by refeeding in chicks and Japanese quail 142 

(Shousha et al., 2005a; Kaiya et al., 2007). Ghrelin had an anorexigenic action in amphibians 143 

and fish (Jönsson 2013; Shimizu et al. 2014). All these findings suggest that the physiological 144 

role of ghrelin as a hunger signal may be lost in birds. Insulin and glucocorticoid stimulate 145 

ghrelin secretion in chickens, in contrast to mammals (Song et al. 2018). The abundant 146 

expression of ghrelin and its receptor in the liver and abdominal fat pad may be associated 147 

with energy balance (Song et al. 2019). Therefore, the role of ghrelin on the appetite and fat 148 

metabolism in chickens would be different from that of ghrelin in mammals. 149 

 150 

Insulin-like growth factor-1 151 

Duclos et al. (1999) suggested that the insulin-like growth factor (IGF) system in birds 152 

exhibits the same general characteristics as in mammals. Recent findings also suggested that 153 

IGF-1 upregulates the protein synthetic pathway and downregulates the protein degradative 154 
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pathway in chicken myotube cultures (Nakashima and Ishida 2017; Nakashima et al. 2017). 155 

In mammals, the anorexigenic effect of IGF-1 has been observed only in diabetic rats (Lu et 156 

al. 2001). Birds maintain higher plasma glucose concentrations than other vertebrates of 157 

similar body mass (Braun and Sweazea 2008). However, the effect of IGF-1 on food intake in 158 

chickens has not been investigated. We recently found that central and peripheral 159 

administration of IGF-1 significantly suppressed food intake in chicks (Fujita et al. 2017). 160 

There is evidence that plasma levels of IGF-1 are elevated by refeeding in chickens (Kita et 161 

al. 1998). We also showed that hypothalamic Akt-mediated signaling is involved in the 162 

anorexigenic action in IGF-1 (Fujita et al. 2019). These findings suggest that IGF-1 functions 163 

as a satiety signal in chickens. The hepatic mRNA levels of insulin-like growth factor binding 164 

protein (IGFBP)-1 and 2 decreased after refeeding in chicks (Fujita et al. 2018), suggesting 165 

that IGFBP-1 and 2 may negatively regulate the anorexigenic function of IGF-1 in chickens. 166 

Further study is needed clarify the physiological importance of IGF-1 and IGFBPs in the 167 

regulation of food intake in chickens. 168 

 169 

Myokines 170 

Birds need to have adequate breast muscles for wing flapping. However, too much breast 171 

muscle increases body weight and can interfere with the ability to fly. It is therefore possible 172 

that birds have evolved to maintain an optimum weight of skeletal muscles for flying. Skeletal 173 

muscles produce and secrete myokines including irisin, interleukin 6 (IL6), interleukin 8 174 

(IL8), and brain-derived neurotrophic factor (BDNF), which exert auto-, para- and/or 175 

endocrine effects (Schnyder and Handschin 2015). Central administration of irisin suppressed 176 
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food intake in diabetic rodents (Duan et al. 2016). Therefore, some myokines act as appetite-177 

regulating hormones in mammals. In chickens, Byerly et al. (2009) concluded that BDNF 178 

may constitute a homeostatic mechanism that links hypothalamic energy regulation to control 179 

body composition, but the appetite-suppressive action of BDNF has not been investigated. 180 

Visfatin, an adipokine in mammals, is highly expressed in the skeletal muscles in chickens 181 

(Krzysik-Walker et al. 2008; Li et al. 2017). Plasma visfatin levels determined by enzyme 182 

immunoassay were significantly higher in 8-wk-old compared with 4-wk-old broiler chickens 183 

(Krzysik-Walker et al. 2008). Central administration of visfatin significantly increased food 184 

intake in broiler (Cline et al. 2008) and layer chicks (Li et al. 2018). Li et al. (2018) concluded 185 

that visfatin causes hyperphagia via the proopiomelanocortin/corticotropin-releasing hormone 186 

(CRH) and NPY/agouti-related protein (AgRP) signaling pathways in layer chicks. Tachibana 187 

et al. (2017) showed that intracerebroventricular injection of IL6 and IL8 did not influence 188 

food intake in chicks. Further study is required to clarify the physiological role of myokines 189 

as an appetite regulating hormone in chickens. 190 

 191 

Conclusion and future perspectives 192 

Peripheral signals from circulating hormones released from the adipose tissue, pancreas, 193 

and gastrointestinal tract are integrated in the brain, which in turn regulates food intake in 194 

mammals (Schwartz et al. 2000; Morton et al. 2006; Woods and D'Alessio 2008; Woods 195 

