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We derive constraints on scalar field theories coupled to gravity by using recently developed positivity
bounds in the presence of gravity. It is found that a canonically normalized real scalar cannot have an
arbitrarily flat potential unless some new physics enters well below the Planck scale. An upper bound on
the scale of new physics is determined by loop corrections to the self-energy. Our result provides a
swampland condition for scalar potentials.
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I. INTRODUCTION

Scalar fields play an important role in various contexts of
physics. In particle physics, the Higgs boson is a key
ingredient of the Standard Model. In cosmology, we need
the inflaton to realize the early universe inflation. More
theoretically, moduli fields are crucial to understand the
Landscape of quantum field theory models. In these
contexts, it is important to clarify what kind of scalar
potentials have a consistent ultraviolet (UV) completion,
especially in the presence of gravity.
A starting point in this direction is the widely accepted

statement that quantum gravity prohibits exact global
symmetries and so completely flat potentials are not
allowed [1–3]. Then, the question is how one can formulate
more quantitative constraints useful for phenomenology.
Indeed, several bounds on scalar potentials have been
proposed in the swampland program [4] with various
degrees of rigors and motivations [5–13] (see also
[14,15] for reviews). The conjectured bounds, if true, have
interesting implications for particle physics and cosmology,
which motivates further studies toward their derivation.
In this paper, we explore quantum gravity constraints on

scalar potentials in light of recently developed gravitational
positivity bounds [16–18]. In nongravitational theories, it is
well known that Wilson coefficients of low-energy effective
field theories (EFTs) have to satisfy an infinite set of
inequalities called positivity bounds in order to have a
standard UV completion [19]. While its extension to
gravitational theories has been nontrivial due to the
graviton t-channel pole, the conditions under which
(approximate) positivity bounds should hold are clarified

by recent works [16–18] (see [20–22] for related discus-
sions). Following this, we study a real scalar coupled to
gravity in 4 dimensions,

L ¼ M2
pl

2
R −

1

2
ð∂ϕÞ2 − VðϕÞ þ Lhigher þ � � � ; ð1Þ

and use the gravitational positivity bounds to derive
constraints on the scalar potential VðϕÞ and the higher
derivative terms Lhigher, clarifying assumptions and limi-
tation of its applicability. Here, R and Mpl denote Ricci
scalar and the reduced Planck mass, respectively.

II. GRAVITATIONAL POSITIVITY BOUNDS

In this study, we assume aweakly coupled UV completion
of gravity, whose illustrative example is perturbative string
theory. The scattering amplitude will be then unitary and
analytic order by order in perturbative expansions in terms of
Mpl. Below, we simply write the ϕϕ → ϕϕ scattering
amplitude up to OðM−2

pl Þ as Mðs; tÞ. Here, ðs; t; uÞ are
Mandelstam variables satisfying sþ tþ u ¼ 4m2

ph, where
m2

ph is the pole mass of ϕ. We assume that Mðs; t < 0Þ is
analytic in the complex s-plane except for discontinuities
across the real s-axis, and it behaves mildly at high energies
to satisfy jMðs; t < 0Þ=s2j → 0 in the limit jsj → ∞
(t: fixed).1 Then, the s; u-channel pole subtracted amplitudefMðs; tÞ ≔ Mðs; tÞ − ðs; u-polesÞ also satisfies the same
properties. These assumptions lead to the relation (see also
Fig. 1)
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1In gapped systems, this mild behavior follows from the
polynomial boundedness assumption [23,24] in combination
with the Phragmén-Lindelöf theorem. Positivity bounds in the
absence of the polynomial boundedness assumption are dis-
cussed in [25].
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−
Z
Cr

ds0

2πi
M̃ðs0; tÞ
ðs0 − s�Þ3

¼
Z
C1þC2

ds0

2πi
M̃ðs0; tÞ
ðs0 − s�Þ3

for t < 0;

ð2Þ

where s� ¼ 2m2
ph − ðt=2Þ þ iμ and μ > 0. The contour Cr is

a semicircle centered at s ¼ s� with a radius r. The contours
C1 and C2 are straight lines defined by C1 ≔ fs0j −∞þ
iμ < s0 < s� − rg and C2 ≔ fs0js� þ r < s0 < ∞þ iμg,
respectively. Next, we consider the low-energy expansion,fMðs; tÞ ¼ P∞

n¼0
cnðt;μÞ
n! ðs − s�Þn þ ðt-polesÞ. The residue

of poles are polynomials and particularly we have
∂2
sRest¼0M ¼ −2M−2

pl , Rest¼0M being the residue of the
graviton t-channel pole. This reflects the spin-2 nature of
graviton. The real part of Eq. (2) in the limit r → þ0 then
gives

Rec2ðt; μÞ ¼
32

π
P
Z

∞

0

ds0
ImfMsðs0 þ iμ; tÞ

ðs0 − u0Þ3 þ 2

M2
plt

ð3Þ

for t < 0. Here, u0 ≔ 4m2
ph − s0 − t and P denoting the

Cauchy principal value. We decomposed ImfM into the s-

and u-channel pieces as ImfMðs; tÞ ¼ ImfMsðs; tÞ þ
ImfMuðs; tÞ for t < 0, and imposed the s ↔ u crossing

symmetry as ImfMuðu; tÞ ¼ ImfMsðs; tÞ. We also used

ImfMsðs; tÞ ¼ 0 for s < 0. One can evaluate the integral

of ImfMsðs0; tÞ at low energy regions s0 < Λ2
th within EFT

[26,27] to improve (3) as2

c2;imprðtÞ ≔ Rec2ðt; ϵÞ −
32

π
P
Z

Λ2
th

0

ds0
ImfMsðs0 þ iϵ; tÞ

ðs0 − u0Þ3

¼ 32

π

Z
∞

Λ2
th

ds0
ImfMsðs0 þ iϵ; tÞ

ðs0 − u0Þ3 þ 2

M2
plt

; ð4Þ

where ϵ is an infinitesimal positive constant and Λth denotes
a threshold scale above which the EFT evaluation of M is
unreliable: e.g., we have Λth ≲ Λ when considering a model
with a term ð∂ϕÞ4=Λ4. We assume Λ2

th ≫ m2
ph throughout

this study. The second term on the right-hand side (rhs) of (4)
diverges as −∞ in the limit t → −0. This makes the
positivity of c2;imprð0Þ unclear. In [17], the cancellation of
Oðt−1Þ terms on the rhs of (4) is explicitly demonstrated by
assuming the Regge behavior3

ImfMsðs; tÞ ≃ fðtÞ
�

s
M2

s

�
2þjðtÞ�

1þO
�
M2

s

s

��
þ � � � ;

ð5Þ

at s ≫ M2
s , where fðtÞ and jðtÞ are functions regular in the

vicinity of t ¼ 0. A scaleMs denotes the lightest mass scale
of the heavy physics which Reggeizes the amplitude. An
explicit computation of the Oðt0Þ terms shows [17]

c2;imprð0Þ > −
Oð1Þ
M2

plM
2
s
; ð6Þ

assuming the single scaling j0 ∼ jj00=j0j ∼ jf0=fj≲OðM−2
s Þ

which is the case in tree-level amplitudes in perturbative
string theory withMs being the string scale. Here, the prime
denotes the t-derivative evaluated at t ¼ 0.4 Although the
precise value of the rhs of (6) will depend on the details of
UV completion, this approximate positivity provides non-
trivial constraints on EFTs as we shall see below.

III. BOUNDS ON SCALAR THEORIES COUPLED
TO GRAVITY

A. Setup

Based on an inequality (6), we shall derive a bound on a
real scalar field theory coupled to gravity whose classical
Lagrangian is given by Eq. (1), with classical potential
VðϕÞ and higher derivative terms Lhigher of the form

VðϕÞ ¼ m2ϕ2

2
þ gϕ3

3!
þ λϕ4

4!
þ � � � ;

Lhigher ¼
αð∂ϕÞ4
8Λ4

þ � � � ;

FIG. 1. Analytic structure of fMðs; tÞ on the complex s-plane
and the integration contour to derive the relation (2). The wavy
line is a brunch cut and the point s ¼ s� is the reference point. We
choose s� ¼ 2m2

ph − ðt=2Þ þ iμ (μ > 0).

2An importance of the improvement procedure done in (4) to
obtain nontrivial constraints on EFTs in the gravitational setups
has been found recently in [21,28].

3If we go beyond the OðM−2
pl Þ analysis, the Oðln−1ðs=M2

s ÞÞ
subleading correction to the Regge behavior plays an important
role as discussed in [18]. Also, we suppressed the positive
contributions from other states which are irrelevant for the
Reggeization of t-channel graviton exchange in (5).

4A similar order estimate of approximate positivity can be
found in [16,29]. A proof of the single scaling is beyond the
scope of this paper. The bound (6) is distinct from the one
conjectured in [21,28] which depends on the EFT cutoff scales or
mass scales of fields in EFTs.
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where α is a constant of order unity. Ellipses stand for higher
order nonrenormalizable terms which are present in general
in the classical action because we regard this system as an
EFT. Our choice of Lhigher is necessary and sufficient for
taking into account the influence of higher derivative
corrections on positivity bounds up to OðΛ−4Þ, thanks to
the invariance of M under perturbative field redefinitions.
We require jg=mj, jλj≲ 1 to ensure the perturbative

expansion of M in terms of coupling constants. We also
require that the minimum of VðϕÞ is located at ϕ ¼ 0 at
least within the range jϕj ≲ Λth to justify the perturbative
evaluations of Mðs; tÞ up to s≲ Λ2

th.
We use the dimensional regularization to regulate UV

divergences and adopt the MS scheme except we determine
the counterterm of the form Yϕ by imposing hϕi ¼ 0 (see
Appendices for details).

