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ABSTRACT

We propose a compact computational method based on the capacitance model for the efficient design of graphene-based synaptic field
effect transistors (FETs), in which the hysteresis of conduction characteristics due to the channel–gate interface trap is used as synaptic plas-
ticity. Using our method to calculate the conduction properties of graphene and armchair graphene nanoribbon (AGNR) superlattice FETs,
it is shown that the AGNR can achieve an efficient conductance change rate Δw, which is approximately 7.4 times that of graphene. It was
also found that Δw was the greatest when the gate oxide thickness was around 2–3 nm, which is near the limit of miniaturization. These
results suggest that the proposed synaptic FETs are a promising approach to realize large scale integration chips for biological timescale
computation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059066

I. INTRODUCTION

With the advent of the big data era and the demand for
real-time edge computing, the development of high speed and low
power consumption electronic devices is becoming more important.
Neuromorphic computing has attracted great attention as one of the
promising directions in realizing low power signal processing by
means of electronic circuit mimicking of biological nervous systems
that are highly energy efficient.1–4 It also has the potential to contrib-
ute to the development of medicine and neuroscience through
mutual computation with the biological nervous system.5,6

Generally, a neuromorphic processor has two main compo-
nents. The first one is the synapse, which is memory that stores
binding weights with biologically relevant analog values. The
second is the neuron, which generates spike outputs in response to
spike inputs via the synapse. In recent years, synaptic devices using
memristors, two-terminal devices whose resistance changes accord-
ing to the current flowing through themselves via the phase change
mechanisms, such as the formation of conductive filaments, have
attracted attention and are expected to be applied to large scale
integrated neuromorphic systems because of their ultrahigh speed
drive, ultralow power consumption, and high scalability.7,8

However, resistive two-terminal devices have difficulty in simulta-
neously transmitting synaptic signals and learning unlike natural
synapses. Such difficulties can be overcome by using three terminal

synaptic devices based on FETs, which have been shown to enable
simultaneous synaptic signal transmission and learning with good
stability and controllable device characteristics and have attracted
attention as a new approach to replace two-terminal synaptic
devices.9–11

As materials in FET fabrication, two-dimensional atomic film
materials, such as graphene, have been attracting attention as next-
generation materials due to their unique physical characteristics, such
as high electron mobility and wider control of electronic transport
properties by changing their widths.12–14 For neuromorphic applica-
tions, high-performance synaptic devices can be realized by exploit-
ing their sensitivity to the surrounding environment, such as charge
trapping at the surface, which results in the hysteresis of conduction
properties and makes it possible to realize synaptic functionality as
experimentally reported in Refs. 15–17. From this viewpoint, two-
dimensional atomic film materials are highly advantageous since the
conducting channel is directly contacted to its surrounding environ-
ment, that is, insulating materials, such as SiO2.

Despite recent experimental progress, an efficient and reliable
computational methodology to study the synaptic behavior of gra-
phene FET quantitatively has not been explored enough thus far
except for a few simulation and modeling studies,18–23 where the
interface trap charge and the channel charge are treated in a sepa-
rate way. Further detailed analysis of synaptic FETs for various
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materials requires a unified general framework to treat the interface
trap charge and the channel charge on equal footing. Moreover, it
has not been studied enough so far how the controllable device
parameters of graphene FET, such as the oxide thickness and the
width of graphene in the form of the graphene nanoribbon (GNR),
influence the device performance from the viewpoint of the synap-
tic functionality. With this motivation in mind, we propose a
compact computational method to clarify the performance of gra-
phene and GNR FETs as synaptic devices, in which the hysteresis
of conduction characteristics due to the channel–gate interface trap
is used as synaptic plasticity.

The remainder of the paper is organized as follows: Section II
describes the method used to calculate the band structure and elec-
trical conduction properties of the channel material and the model
used to simulate the hysteresis of the conduction properties due to
the interface trapping charge. Section III presents the results of the
calculations, and Sec. IV discusses the results and summarizes the
paper.

II. THEORETICAL FORMALISM

A. Tight-binding (TB) formalism

Figure 1 shows a schematic of the device structure considered
in this study, where the channel property is described using the
tight-binding (TB) method. In the TB formalism, the electronic
properties of graphene and the GNR channel can be obtained by
solving the eigenvalue problem H(k)jψ l(k)i ¼ El(k)jψ l(k)i, where
H(k) is the wavenumber k dependent Bloch Hamiltonian of gra-
phene or GNR spanned by the pz orbitals within the unit cell and
El(k) describes the lth energy band.

