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We derive constraints on scalar field theories coupled to gravity by using recently developed positivity
bounds in the presence of gravity. It is found that a canonically normalized real scalar cannot have an
arbitrarily flat potential unless some new physics enters well below the Planck scale. An upper bound on
the scale of new physics is determined by loop corrections to the self-energy. Our result provides a

swampland condition for scalar potentials.

DOI: 10.1103/PhysRevD.104.066022

I. INTRODUCTION

Scalar fields play an important role in various contexts of
physics. In particle physics, the Higgs boson is a key
ingredient of the Standard Model. In cosmology, we need
the inflaton to realize the early universe inflation. More
theoretically, moduli fields are crucial to understand the
Landscape of quantum field theory models. In these
contexts, it is important to clarify what kind of scalar
potentials have a consistent ultraviolet (UV) completion,
especially in the presence of gravity.

A starting point in this direction is the widely accepted
statement that quantum gravity prohibits exact global
symmetries and so completely flat potentials are not
allowed [1-3]. Then, the question is how one can formulate
more quantitative constraints useful for phenomenology.
Indeed, several bounds on scalar potentials have been
proposed in the swampland program [4] with various
degrees of rigors and motivations [5-13] (see also
[14,15] for reviews). The conjectured bounds, if true, have
interesting implications for particle physics and cosmology,
which motivates further studies toward their derivation.

In this paper, we explore quantum gravity constraints on
scalar potentials in light of recently developed gravitational
positivity bounds [16—18]. In nongravitational theories, it is
well known that Wilson coefficients of low-energy effective
field theories (EFTs) have to satisfy an infinite set of
inequalities called positivity bounds in order to have a
standard UV completion [19]. While its extension to
gravitational theories has been nontrivial due to the
graviton t-channel pole, the conditions under which
(approximate) positivity bounds should hold are clarified
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by recent works [16—18] (see [20-22] for related discus-
sions). Following this, we study a real scalar coupled to
gravity in 4 dimensions,

2

Mpl 1 2
‘C:TR_§<8¢) _V(¢)+£higher+"" (1)

and use the gravitational positivity bounds to derive
constraints on the scalar potential V(¢) and the higher
derivative terms Lpjgher, clarifying assumptions and limi-
tation of its applicability. Here, R and M, denote Ricci
scalar and the reduced Planck mass, respectively.

II. GRAVITATIONAL POSITIVITY BOUNDS

In this study, we assume a weakly coupled UV completion
of gravity, whose illustrative example is perturbative string
theory. The scattering amplitude will be then unitary and
analytic order by order in perturbative expansions in terms of
M,,. Below, we simply write the ¢¢ — ¢¢ scattering
amplitude up to O(M,?) as M(s,1). Here, (s,1,u) are

2
ph>

mgh is the pole mass of ¢. We assume that M (s, t < 0) is
analytic in the complex s-plane except for discontinuities
across the real s-axis, and it behaves mildly at high energies
to satisfy |M(s,t<0)/s’| >0 in the limit |s| — oo
(: fixed)." Then, the s, u-channel pole subtracted amplitude
/\N/l(s, 1) == M(s, 1) — (s, u-poles) also satisfies the same
properties. These assumptions lead to the relation (see also
Fig. 1)

Mandelstam variables satisfying s + ¢ + u = 4m?,, where

'In gapped systems, this mild behavior follows from the
polynomial boundedness assumption [23,24] in combination
with the Phragmén-Lindelof theorem. Positivity bounds in the
absence of the polynomial boundedness assumption are dis-
cussed in [25].

Published by the American Physical Society


https://orcid.org/0000-0002-6421-306X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.066022&domain=pdf&date_stamp=2021-09-20
https://doi.org/10.1103/PhysRevD.104.066022
https://doi.org/10.1103/PhysRevD.104.066022
https://doi.org/10.1103/PhysRevD.104.066022
https://doi.org/10.1103/PhysRevD.104.066022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

TOSHIFUMI NOUMI and JUNSEI TOKUDA

PHYS. REV. D 104, 066022 (2021)

Co
&
AAAAAAAAAAAAAAAA
0

FIG. 1. Analytic structure of ./\7(s t) on the complex s-plane
and the integration contour to derive the relation (2). The wavy
line is a brunch cut and the point s = s, is the reference point. We
choose s, = ngh —(¢/2) +ip (u > 0).

IR AL ! /
—/ d_sij\/l(s ) :/ d_si/\/l(s 1) for t < 0,
¢, 2mi(s' —s,)} 40, 2mi (s' = s,)°

(2)

where s, = 2m2, — (/2) + i and u > 0. The contour C, is
a semicircle centered at s = s, with a radius r. The contours
C, and C, are straight lines defined by C; := {s'| — 00 +
in<s <s,—r} and Cp:={s|s, +r<s <oo+iu},
respectively. Next, we consider the low-energy expansion,
M(s,1) = 322U (5 — 5 )" 4 (r-poles). The residue

n!
of poles are polynomials and particularly we have
9?Res,_yM = —ZMEIZ, Res,_qM being the residue of the
graviton f-channel pole. This reflects the spin-2 nature of
graviton. The real part of Eq. (2) in the limit » — 40 then

gives

ImM,(s' +iu.t) 2
(=P M

32 ©
Rec,(t; 1) :;P[) ds’ (3)

for t < 0. Here, u' := 4mgh —s'—t and P denoting the

Cauchy principal value. We decomposed ImM into the s-
and u-channel pieces as ImM(s, ) = ImM,(s, 1) +
Im.//\\//lu(s,t) for t+ <0, and imposed the s <> u crossing
symmetry as Im/\A//lu(u,t) :Im/\N/lS(s,t). We also used
Im/A\;ls(s, 1) =0 for s < 0. One can evaluate the integral

of ImM,(s', 7) at low energy regions s < A3 within EFT
[26,27] to improve (3) as’

32 Atz 1 M / 1 Jt
C2.mpe(1) = Recy(t:€) =P /0 b gy ImM(s" + e 1)

(s/_u/)S
32 o ImM,(s' +iet) 2
_3R ds’ m/\/li(s —l/—;e ) - ()
T Ja2 (s —u) Mt

*An importance of the improvement procedure done in (4) to
obtain nontrivial constraints on EFTs in the gravitational setups
has been found recently in [21,28].

where € is an infinitesimal positive constant and Ay, denotes
a threshold scale above which the EFT evaluation of M is
unreliable: e.g., we have Ay, < A when considering a model
with a term (9¢)*/A*. We assume Ag, >> m2, throughout
this study. The second term on the right-hand side (rhs) of (4)
diverges as —oo in the limit ¢+ — —0. This makes the
positivity of ¢; jmp(0) unclear. In [17], the cancellation of
O(r71) terms on the ths of (4) is explicitly demonstrated by
assuming the Regge behavior

ImM, (s, 1) ~ () (#) o {1 + O(MTEH EE

S

(5)

at s > M?, where f(t) and j(¢) are functions regular in the
vicinity of # = 0. A scale M denotes the lightest mass scale
of the heavy physics which Reggeizes the amplitude. An
explicit computation of the O(1°) terms shows [17]

o)
MEME

(6)

CZ.impr (0) >

assuming the single scaling j' ~ |j"/j'| ~ |f'/f] < O(M:?)
which is the case in tree-level amplitudes in perturbative
string theory with M being the string scale. Here, the prime
denotes the 7-derivative evaluated at # = 0. Although the
precise value of the rhs of (6) will depend on the details of
UV completion, this approximate positivity provides non-
trivial constraints on EFTs as we shall see below.

III. BOUNDS ON SCALAR THEORIES COUPLED
TO GRAVITY

A. Setup

Based on an inequality (6), we shall derive a bound on a
real scalar field theory coupled to gravity whose classical
Lagrangian is given by Eq. (1), with classical potential
V(¢) and higher derivative terms Ly;ope, of the form

’If we go beyond the O(M,}) analysis, the O(In™" (s/M?))
subleading correction to the Regge behavior plays an important
role as discussed in [18]. Also, we suppressed the positive
contributions from other states which are irrelevant for the
Reggeization of t-channel graviton exchange in (5).

A similar order estimate of approximate positivity can be
found in [16,29]. A proof of the single scaling is beyond the
scope of this paper. The bound (6) is distinct from the one
conjectured in [21,28] which depends on the EFT cutoff scales or
mass scales of fields in EFTs.

066022-2



GRAVITATIONAL POSITIVITY BOUNDS ON SCALAR ...

PHYS. REV. D 104, 066022 (2021)

i Kk P ks B
!Tq
(i) key ks
— @ <«
ko ky
— @ R

FIG. 2. Diagrams (i): Relevant 1PI diagrams for an effective
vertex ¢p?h in the present analysis. Solid lines and double wavy
lines denote the propagators of ¢ and 5, , respectively. Diagrams
(ii): The #-channel diagrams which give negative contributions to

C2,impr(0)’ expressed in terms of the 1PI vertices shown in the
diagrams (i).

where «a is a constant of order unity. Ellipses stand for higher
order nonrenormalizable terms which are present in general
in the classical action because we regard this system as an
EFT. Our choice of Lyjghe, is necessary and sufficient for
taking into account the influence of higher derivative
corrections on positivity bounds up to O(A™*), thanks to
the invariance of M under perturbative field redefinitions.

