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Abstract

We present an unsupervised domain adaptation (UDA) method for a lip-reading model that is an image-based speech
recognition model. Most of conventional UDA methods cannot be applied when the adaptation data consists of an
unknown class, such as out-of-vocabulary words. In this paper, we propose a cross-modal knowledge
distillation (KD)-based domain adaptation method, where we use the intermediate layer output in the audio-based
speech recognition model as a teacher for the unlabeled adaptation data. Because the audio signal contains more
information for recognizing speech than lip images, the knowledge of the audio-based model can be used as a
powerful teacher in cases where the unlabeled adaptation data consists of audio-visual parallel data. In addition,
because the proposed intermediate-layer-based KD can express the teacher as the sub-class (sub-word)-level
representation, this method allows us to use the data of unknown classes for the adaptation. Through experiments on
an image-based word recognition task, we demonstrate that the proposed approach can not only improve the UDA
performance but can also use the unknown-class adaptation data.

Keywords: Lip reading, Knowledge distillation, Multimodal, Unsupervised domain adaptation

1 Introduction
Lip reading is a technique of understanding utterances
by visually interpreting the movements of a person’s lips,
face, and tongue when the spoken sounds cannot be
heard. For example, for people with hearing problems, lip
reading is one communication skill that can help them
communicate better. McGurk et al. [1] reported that we
human beings perceive a phoneme not only from the audi-
tory information of the voice but also from visual infor-
mation associated with the movement of the lips and face.
Moreover, it is reported that we try to catch themovement
of lips in a noisy environment and we misunderstand the
utterance when the movements of the lips and the voice
are not synchronized. Therefore, understanding the rela-
tionship between the voice and the movements of the lips
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is very important for speech perception. In the field of
automatic speech recognition (ASR), visual information is
used to assist the performance of speech recognition in a
noisy environment [2]. In this work, lip reading has the
goal of classifying words from the movements of the lips.
Recently, deep learning-based models have improved

the performance of audio-visual automatic speech recog-
nition (AV-ASR) or lip reading [3–7] where a large amount
of training data is available. However, in a variety of real-
life situations, there is often a mismatch between the
training environment and the real environment where a
user utilizes the system, and it is not easy to collect a suf-
ficient amount of training data in a specific environment.
Therefore, an effective way to adapt the model to a new
environment is required. This is known as the domain
adaptation (DA) problem.
The purpose of DA is to adapt a model trained on a

source domain (source model) to a new target domain
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by using a relatively small amount of additional train-
ing (adaptation) data. Especially, in the case when all the
adaptation data are not labeled, it is called “unsupervised
domain adaptation” (UDA). Various UDA approaches
have been proposed [8–10]. However, most of them
assume that all the adaptation data belong to classes that
are defined in the source model. This means that we can-
not use the real environment data for the adaptation if
that data is out-of-class (e.g., out-of-vocabulary (OOV)
words in speech recognition). For more practical adapta-
tion, it is preferable if out-of-class (unknown class) data
can also be used.With this inmind, in this paper, we inves-
tigate an unknown-class-driven UDA method. Although
there has been research carried out to tackle a similar
issue [10, 11], the UDA on the unknown-class data is an
extremely challenging task because we cannot use any
conventional training policies, such as maximizing the
output probability of the correct class.
In this paper, we propose a UDA method based on a

model for cross-modal knowledge distillation (KD) for lip
reading. There are two key factors: cross-modal KD and
its application to UDA. KD [12] was originally introduced
as model compression, in which a small model (student
model) is trained to imitate an already-trained larger
model (teacher model). Based on the idea that KD can
transfer the knowledge of the teacher model to the stu-
dent model, this technique has been applied to various
tasks [13–15]. In this paper, we investigate cross-modal
KD, where the student and teacher model are a lip-
reading model and an audio-based speech recognition
model (ASR model), respectively. Our proposed method
uses audio-visual data for training and adapting the lip-
reading model. Before training the lip-reading model, we
train the ASR model using audio data. In our research,
we use an ASR model based on an artificial neural net-
work. Then, we train the lip-reading model by using the
output from the intermediate layer of the ASR model.
Typically, the audio data has more information for recog-
nizing speech and shows better recognition accuracy than
the visual data. For this reason, the use of the output from
the ASR model can be a powerful teacher.
Another important factor is the use of the data of the