B. General bound

We compute c2;imprð0Þ. We may decompose c2;imprð0Þ
into the nongravitational piece and the gravitational piece,
c2;imprð0Þ ¼ cnon-grav þ cgrav. Diagrams without gravitons
and those with gravitons contribute to cnon-grav, and cgrav,
respectively. We start with the nongravitational one. The
contributions from nonrenormalizable terms such as
αð∂ϕÞ4=ð8Λ4Þ and ϕ6=Λ2 can be written as α̃=Λ4. We
have α̃ ¼ α when considering a renormalizable potential.
Renormalizable interactions also contribute to cnon-grav via s,
u-channel one-loop diagrams. Referring to the latter con-
tributions as cnon-grav;ren, we have cnon-grav ¼ α̃

Λ4 þ cnon-grav;ren
with

cnon-grav;ren ≃
λ2

16π2Λ4
th

þ g4

12π2m2Λ6
th

−
λg2

6π2Λ6
th

�
ln

�
Λ2
th

m2

�
−
1

6

�
: ð7Þ

When ϕ is a shift symmetric scalar, one can always make
cnon-grav positive by choosing α > 0, the coefficient of the

higher derivative term ð∂ϕÞ4. This is reminiscent of the
conventional positivity bound without gravity.
The presence of the gravitational piece cgrav changes the

story, however. In particular, loop corrections to the
graviton t-channel exchange diagram give rise to negative
contributions to which we refer as cgrav;t−ch: corresponding
diagrams are shown in Fig. 2. Note that we are interested in
amplitudes up to OðM−2

pl Þ, so that we can use the tree-level
graviton propagator together with the loop-corrected one-
particle irreducible (1PI) vertices.5 To compute cgrav;t-ch, we
write the 1PI effective action Γ as

Γ½ϕ;h�∋−
1

2

Z
d4k
ð2πÞ4Kðk

2ÞϕðkÞϕð−kÞ

þ1

4

Z
d4k1
ð2πÞ4

Z
d4k3
ð2πÞ4V

μνðk1;k3Þϕðk1Þϕðk3ÞhμνðqÞ;

ð8Þ

where we suppressed terms irrelevant for our present
analysis. Also, gμν ¼ ημν þ hμν and qμ ≔ −ðk1 þ k3Þμ.
The kernel Kðk2Þ denotes an inverse of a loop-corrected
propagator of ϕ, which is written in terms of the self-energy
Πðk2Þ as Kðk2Þ ¼ k2 þm2 − Πðk2Þ. The 1PI ϕϕh vertex
function is denoted by Vμνðk1; k3Þ and we parametrize it
with imposing the on-shell conditions k21 ¼ k23 ¼ −m2

ph as

Vμνðk1; k3Þjk2
1
¼k2

3
¼−m2

ph
¼ Tðq2Þημν þ Pðq2Þqμqν

− 2Qðq2Þðpμqν þ pνqμÞ
þ 4Rðq2Þpμpν: ð9Þ

Here, we defined pμ ≔ ðk1 − k3Þμ=2. For example, at the
tree-level approximation, we have T tree ¼ k1:k3 −m2,
Ptree ¼ −1=2, Qtree ¼ 0, and Rtree ¼ 1=2. The final term
on the rhs of (9) expresses the transverse-traceless compo-
nent of hμν, and only this piece contributes to the spin-2 part
of the t-channel graviton exchange diagrams which are
represented by the lower diagram of Fig. 2,

Mðs; tÞjFIG: 2 ¼
4R2ð−tÞsu

M2
plt

× Z2 þOðs0Þ; ð10Þ

where we used q2 ¼ −t and Z is the residue of the
propagator of ϕ. We then find the relation cgrav;t-ch ¼
8Z2∂xðR2ðxÞÞjx¼0=M

2
pl ≃ 8R0ð0Þ=M2

pl to get

FIG. 2. Diagrams (i): Relevant 1PI diagrams for an effective
vertex ϕ2h in the present analysis. Solid lines and double wavy
lines denote the propagators of ϕ and hμν, respectively. Diagrams
(ii): The t-channel diagrams which give negative contributions to
c2;imprð0Þ, expressed in terms of the 1PI vertices shown in the
diagrams (i).

5Note that negative contributions from the t-channel tree-level
graviton exchange have been computed in different setups up to
one-loop level [21,28,30–32].

GRAVITATIONAL POSITIVITY BOUNDS ON SCALAR … PHYS. REV. D 104, 066022 (2021)

066022-3



cgrav;t-ch ≃ −
45 − 8π

ffiffiffi
3

p

1296π2
g2

M2
plm

4
−
10 − π2

4608π4
λ2

M2
plm

2
< 0:

ð11Þ

Note that the leading-order contributions from the ϕ4 vertex
arise at the two-loop level.6 Also note that nonrenormaliz-
able terms in VðϕÞ, such as ϕ6=Λ2 vertex, contribute to
cgrav;t-ch at OðM−2

pl Λ−2Þ, which are negligible compared to
the OðΛ−4Þ contribution to cnon-grav as long as Λ2 ≪ M2

pl.
Interestingly, each term of (11) can be written in terms of
the self-energy Π as

cgrav;t-ch ≃ −
2½Π00ð−m2Þjλ¼0 þ 2Π00ð−m2Þjg¼0�

3M2
pl

; ð12Þ

where unitarity ensures Π00ð−m2Þ > 0 because Πðk2Þ
satisfies the twice-subtracted dispersion relation at least
within the range of our approximation. This implies that
negativity of cgrav;t-ch could be related to the physics of the
loop-corrected self-energy. Although cgrav;t−ch is deter-
mined by the behavior of the vertex ϕ2h when the
momentum of an external graviton is soft, it is not fixed
by the soft graviton theorem alone: see Appendices for
details.
Diagrams other than those shown in Fig. 2 also con-

tribute to cgrav at OðM−2
pl Þ. Such diagrams are the diagrams

with s, u-channel tree-level graviton exchange diagrams,
diagrams with a graviton-scalar conversion, and diagrams
with a graviton propagator inside loops. We refer to these
contributions as cgrav;others, which can be evaluated as

cgrav;others ∼O
�ðg=mÞ2
M2

plΛ2
th

;
λ

M2
plΛ2

th

�
; ð13Þ

and we have cgrav ¼ cgrav;t-ch þ cgrav;others. Practically, the
term cgrav;others can be ignored to read off the implication
of the bound.7 We thus discuss the implications of an
inequality,

α̃

Λ4
þ cnon-grav;ren þ cgrav;t-ch >

−Oð1Þ
M2

plM
2
s
: ð14Þ

Each term is given in Eqs. (7) and (11). Note that this
bound is renormalization scheme independent at least
within the range of our approximation. Also, we do not

distinguish between m and mph because the difference
comes in at higher orders.

C. Analysis of the bound

1. Emergence of a critical scale

The bound (14) is meaningful only when the allowed
negativity on the order of M−2

pl M
−2
s is negligible. We

introduce a critical energy scale Λ� as Λ� ≔
ð−cgrav;t−chÞ−1=4, explicitly given as

Λ� ¼
�
10 − π2

4608π4
λ2

M2
plm

2
þ 45 − 8π

ffiffiffi
3

p

1296π2
g2

M2
plm

4

�−1
4

; ð15Þ

which is determined by the loop corrections to the self-
energy in the present model as indicated by Eq. (12). The
OðM−2

pl M
−2
s Þ term can be ignored in Eq. (14) when the

condition

Applicability Condition∶ minðΛ;Λ�Þ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MplMs

p ð16Þ

is satisfied. Under the condition (16), we discuss the
implications of gravitational positivity bounds (14). It
turns out that implications of (14) are clearly different
between the following two cases,

Case ðIÞ∶ Λ4� ≫ Λ4; Case ðIIÞ∶ Λ4� ≪ Λ4:

2. Case (I): Conventional positivity bounds

EFTs fall into this class when new physics appears well
below the critical scale Λ�. The bound (14) on such models
is well approximated by

α̃

Λ4
þ cnon-grav;ren ≥ 0: ð17Þ

As explained below Eq. (7), this provides a constraint on
nonrenormalizable terms such as αð∂ϕÞ4=ð8Λ4Þ, and is the
same as the conventional positivity bound without gravity.
This is in accord with the decoupling of low-energy physics
from the physics of quantum gravity.

3. Case (II): Bounds on scalar potentials

EFTs fall into this class when new physics appears well
above the critical scaleΛ�. The bound (14) on suchEFTs reads

cnon-grav;ren −
1

Λ4�
≥ 0: ð18Þ

The left-hand side (lhs) of (18) is determined once VðϕÞ is
given, and hence Eq. (18) constrains the potential VðϕÞ. This
is a genuinely new bound which is distinct from the ordinary
positivity bound without gravity. The new bound (18)

6The appearance of the leading-order term at two-loop level is
analogous to the fact that the leading-order correction to the field
renormalization appears at two-loop level in λϕ4 theory.

7This is because the Oððg=mÞ2=ðM2
plΛ2

thÞÞ terms are smaller
than jcgrav;t-chj by factors ofm2=Λ2

th, and theOðλ=ðM2
plΛ2

thÞÞ terms
can be comparable to or larger than theOðλ2=Λ4

thÞ term contained
in cnon-grav;ren only when λ=ðM2

plΛ2
thÞ≲OðM−4

pl Þ.
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typically prohibits an arbitrarily flat potential: for instance, in
λϕ4 theory, Eq. (18) gives a lower bound onm2 for fixedΛth,

m≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10−π2

288π2

s
Λ2
th

Mpl
≈2.8×109

�
Λth

1015GeV

�
2

GeV; ð19Þ

while the applicability condition (16) reads

m < 5.4 × 1012λ

�
Ms

1016 GeV

�
GeV: ð20Þ

Lines saturating Eqs. (19) and (20) are plotted in the ðm;ΛthÞ-
plane in Fig. 3.We find that the mass of the scalar field cannot
be arbitrarily light in λϕ4 theory. In the presence of the cubic
interaction, the expression of the bound (18) is complicated,
but it is obvious that tiny mass is prohibited for fixed λ and
g=m. In particular, when having the scaling g2 ≲ jλjm2, the
bound (18) reads

m≳ Λ2
th

Mpl

�
1.8 × 10−2ðg=mÞ2

λ2
þ 4.6 × 10−5

�
1=2

; ð21Þ

nontrivially constraining VðϕÞ for a given cutoff Λth.

D. Summary of the results

To summarize, scalar potentials cannot be arbitrarily flat
to be consistent with the gravitational positivity bound: for
example, we cannot tune the mass to be arbitrarily smaller
than the cutoff scale Λth without violating the bound (18).
Our result provides a quantitative swampland condition for
scalar potentials which can be derived under several clear
assumptions.
Any scalar field theory coupled to gravity which violates

the bound (18) has to possess appropriate nonrenormalizable
terms such as αð∂ϕÞ4=ð8Λ4Þ with Λ≲ Λ� and α > 0, in
order to satisfy the bound (14). The presence of such

nonrenormalizable terms can be interesting phenomenologi-
cally. This is one of the main result of this study.
As a caveat, we remark however that our bound (14) still

has a room to accommodate models with a very tiny scalar
mass. One can take the shift symmetric limit of a given
massive scalar theory without violating the bound (14) by
requiring Λ� ≫ minðΛ; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MplMs
p Þ.8 For instance, a con-

sistent shift symmetric limit of λϕ4 theory is λ; m2 → 0with
satisfying jλ=mj → 0. It would be interesting if one could
sharpen our analysis further to exclude all the flat
potentials.

IV. ILLUSTRATIVE EXAMPLES

As an important application, we firstly discuss an
implication of the bound (18) to the renormalizable
potential of the Higgs boson in the Standard Model. We
then discuss more general form of potentials with non-
renormalizable terms which have been frequently discussed
in cosmology. We will consider axionlike particle models
and the Starobinsky inflation as illustrative examples of
nonrenormalizable potentials.

