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Abstract: Nitrogen is essential for the biosynthesis of various molecules in cells, such as amino
acids and nucleotides, as well as several types of lipids and sugars. Cyanobacteria can assimilate
several forms of nitrogen, including nitrate, ammonium, and urea, and the physiological and genetic
responses to these nitrogen sources have been studied previously. However, the metabolic changes in
cyanobacteria caused by different nitrogen sources have not yet been characterized. This study aimed
to elucidate the influence of nitrate and ammonium on the metabolic profiles of the cyanobacterium
Synechocystis sp. strain PCC 6803. When supplemented with NaNO3 or NH4Cl as the nitrogen source,
Synechocystis sp. PCC 6803 grew faster in NH4Cl medium than in NaNO3 medium. Metabolome
analysis indicated that some metabolites in the CBB cycle, glycolysis, and TCA cycle, and amino
acids were more abundant when grown in NH4Cl medium than NaNO3 medium. 15N turnover rate
analysis revealed that the nitrogen assimilation rate in NH4Cl medium was higher than in NaNO3

medium. These results indicate that the mechanism of nitrogen assimilation in the GS-GOGAT
cycle differs between NaNO3 and NH4Cl. We conclude that the amounts and biosynthetic rate of
cyanobacterial metabolites varies depending on the type of nitrogen.

Keywords: cyanobacteria; nitrogen; metabolome; photosynthesis

1. Introduction

Nitrogen is an important element for living things, being used in amino acids, nu-
cleotides, lipids, and sugars, which are building blocks of all forms of life. Cyanobacteria
are Gram-negative bacteria and are known to be oxygenic photosynthetic microorganisms
that utilize solar energy to generate chemical energy (ATP and NADPH). Such chemical
energy is used in the Calvin–Benson–Bassham cycle (CBB cycle), glycolysis, and tricar-
boxylic acid (TCA cycle). Similar to other organisms, non-diazotrophic cyanobacteria, such
as Synechocystis sp. PCC 6803 can take up nitrogen as NO3

−, NO2
−, NH4

+, CO(NH2)2
(urea), and arginine [1,2]. Diazotrophic cyanobacteria (for example, Anabaena sp. PCC
7120) can fix N2 in heterocyst cells using nitrogenase [3]. Cyanobacteria require reducing
power when using the former nitrogen sources (NO3

− and NO2
−), but not when using

the latter (NH4
+, urea, and arginine). NO3

− and NO2
− transporters are already identified

as NrtA-D. NH4
+ is transported by ammonium transporters Amt1-3 and urea by urea

transporters UrtA-E [4–6]. NO3
− in the cell is reduced to NO2

− by ferredoxin-nitrate
reductase, NarB, and finally reduced to NH4

+ by NirA [7,8]. Urea in the cell is converted
by UreA-B to NH3 [6,9]. NH4

+ is produced from arginine by arginine dihydrolase [2]. The
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GS (glutamine synthetase)-GOGAT (glutamate synthase or glutamine-oxoglutarate cycle
amido transferase) cycle synthesizes glutamate and glutamine from NH4

+ and 2OG [10].
The resulting Glu is mainly consumed as a nitrogen source.

Although cyanobacteria can assimilate nitrogen compounds as mentioned above, the
choice of nitrogen sources is important for cultivation because photosynthesis and growth
are affected by the type of nitrogen source [11–13]. In addition, there are differences in gene
expression associated with utilizing the nitrogen sources and changes in activity of enzymes
involved in nitrogen assimilation when cyanobacteria are exposed to each of the nitrogen
sources, NO3

−, NH4
+, and urea [14–16]. The physiological response of cyanobacteria to

nitrogen sources also varies according to the species [13,17]. We previously reported that
when Synechocystis sp. PCC 6803 was phototrophically cultivated in the presence of NH4Cl,
it produced a higher content of intracellular organic acids including malate, fumarate,
and succinate under dark anoxic fermentation than cells grown in NaNO3, resulting in
increased succinate secretion [18]. In this way, the influences of different types of nitrogen
sources have been investigated to reveal the physiological responses of cyanobacteria and
their application. However, metabolites produced with different types of nitrogen sources
have not been fully investigated, in contrast to the effects of nitrogen starvation [19,20].
Moreover, in our previous report, we revealed that the different metabolic profiles produced
during dark anoxic cultivation after a transfer from phototrophic cultivation with different
nitrogen sources enhanced the production of succinate. These findings prompted us to
investigate the metabolic profiles under phototrophic conditions.