unknown class for UDA. The basic KD that minimizes
the distance between the output probabilities (i.e., out-
put of the final layer) of the teacher and student models
cannot be applied to unknown class UDA because the
output labels of the source model do not contain the tar-
get class. To solve this problem, we use the output of
the intermediate layer for the KD instead of that of the
final layer. This approach is advantageous because, unlike
basic final-layer-based KD, our intermediate-layer-based
KD can construct the sub-class (e.g., sub-word in speech
recognition) representation implicitly inside the network.
By using this sub-class representation as an adaptation

objective, we can use the unknown class data for the
adaptation.
Our approach, which utilizes an audio signal to enhance

the lip-reading performance, is suitable for applications
having a video camera, such as car navigation systems
using in-vehicle cameras and service robots. In these
applications, we can use both audio and video signals,
and improving the lip-reading performance is expected
to contribute to the improvement of audio-visual speech
recognition performance. In the experiment, we demon-
strate that our proposed method can improve the UDA
performance on a word recognition task.

2 Related works
There have been many studies carried out on AV-ASR
over the years, and most of them discuss how to inte-
grate multimodal features [3, 15, 16]. We expect that
to improve the performance of the lip reading can con-
tribute to improving the performance of AV-ASR. LipNet
[17] performs end-to-end sentence-level lip reading. This
model consists of spatiotemporal convolutions and recur-
rent operations, and that is trained by a connectionist
temporal classification loss [18]. MobiLipNet [19] has
been proposed to achieve computationally efficient lip
reading, and that uses the depthwise convolution and the
pointwise convolution. There are some prior works based
on a generative adversarial network (GAN) [20] for lip
reading. Wand et al. [21] proposed a speaker-independent
lip-reading system using domain-adversarial training that
trains a model that can extract the speaker-invariant fea-
ture representation. Oliveira et al. [22] investigated a
method to recognize viseme, that is the visual correspon-
dent of a phoneme, using GAN-basedmapping to alleviate
a head-pose variation problem.
There have been some studies on cross-modal KD

[15, 23, 24] for the purpose of transferring the knowledge
of a modal having rich training data to a modal having
poor training data. This technique has also been applied
to the AV-ASR task [15], where the knowledge of the
audio trained from a large amount of speech data is trans-
ferred to the AV-ASR model. In that study, they focused
only on the case in which the audio data is corrupted
by noise, and did not discuss the environmental mis-
match in the image data, which is our target issue. For lip
reading, a similar approach to our proposed method was
used more recently as multi-granularity KD from a speech
recognizer to a lip reader (LIBS) [25] where a frame-
level KD corresponds to our intermediate-layer-based
KD. In order to take account of the difference between
the audio and video sampling rates, LIBS employs an
attention mechanism. Different from LIBS, our method
uses a pyramid structure to obtain the audio and video
sequences of the same length. Moreover, our method is
evaluated on a word-level recognition task, while LIBS
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was evaluated on a sequence-level utterance recognition
task.
The recent UDA approach involves finding a common

representation for the two domains. Deep domain con-
fusion [26] learns the meaningful and domain-invariant
representation with an additional adaptive layer and loss
function. GAN-based UDA approaches [27, 28] aim to
learn the intermediate representation that cannot be
used to distinguish the domain. Saito et al. [10] pro-
posed a method to maximize the discrepancy between
two classifier outputs considering the task-specific-design
boundaries. Sohn et al. [29] proposed a feature-level
UDA method using unlabeled video data that distills
knowledge from a still image network to a video adapta-
tion network. Afoura et al. [24] proposed a cross-modal
KD method to improve the performance of lip reading
using an ASR model. In our study, we investigate the
use of cross-modal KD to adapt a model to the target
environment.
Despite the recent progress of UDA, these conventional

methods assume that all the adaptation data belong to
classes that are defined in the source model, and none of
the data can be used for the adaptation if that data is out-
of-class. In the field of voice conversion, some approaches
that do not require any context information have been
proposed (e.g., [30]). Similar to these works, a context-
independent (i.e., class-independent) approach for train-
ing the lip-reading model is required. In this work, we
focus on the scenario where only the data of the unknown
class is available during adaptation.