A. Renormalizable potential: Higgs boson

Let us consider the implication of (18) to the Higgs
potential. The classical potential for the Higgs boson ϕ in
the unitary gauge is paremetrized as m ∼ 125 GeV,
g=m ∼ 1.5, and λ ∼ 0.75. For these values, the critical scale
reads Λ� ∼ 1011 GeV. Then the applicability condition (16)
reads Ms > 10 TeV, which is indeed satisfied in typical
string theory scenarios. So, it is reasonable to apply the
gravitational positivity bound on the 2 to 2 scattering of the
Higgs boson. Then, (18) for the Higgs potential reads

Λth ≲ 1.9
ffiffiffiffiffiffiffiffiffiffiffi
Mplm

p
≈ 3.4 × 1010 GeV: ð22Þ

Of course, it is necessary to include other Standard Model
particles for more precise argument, but this result poses a
nontrivial question if the Higgs sector of the Standard
Model is in the swampland. We will revisit this aspect in
future work, which would open a new possibility to obtain

FIG. 3. Gravitational positivity bound on λϕ4 theory. Lines
saturating our bound (18) and the applicability condition (16) in
λϕ4 theory are shown in the solid red line and dashes blue line,
respectively. We substitute Ms ¼ 1016 GeV and λ ¼ 10−2 to
draw the dashed lines. The shaded region is excluded by the
bound (18) under the condition (20).

8Such a consistent shift symmetric limit can be explicitly
realized in a model of a light scalar field whose tiny mass is
protected by some symmetry. For instance, we consider the
model of complex scalarΦ in which the approximate globalUð1Þ
symmetry is spontaneously broken,

L ¼ −j∂Φj2 − g
4

�
jΦj2 − v2

2

�
2

þ gv2ϵ
2

ðΦ2 þΦ�2Þ;

with g > 0, v ≠ 0, and 0 < ϵ ≪ 1. One can check that the ϵ → 0
limit provides a consistent shift symmetric limit for the pseudo
Nambu-Goldstone boson.
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nontrivial swampland constraints on the Standard Model
coupled to gravity, particularly the Higgs sector.9

B. Nonrenormalizable potentials

Next, we consider the gravitational positivity bounds on
potentials of the form

VðϕÞ ¼ f2m2
X∞
n¼2

cn
n!

�
ϕ

f

�
n
; ð23Þ

with c2 ¼ 1 and jcnj≲Oð1Þ for n ¼ 3; 4;…. Here, f
denotes some energy scale satisfying f ≫ m. Potentials
of this form have been widely discussed in cosmology. For
the potential (23), the critical scale Λ� reads10

Λ� ¼
�
10 − π2

4608π4
m2

f2
c24 þ

45 − 8π
ffiffiffi
3

p

1296π2
c23

�−1
4

ffiffiffiffiffiffiffiffiffiffi
Mplf

q
; ð24Þ

implying that the bound (18) is reliable only when f ≪ Ms

to satisfy the applicability condition Λ� <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MplMs

p
. This

potential is nonrenormalizable unless fcng∀ n≥5 ¼ 0. In the
presence of nonrenormalizable terms, we need to impose
Λth < f. Under this assumption, we can ignore the con-
tributions from nonrenormalizable terms in VðϕÞ.
As an example, let us consider the case jc3j ∼ jc4j ∼

Oð1Þ with f ≪ Ms. In this case, the bound (18) reads

f ≲ 7.4

���� c4c3
�����m2

Λ2
th

�
Mpl ≪ Mpl: ð25Þ

In the final line, we used Λ2
th ≫ m2. This may be under-

stood as a bound on the flatness of the potential because the
potential becomes flatter for larger values of f. Note that for
given f andm, the bound (25) can also be understood as an
upper bound on the cutoff Λth.
However, we do not always have nontrivial constraint on

nonrenormalizable potentials: models with nonrenormaliz-
able potentials (23) with Z2 symmetry are always consis-
tent with gravitational positivity bound. This is because,
when the bound (18) is violated in such models, we always
find a super-Planckian critical scale Λ�:

Λ� ¼
�
4608π4

10 − π2
f2

m2c24

�1
4

ffiffiffiffiffiffiffiffiffiffi
Mplf

q
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1152π3

c24ð10 − π2Þ

s �
f
Λth

�
Mpl > Mpl: ð26Þ

In the second line, we assume the violation of (19). In the
third line, we used Λth < f and jc4j≲Oð1Þ. This analysis

clarifies that the condition Λth < f is a crucial obstruction
to obtaining the bound on nonrenormalizable potentials
with Z2 symmetry. It would be interesting to embed such
Z2 symmetric potentials into renormalizable QFT models
and study gravitational positivity bounds in these UV
theories to derive nontrivial constraints on nonrenormaliz-
able potentials realized at low energies.

1. Starobinsky inflation

As a concrete example of phenomenologically relevant
model with a nonrenormalizable potential of the form (23),
we firstly consider the Starobinsky inflation model [34] in
which the potential of a scalar field minimally coupled to
gravity is

VðϕÞ ¼ 3

4
M2

plm
2

�
1 − exp

�
−

ffiffiffi
2

3

r
ϕ

Mpl

��2
: ð27Þ

This potential takes the form of (23) with f ∼Mpl. Then we
find that the super-Planckian critical scaleΛ� ≈ 6.2Mpl, and
hence we conclude that the Starobinsky inflation model is
consistent with (14).

2. Axionlike particle

Next, we consider a model of an axionlike particle whose
potential is typically given by

VðϕÞ ¼ f2m2½1 − cosðϕ=fÞ�; ð28Þ

where f is the decay constant. This potential respects Z2

symmetry and nonrenormalizable. We thus conclude that
axionlike particle models are consistent with the gravita-
tional positivity bound (14).
These results suggest consistency between the well-

motivated models and gravitational positivity bounds,
which would support for the assumptions that we used
to derive the gravitational positivity bounds.

V. STRONG SCALAR WEAK GRAVITY
CONJECTURE

It is interesting to compare our bound (18) with a bound
called the strong scalar weak gravity conjecture (SSWGC)
[11–13]. For expansion coefficients of VðϕÞ around the
vacuum at ϕ ¼ 0, the SSWGC reads jξðg=mÞ2 − λj ≥
ðm2=M2

plÞ where ξ is a constant of order unity. In the
absence of the quartic interaction, our bound (18) reads�

g
m

�
2

≥ r
m2

M2
pl

; r ≈ 0.014

�
Λ2
th

m2

�
3

≫ 1; ð29Þ
9See also [33] for implications of gravitational positivity

bounds on the light-by-light scattering in the Standard Model.
10As we explained below Eq. (11), nonrenormalizable terms

give negligible contributions to Λ�.
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which is stronger than the SSWGC bound because we have
Λ2
th ≫ m2 leading to r ≫ 1. Once turning on the quartic

interaction, however, the implication of (18) is different
from but complementary to the one implied by the
SSWGC. The SSWGC basically constrains VðϕÞ for tiny
coupling constants jλj ∼ ðg=mÞ2 ∼Oðm2=M2

plÞ: e.g., the
SSWGC reads f < Mpl for axionlike particles. By contrast,
the bound (18) nontrivially constrains VðϕÞ for larger
coupling constants jλ2 þ ðg=mÞ2j≳ ðm2=M2

s Þ because of
the applicability condition.
It would be interesting to study connections between the

gravitational positivity and various conjectured bounds
on VðϕÞ.

VI. CONCLUSION

We derived a bound on scalar potentials by using the
gravitational positivity bounds with clarifying assumptions
and limitation of its applicability.
We identified the emergence of the critical energy scale

Λ� which is determined in terms of coupling constants of
renormalizable interactions. When the contributions of
higher derivative terms can be ignored at the scale Λ�,
the gravitational positivity bound provides a genuinely new
constraint (18) on the potential VðϕÞ. This is distinct from
the ordinary positivity bounds in the absence of gravity. By
contrast, the conventional positivity bounds for nongravita-
tional theories are recovered when some unknown heavy
physics comes in well below the scale Λ� and the scales of
quantum gravity Mpl and Ms. This is in accord with the
decoupling of low-energy physics from the physics of
quantum gravity.
Interestingly, the critical scale Λ� can be much lower than

the scalesMpl and Ms. Any scalar theory coupled to gravity
which violates the bound (18) has to possess appropriate
nonrenormalizable terms such as αð∂ϕÞ4=ð8Λ4Þ with
Λ≲ Λ�, α being a positive constant of order unity.
Presence of such nonrenormalizable terms can be phenom-
enologically interesting. It is particularly noteworthy that
scalar potentials cannot be arbitrarily flat to be consistent
with the bound (18): for instance, it is violated if we tune the
mass to be much smaller than a given UV cutoff scale. This
suggests the importance of the technical naturalness for
embedding scalar theories into weakly coupled UV com-
pletion of gravity. Our result provides a quantitative

swampland condition for scalar potentials which can be
derived under several clear assumptions.
We also applied (18) to the Higgs boson in the Standard

Model and found a cutoff scale around 1010 GeV in (22),
which is much lower than the Planck scale. One cannot take
this value seriously because we did not include the
contributions from other Standard Model particles, but
our result opens a new possibility to obtain nontrivial
swampland constraints on the Standard Model coupled to
gravity, particularly the Higgs sector. We leave this aspects
for future work. The essential origin of the presence of such
nontrivial constraints is the negative sign of cgrav;t-ch and the
emergence of the critical scale Λ� at the scale much lower
than the quantum gravity scale

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MplMs

p
. We found that Λ�

is determined by Π00ð−m2Þ in the present analysis, Πðk2Þ
being the self energy of ϕ. This indicates that the
emergence of Λ� and its value might be related to the
physics of the loop-corrected self-energy. We leave further
studies along this line of consideration for future work.
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APPENDIX

This Appendix includes detailed computations which are
omitted in the main text. In Appendix A, we compute
Πðk2Þ, the self-energy of ϕ, which is used in (12).
Computations of cnon-grav;ren, cgrav;t-ch, and cgrav;others are
shown in Appendix B, Appendix C, and Appendix D,
respectively.

APPENDIX A: SELF-ENERGY

In this section, we compute the self-energy of ϕ. To get
UV-finite results, it is necessary to add counterterms. After
adding the counterterms which are relevant for our analysis
below, the action (1) becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R −

1

2
ð∂ϕÞ2 −m2

2
ϕ2 −

g
3!
ϕ3 −

λ

4!
ϕ4 − Lct þ � � �

�
;

Lct ¼
δZϕ

2
ð∂ϕÞ2 þ Yϕþ δZmm2

2
ϕ2 þ δZgg

3!
ϕ3 þ δZλλ

4!
ϕ4 þ δZRϕRϕþ δZRϕ2Rϕ2; ðA1Þ
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where the ellipses stand for nonrenormalizable terms which
are irrelevant in the discussion below. Coefficients of
counterterms are δZϕ, Y, δZm, δZg, δZλ, δZRϕ, and
δZRϕ2 . To regulate UV divergences, we use the dimensional
regularization and work in d ¼ 4 − ε dimensions. As the
renormalization condition, we adopt the MS scheme except
we determine the counterterm Yϕ by imposing hϕi ¼ 0. The
value of c2;imprð0Þ turns out to be scheme-independent at the
level of approximation adopted in the present analysis.