In this study, we aimed to clarify the metabolic responses to different nitrogen sources.
For this purpose, we performed a combination of in vivo 15N-labeling of metabolites and
metabolome analysis. The 15N-labeling technique is applied to detect metabolites of interest
in cyanobacteria or to examine the metabolic behavior of a few metabolites [2,17,21,22].
This technique enables us to compare the metabolic turnover under different nitrogen
sources by calculating the 15N labeling rate at each time point. Using this technique and
metabolome analysis, we compared the metabolic profiles and synthesis rates of amino
acids in Synechocystis sp. PCC 6803 when grown in NaNO3 or NH4Cl, revealing distinct
metabolic profiles between the different nitrogen sources.

2. Results
2.1. Growth in Different Types of Nitrogen Source

Synechocystis sp. PCC 6803 (hereafter Synechocystis) was cultivated in BG11 medium
with 5 mM NaNO3 or NH4Cl (hereafter NaNO3 medium or NH4Cl medium) under
phototrophic growth conditions (Figures 1 and S1). The growth rate of Synechocystis was
also calculated based on the growth data by 48 h when there are the residual nitrogen
sources. The growth rate of Synechocystis grown in NaNO3 medium or NH4Cl medium
was 0.028 ± 0.002 h−1 and 0.036 ± 0.002 h−1. The growth rate of Synechocystis in NH4Cl
medium was significantly faster than that in NaNO3 medium throughout the cultivation.
In contrast, there was no significant difference in the residual amounts of NaNO3 and
NH4Cl in either medium.

2.2. Metabolome Analysis with Different Types of Nitrogen Source

As nitrogen is thought to be assimilated mainly through the GS-GOGAT cycle, which
synthesizes glutamate (Glu) and glutamine (Gln) from NH4

− and 2OG, we first compared
the amino acid levels with different nitrogen sources (Figures 2 and S2). The pool sizes
of serine (Ser), glycine (Gly), threonine (Thr), alanine (Ala), aspartate (Asp), asparagine
(Asn), lysine (Lys), valine (Val), and isoleucine (Ile) when grown in NH4Cl medium were
higher than those in NaNO3 medium 24 h after the start of cultivation. The pool sizes of
methionine (Met) were still high 48 h after the start of cultivation. The pool sizes of Gln and
Glu were the same between the NaNO3 and NH4Cl media. On the other hand, the pool
size of tryptophan (Trp) when grown in NH4Cl medium was lower than that in NaNO3.
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Since Thr and Lys are synthesized from Asp, the pool sizes of Thr and Lys increased with
an increase in Asp.
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lines, the cellular biomass (dried cell weight); dotted lines, the residual nitrogen concentration in 
the medium. Error bars indicate the standard deviation of three replicate experiments. Statistical 
significance was determined using Welch’s t-test (* <0.05, ** <0.01). 

2.2. Metabolome Analysis with Different Types of Nitrogen Source 
As nitrogen is thought to be assimilated mainly through the GS-GOGAT cycle, which 

synthesizes glutamate (Glu) and glutamine (Gln) from NH4− and 2OG, we first compared 
the amino acid levels with different nitrogen sources (Figures 2 and S2). The pool sizes of 
serine (Ser), glycine (Gly), threonine (Thr), alanine (Ala), aspartate (Asp), asparagine 
(Asn), lysine (Lys), valine (Val), and isoleucine (Ile) when grown in NH4Cl medium were 
higher than those in NaNO3 medium 24 h after the start of cultivation. The pool sizes of 
methionine (Met) were still high 48 h after the start of cultivation. The pool sizes of Gln 
and Glu were the same between the NaNO3 and NH4Cl media. On the other hand, the 
pool size of tryptophan (Trp) when grown in NH4Cl medium was lower than that in 
NaNO3. Since Thr and Lys are synthesized from Asp, the pool sizes of Thr and Lys in-
creased with an increase in Asp. 