We require |g/m|, |A] S 1 to ensure the perturbative
expansion of M in terms of coupling constants. We also
require that the minimum of V(¢) is located at ¢p = 0 at
least within the range |¢| < Ay, to justify the perturbative
evaluations of M(s,7) up to s < A3.

We use the dimensional regularization to regulate UV
divergences and adopt the MS scheme except we determine
the counterterm of the form Y¢ by imposing (¢) = 0 (see
Appendices for details).

B. General bound

We compute ¢; iy (0). We may decompose ¢; iy (0)
into the nongravitational piece and the gravitational piece,
2.impr(0) = Cron-grav + Coray- Diagrams without gravitons
and those with gravitons contribute t0 Cpop.gray> a0d Cray,
respectively. We start with the nongravitational one. The
contributions from nonrenormalizable terms such as
a(0g)*/(8A*) and ¢°/A? can be written as @/A*. We
have @ = @ when considering a renormalizable potential.
Renormalizable interactions also contribute t0 ¢;on gray Via s,
u-channel one-loop diagrams. Referring to the latter con-
tributions as ¢yon-grav.ren> W€ have Cpon gray = &
with

— a
A4 + cnon—grav,ren

2 ¢
g
Cnon-grav.ren = 1672 A, + 12722m*A§,

e AL\ 1
" 62AT (1<m— 5)

When ¢ is a shift symmetric scalar, one can always make
Cron-grav POSItive by choosing a > 0, the coefficient of the

higher derivative term (J¢)*. This is reminiscent of the
conventional positivity bound without gravity.

The presence of the gravitational piece c,,, changes the
story, however. In particular, loop corrections to the
graviton f-channel exchange diagram give rise to negative
contributions to which we refer as ¢,y ;—ch: corresponding
diagrams are shown in Fig. 2. Note that we are interested in
amplitudes up to O(M ;12), so that we can use the tree-level
graviton propagator together with the loop-corrected one-
particle irreducible (1PI) vertices.” To COMPULE Cyray 1-chs WE
write the 1PI effective action I" as

4123 | Gy

L fd% [dhs o,
+z / a / Gy (k) k1) ks (9,
(8)

K (k*)p(k)p(—k)

where we suppressed terms irrelevant for our present
analysis. Also, g,, =, +h, and ¢":=—(k; + k3)".
The kernel K(k?) denotes an inverse of a loop-corrected
propagator of ¢, which is written in terms of the self-energy
[1(k?) as K(k*) = k* + m*> —T1(k?). The 1PI ¢p¢ph vertex
function is denoted by V*¥(k, k;) and we parametrize it
with imposing the on-shell conditions A} = k3 = —my, as

Vi (ki ks)le—a=-me, = T(a* 0" + P(q*)q"q"
-20(4*)(p"q" + p*q")
+4R(q%) p"p*. 9)

Here, we defined p* = (k; — k3)# /2. For example, at the
tree-level approximation, we have T .. = ki.ky —m?,
Piee = —1/2, Quee =0, and R, = 1/2. The final term
on the rhs of (9) expresses the transverse-traceless compo-
nent of i, and only this piece contributes to the spin-2 part
of the r-channel graviton exchange diagrams which are
represented by the lower diagram of Fig. 2,

4R?(—1)su
M(s.1)|re. 2 :—(2 ) x Z* 4+ 0(s°), (10
Mt
where we used g> = —t and Z is the residue of the

propagator of ¢. We then find the relation ¢y cn =

8270, (R*(x))|,—o/Mpy =~ 8R'(0)/Mp; to get

>Note that negative contributions from the 7-channel tree-level
graviton exchange have been computed in different setups up to
one-loop level [21,28,30-32].
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45 -81\/3 ¢ 10— A2
129672 M§1m4 46087* Mém2

< 0.

Cgrav,t—ch = -

(11)

Note that the leading-order contributions from the ¢* vertex
arise at the two-loop level.’ Also note that nonrenormaliz-
able terms in V(¢), such as ¢°/A? vertex, contribute to
Coravach At O(M2A™?), which are negligible compared to
the O(A™*) contribution to ¢pon-gray as long as A> < M.
Interestingly, each term of (11) can be written in terms of
the self-energy IT as

2[" (=m?)|;— + 2H”<_m2)|g:0]

Crv,-hz_ ’ (12)
grav, 7=l 3M§1

where unitarity ensures I1”(—m?) > 0 because IT(k?)
satisfies the twice-subtracted dispersion relation at least
within the range of our approximation. This implies that
negativity of cgray 1.ch cOuld be related to the physics of the
loop-corrected self-energy. Although cgpy ;—ch 18 deter-
mined by the behavior of the vertex ¢>h when the
momentum of an external graviton is soft, it is not fixed
by the soft graviton theorem alone: see Appendices for
details.

Diagrams other than those shown in Fig. 2 also con-
tribute to Cgpyy at oM ;,2). Such diagrams are the diagrams
with s, u-channel tree-level graviton exchange diagrams,
diagrams with a graviton-scalar conversion, and diagrams
with a graviton propagator inside loops. We refer to these
contributions as Cgray others» Which can be evaluated as

(g/m)* 4 )

2 A2 P ag2 A2
MplAth MplAth

Cgrav,others ™~ @ ( (13)

and we have Cgray = Cgray,i-ch T Cgrav,others- Practically, the
terM Cgray others €aN be ignored to read off the implication
of the bound.” We thus discuss the implications of an
inequality,

& -0(1)
— + Cnon-grav.ren + Carav.i-ch > . (14)
A4 non-grav,ren grav,i-c MglMg,

Each term is given in Eqgs. (7) and (11). Note that this
bound is renormalization scheme independent at least
within the range of our approximation. Also, we do not

®The appearance of the leading-order term at two-loop level is
analogous to the fact that the leading-order correction to the field
renormalization appears at two-loop level in A¢* theory.

"This is because the O((g/m)*/(M 2/AG)) terms are smaller
than |¢gray 1.ch| by factors of m*/ A, and the O(2/(MpAG,)) terms
can be comparable to or larger than the O(4%/ Aﬁl) term contained
in Cnon—grav,ren Only when A/(MIZ)lAtzh) 5 O(M;14)

distinguish between m and my, because the difference
comes in at higher orders.

C. Analysis of the bound

1. Emergence of a critical scale
The bound (14) is meaningful only when the allowed
negativity on the order of M PM;? is negligible. We
introduce a critical energy scale A, as A, :=
(—Carav.—en)~"/*, explicitly given as

A= (10—7[2 2

N 45 - 873 &
46087* M2 m?

Lo
129672 Mglm“) - (15)

which is determined by the loop corrections to the self-
energy in the present model as indicated by Eq. (12). The
O(M;?M3?) term can be ignored in Eq. (14) when the
condition

Applicability Condition: min(A, A,) < /M, M, (16)

pl
is satisfied. Under the condition (16), we discuss the
implications of gravitational positivity bounds (14). It
turns out that implications of (14) are clearly different
between the following two cases,

Case (I): At > A%, Case (II): A < A%

2. Case (I): Conventional positivity bounds

EFTs fall into this class when new physics appears well
below the critical scale A, . The bound (14) on such models
is well approximated by

(04

P + Cnon—grav,ren 2 0. (17)
As explained below Eq. (7), this provides a constraint on
nonrenormalizable terms such as a(d¢)*/(8A*), and is the
same as the conventional positivity bound without gravity.
This is in accord with the decoupling of low-energy physics
from the physics of quantum gravity.

3. Case (Il1): Bounds on scalar potentials

EFTs fall into this class when new physics appears well
above the critical scale A,.. The bound (14) on such EFT's reads

> 0. (18)

C _
4 =
AL

non-grav,ren

The left-hand side (lhs) of (18) is determined once V(¢) is
given, and hence Eq. (18) constrains the potential V(¢). This
is a genuinely new bound which is distinct from the ordinary
positivity bound without gravity. The new bound (18)

066022-4
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FIG. 3. Gravitational positivity bound on A¢* theory. Lines

saturating our bound (18) and the applicability condition (16) in
A¢* theory are shown in the solid red line and dashes blue line,
respectively. We substitute M, = 10'® GeV and 1= 1072 to
draw the dashed lines. The shaded region is excluded by the
bound (18) under the condition (20).

typically prohibits an arbitrarily flat potential: for instance, in
A¢* theory, Eq. (18) gives a lower bound on m? for fixed Ay,

10—72 A2 A \2
m> T D00 8x10°(—=B ) Gev, (19)
28877 M, 105 GeV

while the applicability condition (16) reads

M
m <54 %102 ———
10'6 GeV

> GeV. (20)
Lines saturating Eqs. (19) and (20) are plotted in the (m, Ag,)-
plane in Fig. 3. We find that the mass of the scalar field cannot
be arbitrarily light in 1¢)* theory. In the presence of the cubic
interaction, the expression of the bound (18) is complicated,
but it is obvious that tiny mass is prohibited for fixed 4 and
g/m. In particular, when having the scaling ¢* < |A|m?, the
bound (18) reads

A2 [1.8 x 1072 2 172
mZM—“‘ x /12(9/'") +46x1075| |, (21)

pl

nontrivially constraining V/(¢) for a given cutoff Ay,

D. Summary of the results

To summarize, scalar potentials cannot be arbitrarily flat
to be consistent with the gravitational positivity bound: for
example, we cannot tune the mass to be arbitrarily smaller
than the cutoff scale Ay, without violating the bound (18).
Our result provides a quantitative swampland condition for
scalar potentials which can be derived under several clear
assumptions.