Regarding GNR, we focus our attention to armchair GNR
(AGNR) because of its semiconducting property with the finite
bandgap that depends on the width of the AGNR. In particular, we
consider the AGNR superlattices, in which the number of atoms in
the width direction of AGNR is periodically varied. In the present
study, we examine the superlattice of 7-AGNR and 9-AGNR illus-
trated in Fig. 2, where it has been theoretically shown that the occur-
rence of a zero-dimensional topological interface state at the
interface between the topologically non-trivial region and another
topologically non-trivial region generates a new band near the Fermi

surface,24,25 resulting in the narrowing of the bandgap depending on
the lengths of the 7-AGNR and 9-AGNR regions.

B. Current calculation method under ballistic
conditions

Once the band structure El(k) and the wave function jψ l(k)i
are calculated, the current density of a channel with ideal electrodes
at both ends can be calculated as

I ¼ q
�h

1
NkpSUC

XNorb
UC

l

XNkp

k[BZ

vl(k)j j

� f El(k)þ UC � EFLð Þ � f El(k)þ UC � EFRð Þ½ �, (1)

vl(k) ¼ 1
�h
dEl(k)
dk

¼ 1
�h

ψ l(k)
dH(k)
dk

����
����ψ l(k)

� �
: (2)

Here, Nkp is the total number of k sampling points within the 1st
BZ; Norb

UC is the total number of orbitals in the unit cell; q ¼ �e is
the charge of an electron; El(k) and vl(k) are the energy and the
group velocity for the energy eigenstate jψ l(k)i, respectively; f (E) is
the Fermi distribution function, where EFL=FR is the Fermi energy
in the left/right electrode; and UC is the electrostatic potential of
the channel. Note that in the case of nanoribbons, the current, not
the current density, is derived because the wavenumber direction is
considered only in one dimension.

C. Capacitance model considering interface
trapped charge

In this subsection, we propose a computational methodology
to analyze FETs with interface trapping charges with the assump-
tion of the following properties. First, only trapping charges near
the interface are considered, and trapping on defects inside the
bulk oxide film are not considered. Second, the effect of trapping
charges is uniformly distributed throughout the channel. The given
trapping/de-trapping time constants and the interface density of

FIG. 1. Model diagram of the field effect transistors (FETs) assumed in this
study. Double gating improves the gate voltage effect and doubles the interface
area. In addition, it is thought to be able to prevent disturbances from factors
other than the channel–oxide film interface.

FIG. 2. Unit cell of the armchair graphene nanoribbon (AGNR) superlattice,
which we call 7(3)/9(2)-AGNR from the number of sub-unit cells in the 7-AGNR
(3) and 9-AGNR (2) regions, respectively.
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states are used, and the interface density of states is assumed to be
constant with respect to energy.

The channel voltage VC actually felt by electrons in the gra-
phene channel is diminished from the applied gate voltage VG due
the channel induced charge QC and the interface trapped charge Qit.
To calculate the channel electrostatic potential UC ¼ �eVC taking
the channel and the trapped charge into account, we use a capaci-
tance model that considers the FET as a set of capacitors.26

Figures 1 and 3 show the geometry of the FETs considered in the
present study and the corresponding capacitance model that is
electrostatically equivalent to Fig. 1. In this model, the following
equation holds:

QC þ Qit ¼ Cox(VC � VG)

þ CD(VC � VD)þ CS(VC � VS), (3)

where CS and CD are the source and drain capacitances derived
from the metal–semiconductor junction, respectively; Cox is the
gate oxide capacitance; and VS and VD are the source and drain
voltages, respectively. Assuming source grounding and
CS, CD � Cox, Eq. (3) can be rewritten as

VC ¼ VG þ QC(VC)
Cox

þ Qit(VC)
Cox

, (4)

where we emphasize that QC and Qit are functions of VC. The
channel charge QC can be expressed as the product of the channel
area, the elementary charge, and the number of electrons per unit
area as follows:

QC(VC) ¼ Schannel � (� e)�
Nneq
ele=UC � Neq

ele=UC

SUC
, (5)

where Schannel is the channel area, N
neq
ele=UC is the number of electrons

per unit cell in the non-equilibrium state, and Neq
ele=UC is the number

of electrons per unit cell in the charge-neutral state (Neq
ele=UC ¼ 2 for

graphene without doping). Here, Nneq
ele=UC is calculated as

Nneq
ele=UC ¼ 2

Nkp

XNorb=UC

l

XNkp

k[BZ

� f (El(k)þ UC � EFL)
2

þ f (El(k)þ UC � EFR)
2

� �
, (6)

with EFL=FR being the Fermi energy of the left/right electrode,
defined in terms of the drain voltage VD as EFL ¼ EF and
EFR ¼ EF � eVD.