To understand why the differences in amino acid levels occur, we also examined 
some metabolites of the CBB cycle, glycolysis, and TCA cycle (Figure 3). After 24 h from 
the start of cultivation, the levels of ribulose-1,5-bisphosphate (RuBP), 3-phosphoglycer-
ate (3PGA), phosphoenolpyruvate (PEP), acetyl-coenzyme A (Ac-CoA), citrate (Cit), aco-
nite (Aco), isocitrate (Isocit), and fumarate (Fum) were higher, and sedoheptulose 7-phos-
phate (S7P) and ribose 5-phosphate (R5P) were lower than those with NaNO3. In contrast, 
no difference was observed in the pool size of pyruvate (Pyr), although PEP, Ile, Val, and 
acetyl-CoA were increased. We speculate that Pyr synthesized from PEP may be immedi-
ately converted to Val, Ile, and Ac-CoA. 

Figure 1. Cell growth of Synechocystis and the residual nitrogen concentration under different types
of nitrogen. The cell growth of Synechocystis cultivated in NaNO3 medium or NH4Cl medium under
phototrophic conditions was compared. Blue lines, NaNO3 medium; red lines, NH4Cl medium; solid
lines, the cellular biomass (dried cell weight); dotted lines, the residual nitrogen concentration in
the medium. Error bars indicate the standard deviation of three replicate experiments. Statistical
significance was determined using Welch’s t-test (* <0.05, ** <0.01).

To understand why the differences in amino acid levels occur, we also examined some
metabolites of the CBB cycle, glycolysis, and TCA cycle (Figure 3). After 24 h from the start
of cultivation, the levels of ribulose-1,5-bisphosphate (RuBP), 3-phosphoglycerate (3PGA),
phosphoenolpyruvate (PEP), acetyl-coenzyme A (Ac-CoA), citrate (Cit), aconite (Aco),
isocitrate (Isocit), and fumarate (Fum) were higher, and sedoheptulose 7-phosphate (S7P)
and ribose 5-phosphate (R5P) were lower than those with NaNO3. In contrast, no difference
was observed in the pool size of pyruvate (Pyr), although PEP, Ile, Val, and acetyl-CoA were
increased. We speculate that Pyr synthesized from PEP may be immediately converted to
Val, Ile, and Ac-CoA.
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Figure 2. Metabolic profiles (amino acids) of Synechocystis cultured with NaNO3 or NH4Cl. The
abundance of amino acids when Synechocystis was cultivated in NaNO3 medium or NH4Cl medium
were compared at each time point. Error bars indicate the standard deviation of three replicate
experiments. Blue lines, cultivation in NaNO3 medium; red lines, cultivation in NH4Cl medium.
3PGA, 3-phosphoglycerate; Ac-CoA, acetyl-CoA; Ala, alanine; Arg, arginine; Asp, aspartate; Asn,
asparagine; Cys, cysteine; Glu, glutamate; Gln, glutamine; His, histidine; Hse, homoserine; Ile,
isoleucine; Leu, leucine; Met, methionine; PEP, phosphoenolpyruvate; Phe, phenylalanine; Pro,
proline; Pyr, pyruvate; Ser, serine; Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Val, valine.
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Figure 3. Metabolic profiles (CBB cycle, glycolysis and TCA cycle) of Synechocystis cultured with
NaNO3 or NH4Cl. The abundance of some metabolites in the CBB cycle, glycolysis, and TCA
cycle were compared at each time point. Error bars indicate the standard deviation of three repli-
cate experiments. Blue lines, cultivation with NaNO3; red lines, cultivation with NH4Cl. 2PGA,
2-phosphoglycerate; 2OG, 2-oxoglutarate; 3PGA, 3-phosphoglycerate; Ac-CoA, acetyl-Coenzyme
A; Cit, Citrate; F6P, fructose 6-phosphate; FBP, fructose 1,6-phosphate; Fum, fumarate; GAP, glyc-
eraldehyde 3-phosphate; Isocit, isocitrate; PEP, phosphoenolpyruvate; Pyr, pyruvate; R5P, ribose
5-phosphate; Ru5P, ribulose 5-phosphate; RuBP, ribulose 1,5-bisphosphate; S7P, sedoheptulose 7-
phosphate; Suc, succinate.