Any scalar field theory coupled to gravity which violates
the bound (18) has to possess appropriate nonrenormalizable
terms such as a(9¢)*/(8A*) with A <A, and a > 0, in
order to satisfy the bound (14). The presence of such

nonrenormalizable terms can be interesting phenomenologi-
cally. This is one of the main result of this study.

As a caveat, we remark however that our bound (14) still
has a room to accommodate models with a very tiny scalar
mass. One can take the shift symmetric limit of a given
massive scalar theory without violating the bound (14) by
requiring A, > min(A, Mles).8 For instance, a con-
sistent shift symmetric limit of A¢p* theory is 1, m*> — 0 with
satisfying |A/m| — 0. It would be interesting if one could
sharpen our analysis further to exclude all the flat
potentials.

IV. ILLUSTRATIVE EXAMPLES

As an important application, we firstly discuss an
implication of the bound (18) to the renormalizable
potential of the Higgs boson in the Standard Model. We
then discuss more general form of potentials with non-
renormalizable terms which have been frequently discussed
in cosmology. We will consider axionlike particle models
and the Starobinsky inflation as illustrative examples of
nonrenormalizable potentials.

A. Renormalizable potential: Higgs boson

Let us consider the implication of (18) to the Higgs
potential. The classical potential for the Higgs boson ¢ in
the unitary gauge is paremetrized as m ~ 125 GeV,
g/m ~ 1.5, and A ~ 0.75. For these values, the critical scale
reads A, ~ 10'" GeV. Then the applicability condition (16)
reads M > 10 TeV, which is indeed satisfied in typical
string theory scenarios. So, it is reasonable to apply the
gravitational positivity bound on the 2 to 2 scattering of the
Higgs boson. Then, (18) for the Higgs potential reads

Ap S 1.9/ Mym~3.4x 10 GeV. (22)

Of course, it is necessary to include other Standard Model
particles for more precise argument, but this result poses a
nontrivial question if the Higgs sector of the Standard
Model is in the swampland. We will revisit this aspect in
future work, which would open a new possibility to obtain

¥Such a consistent shift symmetric limit can be explicitly
realized in a model of a light scalar field whose tiny mass is
protected by some symmetry. For instance, we consider the
model of complex scalar ® in which the approximate global U(1)
symmetry is spontaneously broken,

2\ 2 2
g v guTe "
L=-|oop -7 (@\2 —7) + 55 (@ 4 @),

with g > 0, v # 0, and 0 < ¢ < 1. One can check that the ¢ — 0
limit provides a consistent shift symmetric limit for the pseudo
Nambu-Goldstone boson.

066022-5
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nontrivial swampland constraints on the Standard Model
coupled to gravity, particularly the Higgs sector.”

B. Nonrenormalizable potentials

Next, we consider the gravitational positivity bounds on
potentials of the form

V(p) = fm? f;% (?) (23)

with ¢; =1 and |c,| S O(1) for n=3,4,.... Here, f
denotes some energy scale satisfying f > m. Potentials
of this form have been widely discussed in cosmology. For
the potential (23), the critical scale A, reads'’

10-22m? , 45-8z/3 ,\ 74
A= <4608n4f26‘2‘ T 120622 C%> yMufe o (24)

implying that the bound (18) is reliable only when f < M|
to satisfy the applicability condition A, < /My M. This
potential is nonrenormalizable unless {c, } y,>5 = 0. In the
presence of nonrenormalizable terms, we need to impose
Ag < f. Under this assumption, we can ignore the con-
tributions from nonrenormalizable terms in V().

As an example, let us consider the case |c3| ~ |cy| ~
O(1) with f < M. In this case, the bound (18) reads

5745

m2
(A_2> My < M. (25)

C3 th

In the final line, we used A} > m?. This may be under-
stood as a bound on the flatness of the potential because the
potential becomes flatter for larger values of f. Note that for
given f and m, the bound (25) can also be understood as an
upper bound on the cutoff Ay,.

However, we do not always have nontrivial constraint on
nonrenormalizable potentials: models with nonrenormaliz-
able potentials (23) with Z, symmetry are always consis-
tent with gravitational positivity bound. This is because,
when the bound (18) is violated in such models, we always
find a super-Planckian critical scale A,:

46087 f2 )i
I
10 — 72 mzcﬁ P

115273 <f

- — M M. 26

In the second line, we assume the violation of (19). In the
third line, we used Ay, < f and |c4] < O(1). This analysis

See also [33] for implications of gravitational positivity
bounds on the light-by-light scattering in the Standard Model.

As we explained below Eq. (11), nonrenormalizable terms
give negligible contributions to A,.

clarifies that the condition Ay, < f is a crucial obstruction
to obtaining the bound on nonrenormalizable potentials
with Z, symmetry. It would be interesting to embed such
Z, symmetric potentials into renormalizable QFT models
and study gravitational positivity bounds in these UV
theories to derive nontrivial constraints on nonrenormaliz-
able potentials realized at low energies.

1. Starobinsky inflation

As a concrete example of phenomenologically relevant
model with a nonrenormalizable potential of the form (23),
we firstly consider the Starobinsky inflation model [34] in
which the potential of a scalar field minimally coupled to
gravity is

v =203 - on ()]

This potential takes the form of (23) with f ~ M. Then we
find that the super-Planckian critical scale A, = 6.2M,, and
hence we conclude that the Starobinsky inflation model is
consistent with (14).

2. Axionlike particle

Next, we consider a model of an axionlike particle whose
potential is typically given by

V(¢) = f2m*[1 - cos(¢/ )], (28)

where f is the decay constant. This potential respects Z,
symmetry and nonrenormalizable. We thus conclude that
axionlike particle models are consistent with the gravita-
tional positivity bound (14).

These results suggest consistency between the well-
motivated models and gravitational positivity bounds,
which would support for the assumptions that we used
to derive the gravitational positivity bounds.

V. STRONG SCALAR WEAK GRAVITY
CONJECTURE

It is interesting to compare our bound (18) with a bound
called the strong scalar weak gravity conjecture (SSWGC)
[11-13]. For expansion coefficients of V(¢) around the
vacuum at ¢ =0, the SSWGC reads |E(g/m)?> —A| >

(m*/M?) where & is a constant of order unity. In the
absence of the quartic interaction, our bound (18) reads

2 m2 2
<£) Z r _2 )
m M ol

A 3
r~0.014 (—t;‘) >1, (29)
m

066022-6
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which is stronger than the SSWGC bound because we have
A3 > m? leading to r>> 1. Once turning on the quartic
interaction, however, the implication of (18) is different
from but complementary to the one implied by the
SSWGC. The SSWGC basically constrains V(¢) for tiny
coupling constants || ~ (g/m)* ~ O(m*/My)): e.g., the
SSWGCreads f < M, for axionlike particles. By contrast,
the bound (18) nontrivially constrains V(¢) for larger
coupling constants 4> + (g/m)?| 2 (m*/M?) because of
the applicability condition.

It would be interesting to study connections between the
gravitational positivity and various conjectured bounds

on V(¢).
VI. CONCLUSION

We derived a bound on scalar potentials by using the
gravitational positivity bounds with clarifying assumptions
and limitation of its applicability.

We identified the emergence of the critical energy scale
A, which is determined in terms of coupling constants of
renormalizable interactions. When the contributions of
higher derivative terms can be ignored at the scale A,,
the gravitational positivity bound provides a genuinely new
constraint (18) on the potential V(¢). This is distinct from
the ordinary positivity bounds in the absence of gravity. By
contrast, the conventional positivity bounds for nongravita-
tional theories are recovered when some unknown heavy
physics comes in well below the scale A, and the scales of
quantum gravity My and M. This is in accord with the
decoupling of low-energy physics from the physics of
quantum gravity.

Interestingly, the critical scale A, can be much lower than
the scales M, and M. Any scalar theory coupled to gravity
which violates the bound (18) has to possess appropriate
nonrenormalizable terms such as a(d¢)*/(8A*) with
A< A,, a being a positive constant of order unity.
Presence of such nonrenormalizable terms can be phenom-
enologically interesting. It is particularly noteworthy that
scalar potentials cannot be arbitrarily flat to be consistent
with the bound (18): for instance, it is violated if we tune the
mass to be much smaller than a given UV cutoff scale. This
suggests the importance of the technical naturalness for
embedding scalar theories into weakly coupled UV com-
pletion of gravity. Our result provides a quantitative

|

swampland condition for scalar potentials which can be
derived under several clear assumptions.