3 Proposedmethod
We aim to achieve UDA using the data of the unknown
class on lip reading, which estimates the word label
from an image input. In our proposed method, we use
audio-visual data for training and adapting the lip-reading
model, and for evaluating, we use only visual data. First,
we explain the basic idea of the cross-modal KD on which
our method is based. Then, we describe our proposed

UDA method, which is based on the cross-modal KD
using the data of the unknown class.

3.1 Cross-modal KD
Figure 1 shows an overview of the basic procedure of
cross-modal KD, where the speech and the image are
given from the same utterance. In our lip-reading task,
the output is defined by the word. First, in advance, we
train the audio model, which estimates the probability of
the word from the acoustic feature using the cross entropy
loss with the correct label. Given an acoustic feature xaud
and an image feature xvis, the basic KD loss is defined as
follows:

−
∑

l
paud(l|xaud) ln pvis(l|xvis), (1)

where pvis(l|xvis) and paud(l|xaud) denote the probabili-
ties of a label l estimated from the visual model based
on xvis and estimated from the audio model based on
the input xaud, respectively. Here, the acoustic feature and
the image feature are extracted from the same utterance.
When training the visual model, the parameters of the
audio model are fixed. This loss function forces the visual
model to imitate the outputs extracted from the audio
model. Practically speaking, the softmax loss using the
correct label (hard loss) is often used for stable training
with the linear interpolation parameter λ. Li et al. [15]
demonstrate that KD between the ASRmodel and the AV-
ASR model improves the recognition performance when
the speech data is corrupted by noise. Therefore, it is
expected that KD between the audio model (ASR model)
and the visual model (lip-reading model) also contributes
to improving the performance in our task.

3.2 Cross-modal KD-based UDA for the unknown class
Before describing our method, we first want to highlight
the fact that the adaptation data does not belong to any
class of the source domain. Considering the domain, let

Fig. 1 Basic procedure of cross-modal knowledge distillation
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D be the joint distribution over sequences of audio fea-
tures and visual features, and the corresponding label. The
output of the network is defined by the word.
Our model consists of two parts: an encoder and a

classifier, as shown in Fig. 2. The encoder is a stacked con-
volution layer. The two encoders of the audio and visual
modal can be defined as follows:

ha = faud(a), (2)
hv = fvis(v), (3)

where a = (a1, ..., at , ..., aTa) and v = (v1, ..., vt′ , ..., vTv)

are input sequences of acoustic features and of visual
features, respectively. ha = (ha1, ..., hau, ..., h

a
U) and hv =

(hv1, ..., hvu, ..., h
v
U) are the sequences of high-level represen-

tations. Here at , vt′ , hau ∈ R
d, and hvu ∈ R

d are the input
acoustic feature frame, the input visual feature frame,
and the d-dimensional encoder features of both modal-
ities, respectively. Ta, Tv and U ≤ min(Ta,Tv) denote
the numbers of the input acoustic features and the input
visual features, and the number of the encoder output
features, respectively. The number of steps of encoded

features is the same between the two modalities. The clas-
sifier consists of fully connected layers to estimate the
corresponding word label.
During adaptation, our method minimizes the mean

square error (MSE) between the hidden representations as
follows:

LMSE(D) = E{v,a,y}∼D[ ||ha − hv||22] , (4)

where y is the label and is ignored. Unlike the generally
used KD loss (Eq. (1)), we use the hidden representation
in the intermediate layer for distillation. In the output
layer and layers in the classifier, the frame-level informa-
tion is lost and the feature representation is specialized
to word-level (i.e., class-level) information. For this rea-
son, the simple KD formulation cannot be applied to the
adaptation if the adaptation data is out-of-class. On the
other hand, the layers in the encoder have sub-word or
phoneme-like representation that is independent of the
class because they still retain the frame-level information.
For this reason, our proposed method realizes UDA using
the data of the unknown class.