2.3. 15N-Turnover Analysis with Different Types of Nitrogen

The growth rates and pool sizes of the metabolites were different in NaNO3 and
NH4Cl. However, the nitrogen flow in the cell when grown in NaNO3 or NH4Cl media
remains unclear. To reveal nitrogen flow with different nitrogen sources, we measured
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the time-resolved labeling rate of amino acids by 15N stable isotope labeling (Figure 4 and
Figure S3). For this purpose, Synechocystis cells were taken after 24 h of cultivation and
transferred to fresh BG11 medium containing 15NH4Cl or Na15NO3 (labeling time = 0 h).
The labeling rates of Ala, Ser, and Gly, which are synthesized from 3PGA, were significantly
higher in NH4Cl medium than in NaNO3 medium. The larger pool sizes of Ala, Ser, and
Gly when Synechocystis are grown in NH4Cl medium might result from the higher 15N
labeling rate. The labeling rate of Glu and Gln were significantly higher in NH4Cl medium
than in NaNO3 medium, which is consistent with a previous report [17]. However, the
pool sizes of Glu and Gln did not change, as shown in Figure 2. This indicates that when
Synechocystis is grown in NaNO3 medium, one of the two nitrogen atoms in Gln is 14NH4

+,
which can result from cellular nitrogen sources such as amino acids.
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line; Pyr, pyruvate; Ser, serine; Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Val, valine. 
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Figure 4. Analysis of 15N turnover under different nitrogen conditions. Synechocystis was cultivated
in Na15NO3 or 15NH4Cl media after cell inoculation. The 15N labeling rates of amino acids and
their related metabolites were compared at each time point. Values represent the mean ± standard
deviation of three independent experiments. Blue lines, cultivation with NaNO3; red lines, cultivation
with NH4Cl. Red and blue characters indicate higher and lower amounts of metabolites when grown
in NH4Cl. Statistical significance was determined using Welch’s t-test (* <0.05, ** <0.01). 3PGA,
3-phosphoglycerate; Ac-CoA, acetyl-coenzyme A; Ala, alanine; Arg, arginine; Asp, aspartate; Asn,
asparagine; Cys, cysteine; Glu, glutamate; Gln, glutamine; His, histidine; Hse, homoserine; Ile,
isoleucine; Leu, leucine; Met, methionine; PEP, phosphoenolpyruvate; Phe, phenylalanine; Pro,
proline; Pyr, pyruvate; Ser, serine; Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Val, valine.
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2.4. 15N Labelling Rate and Order in Glutamine Synthesis

To elucidate the mechanism underlying the lower labeling rate of glutamine in the
NH4Cl medium, the position of the 15N-labeled nitrogen atom in the Gln molecule was
examined using liquid chromatography-tandem mass spectrometry with the multiple
reaction monitoring method (LC-MS/MS MRM) (Figure 5). 15N labeling conditions were
the same as those for the experiments performed in Figure 4 (see Materials and Methods).
The 15N labeling rate of Gln when cultured in Na15NO3 was almost constant for 24 h after
Synechocystis inoculation (Figure 5A,B). On the other hand, when cultured in 15NH4Cl,
the rate of 15N labeling of one of the two nitrogen atoms in Gln gradually decreased, and
the unlabeled rate of Gln was 0.23% (2.5% in the presence of Na15NO3). As shown in
Figure 4, the total 15N labeling rate of the two nitrogen atoms in Gln was 71% in Na15NO3
and 89% in 15NH4Cl. Next, the position of the 15N-labelled nitrogen atom in glutamine
was investigated. The positions of the 15N labeling are described as positions 2 and 5,
which are the amino groups of the main and side chains (Figure 5E). Position 5 of Gln was
preferentially labeled 1 h after Synechocystis was inoculated under culture conditions with
Na15NO3. After an interval of 24 h, the labeling rates of positions 2 and 5 became equal. On
the other hand, in 15NH4Cl medium, position 5 was always preferentially labeled during
the period of 24 h after Synechocystis inoculation.
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Figure 5. 15N labelling rate and its position in Gln. The 15N labeling rate and its position in Gln
(glutamine) were examined by LC-MS/MS. A and B indicate the number of the 15N-labelled NH2