We also applied (18) to the Higgs boson in the Standard
Model and found a cutoff scale around 10'° GeV in (22),
which is much lower than the Planck scale. One cannot take
this value seriously because we did not include the
contributions from other Standard Model particles, but
our result opens a new possibility to obtain nontrivial
swampland constraints on the Standard Model coupled to
gravity, particularly the Higgs sector. We leave this aspects
for future work. The essential origin of the presence of such
nontrivial constraints is the negative sign of cgyy ;.ch and the
emergence of the critical scale A, at the scale much lower
than the quantum gravity scale /M, M. We found that A,
is determined by IT"(—m?) in the present analysis, IT(k?)
being the self energy of ¢. This indicates that the
emergence of A, and its value might be related to the
physics of the loop-corrected self-energy. We leave further
studies along this line of consideration for future work.
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APPENDIX

This Appendix includes detailed computations which are
omitted in the main text. In Appendix A, we compute
[1(k%), the self-energy of ¢, which is used in (12).
Computations of Chon-grav,ren>  Cgrav,t-ch» and Corav,others aI€
shown in Appendix B, Appendix C, and Appendix D,
respectively.

APPENDIX A: SELF-ENERGY

In this section, we compute the self-energy of ¢. To get
UV-finite results, it is necessary to add counterterms. After
adding the counterterms which are relevant for our analysis
below, the action (1) becomes

2
/dw—[ le_,(a@ f¢2—%¢3—%¢4—ca+~-,

5Zm

6Zgg

521,1

Lo =200 + v+ L2 g2

&+ ¢4 + 8ZgyRep + 6Zp 2 RY?, (A1)
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() N
_/ N
FIG. 4. Diagrams relevant for the self-energy of ¢ in the present
analysis. The first and the second diagrams are one-loop
diagrams, and the third diagram is a two-loop diagram. The
second diagram is independent of the external momentum and so

the leading corrections from the quartic coupling A to the
momentum-dependence arise at the two-loop level.

where the ellipses stand for nonrenormalizable terms which
are irrelevant in the discussion below. Coefficients of
counterterms are 6Zy, Y, 6Z,, 6Z, 6Z;, 6Zgy, and
0Zgy- To regulate UV divergences, we use the dimensional
regularization and work in d =4 — ¢ dimensions. As the
renormalization condition, we adopt the MS scheme except
we determine the counterterm Y ¢ by imposing (¢) = 0. The
value of ¢; - (0) turns out to be scheme-independent at the
level of approximation adopted in the present analysis.

|

Ao di¢ 7o dd¢
Hone—loop(kz) = _E(_Z)l"4 d/ (27[)d lA(l’ﬂ) +?(_l)/44 d/ d
1

2 m2 gz
- 94+ -2 () -1
167T28(m +9) 327° {n(y2> ] 327°

where D, (=k?) := (x> — x)(—k?) + m?. In the MS scheme,
we choose the counterterms as

A+ (g/m)?

6Z,, = 5
167°¢

+0O(2), 62, =0(1%), (A4)

leading to

oo () = = 124 [m (’” ) 1}
gi d““( i, k2)>- (AS)

Then, at the one-loop level, the physical mass m,, is

3

my, = m* —T(—mp ) ~m® —

p Hone—loop (_mZ)

~ 45 () |
322[< >+—_2]

and the inverse of the residue of the Feynman propagator
of ¢ is

(A6)

""We will take care of gravitational corrections to the propa-
gator appropriately, when we evaluate ¢,y ohers in Sec. IV.

1. One-loop

We begin by the one-loop analysis. Since gravitational
corrections to the self-energy are sub-leading and irrelevant
for our purpose in (12), our analysis here focuses on
nongravitational corrections.'! First, the renormalization
condition (¢) = 0 leads to

d
Y = —g(—i)/}“‘d/ ((21”"; iA()

2
_ g 2—1n Z)+1),
3272 u

where A(k) denotes the free propagator of ¢ in momentum
space: iA(k) = (k> + m* —ie)~'. Also, at the second
equality, we defined y? := 4zji> exp[—y] with y being the
Euler constant. Next, we compute the self-energy. Relevant
diagrams for the one-loop self-energy are shown in Fig. 4,
which can be computed as

(A2)

INC)IA(E + k) — 6Z,,m* — 5Zyk?

(27)
D (—k?
dx In (%) —8Z,,m* = 5Z4k*,  (A3)
U

=1- Hi)ne loop ( Iznh)

~1- Hz)ne -loop ( mZ)

(27V3 - 9)¢
288722’

7~ 1

one-loop ~

=1+ (A7)

For later convenience, we list up the value of IT', IT”, and IT":

2

Hé)ne loop( mZ) 2887‘[2 2 (9 2”\/_) (Aga)
7
Hgne loop( mZ) = m (45 - 871'\/5) >0, (Agb)
Hgne loop( m2) 216 Mz 2.6 6 (27 571'\/_) (ASC)
Using Imnone-IOOP(k2 - i€)|k23—4m2 :% _47_'[12(2_ kz, we
find the twice-subtracted dispersion relation [35]
" 2\ 2 [ d ImHOne—loop(_s - l€) 0
Hone—loop(_m ) - ; o s (S _ m2)3 > 0,
(A9)

implying that the positivity of T/ m?) is ensured by

one- loop(
unitarity.
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2. Two-loop

Next, we compute the O(4?) correction to T1(k?), which
is at the two-loop level. This is practically important
because the O(A) corrections to T1(k?) are k-independent
and so k-dependent corrections from the quartic coupling 4
first arise from two-loop diagrams: see the third diagram
shown in Fig. 4. The contribution from this diagram reads

Htwo—loop (k2 ) |g=0

B e [ [ @
- 6 (( )/"4 d)z/(zn,)d/(zﬂ)d
X iIA(?)iA(q)iA(q + € — k)

+ (k-independent diagrams),

(A10)

where the second term is for k-independent diagrams
(double-scoop diagrams) that are not relevant for the

following discussion. To evaluate the double-integral in

iti ' i — 1% | 04y
the first term, it is convenient to insert 1 = 55 (5 7+ aqﬂ) as

d d
/é—;/éTq)diA(f)iA(q)iA(q +e—k)

[ 1o o,
) @) (27)?24\o¢,  Oq,

x iA(£)iA(q)iA(g + £ — k).

(Al1)

Reformulating the right hand side by partial integrals, we
find

12
6(3—4d)
+ (k-independent diagrams),

1/ 42 \2 3m?
Htwo—loop( )|g 0= (167{) X {_8_2

() 2(5)-

Htwo»loop(k2)|g=0 = (3m2K(k2) + kﬂKﬂ (kz))

(Al2a)
|

_k2{156 3 [ o=y (ny

UV-divergent terms are shown in the first line. The terms in
the second and the third lines are UV finite. For our purpose,
it is enough to compute I1" and IT”. We renormalize the UV
divergent terms proportional to k> in (A14) by choosing the

"2We learned this trick in the QFT lecture by Atsuo Kuniba held
at the University of Tokyo—Komaba, when one of the authors was
a PhD student. We thank him for giving nice lectures.

(=k?)

d d
k()= (o [ 55 [

2r)! ) (2m)
x iA(¢)[iA(q)]?iA(q + € — k), (A12b)
d d
K@) = (i [ 55 [ o
x iA(E)[iA(q))?iA(g + ¢ — k)g".  (Al2c)

To compute K and K*, we firstly perform the integration
over £ by using the Feynman integral formula. We then
perform the integration over ¢ by using the formula again to
get

I'4-d)

K(k?*) = WA dx(x — x2)(4/2)=2

1 d 2 4—d
dyy2-(d/2) — | (1 — 7
) e g {( ”(ny<—k2>> ’

(Al3a)

(A13b)

where  Fo(—k2) = (y =y 4+ [(1 = ) + 2. To
arrive at the above expressions (Al3), we also used
d < 4. Notice that double integrals in these expressions
. 12

are regular even in the d — 4 limit.

Substituting Eqgs. (A13) into (A12) and expanding the
resultant expressions in terms of an infinitesimal positive
parameter &, we have

()5

ldx/oldy Iny - < 1—y)1n<#ik2)>> +’2t—ﬂ

ﬂ } (k-independent diagrams). (A14)

field renormalization 6Z, appropriately to obtain the UV
finite expression for IT', while IT” is UV finite and indepen-
dent of the renormalization scheme. The MS choice of §Z,, is

67, = - (2) (AlS)
? 7 12e \16722)

leading to
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1 A 2 m2 3
Movosoop (=110 = 13 (E) {h‘ (7) * ﬂ ’

(Al6a)

1 A \2
ng/o—loop(_m2)‘g:() = W <@> (10 - 7'[2) > 0.

(A16b)

APPENDIX B: COMPUTATION OF .0 gray.ren

In this section, we compute Cpopgravren DY €valuating
nongravitational scattering amplitudes generated by renor-
malizable self-interactions of ¢». The leading contributions
are through the one-loop diagrams shown in Figs. 5 and 6.
We define their sum by Mg grayren = Ma) + Mp)+
My + Mg + M. These diagrams consist of renorma-
lizable vertices only, and hence M,on_grav ren 18 analytic in the
complex s-plane modulo poles and cuts, and satisfies the
Froissart bound. Then, the following relation holds:

RCCZ (O’ 6) |n0n—grav,ren

— i/w ds’ ImMnon—grav,ren(sl’O)
T Jam?

o (s' = 2mgh)3

(B1)
(a) (b)

O<

FIG. 5.
should be considered.