1. One-loop

We begin by the one-loop analysis. Since gravitational
corrections to the self-energy are sub-leading and irrelevant
for our purpose in (12), our analysis here focuses on
nongravitational corrections.11 First, the renormalization
condition hϕi ¼ 0 leads to

Y ¼ −
g
2
ð−iÞμ̃4−d

Z
ddl
ð2πÞd iΔðlÞ

¼ gm2

32π2

�
2

ε
− ln

�
m2

μ2

�
þ 1

�
; ðA2Þ

where ΔðkÞ denotes the free propagator of ϕ in momentum
space: iΔðkÞ ≔ ðk2 þm2 − iϵÞ−1. Also, at the second
equality, we defined μ2 ≔ 4πμ̃2 exp½−γ� with γ being the
Euler constant. Next, we compute the self-energy. Relevant
diagrams for the one-loop self-energy are shown in Fig. 4,
which can be computed as

Πone-loopðk2Þ ¼ −
λ

2
ð−iÞμ̃4−d

Z
ddl
ð2πÞd iΔðlÞ þ

g2

2
ð−iÞμ̃4−d

Z
ddl
ð2πÞd iΔðlÞiΔðlþ kÞ − δZmm2 − δZϕk2

¼ 1

16π2ε
ðm2λþ g2Þ − m2λ

32π2

�
ln

�
m2

μ2

�
− 1

�
−

g2

32π2

Z
1

0

dx ln

�
Dxð−k2Þ

μ2

�
− δZmm2 − δZϕk2; ðA3Þ

whereDxð−k2Þ ≔ ðx2 − xÞð−k2Þ þm2. In the MS scheme,
we choose the counterterms as

δZm ¼ λþ ðg=mÞ2
16π2ε

þOðλ2Þ; δZϕ ¼ Oðλ2Þ; ðA4Þ

leading to

Πone-loopðk2Þ ¼ −
m2λ

32π2

�
ln

�
m2

μ2

�
− 1

�
−

g2

32π2

Z
1

0

dx ln

�
Dxð−k2Þ

μ2

�
: ðA5Þ

Then, at the one-loop level, the physical mass mph is

m2
ph ¼ m2 − Πð−m2

phÞ ≃m2 − Πone-loopð−m2Þ

¼ m2 þ m2λ

32π2

�
ln

�
m2

μ2

�
− 1

�
þ g2

32π2

�
ln

�
m2

μ2

�
þ

ffiffiffi
3

p
π

3
− 2

�
; ðA6Þ

and the inverse of the residue of the Feynman propagator
of ϕ is

Z−1
one-loop ¼ 1 − Π0

one-loopð−m2
phÞ

≃ 1 − Π0
one-loopð−m2Þ

¼ 1þ ð2π ffiffiffi
3

p
− 9Þg2

288π2m2
: ðA7Þ

For later convenience, we list up the value ofΠ0,Π00, andΠ00:

Π0
one-loopð−m2Þ ¼ g2

288π2m2
ð9 − 2π

ffiffiffi
3

p
Þ; ðA8aÞ

Π00
one-loopð−m2Þ ¼ g2

864π2m4
ð45 − 8π

ffiffiffi
3

p
Þ > 0; ðA8bÞ

Π00
one-loopð−m2Þ ¼ g2

216π2m6
ð27 − 5π

ffiffiffi
3

p
Þ: ðA8cÞ

Using ImΠone-loopðk2 − iϵÞjk2≤−4m2 ¼ g2

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4m2−k2

−k2

q
, we

find the twice-subtracted dispersion relation [35]

Π00
one-loopð−m2Þ ¼ 2

π

Z
∞

4m2

ds
ImΠone-loopð−s − iϵÞ

ðs −m2Þ3 > 0;

ðA9Þ

implying that the positivity of Π00
one-loopð−m2Þ is ensured by

unitarity.

FIG. 4. Diagrams relevant for the self-energy of ϕ in the present
analysis. The first and the second diagrams are one-loop
diagrams, and the third diagram is a two-loop diagram. The
second diagram is independent of the external momentum and so
the leading corrections from the quartic coupling λ to the
momentum-dependence arise at the two-loop level.

11We will take care of gravitational corrections to the propa-
gator appropriately, when we evaluate cgrav;others in Sec. IV.
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2. Two-loop

Next, we compute the Oðλ2Þ correction to Πðk2Þ, which
is at the two-loop level. This is practically important
because the OðλÞ corrections to Πðk2Þ are k-independent
and so k-dependent corrections from the quartic coupling λ
first arise from two-loop diagrams: see the third diagram
shown in Fig. 4. The contribution from this diagram reads

Πtwo-loopðk2Þjg¼0

¼ λ2

6
ðð−iÞμ̃4−dÞ2

Z
ddl
ð2πÞd

Z
ddq
ð2πÞd

× iΔðlÞiΔðqÞiΔðqþ l − kÞ
þ ðk-independent diagramsÞ; ðA10Þ

where the second term is for k-independent diagrams
(double-scoop diagrams) that are not relevant for the
following discussion. To evaluate the double-integral in

the first term, it is convenient to insert 1 ¼ 1
2d ð

∂lμ
∂lμ þ

∂qμ
∂qμÞ asZ

ddl
ð2πÞd

Z
ddq
ð2πÞd iΔðlÞiΔðqÞiΔðqþ l − kÞ

¼
Z

ddl
ð2πÞd

Z
ddq
ð2πÞd

1

2d

�∂lμ

∂lμ
þ ∂qμ
∂qμ

�
× iΔðlÞiΔðqÞiΔðqþ l − kÞ: ðA11Þ

Reformulating the right hand side by partial integrals, we
find

Πtwo-loopðk2Þjg¼0 ¼
λ2

6ð3 − dÞ ð3m
2Kðk2Þ þ kμKμðk2ÞÞ

þ ðk-independent diagramsÞ; ðA12aÞ

Kðk2Þ ≔ ðð−iÞμ̃4−dÞ2
Z

ddl
ð2πÞd

Z
ddq
ð2πÞd

× iΔðlÞ½iΔðqÞ�2iΔðqþ l − kÞ; ðA12bÞ

Kμðk2Þ ≔ ðð−iÞμ̃4−dÞ2
Z

ddl
ð2πÞd

Z
ddq
ð2πÞd

× iΔðlÞ½iΔðqÞ�2iΔðqþ l − kÞqμ: ðA12cÞ

To compute K and Kμ, we firstly perform the integration
over l by using the Feynman integral formula. We then
perform the integration over q by using the formula again to
get

Kðk2Þ ¼ Γð4 − dÞ
ð4πÞdðd

2
− 2Þ

Z
1

0

dxðx − x2Þðd=2Þ−2

×
Z

1

0

dy y2−ðd=2Þ
d
dy

�
ð1 − yÞ

�
μ̃2

Fxyð−k2Þ
�

4−d�
;

ðA13aÞ

Kμðk2Þ ¼ kμ
Γð4 − dÞ
ð4πÞd

Z
1

0

dxðx − x2Þðd=2Þ−2

×
Z

1

0

dy y2−ðd=2Þð1 − yÞ
�

μ̃2

Fxyð−k2Þ
�

4−d
;

ðA13bÞ
where Fxyð−k2Þ ≔ ðy − y2Þk2 þ ½ð1 − yÞ þ y

x−x2�m2. To
arrive at the above expressions (A13), we also used
d < 4. Notice that double integrals in these expressions
are regular even in the d → 4 limit.12

Substituting Eqs. (A13) into (A12) and expanding the
resultant expressions in terms of an infinitesimal positive
parameter ε, we have

Πtwo-loopðk2Þjg¼0 ¼
1

3

�
λ

16π2

�
2

×

�
−
3m2

ε2
þ 1

ε

�
3m2

�
ln

�
m2

μ2

�
−
3

2

�
−
k2

4

�
− 3m2

�
9

4
− 2 ln

�
m2

μ2

�
þ 1

2
ln2

�
m2

μ2

�
−
1

2

Z
1

0

dx
Z

1

0

dy ln y
d
dy

�
ð1 − yÞ ln

�
μ2

Fxyð−k2Þ
��

þ π2

24

�
− k2

�
5

16
þ 1

2

Z
1

0

dx
Z

1

0

dyð1 − yÞ ln
�

μ2

Fxyð−k2Þ
��	

þ ðk-independent diagramsÞ: ðA14Þ

UV-divergent terms are shown in the first line. The terms in
the second and the third lines are UV finite. For our purpose,
it is enough to compute Π0 and Π00. We renormalize the UV
divergent terms proportional to k2 in (A14) by choosing the

field renormalization δZϕ appropriately to obtain the UV
finite expression for Π0, while Π00 is UV finite and indepen-
dent of the renormalization scheme. The MS choice of δZϕ is

δZϕ ¼ −
1

12ε

�
λ

16π2

�
2

; ðA15Þ

leading to

12We learned this trick in the QFT lecture by Atsuo Kuniba held
at the University of Tokyo—Komaba, when one of the authors was
a PhD student. We thank him for giving nice lectures.

GRAVITATIONAL POSITIVITY BOUNDS ON SCALAR … PHYS. REV. D 104, 066022 (2021)

066022-9



Π0
two-loopð−m2Þjg¼0 ¼

1

12

�
λ

16π2

�
2
�
ln

�
m2

μ2

�
þ 3

4

�
;

ðA16aÞ

Π00
two-loopð−m2Þjg¼0 ¼

1

24m2

�
λ

16π2

�
2

ð10 − π2Þ > 0:

ðA16bÞ

APPENDIX B: COMPUTATION OF cnon-grav;ren

In this section, we compute cnon-grav;ren by evaluating
nongravitational scattering amplitudes generated by renor-
malizable self-interactions of ϕ. The leading contributions
are through the one-loop diagrams shown in Figs. 5 and 6.
We define their sum by Mnon-grav;ren ¼ MðaÞ þMðbÞþ
MðcÞ þMðdÞ þMðeÞ. These diagrams consist of renorma-
lizable vertices only, and henceMnon-grav;ren is analytic in the
complex s-plane modulo poles and cuts, and satisfies the
Froissart bound. Then, the following relation holds:

Rec2ð0; ϵÞjnon-grav;ren
¼ 4

π

Z
∞

4m2
ph

ds0
ImMnon-grav;renðs0; 0Þ

ðs0 − 2m2
phÞ3

: ðB1Þ

We can explicitly check this equality by directly computing
both sides of (B1), although we do not show detailed
computations here. Equation (B1) leads to

cnon-grav;ren ¼
4

π

Z
∞

Λ2
th

ds0
ImMnon-grav;renðs0; 0Þ

ðs0 − 2m2
phÞ3

: ðB2Þ

The imaginary part of each diagram can be computed as

ImMðaÞðs; 0Þjs≥4m2 ¼ λ2

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

r
;

ImMðbÞðs; 0Þjs≥4m2 ¼ −λg2

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sðs − 4m2Þ

s
ln

�
s − 3m2

m2

�
;

ðB3aÞ

ImMðcÞðs; 0Þjs≥4m2 ¼ g4

16πm2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

r
1

ðs − 3m2Þ

þ g4

8π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
ðs − 2m2Þ ln

×

�
s − 3m2

m2

�
; ðB3bÞ

FIG. 5. 1PI diagrams for nongravitational four-point scattering up toOðλ2; λg2; g4Þ. All the possible assignments of external momenta
should be considered.