group in glutamine and 15N-labelled rate in each 15N-labelled number of all Gln. (A), Cultivation in
Na15NO3 medium; (B), Cultivation in 15NH4Cl medium. (C,D) indicate the position of the two NH2

groups in Gln when one of the two was labeled at M+1 in (A–C), Cultivation in Na15NO3 medium;
(D), Cultivation in 15NH4Cl medium. (E), the position number in Gln, as indicated in (C,D).

2.5. Nitrogen Assimilation Rate by Glutamine Synthase and Glutamate Dehydrogenase

From these results, the enzymatic activity for Gln synthesis was assumed to be affected
by the type of nitrogen source. To test this hypothesis, we measured the catalytic activities
of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) from whole-cell lysates
(Figure 6). The catalytic activity of GS was 1.1 U/mg-protein when Synechocystis was
grown in NaNO3 medium and 0.73 U/mg-protein when grown in NH4Cl medium. In a
previous report, the expression level of GS was higher in NaNO3 medium than in NH4Cl
medium [14]. When considered with the results from this previous report, the difference in
the catalytic activity of GS in Figure 6B reflects the difference in the expression level of GS
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itself. On the other hand, the activity of GDH was 3.5 mU/mg-protein when Synechocystis
was grown in NH4Cl medium and 2.3 mU/mg-protein in NaNO3 medium; the catalytic
activity of GDH in NH4Cl was higher than that in NaNO3.
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represent the mean ± standard deviation of three independent experiments. (A), Reaction scheme
for each enzyme. (B), GS activity when grown in NaNO3 or NH4Cl media. (C), GDH activity
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Statistical significance was determined using Welch’s t-test (** <0.01).

3. Discussion
3.1. Different Assimilation Mechanisms for Nitrogen Depending on the Nitrogen Source

In this study, we wished to elucidate the mechanisms by which Synechocystis grown
under different nitrogen sources assimilates nitrogen, and more generally, to clarify how
it responds to different nitrogen sources. Different types of nitrogen altered the growth
rate, pool sizes of metabolites, and nitrogen assimilation rate of Synechocystis (Figures 1–5).
In addition, the catalytic activities of GS and GDH were different for different types of
nitrogen sources (Figure 6).

Based on the findings of this study, we propose a model for nitrogen assimilation by
Synechocystis grown in different nitrogen sources (Figure 7). The model was prompted by
15N labeling experiments. In contrast to the assimilation of NH4

+, Synechocystis was unable
to assimilate NO3

− by itself and required an additional reducing power to convert it to
NH4

+ (Figure 7A). This means that the reduction of NO3
− appears to be the rate-limiting

step for nitrogen assimilation. Therefore, at the beginning of the log phase, when there
is sufficient photosynthetic reducing power, GS synthesizes Gln with 15NH4

+, resulting
in the rapid labeling of the side chain of Gln with 15N (Reaction 1 in Figure 7A) [23].
This hypothesis is consistent with the finding that the preferentially 15N-labeled nitrogen
was in position 5 until 1 h later (Figure 5C). Subsequently, the 15N labelled NH2 group
is rapidly transferred to 2OG by GOGAT, resulting in two Glu molecules (Reaction 2
in Figure 7A) [24]. GS can also synthesize doubly 15N-labeled Gln from newly reduced
15NH4

+ and 15N-labeled Glu (Reaction 1 in Figure 7A). Furthermore, 15N-labeled Glu can
be used as a nitrogen source in another pathway to generate another amino acid (Reaction 4
in Figure 7A). However, the reducing power gradually decreased as the light transmittance
of the culture medium decreased during the transition from the early log phase (Figure 7A)
to the late log phase (Figure 7B). It has been previously shown that light is necessary to
reduce NO3

−, and Fd, which accepts the reducing power from the photosystem, reduces
NO3

− and NO2
− to NH4

+ [7,8,23,24]. Thus, GS cannot use the newly reduced 15NH4
+ but

reuses 14NH4
+, which derived from amino acids due to the decrease in light (Figure 7B).