(d)

We can explicitly check this equality by directly computing
both sides of (Bl), although we do not show detailed
computations here. Equation (B1) leads to

/
_ 4 fo d /ImMnon-grav,rcn(s s 0)
Chon-grav,ren — S > 33
A (s" = 2my,)

(B2)

2
th
The imaginary part of each diagram can be computed as

22 s —4m?

ImM(a) (S, O) |S24m2 =

32 s
¢ 1 s —3m?
Im/\/l(b) (S, 0)|S24m2 = ) S(S _ 4m2) ln< m2 s
(B3a)
4 2
g s —4m 1
ImM (5,0 = \/
mMe) (8- O)l 2o 162m? s (s=3m?)
g' 1

en ol ant) (s —2n)

y s — 3m?
m? ’

(c)

(B3b)

1PI diagrams for nongravitational four-point scattering up to O(42, 1¢g%, g*). All the possible assignments of external momenta

{4

—( + O
(e)
O+ 0

\

FIG. 6. The process ¢p¢p — ¢¢ expressed by the non-1PI diagrams up to one-loop. All the possible assignments of external momenta
should be considered. Diagrams (d) represent the self-energy corrections to the ¢p¢p — ¢p¢p process. The diagram (e) is the contribution

from the one-loop corrections to ¢ vertex.
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4 1

g s —4m?
ImM ) (5, 0)|s54m = 3ami sV s (B3c)
A [s—4m? 1
167 s s—m?

4

+7 :
87 \/s(s — 4m>)(m* — s)

(3 —3m?
m? )’

Here, we set m* = m7, since the difference comes in at

ImM(e) (S, 0) |524m2

In

(B3d)

higher orders in the coupling constants. We do not encounter
any UV divergences in these computations, implying the
scheme-independence of ¢pop_gravren @t the leading order.
Substituting Eqgs. (B3) into (B2), we obtain

2? *
9
Cnon-grav.ren == 16772Aﬁh + lzﬂszA?h

e ALY 1
- (=) -2 B4
672 A, (“<m2 s) (BY

where tiny corrections suppressed by m? /A2 are discarded.

APPENDIX C: COMPUTATION OF cgyqy .ch

In this section we compute Cypyy 1cn by evaluating the -
channel graviton exchange diagram with loop-corrected
vertices. Since the computation is somewhat involved, it is
helpful to use the Ward-Takahashi (WT) identities asso-
ciated with the general covariance for consistency check
and also for simplifying the calculation. Note that we
distinguish between my, and m? in Sec. I, although we set
m?* = m2, in Sec. II since the difference comes in at higher
orders in the coupling constants.

1. Ward-Takahashi identities

Firstly, we derive the WT identities associated with the
general covariance. Suppose that the 1PI effective action of
¢ and the metric fluctuation 4, defined by g,, = n,, + hy,
is of the form,

1 d*k
r= =3 [ G Kb

4 4
+ %/ (6;:)]4 / (6;:)24 Vi (ky ko) (ky )b (ko)

X (—hy = k) e

(C1)

where the dots stand for terms that are irrelevant for
graviton exchange diagrams studied in the main text and
also for the WT identities derived in this section. For
example, for the tree-level action, we have

Ktree(kz) = m2 + k2’

Viee (k. ky) = = (m* — ky k) — (K{ks + KhkY).  (C2)

The effective action should be invariant under the infini-
tesimal transformation,

w0(l) = 1 [ G e, k= ke ().
5hﬂb(k) = ikﬂey(k) + ik,,eﬂ(k) + O(h), (C3)
so that we require
[ [
01 [ St [ Gaiotkgliale, -k — ko)
< [K (kDK — K(k3)k| — (ki + ko), V¥ (k1. ky)].
(C4)

This is of course satisfied for the tree-level action (C2).
Now let us assume that V¥ is local and so it can be
expanded in the momenta k;. Under this assumption, we
may write V# as

Vi (ki ky) = T(ky, ko)t + P(ky. k) g q*
=20(k, k) (P"q" + p*q")

+4R(k1’k2)pﬂpl/’ (CS)
where T, P, Q, and R are local scalar functions, and we
introduced p* and ¢* by p*:=(k;—ky)"/2 and
q" == —(k; + ky)*. For example, for the tree-level action,
we have

1

Ttrce(kl’k2) =ky.ky — m2’ - _57

Ptree(klv kZ)

1

Qtree(kl s kZ) =0, Rtree(kl > k2) = 5 . (C6)

Also note that when the graviton £, is on-shell, i.e., when

h,, is transverse traceless, only the R component contrib-

utes to the amplitude. In this language, the constraint
(C4) reads
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p— {T(kl, ki = g) + Py —ky - g) — (@ + 2(k1.9))Qky Ky — g) +

o [qZQuq, k1 —q) = (¢* +2(ky.q)R (k1. k1 — q) +

which leads to the following two identities:

0 =T(k;.—k; — q) + ¢*P(ky, —ky — q) — (¢* + 2(k1.q))O(ky. —k; — q) +

0= q*Q(ky.—ky — q) — (¢* + 2(k1.q))R(ky, —k; — q) +

They are the WT identities associated with the general
covariance.

We then discuss the consequence of these identities in
the soft limit ¢ — O while k; being fixed. For this purpose,
we introduce the soft limit expansion,

[se]

Ak, =k = q) = > A, ,A(R) (kr.g)"(¢*)™,  (C9)

n,m=0

where A =T, P, O, R. In terms of these expansion
coefficients, the WT identity (C8b) reads

O(q): AgoR(ki) =5 (1 -TI'(k{)).  (Cl0a)

N[ =

-1

O(¢): BogQ(k}) =0, AygR() =—T1"(K3). (C10b)
1

O(q*): A10Q (k) = 280, R(K}) = 511" (k).

-1_.,
AZ,OR(k%) = ?H (k%) (C10c)

up to O(q?). Here, we used the fact that K(k?) can be
written in terms of the self-energy TI(k*) as
K(K*) = k* + m*> —T1(k*). We can also derive identities
that involve 7 from the constraint (C8a): the result is

O(q°): AgoT(ky) = (ki + m* —TI(k)).  (Clla)

Olg): 81pT() = =3 (1 =TIE)).  (Clib)

O(q?): Ay 0T (k) — 24, 0Q(kT) = TI"(k7),

B0, T(8) + BooP(R) = =3 (1 =TT (&)
(Cllc)

K(k) + K (ki +2(ki-q) + 612)]

2
—K(&) + K(K} +2(ky.q) + ¢)
+ 20k ] , (c7)
K(ki) + K (ki +2(ki.q) + 4°) (C8a)
. ,
~K(k) + K( +2(k1.q) +4*) (C8b)

2

[
2
O(q): A3,0T(k%) - 2A0,2Q(k%) = _gnm(k%% Al,lT(k%)

+ Ay oP(kT) = (A1 0Q(kT) + 240, Q (k7)) = T1" (k7).
(C11d)

Here, we used the first identity of (C10b) to derive
Eq. (C11b) and the second equality of (Cl1c).

Before moving on to concrete loop computations, we
summarize implications of the WT identities for R'(0) that
is relevant for the evaluation of ¢y ;.o [recall discussion
around Egs. (9)—(11)]. The function R(¢) defined in (9) is
given in the present language as

R(qz) = R(klv _kl - Q>|k%:k§:—m§h
o _q2 n
= Z An,mR(_mgh) (T) <q2)m

= AgoR(=my,) + |:A0,1R(_msh)

1

5 (C12)

Al’oR(—mgh):| q2 + (9(6]4),

where we used the relation k;.qg = —g*/2 that holds when
k? = k3. Correspondingly, we have

1
R'(0) = A R(-my,) — EAI,OR(_mgh)

1

= —Al.oQ(—mﬁh),

5 (C13)

where we used (C10) at the second equality. Note that the
WT identities relate R'(0) directly to AQ; o(—my,)/2, but
its sign cannot be fixed from the symmetry consideration
alone. It would be interesting to provide a physical
interpretation of the sign of AQI,O(—mgh)/Z, leaving it
for future work.
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(¢h-1) (¢h-2) (¢?h-3)

NN O
P :

(¢*h-4)

(¢p*h-5) (¢*-6)
8Zmm? 8Z g2

o

FIG.7. One-loop 1PI diagrams for the ¢ h-vertex. Counterterm
diagrams are also shown which are necessary for renormalization.
The diagram with a field renormalization 6Z, is not included
since it is not necessary at one-loop level in the present model.
External in-going momenta for scalar lines are k; and k,. In-
going momentum for external graviton is g = —(k; + k). All the
possible assignment of external momenta should be considered.