Fig. 2 Overview of our proposed UDA
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3.3 Training procedure
Considering the source domain, let Dsrc be the joint dis-
tribution over sequences of audio features and visual
features, and the corresponding label. Dtrg is analogously
defined for the target domain.
The first step is to train the models on the source

domain. In this step, we expect that the hidden represen-
tation in the visual model is similar to that of the audio
model. First, in advance, we train the audio model using
the cross entropy loss with the correct label as follows:

E{v,a,y}∼Dsrc [− log(gaud(y|ha))] , (5)

where v is not used and gaud(y|ha) denotes the output
probability of the label y estimated by the classifier of the
audio model from the encoded feature h. Then, we train
the visual model using the KD loss and the cross entropy
loss as follows:

LMSE(Dsrc) + LCE(Dsrc)

= LMSE(Dsrc) + E{v,a,y}∼Dsrc [− log(gvis(y|hv))] , (6)

where gvis(y|hv) is the output probability estimated by the
visual classifier.
Next, we adapt the visual model using the data of the

unknown class based on the UDA scheme as described
in Section 3.2. For more stable adaptation, we also use
the data of the source domain. In addition to the loss in
Eq. (4), we calculate losses for the source domain that
has the correct label. This works as a regularization to
prevent overfitting to the target distribution in the audio
modality. Finally, our UDA approach for an unknown class
minimizes the loss as follows:

L = LMSE(Dtrg) + αLMSE(Dsrc) + (1 − α)LCE(Dsrc),
(7)

where α indicates a weight parameter used to adapt the
model stably, and we employ 0.5 in this paper. All param-
eters of the visual model are fine-tuned to minimize this
loss function.

4 Experiments
4.1 Conditions
The proposed method was evaluated in a word recogni-
tion task on the lip reading in the wild (LRW) dataset
[5]. LRW is a large-scale lip-reading dataset that con-
sists of sounds and face images, where some works on
AV-ASR or lip reading [31, 32] have been verified. All
the videos are clipped to 29 frames (1.16 s) in length.
Note that the length of each utterance is completely
fixed.
LRW consists of up to 1000 utterances of 500 differ-

ent words spoken by hundreds of different speakers. From
the whole of the dataset, we picked out 800 utterances
of 500 words (a total of 400,000 utterances) and divided
them into several subsets, as shown in Fig. 3.We randomly
divided 500 words into two sets of classes: the known class
set of 400 words and the unknown class set of 100 words.
For each of the 400 known words, we picked out (a) 500
utterances (a total of 200,000 utterances) and (b) another
50 utterances (a total of 20,000 utterances) as the train-
ing set of the source domain and the evaluation set of
the target domain, respectively. For evaluating the UDA
method, we used two different adaptation sets: the known
class set and the unknown class set. The unknown class
set (d) consisted of 250 utterances of 100 unknown words
(a total of 25,000 utterances). For known class set (c), we
randomly selected 100 words from 400 known words in
order to match the condition with the unknown class set.
Then, we created the known class set using 250 utter-
ances of the selected 100 known words (a total of 25,000

Fig. 3 Graphical representation of the division of the words, (a) source training set of the known words, (b) target evaluation set of the known
words, (c) target adaptation set of the known words, and (d) target adaptation set of the unknown words
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utterances) which were not used for either the training set
or the evaluation set. The evaluation set and the two adap-
tation sets were in the target domain while the training set
was in the source domain. For creating the target domain
data, we changed the brightness of the image (no transfor-
mation was carried out on the sound signal of the video)
because changes in brightness are one of the most likely
situations in real environments (e.g., daytime and night, or
a car navigation system when driving through a tunnel).
For the acoustic features, we calculated 40-dimensional

log-mel filter bank features computed every 10 ms over a
25 ms window. Then, we stacked their delta and accelera-
tion along the channel. The number of frames was 116. For
the visual feature, the images are transformed to grayscale
and resized to 112 ×112. The number of frames was 28.
The encoder configuration is shown in Table 1. We used a
pyramid structure that takes every two consecutive frames
of the output from the previous layer without overlap as
input. This structure allows the subsequent module to
extract the relevant information from a smaller number of
time steps. For the classifier, we use the three fully con-
nected layers (4096 → 4096 → 400). We construct the
individual model for the two modalities. The network was
optimized using an Adam optimizer [33]. The batch size
was 24, and the learning rate was set to 1e−4.When train-
ing models on the source domain, the number of epochs
was 20 with early stopping. When adapting models to the
target domain, the number of epochs was 10.
Our experiments were conducted using an Intel(R)

Core(TM) i9-7900X CPU @ 3.30 GHz and single GeForce
GTX 1080 Ti. Our proposed model took about 1.5 hours
and 10 minutes per epoch for training and adaptation,
respectively.