FIG. 6. The process ϕϕ → ϕϕ expressed by the non-1PI diagrams up to one-loop. All the possible assignments of external momenta
should be considered. Diagrams (d) represent the self-energy corrections to the ϕϕ → ϕϕ process. The diagram (e) is the contribution
from the one-loop corrections to ϕ3 vertex.

TOSHIFUMI NOUMI and JUNSEI TOKUDA PHYS. REV. D 104, 066022 (2021)

066022-10



ImMðdÞðs; 0Þjs≥4m2 ¼ g4

32π

1

ðm2 − sÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

r
; ðB3cÞ

ImMðeÞðs; 0Þjs≥4m2 ¼ λg2

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

r
1

s −m2

þ g4

8π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
ðm2 − sÞ ln

×

�
s − 3m2

m2

�
: ðB3dÞ

Here, we set m2 ¼ m2
ph since the difference comes in at

higher orders in the coupling constants. We do not encounter
any UV divergences in these computations, implying the
scheme-independence of cnon-grav;ren at the leading order.
Substituting Eqs. (B3) into (B2), we obtain

cnon-grav;ren ≃
λ2

16π2Λ4
th

þ g4

12π2m2Λ6
th

−
λg2

6π2Λ6
th

�
ln

�
Λ2
th

m2

�
−
1

6

�
; ðB4Þ

where tiny corrections suppressed by m2=Λ2
th are discarded.

APPENDIX C: COMPUTATION OF cgrav;t-ch

In this section we compute cgrav;t-ch by evaluating the t-
channel graviton exchange diagram with loop-corrected
vertices. Since the computation is somewhat involved, it is
helpful to use the Ward-Takahashi (WT) identities asso-
ciated with the general covariance for consistency check
and also for simplifying the calculation. Note that we
distinguish between m2

ph and m2 in Sec. I, although we set
m2 ¼ m2

ph in Sec. II since the difference comes in at higher
orders in the coupling constants.

1. Ward-Takahashi identities

Firstly, we derive the WT identities associated with the
general covariance. Suppose that the 1PI effective action of
ϕ and the metric fluctuation hμν defined by gμν ¼ ημν þ hμν
is of the form,

Γ ¼ −
1

2

Z
d4k
ð2πÞ4Kðk2Þϕð−kÞϕðkÞ

þ 1

4

Z
d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4 V

μνðk1; k2Þϕðk1Þϕðk2Þhμν
× ð−k1 − k2Þ þ � � � ; ðC1Þ

where the dots stand for terms that are irrelevant for
graviton exchange diagrams studied in the main text and
also for the WT identities derived in this section. For
example, for the tree-level action, we have

Ktreeðk2Þ ¼ m2 þ k2;

Vμν
treeðk1; k2Þ ¼ −ημνðm2 − k1:k2Þ − ðkμ1kν2 þ kμ2k

ν
1Þ: ðC2Þ

The effective action should be invariant under the infini-
tesimal transformation,

δϕðkÞ ¼ i
Z

d4k2
ð2πÞ4 ϵμðk − k2Þkμ2ϕðk2Þ;

δhμνðkÞ ¼ ikμϵνðkÞ þ ikνϵμðkÞ þOðhÞ; ðC3Þ

so that we require

0 ¼ i
Z

d4k1
ð2πÞ4

Z
d4k2
ð2πÞ4 ϕðk1Þϕðk2Þϵμð−k1 − k2Þ

× ½−Kðk21Þkμ2 − Kðk22Þkμ1 − ðk1 þ k2ÞνVμνðk1; k2Þ�:
ðC4Þ

This is of course satisfied for the tree-level action (C2).
Now let us assume that Vμν is local and so it can be
expanded in the momenta ki. Under this assumption, we
may write Vμν as

Vμνðk1; k2Þ ¼ Tðk1; k2Þημν þ Pðk1; k2Þqμqν
− 2Qðk1; k2Þðpμqν þ pνqμÞ
þ 4Rðk1; k2Þpμpν; ðC5Þ

where T, P, Q, and R are local scalar functions, and we
introduced pμ and qμ by pμ ≔ ðk1 − k2Þμ=2 and
qμ ≔ −ðk1 þ k2Þμ. For example, for the tree-level action,
we have

T treeðk1; k2Þ ¼ k1:k2 −m2; Ptreeðk1; k2Þ ¼ −
1

2
;

Qtreeðk1; k2Þ ¼ 0; Rtreeðk1; k2Þ ¼
1

2
: ðC6Þ

Also note that when the graviton hμν is on-shell, i.e., when
hμν is transverse traceless, only the R component contrib-
utes to the amplitude. In this language, the constraint
(C4) reads
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0 ¼ −qμ
�
Tðk1;−k1 − qÞ þ q2Pðk1;−k1 − qÞ − ðq2 þ 2ðk1:qÞÞQðk1;−k1 − qÞ þ Kðk21Þ þ Kðk21 þ 2ðk1:qÞ þ q2Þ

2

�
þ 2pμ

�
q2Qðk1;−k1 − qÞ − ðq2 þ 2ðk1:qÞÞRðk1;−k1 − qÞ þ −Kðk21Þ þ Kðk21 þ 2ðk1:qÞ þ q2Þ

2

�
; ðC7Þ

which leads to the following two identities:

0 ¼ Tðk1;−k1 − qÞ þ q2Pðk1;−k1 − qÞ − ðq2 þ 2ðk1:qÞÞQðk1;−k1 − qÞ þ Kðk21Þ þ Kðk21 þ 2ðk1:qÞ þ q2Þ
2

; ðC8aÞ

0 ¼ q2Qðk1;−k1 − qÞ − ðq2 þ 2ðk1:qÞÞRðk1;−k1 − qÞ þ −Kðk21Þ þ Kðk21 þ 2ðk1:qÞ þ q2Þ
2

: ðC8bÞ

They are the WT identities associated with the general
covariance.
We then discuss the consequence of these identities in

the soft limit q → 0 while k1 being fixed. For this purpose,
we introduce the soft limit expansion,

Aðk1;−k1 − qÞ ¼
X∞
n;m¼0

Δn;mAðk21Þðk1:qÞnðq2Þm; ðC9Þ

where A ¼ T, P, Q, R. In terms of these expansion
coefficients, the WT identity (C8b) reads

OðqÞ∶ Δ0;0Rðk21Þ ¼
1

2
ð1 − Π0ðk21ÞÞ; ðC10aÞ

Oðq2Þ∶ Δ0;0Qðk21Þ ¼ 0; Δ1;0Rðk21Þ ¼
−1
2
Π00ðk21Þ; ðC10bÞ

Oðq3Þ∶ Δ1;0Qðk21Þ − 2Δ0;1Rðk21Þ ¼
1

2
Π00ðk21Þ;

Δ2;0Rðk21Þ ¼
−1
3

Π‴ðk21Þ; ðC10cÞ

up to Oðq3Þ. Here, we used the fact that Kðk2Þ can be
written in terms of the self-energy Πðk2Þ as
Kðk2Þ ¼ k2 þm2 − Πðk2Þ. We can also derive identities
that involve T from the constraint (C8a): the result is

Oðq0Þ∶ Δ0;0Tðk21Þ ¼ −ðk21 þm2 − Πðk21ÞÞ; ðC11aÞ

OðqÞ∶ Δ1;0Tðk21Þ ¼ −
1

2
ð1 − Π0ðk21ÞÞ; ðC11bÞ

Oðq2Þ∶ Δ2;0Tðk21Þ − 2Δ1;0Qðk21Þ ¼ Π00ðk21Þ;

Δ0;1Tðk21Þ þ Δ0;0Pðk21Þ ¼ −
1

2
ð1 − Π0ðk21ÞÞ;

ðC11cÞ

Oðq3Þ∶ Δ3;0Tðk21Þ − 2Δ0;2Qðk21Þ ¼ −
2

3
Π‴ðk21Þ;Δ1;1Tðk21Þ

þ Δ1;0Pðk21Þ − ðΔ1;0Qðk21Þ þ 2Δ0;1Qðk21ÞÞ ¼ Π00ðk21Þ:
ðC11dÞ

Here, we used the first identity of (C10b) to derive
Eq. (C11b) and the second equality of (C11c).
Before moving on to concrete loop computations, we

summarize implications of the WT identities for R0ð0Þ that
is relevant for the evaluation of cgrav;t-ch [recall discussion
around Eqs. (9)–(11)]. The function RðtÞ defined in (9) is
given in the present language as

Rðq2Þ ¼ Rðk1;−k1 − qÞjk2
1
¼k2

2
¼−m2

ph

¼
X∞
n;m¼0

Δn;mRð−m2
phÞ

�
−q2

2

�
n

ðq2Þm

¼ Δ0;0Rð−m2
phÞ þ

�
Δ0;1Rð−m2

phÞ

−
1

2
Δ1;0Rð−m2

phÞ
�
q2 þOðq4Þ; ðC12Þ

where we used the relation k1:q ¼ −q2=2 that holds when
k21 ¼ k22. Correspondingly, we have

R0ð0Þ ¼ Δ0;1Rð−m2
phÞ −

1

2
Δ1;0Rð−m2

phÞ

¼ 1

2
Δ1;0Qð−m2

phÞ; ðC13Þ

where we used (C10) at the second equality. Note that the
WT identities relate R0ð0Þ directly to ΔQ1;0ð−m2

phÞ=2, but
its sign cannot be fixed from the symmetry consideration
alone. It would be interesting to provide a physical
interpretation of the sign of ΔQ1;0ð−m2

phÞ=2, leaving it
for future work.
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2. WT identities at one-loop

Now let us perform loop computations. For consistency
check, we begin by computing off-shellQ and R at the one-
loop level and demonstrating that they indeed satisfy the
WT identities (C10). The one-loop 1PI diagrams relevant
for the ϕϕh-vertex are shown in Fig. 7. In this figure, in-
going momenta for external scalar lines are referred to as k1
and k2. The in-going momentum for the external graviton is
q ¼ −ðk1 þ k2Þ. All diagrams in Fig. 7 contribute to the
trace part Tðk1; k2Þ, whereas one-loop corrections to
Qðk1;−k1 − qÞ and Rðk1;−k1 − qÞ arise only from the
diagram (ϕ2h − 1). One-loop corrections to the vertex
function from the diagram (ϕ2h − 1) can be written as