2. WT identities at one-loop

Now let us perform loop computations. For consistency
check, we begin by computing off-shell Q and R at the one-
loop level and demonstrating that they indeed satisfy the
WT identities (C10). The one-loop 1PI diagrams relevant
for the ¢¢ph-vertex are shown in Fig. 7. In this figure, in-
going momenta for external scalar lines are referred to as k,
and k,. The in-going momentum for the external graviton is

—(ky + k,). All diagrams in Fig. 7 contribute to the
trace part T(k;,k,), whereas one-loop corrections to
Q(ky,—k; —q) and R(k;,—k; — g) arise only from the
diagram (¢>h —1). One-loop corrections to the vertex
function from the diagram (¢?h — 1) can be written as

w . ddf 5
V?¢zh 1)(k1,k2) = Pptd(=i )/(27[) Ve (=€, = q)

X iA(2)iA( = q)iA(£ + ki).  (Cl4)

Then, the one-loop corrections to the off-shell vertex
function Q and R are

Qone loop kl’ kl

gy X (I—x-2y)
—, C15
3277" / / xy k], ) ( )
Roneloop kl’ kl
“d Cl6
3277" / / X\ kl’ ) ( )

where

D,y (ki.q) = (y =y*)q* + 2xy(ki.q)
+ (x — x2)k2 + m>. (C17)
Note that Q and R are UV finite and so we set d = 4 in the
above. On the other hand, the terms 7 and P have UV
divergent terms. The diagrams (¢*h — 1), (¢*h —2), and
(¢*h — 3) give UV divergent terms to Ay oT which can be
renormalized by the mass renormalization 6Z,, given by
(A4). The diagram (¢*h —4) gives UV divergences to
Ag,T and AyoP with an opposite sign which can be
renormalized by 6Zg .

Using explicit one-loop results (A8), (C15), and (C16),
we demonstrate that Eqs. (C10) are indeed satisfied. We
basically show the results when k} = —m? below for
simplicity, but one can easily extend the computation to
k? # —m? case at least when 0 < —k? < 4m?. We start with
ComPUting AO.ORone—loop(_mz)’

- x
AgoR —m?)
0,0 one—loop( m 32ﬂ2m2/ / x —x+ 1)

B —¢? 1 71'\/_
Ta2mr\2 9
-1

= 7 Hime—loop (_m2 ) s

(C18)

confirming Eq. (C10a). Next, we confirm (C10b) by

1- 4 x(1-x-2y)
A
0,0Qone-loop( m 32ﬂ2m2/ / x —x+1
(C19)
1- x 2x3y
Al,ORone—loop( m 327[ / / m
=7 [5 43z
- 2atmt 6 27
-1
= S e oy (=) (C20)
Also, Al,OQone-loop(_mz) and AO,lRone-loop(_’/'/lz) are com-

puted as

AT Qone—loop (_mZ) =

—g? 1
g
e dx
3272m* A

I=x  =2x%y(1 —x—2y
x/ dy 2( : )
0 (x*=x+1)

-1

6 Hgne loop( m2)7

(C21)
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92 ldx

327 m
()
dy 2\ 7Y
X/) y(xz—x—i—l)z

-1
= ? Hgne—loop(_mz) ’

A0,1 Rone-loop <_m2)

(C22)

leading to the first identity of (C10c):

A1,0Q0ne—loop(_’nz) - 2A0,1R0n6—100p<_m2)
1
= T ().

o~ one- loop (C23)

Finally, we confirm the second identity of (C10c) by
computing A2,0R0ne—loop (_mZ) g

1- x
2
A2,ORone-loop(_n/l 3271'21716/ / x _x+1)

- —g 1_57[\/_
C822mf\3 8l
1

- 7Hg;16—loop ( _mZ) .

(C24)

3. Computation of R'(0)

We compute R’(0), which is relevant for the positivity
bounds as shown in Eq. (11), by evaluating A, ,Q(—m?)
and using (C13). To efficiently compute A; ,Q(—m?), we
perform the soft expansion of the integrand before perform-
ing the loop integrals. We firstly check how our method
works at the one-loop level. We then compute two-loop

|

1
s of (C25)]o1.) 1) s = 607 [ (1 =x5(=i) | :

8(1 —x)(7.9)

corrections to A;,Q(—m?) from the quartic coupling 4,
leading to the second term of (11). Final results are
Egs. (C33) and (C45), confirming that g,y ch 1S given
by Egs. (11) and (12). It also shows the renormalization
scheme independence of Cgpay s-ch-

a. One-loop corrections

One-loop corrections to the vertex function from the
diagram (¢>h — 1) is computed as (C14). Since we are
interested in A;oQ(-m?), we can discard the terms
proportional to #** in Vie.(=¢,¢ — q). That is, what we
have to compute is

d
V/(wzh 1>(k17k2) 99 ﬂ4 d( )/(gﬂid [fﬂ(f_qy/

(8- q)iA

(£)iA(£ = q)iA(f + k).
(C25)

Next, to simplify the computation, we use the fact that it is
enough to consider the soft limit ¢ — 0 with fixing k; and
imposing the on-shell condition on the external graviton
momentum, ¢> = 0. In this limit, we do not need to
distinguish between k;.q and p.q, because k;.q = p.q
when g?> = 0. We consider the soft-expansion of iA(# — q)
with imposing ¢*> = 0,

IA(£ — q) = iA(2)[1 + 2iA(£)(¢.q)

+ [2iA(2)(2.9)]* + O((¢.9)*)].  (C26)

Using this expansion, we obtain the O((#.q), (¢.q)?) terms
of the rhs of Eq. (C25) as

A [6"(¢ — q)* + ¢ (¢ — q)"](£.q)
22)0 (€ + xky )2 + D (k)]

X {1+3[(f+xk1)2+

In terms of L :== £ + xk; = ¢ + x(p — (¢/2)), we have

(€9 r=r—xprz = (£.9) = x(p.q), (C28)

= q) + (= q)|pmr xp+d
= 2LFLY = 2x(L*p* + L¥p*) + (x = 1)(L*q* + L*q")

x2
+ (x = x2)(p"q" + p*q") + 2x*ptp¥ + (5 - X> q'q".

(C29)

} +0((£.9)%). (C27)

D(=k})]
[

Here, we used ¢*> = 0. By using the fact that we can
perform the following replacement in the integrand,

L2
(L¥p* + L¥p*)(¢.q) — = (p'q" +p*q"),  (C30)

we can compute the one-loop corrections to A; oQ(k?}) as
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A0 ) 392/1 e x(1 — x5 )/ dL [ -1 n 8L?
- =- xx= (1 —x)a*(—i
HEme 0 (2m)7 (17 + DA(=K])* 327 + Do(-H}))°
2 1 2 —_ )3
g x*(1 =x)
=- dx——. C31
967% " D.(-K)P (C31)
I
In particular, we impose k7 = —m? to get This precisely coincides with the result (C21) which is
obtained from (C15), the full off-shell expression of one-
5 - 5 4mV3 loop corrections to Q(k;,—k; — ¢q) before taking the soft
A0Qonetoop(—117) = 2m* \18 81 limit. We conclude by using Eq. (C13) that the leading
_1 order contribution to R’(0) arises at one-loop level in the

= gne_loop(_mz) < 0. (C32)  presence of the cubic coupling g,

R (0)= o (=) s (5 4’“ﬁ><0. (C33)

one-loop = E one-loop = W ﬁ - ]1

It is found that R’

one-loop

(0) as well as IT/,

one-loop 18 Independent of the renormalization scheme.

b. Two-loop corrections

We have seen that the quartic coupling 4 does not affect R’(0) at the one-loop level and its leading contribution appears at
the two-loop level. We thus compute the two-loop corrections to Q(ky, k,) with setting g = 0 to obtain R’(0) via the relation
(C13). Diagrams relevant to R’(0) are shown in Fig. 8. We refer to their contribution as Vi ¢, which is given by

2 d d}"
Vi =5 (007 [ 555 [ S5 i00IAE = iniale + 1+ k) Vik(=¢.6 =)

— OZ, (K + ki) — 1 (ki ko). (C34)

To compute A; ,Q(—m?), we can also discard the terms proportional to 7#* in Vie.(—¢, ¢ — g). It is then enough for us to
compute

2 d dr
Vi s 5 (R [ 555 [ S Aeiae - qys(r)iate + r+ k)ie(¢ - gf + ¢ = gy

— 8Z (KK + ki KS). (C35)

Next, we expand iA(Z — g) in terms of the soft momentum g of graviton with imposing the on-shell condition ¢> = 0, and
we perform the integration over r. The result up to O((¢.q)?) is

21(2 _d d
rhs of (C35) = %Fii”);) (—i)(/}“—d)z/% A1 +2(¢.q)iA(¢) +4(2.9)*[iA(£)]?]