As a result, Reaction 1 with 15NH4
+ in Figure 7 would not occur. In fact, the 15N labeling

rate of position 2 in Figure 5C gradually increased and became equal to that of position 5
after 24 h. This can also explain why the 15N labeling rate of Gln was 50% (Figure 4) and
71% (Figure 5A).
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The enlarged characters and molecular structure represent larger pool sizes of the molecule.

In contrast to NO3
−, reducing power is not required to assimilate NH4

+. Figure 5D
illustrates that position 5 in Gln is always dominant throughout the 24 h period, and
Figure 5B indicates that 90% of nitrogen in all Gln molecules was labeled. The light
conditions cannot be the rate-determining step to assimilate NH4

+, and Reaction 1 in
Figure 7C continues unless NH4

+ is lacking. Therefore, we assumed that the 15N labeling
rate quickly approached 90%, as shown in Figures 4 and 5B.

We also considered the possibility that the higher labeling rate with 15NH4Cl in
Figures 4 and 5 resulted from the higher activity of the GDH pathway, as shown in
Figure 6C. However, such possibilities can be excluded because, in Figure 5D,E, position
2 should be preferentially labeled if the GDH pathway is activated when Synechocystis is
cultivated in NH4Cl medium. GDH synthesizes Glu from 2OG and NH4

+, suggesting that
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position 5 is not labeled [25] and GS activity was much higher than the activity of GDH
(Figure 6).

The catalytic activity of GS was about 1000-fold higher than that of GDH in Figure 6B,C.
For Synechocystis, GDH is not essential for growth under the high CO2 conditions [26].
In Escherichia coli, GDH supplies glutamine in the absence of a carbon source because
GDH can produce it without ATP originating from carbon utilization [27]. This means that
the high CO2 conditions which were adopted in our experiments might have caused the
1000-fold change differences between the catalytic activity of GS and GDH.

In this study, we found that the type of nitrogen sources can affect the metabolic
profile of Synechocystis. The altered metabolic profile and labeling rate of Synechocytstis
in Figures 2–5 when Synechocystis was grown in NaNO3 or NH4Cl media came from the
availability of nitrogen. When Synechocystis was grown in NH4Cl medium, NH4

+ could
be used without limitation unless NH4Cl was absent in the medium. On the other hand,
additional reducing power is required to use NaNO3 because Synechocystis cannot use
NO3

− directly. This means that the amount of light transmitted, which is the source of
reducing power, can be the rate-determining step. Thus, Synechocystis switch the main
nitrogen sources from the external to internal nitrogen sources which arise from internal
amino acids or proteins to produce glutamine during the change of growth stage when
grown in NaNO3 medium. This switch between external and internal nitrogen sources
might enable Synechocystis to grow at the constant rate. When grown in NH4Cl medium,
the residual additional reducing power for Synechocystis to assimilate nitrogen enables it to
supply reducing power to other pathways. The pool size of 3PGA increased and that of
S7P and R5P decreased, as shown in Figure 3. The altered pool sizes of these metabolites
might be caused by the enhanced CBB cycle, consuming the residual additional reducing
power that was not used in the reduction of NO3

−. Accordingly, the abundance of some
metabolites in glycolysis and TCA cycle, and amino acids including 3PGA itself increased
in Figures 2 and 3. We suspect the high cell growth rate was accomplished by higher
abundance of those metabolites.

3.2. The Choice of Nitrogen Source: NO3
− or NH4

+?