Vμν
ðϕ2h−1Þðk1; k2Þ ¼ g2μ̃4−dð−iÞ

Z
ddl
ð2πÞd V

μν
treeð−l;l − qÞ

× iΔðlÞiΔðl − qÞiΔðlþ k1Þ: ðC14Þ

Then, the one-loop corrections to the off-shell vertex
function Q and R are

Qone-loopðk1;−k1 − qÞ

¼ g2

32π2

Z
1

0

dx
Z

1−x

0

dy
−xð1 − x − 2yÞ

Dxyðk1; qÞ
; ðC15Þ

Rone-loopðk1;−k1 − qÞ

¼ g2

32π2

Z
1

0

dx
Z

1−x

0

dy
x2

Dxyðk1; qÞ
; ðC16Þ

where

Dxyðk1; qÞ ≔ ðy − y2Þq2 þ 2xyðk1:qÞ
þ ðx − x2Þk21 þm2: ðC17Þ

Note that Q and R are UV finite and so we set d ¼ 4 in the
above. On the other hand, the terms T and P have UV
divergent terms. The diagrams (ϕ2h − 1), (ϕ2h − 2), and
(ϕ2h − 3) give UV divergent terms to Δ0;0T which can be
renormalized by the mass renormalization δZm given by
(A4). The diagram (ϕ2h − 4) gives UV divergences to
Δ0;1T and Δ0;0P with an opposite sign which can be
renormalized by δZRϕ2.
Using explicit one-loop results (A8), (C15), and (C16),

we demonstrate that Eqs. (C10) are indeed satisfied. We
basically show the results when k21 ¼ −m2 below for
simplicity, but one can easily extend the computation to
k21 ≠ −m2 case at least when 0 < −k21 < 4m2. We start with
computing Δ0;0Rone-loopð−m2Þ,

Δ0;0Rone-loopð−m2Þ ¼ g2

32π2m2

Z
1

0

dx
Z

1−x

0

dy
x2

ðx2 − xþ 1Þ

¼ −g2

32π2m2

�
1

2
−
π

ffiffiffi
3

p

9

�
¼ −1

2
Π0

one-loopð−m2Þ; ðC18Þ

confirming Eq. (C10a). Next, we confirm (C10b) by

Δ0;0Qone-loopð−m2Þ ¼ −g2

32π2m2

Z
1

0

dx
Z

1−x

0

dy
xð1− x− 2yÞ
x2− xþ 1

¼ 0; ðC19Þ

Δ1;0Rone-loopð−m2Þ ¼ −g2

32π2m4

Z
1

0

dx
Z

1−x

0

dy
2x3y

ðx2 − xþ 1Þ2

¼ −g2

32π2m4

�
5

6
−
4

ffiffiffi
3

p
π

27

�
¼ −1

2
Π00

one-loopð−m2Þ: ðC20Þ

Also, Δ1;0Qone-loopð−m2Þ and Δ0;1Rone-loopð−m2Þ are com-
puted as

Δ1;0Qone-loopð−m2Þ ¼ −g2

32π2m4

Z
1

0

dx

×
Z

1−x

0

dy
−2x2yð1 − x − 2yÞ

ðx2 − xþ 1Þ2

¼ −1
6

Π00
one-loopð−m2Þ; ðC21Þ

FIG. 7. One-loop 1PI diagrams for the ϕ2h-vertex. Counterterm
diagrams are also shown which are necessary for renormalization.
The diagram with a field renormalization δZϕ is not included
since it is not necessary at one-loop level in the present model.
External in-going momenta for scalar lines are k1 and k2. In-
going momentum for external graviton is q ¼ −ðk1 þ k2Þ. All the
possible assignment of external momenta should be considered.
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Δ0;1Rone-loopð−m2Þ ¼ g2

32π2m4

Z
1

0

dx

×
Z

1−x

0

dy
x2ðy2 − yÞ

ðx2 − xþ 1Þ2

¼ −1
3

Π00
one-loopð−m2Þ; ðC22Þ

leading to the first identity of (C10c):

Δ1;0Qone-loopð−m2Þ − 2Δ0;1Rone-loopð−m2Þ

¼ 1

2
Π00

one-loopð−m2Þ: ðC23Þ

Finally, we confirm the second identity of (C10c) by
computing Δ2;0Rone-loopð−m2Þ:

Δ2;0Rone-loopð−m2Þ¼ g2

32π2m6

Z
1

0

dx
Z

1−x

0

dy
4x4y2

ðx2−xþ1Þ3

¼ −g2

8π2m6

�
1

3
−
5π

ffiffiffi
3

p

81

�
¼−1

3
Π000

one-loopð−m2Þ: ðC24Þ

3. Computation of R0ð0Þ
We compute R0ð0Þ, which is relevant for the positivity

bounds as shown in Eq. (11), by evaluating Δ1;0Qð−m2Þ
and using (C13). To efficiently compute Δ1;0Qð−m2Þ, we
perform the soft expansion of the integrand before perform-
ing the loop integrals. We firstly check how our method
works at the one-loop level. We then compute two-loop

corrections to Δ1;0Qð−m2Þ from the quartic coupling λ,
leading to the second term of (11). Final results are
Eqs. (C33) and (C45), confirming that cgrav;t-ch is given
by Eqs. (11) and (12). It also shows the renormalization
scheme independence of cgrav;t-ch.

a. One-loop corrections

One-loop corrections to the vertex function from the
diagram (ϕ2h − 1) is computed as (C14). Since we are
interested in Δ1;0Qð−m2Þ, we can discard the terms
proportional to ημν in Vμν

treeð−l;l − qÞ. That is, what we
have to compute is

Vμν
ðϕ2h−1Þðk1; k2Þ ∋ g2μ̃4−dð−iÞ

Z
ddl
ð2πÞd ½l

μðl− qÞν

þ lνðl− qÞμ�iΔðlÞiΔðl− qÞiΔðlþ k1Þ:
ðC25Þ

Next, to simplify the computation, we use the fact that it is
enough to consider the soft limit q → 0 with fixing k1 and
imposing the on-shell condition on the external graviton
momentum, q2 ¼ 0. In this limit, we do not need to
distinguish between k1:q and p:q, because k1:q ¼ p:q
when q2 ¼ 0. We consider the soft-expansion of iΔðl − qÞ
with imposing q2 ¼ 0,

iΔðl − qÞ ¼ iΔðlÞ½1þ 2iΔðlÞðl:qÞ
þ ½2iΔðlÞðl:qÞ�2 þOððl:qÞ3Þ�: ðC26Þ

Using this expansion, we obtain theOððl:qÞ; ðl:qÞ2Þ terms
of the rhs of Eq. (C25) as

rhs of ðC25ÞjOððl:qÞ;ðl:qÞ2Þ terms ¼ 6g2
Z

1

0

dxð1 − xÞ2μ̃4−dð−iÞ
Z

ddl
ð2πÞd

½lμðl − qÞν þ lνðl − qÞμ�ðl:qÞ
½ðlþ xk1Þ2 þDxð−k21Þ�4

×

�
1þ 8ð1 − xÞðl:qÞ

3½ðlþ xk1Þ2 þDxð−k21Þ�
	
þOððl:qÞ3Þ: ðC27Þ

In terms of L ≔ lþ xk1 ¼ lþ xðp − ðq=2ÞÞ, we have

ðl:qÞjl¼L−xpþxq
2
¼ ðl:qÞ − xðp:qÞ; ðC28Þ

lμðl − qÞν þ lνðl − qÞμjl¼L−xpþxq
2

¼ 2LμLν − 2xðLμpν þ LνpμÞ þ ðx − 1ÞðLμqν þ LνqμÞ

þ ðx − x2Þðpμqν þ pνqμÞ þ 2x2pμpν þ
�
x2

2
− x

�
qμqν:

ðC29Þ

Here, we used q2 ¼ 0. By using the fact that we can
perform the following replacement in the integrand,

ðLμpν þ LνpμÞðl:qÞ → L2

d
ðpμqν þ pνqμÞ; ðC30Þ

we can compute the one-loop corrections to Δ1;0Qðk21Þ as
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Δ1;0Qone-loopðk21Þ ¼ −3g2
Z

1

0

dx x2ð1 − xÞ3μ̃4−dð−iÞ
Z

ddL
ð2πÞd

�
−1

ðL2 þDxð−k21ÞÞ4
þ 8L2

3ðL2 þDxð−k21ÞÞ5
�

¼ −
g2

96π2

Z
1

0

dx
x2ð1 − xÞ3
½Dxð−k21Þ�2

: ðC31Þ

In particular, we impose k21 ¼ −m2 to get

Δ1;0Qone-loopð−m2Þ ¼ −g2

32π2m4

�
5

18
−
4π

ffiffiffi
3

p

81

�
¼ −1

6
Π00

one-loopð−m2Þ < 0: ðC32Þ

This precisely coincides with the result (C21) which is
obtained from (C15), the full off-shell expression of one-
loop corrections to Qðk1;−k1 − qÞ before taking the soft
limit. We conclude by using Eq. (C13) that the leading
order contribution to R0ð0Þ arises at one-loop level in the
presence of the cubic coupling g,

R0
one-loopð0Þ ¼

−1
12

Π00
one-loopð−m2Þ ¼ −g2

64π2m4

�
5

18
−
4π

ffiffiffi
3

p

81

�
< 0: ðC33Þ

It is found that R0
one-loopð0Þ as well as Π00

one-loop is independent of the renormalization scheme.

b. Two-loop corrections

We have seen that the quartic coupling λ does not affect R0ð0Þ at the one-loop level and its leading contribution appears at
the two-loop level. We thus compute the two-loop corrections toQðk1; k2Þwith setting g ¼ 0 to obtain R0ð0Þ via the relation
(C13). Diagrams relevant to R0ð0Þ are shown in Fig. 8. We refer to their contribution as Vμν

FIG: 8, which is given by

Vμν
FIG: 8 ¼

λ2

2
ðð−iÞμ̃4−dÞ2

Z
ddl
ð2πÞd

Z
ddr
ð2πÞd iΔðlÞiΔðl − qÞiΔðrÞiΔðlþ rþ k1ÞVμν

treeð−l;l − qÞ

− δZϕ½ðkμ1kν2 þ kν1k
μ
2Þ − ημνðk1:k2Þ�: ðC34Þ

To compute Δ1;0Qð−m2Þ, we can also discard the terms proportional to ημν in Vμν
treeð−l;l − qÞ. It is then enough for us to

compute

Vμν
FIG: 8 ∋

λ2

2
ðð−iÞμ̃4−dÞ2

Z
ddl
ð2πÞd

Z
ddr
ð2πÞd iΔðlÞiΔðl − qÞiΔðrÞiΔðlþ rþ k1Þ½lμðl − qÞν þ lνðl − qÞμ�

− δZϕðkμ1kν2 þ kν1k
μ
2Þ: ðC35Þ

Next, we expand iΔðl − qÞ in terms of the soft momentum q of graviton with imposing the on-shell condition q2 ¼ 0, and
we perform the integration over r. The result up to Oððl:qÞ2Þ is