K =) 0 =) [ = 2, MK KR O (€36)

To perform the integration over 7, it is useful to note

(L=y)(€% +m?) +yD.(=(£ + k1)) = [ = y(x* —=x + D][L" + Ey (=k7)]. (C37)

L' =7+ ak,, o= yx(1 = x) .
l—y(x*—x+1)

Tl—y—x+1)

Exy(_k%) = ((X - az)k% +

(C38)
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Then, by using the Feynman’s integral formula as usual, the rhs of Eq. (C36) can be computed as

_2T(4-9 —ypy' d'e [e4(¢ — q)" + (¢ - 9)"]
rhs of (C35) - D) (471_)%1 ( ) / dx/ 1 _ x X+ 1)] /(2”)11 [sz 4 Ex},(—k%)]4_g
121“(5 9 -y d¢ 2(¢.9)[2* (¢ = q)" + (£ = q)/]
@ CIEY P e =y —x+ 1)]5-%/ @7 (L4 By (R
A2T(6 - ) -y d¢ 4(¢.9)*[" (¢ — @) + (¢ = q)"]
) 6(47)1 =) / dx/ 1 —y(xr—x+ 1)]6—%/ (2r)? (L2 + E,,(—k3)]5%
= 0Z,(Kyks + kik) + O(q?). (C39)

Terms in the first three lines are contributions from the diagram (1) in Fig. 8: the first, second, and third lines are of order
(¢.9)°, (¢.q)", and (£.q)?, respectively. The counterterm diagram (2) is responsible for the term in the final line. To identify
the terms which contribute to A, ,Q(k?), we shall use

(€-@)|p=r—apya = (L'.q) — a(p.q), (C40)
6= q)" + (8 = @) |ompmaprey = 2LMLY = 2a(Lp" + Lp") + (a = 1)(L¥q" + L")
+(a—a®)(pq” + p*q") + 227 pip* + (0;2 - a) 9'q" (C41)
and perform the following replacement in the integrand of the rhs of (C39):

12
(L'Mp* + L"p")(L'.q) = — (p'q" + p*q"). (C42)

To get the first two relations (C40) and (C41), we used ¢g*> = 0. Only the O((£.q). (£.q)?) terms of the rhs of (C39) are
relevant for the computation of A; (Q\wo-100p| g—o- the result is

P2 =
A . C43
lOQtwoloop( )|(] 0= 12 <167z ) / / 1_ x —x+ 1)]6Exy(_k%) ( )
In particular, we impose k7 = —m? to get
-1 A \2 -1
A1,0Qtw0—100p<_n12)|g:0 = W (@) (10 - ”2) - ?H&vo»loop(_mzﬂgzo <0. (C44)

[

Here, we used Eq. (A16b). Therefore, we conclude by

using Eq. (C13) that the leading order contribution to R'(0)

from the quartic coupling A arises at the two-loop level,
6Zg which can be computed as

% -1
Riwo loop( )|g=0 6 Hgvo loop( )|g=0

-1 A
=——(—=) (10=-7%) <0. (C45
144m? (167:2) (10=m) (C43)
quartic coupling 4 which are relevant for the computation of

O(ky.ky) and R(ky, k,). Other diagrams are relevant only for the We find again that R, two- 1°°P|‘1 ol

computation of T'(k;, k), the trace component of V#*. External independent of the renormalization scheme. From
in-going momenta for scalar lines are k, and k, and that for the ~ Egs. (C33) and (C45), we confirm that cgpy cn IS given
graviton is referred to as g = —(k; + k»). by (11) and (12), and that cgpy ;—cn 1s independent of the

(1) (2)

FIG. 8. Two-loop 1PI diagrams for the ¢>h-vertex from the

two- loop( )|q o as well as

066022-16
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Diagrams with graviton up to O(Ml;lz)

e
r N

Graviton outside the loop
(1PI vertices do not contain graviton.)

Graviton inside the loop
(Graviton is included in 1Pl vertices.)

o e

—
r N

Graviton-scalar conversion

DO-@

Graviton exchange

K_H

s, u-channel 1

t-channel

mmm | oOp-corrected propagator of ¢
AA . Free propagator of graviton

Cgrav,t—ch Cgrav,others

FIG. 9. Classification of diagrams with graviton up to (9( ~2). A solid thick line and a thin double wavy line denote a loop-corrected
propagator of ¢ and a free propagator of graviton, respectlvely Diagrams which contribute to ¢gpyy ohers are underlined: (1) s, u-channel
graviton exchange diagrams, (2) diagrams with a graviton-scalar conversion, and (3) those with a graviton propagator inside the loop.
The r-channel graviton exchange diagrams contribute t0 Cgpay s-ch-

renormalization scheme at least within the range of our
approximations.

APPENDIX D: COMPUTATION OF ¢,pay others

In this section, we compute Cgpyy omers Which represents
one-loop contributions from (1) the s, u-channel graviton
exchange diagrams, (2) diagrams with a graviton-scalar
conversion, and (3) those with a graviton propagator inside
the loop: the classification of diagrams with graviton up to
O(Mlglz) is shown in Fig. 9. The final goal is to show
Eq. (13), which justifies to ignore cgpyy omers When discus-
sing the implication of positivity bound. Throughout the
section, we use the harmonic gauge, in which the tree-level
graviton propagator of momentum ¢ reads

1 —iP,(;i}m

le q* —ie (1)
in d-dimensions and P,(f2,¢7 is defined by
Pl = % MupMlve + Muollup = %nﬂmﬂa} - (D2)
|
24

M((z) (s7t)|s,u—channel Vfrlée(klka) P(W,zmﬁél d( l)

M2

+ (s < u)

dd¢
(2m)’

(@) (B)

e A ()

FIG. 10. One-loop graviton exchange diagrams relevant for
Corav at order M;lz‘ Each type has both s- and u-channel versions.

There are other one-loop diagrams for s, u-channel graviton
exchange, but they do not contribute t0 Cgpyy-

1. s, u-channel graviton exchange

We start with one-loop corrections to the s, u-channel
graviton exchange diagrams. The relevant diagrams are
shown in FIG. 10. Below, we evaluate the contributions
from each diagram to Cgpay omhers, Which are denoted as

Cagrav,others | (@) and Cagrav,others | B)-
a. Diagram («)

We firstly compute the s- and u-channel pieces of the
diagram (@) as

g Viee (=8, €+ ki + ka)iA(E)iA(Z + ky + kp)iA(Z = ky)

[s+ (s +2m?)In <D>2( )>+f‘(s”)”+(seu), (D3)

Diy(s)
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TOSHIFUMI NOUMI and JUNSEI TOKUDA

PHYS. REV. D 104, 066022 (2021)

where
D (s) = (x> —x+1)m* = y(1 —=x—y)s, (D4)
A(s,t) = x*(s + 1)t — (x%s + 4x%t + s)m?
+ (4x% = 2)m*. (D5)

The UV divergence can be renormalized by 6Z,, after other
diagrams which are omitted in Fig. 10 are also taken into
account. Equation (D3) shows that M4 (s,0)l , channel
|

satisfies the Froissart bound and the standard analyticity
properties in the complex s-plane. We can then compute the
contribution from the diagram (@) t0 Cgray others a8

4 [oo
:—/ ds
T JA2

th

, Im/\/l(a) (S/, 0) ~ g2
(s =2m?)* — 8*MyAY’

(Do)

Cgrav,others | ()

analogously to Eq. (B1). Here, we used

ImM (@) (S, O) |sz4m2

- /s—4m2s—2m2+ 1 m2(5+m2)ln s —3m?
N SIL'MIZ)I N 2s s(s — 4m2) s m> '

(D7)

Note that the 7-channel version of the diagram (a) contributes to Cgryy .ch, giving rise to the first term of (11). From (D6), it is
found that Cgrav.othersl(a) is much smaller than the first term of ¢,y .y When Atzh > m?. Practically, the contributions from

s, u-channel diagrams are negligible when Ay, 2 10m.

b. Diagram (f)

We compute the s- and u-channel pieces of the diagram (f) as

A d

di¢

M(ﬁ)(s’ l)|s,u—channel Y Vlllrlée(kl ’ kZ)P/EWZ’Gﬂ“_d(_i) /— Vfrge(_f’ £+ kl + kZ)lA(f)lA(f + kl + kZ) + (S < I/t)

M gls
5Am? Am? A

! D,(s)
S - dx(x — 22 2m?) In( =2 .
UM 168°M2 | 162203, /0 rr—x )[<s+ ) n( 2 ) Tloo “)]

We can renormalize this UV divergence by adding an
O(4/e) term to 6Zg as explained around Eq. (C17). It is

now obvious that Cgrav,others|(/i) can be computed as

4 [ ImM(s',0) -1

. ds'— 23 T Aa2MEAL

T JA (s' —2m*) 24m° My Ay,
(D9)

cgrav,others | p) = )
th

where we used

A s —4m? (s +2m?)?
Im/\/l(ﬂ)(s, 0)| .