So far, we revealed that Synechocystis switches the main nitrogen sources from the
external to internal nitrogen sources during the change of growth stage when grown in
NaNO3 medium and does not need to switch the nitrogen sources in NH4Cl medium. This
speculation suggests that NH4

+ is ideal nitrogen sources for Synechocystis. However, there is
a side effect of using NH4

+ as a nitrogen source. The electron transport rate in Synechocystis
decreased in the presence of over 15 mM NH4Cl according to a previous report [11]. This
means that excess NH4

+ can potentially inhibit photosynthesis in Synechocystis. In addition,
GS-GOGAT cycle also requires the reducing power to assimilate nitrogen sources [1].
If the amount of NH4

+ supplied exceeds the reducing power from photosynthesis, the
accumulation of NH4

+ would inhibit photosynthesis.
On the other hand, it is confirmed that there was no influence on photosynthesis

over 15 mM NaNO3 in the same previous report. We guess the reason the excess amount
of NH4

+ cannot accumulate in the cell because the production of NH4
+ is dependent on

the availability of reducing power arisen from photosynthesis. This means that all the
nitrogen assimilation pathway is dependent on the photosynthesis when grown in NaNO3,
and it is beneficial for Synechocystis to perform the nitrogen assimilation in concert with
photosynthesis and cell growth, preventing the excess accumulation of NH4

+ in the cell.
The proper type of nitrogen depends on the species of cyanobacteria, given that they

can assimilate various types of nitrogen sources, such as NO3
− and NH4

+, as shown
in this paper. NH4

+ stimulated the growth of Synechocystis, as shown in Figure 1. In
contrast, it attenuated the growth of Arthrospira (Spirulina) sp. [12,16] and did not affect
the growth of Microcystis aeruginosa NIES-843 [17]. The reasons for the differing responses
of cyanobacteria species to different types of nitrogen sources remain unclear. However,
we revealed that the enhancement of metabolite pool size and nitrogen turnover by NH4

+
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stimulated the growth of Synechocystis in this study. A comparison of the comprehensive
metabolic profiles of these cyanobacteria species under different types of nitrogen might
reveal the reasons for the different responses of cyanobacteria species.

4. Materials and Methods
4.1. Strain and Cultivation Conditions

Synechocystis sp. PCC 6803 strain was pre-cultivated in BG11 medium containing
20 mM HEPES-KOH (pH 7.7) and 17.6 mM NaNO3 under 50 µmol photons m−2 s−1 at
30 ◦C for 4 days, as described previously [18]. After pre-cultivation, Synechocystis was
inoculated into modified BG11 medium containing 50 mM HEPES-KOH (pH 7.7) and
5 mM NaNO3 or NH4Cl (NaNO3 medium or NH4Cl medium) and cultivated under 1%
(v/v) CO2 and 100 µmol photons m−2 s−1 at 30 ◦C. The culture medium was recovered at
the indicated times described below for further analysis. Statistical analysis was conducted
using Welch’s t-test (* <0.05, ** <0.01).

4.2. Measurement of the Intracellular Metabolite Concentration

Extraction and analysis of the intracellular metabolites was performed as previously
reported [18]. The procedure is described briefly. For the analysis of the intracellular
metabolite concentration, the culture medium corresponding to 5 mg of dry cell weight
was recovered at 0, 24, 48, and 72 h after inoculation with Synechocystis. After filtration,
the collected cells were washed with 20 mM (NH4)2CO3. The intracellular metabolite
was extracted using pre-cooled methanol containing the internal standard, and the water-
soluble phase was collected by mixing chloroform. The soluble protein was removed
by filtration, and the resultant water phase containing the metabolite was evaporated
under vacuum. The dried metabolites were dissolved in pure water and subjected to
CE-MS analysis.