2009). However, physiological roles of peripheral hormones are different between mammals 196 

and chickens as described below. 197 

Adiposity signals including leptin and insulin are involved in the long-term regulation of 198 
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food intake, whereas satiety signals including gut hormones are involved in the short-term 199 

regulation of food intake in mammals. In addition, satiety signal CCK appears to interact with 200 

long-term signal leptin in rodents (Barrachina et al. 1997; Emond et al. 1999). On the other 201 

hand, a peripheral hormone that is involved in the long-term regulation of food intake in 202 

chickens have not been identified. In particular, identification of avian leptin genes (Huang et 203 

al. 2014; Seroussi et al. 2016; Farkašová et al. 2016) would be enough to change our belief 204 

described in the previous review articles (Richards and Proszkowiec-Weglarz 2007). In this 205 

review, myokines emerge as candidates of peripheral hormones involved in the long-term 206 

regulation of food intake in chickens. Further study will be required not only to identify the 207 

physiologically important myokine but also to evaluate the relationships with other signals 208 

including short-term satiety signals. 209 

In contrast to the long-term signals, satiety signals would play more important roles in the 210 

short-term regulation of food intake in chickens when compared with mammals. For example, 211 

GLP-2 and IGF-1, which are not regarded as appetite regulating hormones in mammals, seem 212 

to play important roles as a satiety signal in chickens. Birds need to fly. Therefore, birds may 213 

have developed not to increase intestinal content as much as possible. However, the effects of 214 

coadministration of satiety signals have not been examined, although these molecules 215 

coordinately elevated in the bloodstream after food intake. In addition, the elevation of portal 216 

vein nutrients such as glucose and amino acids suppressed food intake in chickens (Shurlock 217 

and Forbes 1984). Gut fullness might also influence appetite in birds (Boswell and Dunn 218 

2017). There is evidence that a satiation threshold is composed of not only hormones, but also 219 

nutrients and other factors in mammals (Woods 2009). Taken together, further study will be 220 
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required to evaluate the relationships with satiety factors such as hormones, gut fullness, and 221 

nutrients. 222 

In mammals, the brain integrates incoming information in the form of hormonal and 223 

neural signals via hypothalamus and brainstem (Schwartz et al. 2000; Morton et al. 2006; 224 

Woods and D'Alessio 2008; Woods 2009). For example, insulin and leptin are sensed by 225 

neurons in the hypothalamic arcuate nucleus, which contains two functionally different 226 

neurons: (a) neurons that suppress food intake by releasing α-MSH; and (b) neurons that 227 

stimulate food intake by releasing NPY and/or AgRP (Schwartz et al. 2000; Morton et al. 228 

2006; Woods and D'Alessio 2008). The actions of α-MSH, NPY, and AgRP are mediated by 229 

downstream neuropeptides, such as CRF in the paraventricular nucleus and MCH and orexin 230 

in the lateral hypothalamic area (Schwartz et al. 2000). There is evidence that CCK and 231 

proglucagon in the nucleus of the solitary tract are involved in the anorexigenic pathway of 232 

leptin (Garfield et al. 2012). CCK-mediated suppression of feeding involves brainstem 233 

melanocortin system (Fan et al. 2004). Similar model in poultry was proposed in birds 234 

(Richards and Proszkowiec-Weglarz 2007; Bungo et al. 2011; Boswell and Dunn 2017). 235 

However, it is presently uncertain how the regulation of the central melanocortin system in 236 

birds is brought about in the situation of the apparently reduced importance of leptin and 237 

ghrelin compared to mammals (Boswell and Dunn 2017). Also, interaction and cascades of 238 

appetite-regulating neuropeptides between hypothalamic and brainstem have not been 239 

identified in chickens. Furthermore, Song et al. (2013) proposed the model of AMPK actions 240 

on hypothalamic gene expressions of chickens as well as in mammals (Woods 2009). Our 241 

recent findings suggest that hypothalamic Akt-mediated signaling regulates food intake in 242 
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chicks (Saneyasu et al. 2018; Fujita et al. 2019). Further studies is needed to investigate the 243 

effects of peripheral hormones on signaling molecules and neurotransmitters including 244 

neuropeptides in the brainstem and clarify the detailed mechanism underlying the integration 245 

of peripheral signals in the brain of chickens. 246 

Supplementation of gut hormone secretagogues in feed to adequately suppress feed intake 247 

may be effective for reducing body fat mass in broiler chickens. Also, if myokines provide 248 

information about changes in the skeletal muscle mass to the brain, and thereby suppress 249 

appetite, an increase in skeletal muscle mass could be a reasonable approach to reduce body 250 

fat mass in broiler chickens. In conclusion, understanding the physiological roles of peripheral 251 

hormones in the regulation in chickens will provide new strategies for reducing body fat mass 252 

in broiler chickens. 253 

 254 
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