4.2 Results and discussion
First, we evaluated the performance of cross-modal KD
on the training data of the source domain model. Here, we

Table 1 Network architecture of the encoder

Operation

# Layer Audio model Visual model

Input 40×116×3 122×122 × 28×1

1 5×2 conv, 64, s(1,2) 3×3×1 conv, 48, p(1,1,0),

2×2 max-pool

2 5×2 conv, 128, s(1,2), 3×3×2 conv, 96, s(1,1,2),

2×1 max-pool 3×3 max-pool

3 5×2 conv, 256,

2×1 max-pool

unfold along the time step

4 128 dense*

s(·) and p(·) indicate a stride size and a padding size, respectively
*A step-wise operation, which is applied for each time step independently
The activation function is ReLU

Table 2 Word recognition accuracy [%] for each method on the
source domain

# Utterance/word

Model 250 500

Baseline 48.21 54.62

Proposed 50.06 (86.65) 55.07 (90.51)

#Utterance/word indicates the number of utterances per word used to train the
model
The value in parentheses shows the accuracy of the audio model

use the test data without modifying the brightness of the
image and do not consider UDA. Table 2 shows the word
recognition accuracy corresponding to each method.
“Baseline” indicates the baseline model that was trained
using the face image only. In our proposed method, we
adopt a dimension reduction in the model (the 4th layer
in Table 1) to calculate the KD loss efficiently. However,
the dimension reduction is removed here for evaluating
the baseline model because it degraded the recognition
accuracy of the baseline model. From this table, when
using 250 utterances per word to train the model, our pro-
posed model achieved a relative improvement of 3.57%
compared to the baseline model, despite the comparable
performance when using 500 utterances per word. Typi-
cally, the audio data has more information for recognizing
the speech and shows better recognition accuracy than the
use of the visual data. This result shows that the output
from the ASR model worked as a powerful teacher. We
also assume that KD affects the regularization because we
obtained more improvement with less training data.
Next, we confirmed the effectiveness of our proposed

method for UDA. For the baseline adaptation, we updated
parameters using two losses: the cross entropy loss of
the source domain (the third term of Eq. (7)) and the
pseudo label of the target domain estimated by the source
model itself. Table 3 shows the word recognition accuracy
corresponding to each method. Our proposed method
outperformed conventional UDA in the setting that uses
the known class. The relative improvements compared to
no adaptation are 12.53% for the baseline method and
21.88% for our method, respectively. Moreover, our pro-
posed method also improved the classification accuracy
compared to no adaptation by relatively 21.48% even when
we used unknown class adaptation data. These results

Table 3 Word recognition accuracy [%] for each method

Eval. domain Baseline Proposed

Source 54.62 55.07

Target No adap. 39.19 42.84

Known class adap. 44.10 52.22

Unknown class adap. — 52.04

First column shows a domain of the evaluation data
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Fig. 4 The correlation between word recognition accuracies and the number of adaptation utterances. “Known class” and “Unknown class” indicate
adaptation using the data of the known class and of the unknown class, respectively

show that the intermediate-layer-based KD approach can
transfer the sub-class representation that does not depend
on the class. Therefore, by using such representation as
an objective of the adaptation, it is possible to use the
unknown class data for UDA.
Moreover, we measured the performance of our UDA

approach as a function of the number of adaptation
utterances. As shown in Fig. 4, we observed that the
accuracy decreases as the number of adaptation utter-
ances decreases. We can see that the accuracies are sat-
urated when using about 200 utterances for adaptation.
Moreover, even when we use a smaller amount of the
adaptation data, our method can adapt the model more
effectively than the baseline method using all of the adap-
tation data (the fourth row in Table 3). These results
demonstrate that ourmethod can achieve stable and effec-
tive adaptation for UDA using the data of the unknown
class.
Finally, we calculated the real time factor (RTF) that

is the ratio of the recognition response to the utterance
duration. Generally, RTF <1 is required for real-time
scenarios. Here, decoding was performed on an Intel(R)
Core(TM) i9-7900X CPU @ 3.30 GHz. The RTF of our
system was 1.16. We consider that using a more efficient
network architecture, such as MobileNet [34, 35], could
improve the RTF while maintaining the performance.