rhs of ðC35Þ ¼ λ2

2

Γð2 − d
2
Þ

ð4πÞd2 ð−iÞðμ̃4−dÞ2
Z

ddl
ð2πÞd ½iΔðlÞ�

2½1þ 2ðl:qÞiΔðlÞ þ 4ðl:qÞ2½iΔðlÞ�2�

× ½lμðl − qÞν þ lνðl − qÞμ�
Z

1

0

dx
1

½Dxð−ðlþ k1Þ2Þ�2−d
2

− δZϕðkμ1kν2 þ kν1k
μ
2Þ þOððl:qÞ3Þ: ðC36Þ

To perform the integration over l, it is useful to note

ð1 − yÞðl2 þm2Þ þ yDxð−ðlþ k1Þ2Þ ¼ ½1 − yðx2 − xþ 1Þ�½L02 þ Exyð−k21Þ�; ðC37Þ

L0 ≔ lþ αk1; α ≔
yxð1 − xÞ

1 − yðx2 − xþ 1Þ ; Exyð−k21Þ ≔ ðα − α2Þk21 þ
m2

1 − yðx2 − xþ 1Þ : ðC38Þ
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Then, by using the Feynman’s integral formula as usual, the rhs of Eq. (C36) can be computed as

rhs of ðC35Þ ¼ λ2

2

Γð4 − d
2
Þ

ð4πÞd2 ð−iÞðμ̃4−dÞ2
Z

1

0

dx
Z

1

0

dy
ð1 − yÞy1−d

2

½1 − yðx2 − xþ 1Þ�4−d
2

Z
ddl
ð2πÞd

½lμðl − qÞν þ lνðl − qÞμ�
½L02 þ Exyð−k21Þ�4−

d
2

þ λ2

2

Γð5 − d
2
Þ

2ð4πÞd2 ð−iÞðμ̃4−dÞ2
Z

1

0

dx
Z

1

0

dy
ð1 − yÞ2y1−d

2

½1 − yðx2 − xþ 1Þ�5−d
2

Z
ddl
ð2πÞd

2ðl:qÞ½lμðl − qÞν þ lνðl − qÞμ�
½L02 þ Exyð−k21Þ�5−

d
2

þ λ2

2

Γð6 − d
2
Þ

6ð4πÞd2 ð−iÞðμ̃4−dÞ2
Z

1

0

dx
Z

1

0

dy
ð1 − yÞ3y1−d

2

½1 − yðx2 − xþ 1Þ�6−d
2

Z
ddl
ð2πÞd

4ðl:qÞ2½lμðl − qÞν þ lνðl − qÞμ�
½L02 þ Exyð−k21Þ�6−

d
2

− δZϕðkμ1kν2 þ kν1k
μ
2Þ þOðq3Þ: ðC39Þ

Terms in the first three lines are contributions from the diagram (1) in Fig. 8: the first, second, and third lines are of order
ðl:qÞ0, ðl:qÞ1, and ðl:qÞ2, respectively. The counterterm diagram (2) is responsible for the term in the final line. To identify
the terms which contribute to Δ1;0Qðk21Þ, we shall use

ðl:qÞjl¼L0−αpþαq
2
¼ ðL0:qÞ − αðp:qÞ; ðC40Þ

lμðl − qÞν þ lνðl − qÞμjl¼L0−αpþαq
2
¼ 2L0μL0ν − 2αðL0μpν þ L0νpμÞ þ ðα − 1ÞðL0μqν þ L0νqμÞ

þ ðα − α2Þðpμqν þ pνqμÞ þ 2α2pμpν þ
�
α2

2
− α

�
qμqν; ðC41Þ

and perform the following replacement in the integrand of the rhs of (C39):

ðL0μpν þ L0νpμÞðL0:qÞ → L02

d
ðpμqν þ pνqμÞ: ðC42Þ

To get the first two relations (C40) and (C41), we used q2 ¼ 0. Only the Oððl:qÞ; ðl:qÞ2Þ terms of the rhs of (C39) are
relevant for the computation of Δ1;0Qtwo-loopjg¼0: the result is

Δ1;0Qtwo-loopðk21Þjg¼0 ¼
−1
12

�
λ

16π2

�
2
Z

1

0

dx
Z

1

0

dy
yð1 − yÞ3x2ð1 − xÞ2

½1 − yðx2 − xþ 1Þ�6Exyð−k21Þ
: ðC43Þ

In particular, we impose k21 ¼ −m2 to get

Δ1;0Qtwo-loopð−m2Þjg¼0 ¼
−1
72m2

�
λ

16π2

�
2

ð10 − π2Þ ¼ −1
3

Π00
two-loopð−m2Þjg¼0 < 0: ðC44Þ

Here, we used Eq. (A16b). Therefore, we conclude by
using Eq. (C13) that the leading order contribution to R0ð0Þ
from the quartic coupling λ arises at the two-loop level,
which can be computed as

R0
two-loopð0Þjg¼0 ¼

−1
6

Π00
two-loopð−m2Þjg¼0

¼ −1
144m2

�
λ

16π2

�
2

ð10 − π2Þ < 0: ðC45Þ

We find again that R0
two-loopð0Þjg¼0 as well as Π00

two-loopjg¼0 is
independent of the renormalization scheme. From
Eqs. (C33) and (C45), we confirm that cgrav;t-ch is given
by (11) and (12), and that cgrav;t−ch is independent of the

FIG. 8. Two-loop 1PI diagrams for the ϕ2h-vertex from the
quartic coupling λ which are relevant for the computation of
Qðk1; k2Þ and Rðk1; k2Þ. Other diagrams are relevant only for the
computation of Tðk1; k2Þ, the trace component of Vμν. External
in-going momenta for scalar lines are k1 and k2 and that for the
graviton is referred to as q ¼ −ðk1 þ k2Þ.
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renormalization scheme at least within the range of our
approximations.

APPENDIX D: COMPUTATION OF cgrav;others

In this section, we compute cgrav;others which represents
one-loop contributions from (1) the s; u-channel graviton
exchange diagrams, (2) diagrams with a graviton-scalar
conversion, and (3) those with a graviton propagator inside
the loop: the classification of diagrams with graviton up to
OðM−2

pl Þ is shown in Fig. 9. The final goal is to show
Eq. (13), which justifies to ignore cgrav;others when discus-
sing the implication of positivity bound. Throughout the
section, we use the harmonic gauge, in which the tree-level
graviton propagator of momentum q reads

1

M2
pl

−iPðdÞ
μνρσ

q2 − iϵ
ðD1Þ

in d-dimensions and PðdÞ
μνρσ is defined by

PðdÞ
μνρσ ≔

1

2

�
ημρηνσ þ ημσηνρ −

2

d − 2
ημνηρσ

�
: ðD2Þ

1. s, u-channel graviton exchange

We start with one-loop corrections to the s, u-channel
graviton exchange diagrams. The relevant diagrams are
shown in FIG. 10. Below, we evaluate the contributions
from each diagram to cgrav;others, which are denoted as
cgrav;othersjðαÞ and cgrav;othersjðβÞ.

a. Diagram (α)

We firstly compute the s- and u-channel pieces of the
diagram (α) as

MðαÞðs; tÞjs;u-channel ¼
−2g2

M2
pls

Vμν
treeðk1; k2ÞPðdÞ

μνρσμ̃4−dð−iÞ
Z

ddl
ð2πÞd V

ρσ
treeð−l;lþ k1 þ k2ÞiΔðlÞiΔðlþ k1 þ k2ÞiΔðl − k4Þ

þ ðs ↔ uÞ

¼ g2

8π2M2
pls

�
sþ 2m2

ε
−
Z

1

0

dx
Z

1−x

0

dy

�
sþ ðsþ 2m2Þ ln

�
D̃xyðsÞ
μ2

�
þ Aðs; tÞ
D̃xyðsÞ

�	
þ ðs ↔ uÞ; ðD3Þ

FIG. 10. One-loop graviton exchange diagrams relevant for
cgrav at order M−2

pl . Each type has both s- and u-channel versions.
There are other one-loop diagrams for s, u-channel graviton
exchange, but they do not contribute to cgrav.

FIG. 9. Classification of diagrams with graviton up toOðM−2
pl Þ. A solid thick line and a thin double wavy line denote a loop-corrected

propagator of ϕ and a free propagator of graviton, respectively. Diagrams which contribute to cgrav;others are underlined: (1) s, u-channel
graviton exchange diagrams, (2) diagrams with a graviton-scalar conversion, and (3) those with a graviton propagator inside the loop.
The t-channel graviton exchange diagrams contribute to cgrav;t-ch.
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where

D̃xyðsÞ ≔ ðx2 − xþ 1Þm2 − yð1 − x − yÞs; ðD4Þ

Aðs; tÞ ≔ x2ðsþ tÞt − ðx2sþ 4x2tþ sÞm2

þ ð4x2 − 2Þm4: ðD5Þ

The UV divergence can be renormalized by δZm after other
diagrams which are omitted in Fig. 10 are also taken into
account. Equation (D3) shows that MðαÞðs; 0Þjs;u-channel

satisfies the Froissart bound and the standard analyticity
properties in the complex s-plane. We can then compute the
contribution from the diagram (α) to cgrav;others as

cgrav;othersjðαÞ ¼
4

π

Z
∞

Λ2
th

ds0
ImMðαÞðs0; 0Þ
ðs0 − 2m2Þ3 ≃

g2

8π2M2
plΛ4

th

;

ðD6Þ

analogously to Eq. (B1). Here, we used

ImMðαÞðs; 0Þjs≥4m2 ¼ g2

8πM2
pl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

r
s − 2m2

2s
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2Þ
p m2ðsþm2Þ

s
ln

�
s − 3m2

m2

��
: ðD7Þ

Note that the t-channel version of the diagram (α) contributes to cgrav;t-ch, giving rise to the first term of (11). From (D6), it is
found that cgrav;othersjðαÞ is much smaller than the first term of cgrav;t-ch when Λ2

th ≫ m2. Practically, the contributions from
s; u-channel diagrams are negligible when Λth ≳ 10m.

b. Diagram (β)

We compute the s- and u-channel pieces of the diagram (β) as

MðβÞðs; tÞjs;u-channel ¼
λ

M2
pls

Vμν
treeðk1; k2ÞPðdÞ

μνρσμ̃4−dð−iÞ
Z

ddl
ð2πÞd V

ρσ
treeð−l;lþ k1 þ k2ÞiΔðlÞiΔðlþ k1 þ k2Þ þ ðs ↔ uÞ

¼ −
5λm2

24π2M2
plε

−
λm2

16π2M2
pl

þ λ

16π2M2
pl

Z
1

0

dxðx − x2Þ
�
ðsþ 2m2Þ ln

�
DxðsÞ
μ2

�
þ ðs ↔ uÞ

�
: ðD8Þ

We can renormalize this UV divergence by adding an
Oðλ=εÞ term to δZRϕ2 as explained around Eq. (C17). It is
now obvious that cgrav;othersjðβÞ can be computed as

cgrav;othersjðβÞ ¼
4

π

Z
∞

Λ2
th

ds0
ImMðβÞðs0; 0Þ
ðs0 − 2m2Þ3 ≃

−λ
24π2M2

plΛ2
th

;

ðD9Þ
where we used

ImMðβÞðs; 0Þjs≥4m2 ¼ −
λ

96πM2
pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

r
ðsþ 2m2Þ2

s
:

ðD10Þ

We then have

cgrav;othersjðαÞ þ cgrav;othersjðβÞ ≃
g2

8π2M2
plΛ4

th

−
λ

24π2M2
plΛ2

th

;

ðD11Þ

confirming the estimation (13).