4.3. 15N-Metabolic Turnover Analysis

The assimilation ratio of newly added nitrogen sources at each time point was deter-
mined using stable isotope 15N-labelled Na15NO3 or 15NH4Cl. Synechocystis was trans-
ferred to the modified BG11 medium containing 5 mM Na15NO3 or 15NH4Cl 24 h after
inoculation and cultivated under 1% (v/v) CO2 and 100 µ mol photons m−2 s−1 at 30 ◦C.
The culture medium corresponding to 5 mg of dry cell weight was recovered at 0, 4, and
24 h, and the intracellular metabolites were analyzed by CE-MS as described above or by
LC-MS/MS MRM. The procedure of sample preparation was the same as described above
Section 4.2 (measurement of the intracellular metabolite concentration) and LC-MS/MS
MRM analysis was performed by employing Nexera X2 high-performance liquid chro-
matography system and a LCMS-8060 triple quadrupole mass spectrometer (Shimadzu
Corporation, Kyoto, Japan), as described previously [28]. The 15N labeling rate was cal-
culated as performed in 13C labeling experiments in previous reports [18]. The relative
isotopomer abundance (mi) for each metabolite in which the i15N atoms were incorporated
is calculated as follows:

mi(%) =
Mi

∑n
j=0 Mj

× 100 (1)

15N fraction(%) =
n

∑
i=1

i × mi
n

(2)

where Mi represents the isotopomer abundance of metabolite incorporating i15N atoms,
and n is the number of nitrogen atoms in the metabolite. Statistical analysis was conducted
using Welch’s t-test (* <0.05, ** <0.01).

4.4. Enzymatic Assay of Whole Cell Lysate

Synechocystis cells that were cultured in the presence of NaNO3 or NH4Cl were
collected by centrifugation (3000× g, 4 ◦C, 10 min) and washed with nitrogen-free BG11
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medium. The cells were collected by centrifugation and resuspended in 60 mM HEPES-
KOH (pH 7.0). The suspended cells were disrupted by sonication, and the cell debris was
removed by centrifugation (20,000× g, 4 ◦C, 20 min). After centrifugation, the supernatant
was collected, and the protein concentration was determined using the Takara BCA Protein
assay kit (Takara, Shiga, Japan). Glutamine synthetase (GS) assays were performed as
described previously with some modifications [15]. Fifteen microliters of whole cell lysate
containing 16 µg of protein was mixed well with 185 µL reaction solution 1 containing
60 mM HEPES-KOH (pH 7.0), 40 mM glutamine, 4 mM MnCl2, 60 mM hydroxylamine,
1 mM ADP, and 20 mM sodium arsenate. Reaction solution 1 was incubated at 30 ◦C for
20 min and terminated by the addition of an equal volume of FeCl3 solution containing
0.5 M HCl, 247 mM FeCl3, and 196 mM trichloroacetate. GS activity (units/mg protein)
was calculated at an absorption wavelength of 500 nm to determine the amount of γ-
glutamylhydroxamate. The glutamate dehydrogenase (GDH) assay was performed as
described previously with some modifications [29]. Whole cell lysate containing 0.24 mg
of protein was mixed well with 875 µL reaction solution 2 containing 85 mM Tris-HCl
(pH 8.0), 10 mM 2OG, and 50 mM NH4Cl. The catalytic reaction of GDH was initiated by
the addition of 50 µL of 0.2 mM NADPH, and the decrease in NADPH at absorption at
340 nm was monitored using a spectrophotometer V-670 (JASCO, Tokyo, Japan) to calculate
GDH activity (mUnits/mg-protein). Statistical analysis was conducted using Welch’s t-test
(* <0.05, ** <0.01).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11120867/s1, Figure S1: Growth curve of Synechocystis during 168 h in NaNO3
medium or NH4Cl medium under phototrophic conditions, Figure S2: Comparison of metabolic
profiles in the Urea cycle. The pool sizes of some metabolites of the Urea cycle were examined. Blue
lines, cultivation with NaNO3; Red lines, cultivation with NH4Cl.; Arg, Arginine; CPS, Carbamoyl
phosphate; Glu, Glutamate; Orn, Ornithine, Figure S3: 15N labelling rates of metabolites of the Urea
cycle, 15N labelling rates of the Urea cycle was compared at each time point. Blue lines, cultivation
with NaNO3; Red lines, cultivation with NH4Cl.; Arg, Arginine; CPS, Carbamoyl phosphate; Glu,
Glutamate; Orn, Ornithine.
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