4.3 Changing the division of the known/unknown words
In the experiments mentioned above, we used the
fixed split for the known/unknown words. To evaluate

the robustness of the variety of division pattern of
the known/unknown words, we conducted 5-fold cross-
validation for our proposed method. For this purpose, we
split 500 words in LRW into 5 consecutive folds. Then,
we used 100 words as the unknown class and the remain-
ing 400 words as the known class. Table 4 shows the
word recognition accuracy corresponding to each fold.
The rightmost column in the table shows the mean value
and the standard deviation. Our proposed method had a
small standard deviation. This means that our method has
high robustness for the selection of the words.

4.4 Noisy audio
To demonstrate the potential of our proposed method,
we conducted the experiments in a more realistic sce-
nario. For this purpose, we introduced acoustic noise for
the audio in addition to brightness for the image dur-
ing adaptation. White noise was added to audio signals,
and their SNR was set to 30dB, 20dB, 10dB, and 0dB. As

Table 4 Word recognition accuracy [%] for the 5-fold
cross-validation

5-folds

Method 1st 2nd 3rd 4th 5th mean

Known
class adap.

52.22 52.79 51.15 53.95 52.68 52.56±1.02

Unknown
class adap.

52.04 52.71 50.91 53.87 52.75 52.46±1.09

The results of the 1st fold correspond to those in Table 3
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Table 5 Word recognition accuracy [%] corresponding to each
SNR

Method clean 30dB 20dB 10dB 0dB

Known class adap. 52.22 47.50 47.55 47.33 47.13

Unknown class adap. 52.04 47.18 47.21 47.10 46.75

The results of “clean” correspond to those in Table 3

shown in Table 5, although the performance of our pro-
posed method hardly varies among different SNRs (less
than 1%), the use of the noisy audio signal significantly
degraded the adaptation performance compared to using
a clean audio signal.
By comparing the results of “clean” and “30dB” in

Table 5, we see that the recognition accuracy greatly
degraded even though “30dB” was a small noise condition.
In order to analyze these results, wemeasured how greatly
the hidden representation of the audio signal ha, which
is used as a teacher in our proposed cross-modal KD for
UDA (see Eq. 4), is distorted by noise under each condi-
tion. For this measurement, we calculated the SNR under
the hidden representation space as follows:

SNR = 10 log10
||haclean||22

||hanoisy − haclean||22
, (8)

where haclean and hanoisy denote the hidden representations
ha obtained under clean and noisy (SNR = 30, 20, 10,
0dB) conditions, respectively. Table 6 shows the SNR of
ha for each SNR of the input audio signal. As shown in
this table, even when the SNR of the input audio signal
was 30dB, the SNR of the hidden representation degraded
to 14.14dB. Because this distorted hidden representation
was used as a teacher in our proposed cross-modal KD,
this result means that the proposed method is sensitive
to the noise in the input audio signal. One possible rea-
son for this sensitivity is that the audio model was trained
using clean speech data and overfitted to the clean con-
dition. Therefore, this degradation might be reduced if
we use noisy audio data to train the noise-robust audio
model. Nevertheless, the performance of our proposed
system using the noisy audio signal still outperformed the
baseline system (44.10, Known class adap. in Table 3) and
the proposed system without adaptation (42.84 in Table 3)
which do not use the audio signal.

Table 6 SNR of the hidden representation ha for each SNR of the
input audio signal

SNR of audio signal 30dB 20dB 10dB 0dB

SNR of ha 14.14dB 7.23dB 2.69dB -0.14dB

5 Conclusion
In this paper, we proposed the intermediate-layer-based
KD approach for UDA, which can effectively transfer the
knowledge of the ASR model to the lip-reading model.
Our method allows us to use the data of the unknown
class to adapt the model from the source domain to the
target domain. Experimental results show that our pro-
posed method can adapt the model effectively regardless
of whether the class of the adaptation data is known or
unknown.
We used a simple network architecture based on stacked

convolution layers because we assume an isolated word
recognition task. In order to extend our approach for a
continuous speech recognition task (i.e., sentence recog-
nition task), we will investigate the use of recurrent neural
network-based models which are suitable for this task,
such as LipNet [17], in the future. In addition, we will
demonstrate the effectiveness of our method in more
complex transformations or more realistic environments.
Our proposed method can use the audio-only database
because the ASR model and the lip reading model are
trained separately. Therefore, we will further investigate
the combination with large audio databases. Our future
work will also include the further investigation of its
potential, focusing particularly on multi-modal tasks.
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