TV 8
(D10)
We then have
) e . 7 A
grav.others | (@) grav,others | (8) = SEZMglAfh 2471'2M§1At2h ,
(D11)

confirming the estimation (13).

(2m)¢

(D8)

2. Graviton-scalar conversion

We then consider one-loop diagrams with a graviton-
scalar conversion. The relevant diagrams are shown in
Fig. 11, whose contribution t0 Cgpay omhers 18 denoted as
cgmvﬁothershy). Note that only the s- and u-channel diagrams
have nonzero contributions to Cgpay others- 1hese diagrams
are computed as

(v)

FIG. 11. The one-loop diagram with a graviton-scalar con-
version that are relevant for cgy,, at order M ;12. For this type, the
s, u-channel diagrams have a nonzero contribution to Cgy,y, but
the 7-channel diagram does not. Also, there are other one-loop
diagrams with a graviton-scalar conversion, but they do not
contribute t0 Cgpyy .
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M(ﬂ (S t

’ ) | s.u-channel —

les(m —5)
+ (s u)

—(s +2m?)
3e

_ -9
B 16712M§1(m2 —5) [

UV divergences can be renormalized by adding an
O(¢*/e) term to 6Zg,. This expression shows that
M) (5,0)]5 uchanner Satisfies the Froissart bound and the
standard analyticity properties in the complex s-plane. We
can then compute Cyray othersl(y) a5

4

[c]
= ds’
2
Alh

T

ImM,)(s,0) 7
(s —2m27 "~ A8EMEAY
(D13)

Cgrav,others | (7)

confirming the estimation (13). Here, we used

gZ

967M?,

s —4m? (s + 2m?)?
s

ImM

1)(850)[sam> = s(m*—s)

(D14)

3. Graviton inside loop
Finally, we evaluate the contributions from diagrams
with a graviton inside the loop. All the relevant diagrams
are shown in Fig. 12 in which all the possible assignment of
external momenta should be considered. As we shall see
below, some of these diagrams suffer from infrared (IR)

(A) (B-1)

2
—g ) ] .
Viree (k1. k)P szm,lf (- l)/(

dir

27 7 Viee (=8, + ky + ky)iA(€)iA(C + ki + ky)

[t (2000 (22) )]

(D12)

|
divergences. It will be necessary to consider the dressed
amplitude appropriately to resolve this issue, precisely
speaking. In the present analysis, however, we simply
introduce the fictitious graviton mass m, to deform the free
graviton propagator with momentum g 1r1 d-dimensions as

1 -iPd, 1 —iPd,
— —

. . b
M%l q* — ie M%l q* +m2 —ie

(D15)

to regulate the IR divergences. We then compute Cgyyy ohers
to verify the order estimation (13). We suppose that this
prescription is enough for the order-of-magnitude estimate
Of Cyravommers: FOr later convenience, we introduce the
notation iA,(k) = 1/(k* + m} — ie).

To compute Cyray omherss We use the fact that all the
diagrams (A), (B), and (C) give the analytic amplitudes
which behave mildly at large |s| to satisfy the relations

4 /
Cgrav,others|FIG. 12 — 7_1_ d

A[h

ImM(s", 0) | 12 (D16)
(s" = 2m?)3
Firstly, we shall check the high-energy behavior of
M(5,0)|gG. 12- Then, we compute the imaginary part to
obtain Cgrav,others'

(B-2) (B-3)

Fe{ > e

(C-1)

N

(C-2) (C-3)

~

(C-4) (C-5)

L K

FIG. 12. Diagrams with a graviton propagator inside loops which are of O(M
momenta have to be considered. The diagrams (A), (B), and (C) can be understood as the contributions from the (’)(

~2). Again, all the possible asmgnment of external
~2) corrections to

the 1PI self-energy, the effective ¢> vertex, and the effective ¢* vertex, respectively.
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a. s2-boundedness

We investigate the high-energy behavior of Mg 1,- We used “package-X" [36] to perform the loop integrals and obtain
the asymptotic behavior of the amplitudes in the Regge limit.

Diagram (A). The diagram (A) is the contribution from the (’)(M;ﬁ) correction to 1PI self-energy of ¢ to M. This
diagram is IR finite even in the limit m, — 0 and its asymptotic behavior in the Regge limit is

¢ 1 [ di - o
Ma)(5,0) ~ M, m/ﬂ d/(2 1 oo Ky + k) PlipoVise (€. ky + k)IA(E)i (€ + ky + k)

+ (s < 1)+ (s < u) ~0O(s"). (D17)

This behavior satisfies the Froissart bound.

Diagrams (B). The diagrams (B) are the contributions from the O(M ol ) correction to 1PI effective ¢ vertex to M. The
diagrams (B-1) and (B-2) are IR divergent, while the diagram (B-3) is IR finite. The asymptotic behavior of them in the
Regge limit can be estimated as

2
g 1 di¢ . . .
Bl (S O) 2 /"4 d/ (2 ) tree(f kZ) Wﬂﬁvtree(f"i_kl + k2’_k1)lA(l’ﬂ)lA(f+ kl + kZ)lAg(f"' k2)

m- -9

+ (s < 1)+ (s < u) ~O(In(s)), (D18a)

_ e ., - . . .
ﬂ4 d/(2ﬂ> V{lree(’/ﬂ kl +k2) l(wﬂo’V{)ree(f"i_k27k1)lA(f)lA(f+k2>lAg(f+kl +k2)

+ (s < 1)+ (s < u)~0(sY), (D18b)

dé¢
it d/ Gyt Vel ki + k)P Piipotl?iA(£)id (€ + Ky + ko) + (s < 1) + (s © )

~ O(In(s)). (D18c)

We conclude that the diagrams (B) are consistent with the Froissart bound.

Diagrams (C). The diagrams (C) are contributions from the O(M;lz) corrections to the 1PI effective ¢* vertex to M.
The diagrams (C-3) and (C-5) are IR finite, while other diagrams are IR divergent. They behave in the Regge limit
asymptotically as

My (5.0) ~ 1512 ﬁ4—d/((21 ")”d{[m( VA(Z + ki + ka)ib(£ — ks)id, (€ + k)

X V’éie(f,kl)Pﬁfanﬁ‘ée<f+ ky + ky, —ky) + (ky <> k3)] + (ks < ky)} + (s < 1) + (s < u) ~ O(s),
(D19a)

2 dé¢ v . .
Mca)(s,0) ~ ]Zz e d/ (27)¢ 7 [Viree(£, k)P u»iwﬂ’mlA( E)A(C = ky)idy (€ + k) + (ki < k)| + (s < 1) + (s < u)

~ O(In(s)), (D19b)

di¢
Mc3)(s.0) ~ 152 ﬂ“‘d/Wﬂ””Pﬁi)pgnp"iA(f)iAg(f +ki+k)+(s< 1)+ (s < u)~O(n(s)), (D19c¢)

Ao dd¢ Y - . . .
Mc4)(5,0) ~ 7H ﬂ4_d/ (277 7 Viree (€1 ) P I(WLO'V{)ree(f"—kl + ky, =k JIA(C)IA(L + ky + ky)iA (€ + ky)

+ (s < 1)+ (s < u) ~O(sn(s)), (D19d)
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A~ _, ., [ 4, Q) oo
Mics)(s.0) ~ 3 ) 7™ / Gyt Vel k)Pt TTA)IB(€ + ;) ~ O")
pl j=1

(D19e)

consistently with the Froissart bound. We confirm the mild behavior of M(s, 0)|pg 12, leading to (D16) together with the

analyticity.

b. Imaginary part

The imaginary part of each diagram in the forward limit can be computed by using the optical theorem as

92m2

ImM ,0 N
m (A)(S )|s>>m2 4JTMI2)IS

2

ImM (B=2) |s>>m2 = 87[M§1 ’

2

g
ImM ~_ ,0 ~ 2
(C 2)(s )|s>>m2 47TM§]

ImM (C-4) (S, O) |s>>m2 =

ImM g_1) (s, 0)[ 2 = 1620 [ln (W) - 1} ;

g
I _3(s,0 &
mM(B 3) (S )|s>>m2 SﬂM}%l

(D20)

g’s m*
ImM 1) (5, 0) ]2 = ng’nzln (m—§> (D21)

2

g
ImM(C_3)<S, O)|S>>m2 ~ —m, (D22)
p
SR Y G ImM c_s)(s,0) = 0 (D23)
— _ —_— RY =
16202 | \m? ’ (C=9> ’

where higher order terms suppressed by some positive powers of (m?/s) are omitted. This shows that the imaginary part of
diagrams shown in Fig. 12 are dominated by the diagram (C-1) and (C-4), resulting in

confirming the estimation (13).

m o (AnY] L po(lem)? A
m2 M2A2 M2AZ )’
[ g pl‘}th pl h

1 2
Cgrav others |FIGA =T 570 A0 g_2 In 2
4 My Ay, [m m

(D24)
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