2. Graviton-scalar conversion

We then consider one-loop diagrams with a graviton-
scalar conversion. The relevant diagrams are shown in
Fig. 11, whose contribution to cgrav;others is denoted as
cgrav;othersjðγÞ. Note that only the s- and u-channel diagrams
have nonzero contributions to cgrav;others. These diagrams
are computed as

FIG. 11. The one-loop diagram with a graviton-scalar con-
version that are relevant for cgrav at order M−2

pl . For this type, the
s; u-channel diagrams have a nonzero contribution to cgrav, but
the t-channel diagram does not. Also, there are other one-loop
diagrams with a graviton-scalar conversion, but they do not
contribute to cgrav.
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MðγÞðs; tÞjs;u-channel ¼
−g2

M2
plsðm2 − sÞV

μν
treeðk1; k2ÞPðdÞ

μνρσμ̃4−dð−iÞ
Z

ddl
ð2πÞd V

ρσ
treeð−l;lþ k1 þ k2ÞiΔðlÞiΔðlþ k1 þ k2Þ

þ ðs ↔ uÞ

¼ −g2

16π2M2
plðm2 − sÞ

�
−ðsþ 2m2Þ

3ε
þ
Z

1

0

dxðx − x2Þ
�
ðsþ 2m2Þ ln

�
DxðsÞ
μ2

�
− 2m2

��
þ ðs ↔ uÞ:

ðD12Þ

UV divergences can be renormalized by adding an
Oðg2=εÞ term to δZRϕ. This expression shows that
MðγÞðs; 0Þjs;u-channel satisfies the Froissart bound and the
standard analyticity properties in the complex s-plane. We
can then compute cgrav;othersjðγÞ as

cgrav;othersjðγÞ ¼
4

π

Z
∞

Λ2
th

ds0
ImMðγÞðs0; 0Þ
ðs0 − 2m2Þ3 ≃ −

g2

48π2M2
plΛ4

th

;

ðD13Þ

confirming the estimation (13). Here, we used

ImMðγÞðs; 0Þjs≥4m2 ¼ g2

96πM2
pl

s − 4m2

s
ðsþ 2m2Þ2
sðm2 − sÞ :

ðD14Þ

3. Graviton inside loop

Finally, we evaluate the contributions from diagrams
with a graviton inside the loop. All the relevant diagrams
are shown in Fig. 12 in which all the possible assignment of
external momenta should be considered. As we shall see
below, some of these diagrams suffer from infrared (IR)

divergences. It will be necessary to consider the dressed
amplitude appropriately to resolve this issue, precisely
speaking. In the present analysis, however, we simply
introduce the fictitious graviton mass mg to deform the free
graviton propagator with momentum q in d-dimensions as

1

M2
pl

−iPðdÞ
μνρσ

q2 − iϵ
→

1

M2
pl

−iPðdÞ
μνρσ

q2 þm2
g − iϵ

; ðD15Þ

to regulate the IR divergences. We then compute cgrav;others
to verify the order estimation (13). We suppose that this
prescription is enough for the order-of-magnitude estimate
of cgrav;others. For later convenience, we introduce the
notation iΔgðkÞ ≔ 1=ðk2 þm2

g − iϵÞ.
To compute cgrav;others, we use the fact that all the

diagrams (A), (B), and (C) give the analytic amplitudes
which behave mildly at large jsj to satisfy the relations

cgrav;othersjFIG: 12 ¼
4

π

Z
∞

Λ2
th

ds0
ImMðs0; 0ÞjFIG: 12

ðs0 − 2m2Þ3 : ðD16Þ

Firstly, we shall check the high-energy behavior of
Mðs; 0ÞjFIG: 12. Then, we compute the imaginary part to
obtain cgrav;others.

FIG. 12. Diagrams with a graviton propagator inside loops which are of OðM−2
pl Þ. Again, all the possible assignment of external

momenta have to be considered. The diagrams (A), (B), and (C) can be understood as the contributions from theOðM−2
pl Þ corrections to

the 1PI self-energy, the effective ϕ3 vertex, and the effective ϕ4 vertex, respectively.
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a. s2-boundedness

We investigate the high-energy behavior ofMjFIG: 12. We used “package-X” [36] to perform the loop integrals and obtain
the asymptotic behavior of the amplitudes in the Regge limit.
Diagram (A). The diagram (A) is the contribution from the OðM−2

pl Þ correction to 1PI self-energy of ϕ to M. This
diagram is IR finite even in the limit mg → 0 and its asymptotic behavior in the Regge limit is

MðAÞðs; 0Þ ∼
g2

M2
pl

1

ðm2 − sÞ2 μ̃
4−d

Z
ddl
ð2πÞd V

μν
treeðl; k1 þ k2ÞPðdÞ

μνρσV
ρσ
treeðl; k1 þ k2ÞiΔðlÞiΔgðlþ k1 þ k2Þ

þ ðs ↔ tÞ þ ðs ↔ uÞ ∼Oðs0Þ: ðD17Þ

This behavior satisfies the Froissart bound.
Diagrams (B). The diagrams (B) are the contributions from theOðM−2

pl Þ correction to 1PI effective ϕ3 vertex toM. The
diagrams (B-1) and (B-2) are IR divergent, while the diagram (B-3) is IR finite. The asymptotic behavior of them in the
Regge limit can be estimated as

MðB-1Þðs; 0Þ ∼
g2

M2
pl

1

m2 − s
μ̃4−d

Z
ddl
ð2πÞd V

μν
treeðl; k2ÞPðdÞ

μνρσV
ρσ
treeðlþ k1 þ k2;−k1ÞiΔðlÞiΔðlþ k1 þ k2ÞiΔgðlþ k2Þ

þ ðs ↔ tÞ þ ðs ↔ uÞ ∼OðlnðsÞÞ; ðD18aÞ

MðB-2Þðs; 0Þ ∼
g2

M2
pl

1

m2 − s
μ̃4−d

Z
ddl
ð2πÞd V

μν
treeðl; k1 þ k2ÞPðdÞ

μνρσV
ρσ
treeðlþ k2; k1ÞiΔðlÞiΔðlþ k2ÞiΔgðlþ k1 þ k2Þ

þ ðs ↔ tÞ þ ðs ↔ uÞ ∼Oðs0Þ; ðD18bÞ

MðB-3Þðs; 0Þ ∼
g2

M2
pl

1

m2 − s
μ̃4−d

Z
ddl
ð2πÞd V

μν
treeðl; k1 þ k2ÞPðdÞ

μνρσηρσiΔðlÞiΔgðlþ k1 þ k2Þ þ ðs ↔ tÞ þ ðs ↔ uÞ

∼OðlnðsÞÞ: ðD18cÞ

We conclude that the diagrams (B) are consistent with the Froissart bound.
Diagrams (C). The diagrams (C) are contributions from the OðM−2

pl Þ corrections to the 1PI effective ϕ4 vertex to M.
The diagrams (C-3) and (C-5) are IR finite, while other diagrams are IR divergent. They behave in the Regge limit
asymptotically as

MðC-1Þðs; 0Þ ∼
g2

M2
pl

μ̃4−d
Z

ddl
ð2πÞd f½iΔðlÞiΔðlþ k1 þ k2ÞiΔðl − k3ÞiΔgðlþ k1Þ

× Vμν
treeðl; k1ÞPðdÞ

μνρσV
ρσ
treeðlþ k1 þ k2;−k2Þ þ ðk1 ↔ k3Þ� þ ðk3 ↔ k4Þg þ ðs ↔ tÞ þ ðs ↔ uÞ ∼OðsÞ;

ðD19aÞ

MðC-2Þðs; 0Þ ∼
g2

M2
pl

μ̃4−d
Z

ddl
ð2πÞd ½V

μν
treeðl; k1ÞPðdÞ

μνρσηρσiΔðlÞiΔðl − k2ÞiΔgðlþ k1Þ þ ðk1 ↔ k2Þ� þ ðs ↔ tÞ þ ðs ↔ uÞ

∼OðlnðsÞÞ; ðD19bÞ

MðC-3Þðs; 0Þ ∼
g2

M2
pl

μ̃4−d
Z

ddl
ð2πÞd η

μνPðdÞ
μνρσηρσiΔðlÞiΔgðlþ k1 þ k2Þ þ ðs ↔ tÞ þ ðs ↔ uÞ ∼OðlnðsÞÞ; ðD19cÞ

MðC-4Þðs; 0Þ ∼
λ

M2
pl

μ̃4−d
Z

ddl
ð2πÞd V

μν
treeðl; k2ÞPðdÞ

μνρσV
ρσ
treeðlþ k1 þ k2;−k1ÞiΔðlÞiΔðlþ k1 þ k2ÞiΔgðlþ k2Þ

þ ðs ↔ tÞ þ ðs ↔ uÞ ∼Oðs lnðsÞÞ; ðD19dÞ
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MðC-5Þðs; 0Þ ∼
λ

M2
pl

X4
j¼1

μ̃4−d
Z

ddl
ð2πÞd V

μν
treeðl; kjÞPðdÞ

μνρσηρσiΔðlÞiΔgðlþ kjÞ ∼Oðs0Þ; ðD19eÞ

consistently with the Froissart bound. We confirm the mild behavior of Mðs; 0ÞjFIG: 12, leading to (D16) together with the
analyticity.

b. Imaginary part

The imaginary part of each diagram in the forward limit can be computed by using the optical theorem as

ImMðAÞðs; 0Þjs≫m2 ≃
g2m2

4πM2
pls

; ImMðB−1Þðs; 0Þjs≫m2 ≃
−g2

16πM2
pl

�
ln

�
s
m2

g

�
− 1

�
; ðD20Þ

ImMðB−2Þjs≫m2 ≃
g2

8πM2
pl

; ImMðB−3Þðs; 0Þjs≫m2 ≃
g2

8πM2
pl

; ImMðC−1Þðs; 0Þjs≫m2 ≃
g2s

16πM2
plm

2
ln
�
m2

m2
g

�
; ðD21Þ

ImMðC−2Þðs; 0Þjs≫m2 ≃
g2

4πM2
pl

; ImMðC−3Þðs; 0Þjs≫m2 ≃ −
g2

4πM2
pl

; ðD22Þ

ImMðC−4Þðs; 0Þjs≫m2 ≃ −
λs

16πM2
pl

�
ln

�
s
m2

g

�
− 1

�
; ImMðC−5Þðs; 0Þ ¼ 0; ðD23Þ

where higher order terms suppressed by some positive powers of (m2=s) are omitted. This shows that the imaginary part of
diagrams shown in Fig. 12 are dominated by the diagram (C-1) and (C-4), resulting in

cgrav;othersjFIG: 12 ≃
1

4π2M2
plΛ2

th

�
g2

m2
ln

�
m2

m2
g

�
− λ ln

�
Λ2
th

m2
g

��
∼O

�ðg=mÞ2
M2

plΛ2
th

;
λ

M2
plΛ2

th

�
; ðD24Þ

confirming the estimation (13).
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