Before describing how to derive Qit, we will discuss the
assumed phenomenon. It is known that hysteresis can be observed
in the drain current ID as a function of VG depending on the
surface condition of the gate oxide film in contact with the channel
material.27–29 In the case of SiO2 oxide films, hysteresis characteris-
tics are observed when there are many silanol groups (–SiOH) on
the surface of the gate oxide film due to the trapping and
de-trapping of channel electrons at the interface states derived from
these groups.30

We introduce a model of the interface trap charge as shown in
Fig. 4. Electron transfer from the channel to the interface states
(trapping) occurs when the Fermi level EF is higher than the top of
the occupied interface level (hereafter denoted as Eit), while that
from the interface states to the channel (de-trapping) occurs when
EF is lower than Eit. In the subsequent formulation to calculate Eit,
we set the origin of energy at the Dirac point of graphene so that
the Fermi energy is always positioned at E ¼ eVC in graphene. On
the basis of this phenomenological treatment, for a given arbitrary
time varying gate voltage profile V (j)

G (not necessarily a monotoni-
cally increasing/decreasing function) with a time index j and time
step Δt, Qit at the jth VG is calculated sequentially starting from
Q(0)

it according to the following recurrence equations:

Q(j)
it ¼ Q(j�1)

it þ ΔQ(j)
it , (7)

ΔQ(j)
it ¼ �jej

ðE(j)
it

E(j�1)
it

Dit(E)dE, (8)

E(j)
it ¼ eVC(V

(j)
G )� E(j�1)

it

� �
1� exp(� Δt=τtrap)
	 
þ E(j�1)

it , (9)

E(0)
it ¼ eVC(V

(0)
G ), Q(0)

it ¼ 0, (10)

where Eit is the top of the occupied interface level measured from
the Dirac point in graphene, VC(VG) is the graphene channel
potential for a given gate voltage VG, Dit(E) (eV�1 m�2) is the
interface density of states, and τtrap (ms) is the trapping/de-trapping
time constant. On the basis of the experimental results of previous
studies, Dit(E) in Eq. (8) is treated as an energy independent cons-
tant.29 In the special case of the linearly increasing or decreasing
gate voltage, the time step is given in terms of the gate voltage
sweep rate χsweep (V/ms) as Δt ¼ ΔVG=χsweep, which is interpreted
as the time required to sweep the gate voltage by ΔVG. The factor

FIG. 3. Capacitance model electrostatically equivalent to the FET geometry
shown in Fig. 1.
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1� exp(� Δt=τtrap) is the probability that the interface states are
actually trapped during the time step Δt.

In our actual simulations, this factor 1� exp(� Δt=τtrap) is
approximated as Δt=τtrap since Δt � τtrap in our simulation condi-
tions. Equation (10) is used as the initial condition of the recur-
rence formulas. That is, under the assumption that the gate voltage
is fixed at its initial value V (0)

G for a sufficiently long time, the trap-
ping/de-trapping probability becomes one and then E(0)

it coincides
with eVC(V

(0)
G ).

In the above proposed model, various electronic properties,
such as the channel charge density, the channel potential, and the
interface density of states, are assumed to be homogeneous.
However, our model can be generalized to account for their spatial
inhomogeneity, where the nonequilibrium Green function (NEGF)
method plays a central role in performing a self-consistent calcula-
tion with the Poisson equation to account for the real spatial effects
of the channel potential.31

III. RESULTS AND DISCUSSIONS

A. Hysteresis of conduction characteristics

To clarify the usefulness of the above proposed method, we first
examine the case of linear gate voltage sweep and analyze the hyster-
etic properties. We employ the following parameter values in this
paper unless otherwise noted. The parameter values for interface
trap are τtrap ¼ 100ms and Dit ¼ 1:875� 1016 eV�1 m�2, which are
experimentally reported values.32 Since we consider the double-gated
FET structure as shown in Fig. 1, the value of Dit is actually doubled.
The relative permittivity of the SiO2 oxide film was given as κ ¼ 3:8
and the thickness of the gate oxide film as tox ¼ 3 nm.

In this subsection, we biased the graphene FETs with
VD ¼ 0:1 V and swept VG linearly from �2 to 2 V (forward sweep)
with the various gate sweep rate χsweep, assuming that VG was initially
fixed at �2 V for a sufficiently long time and subsequently swept VG

from 2 to �2 V (backward sweep) with the same sweep rate. The
calculated results of the ID-VG properties are shown in Fig. 5

FIG. 4. Energy band diagram of FET and schematization of the interfacial trap-
ping/de-trapping process at different bias conditions: (a) Eit , EF and (b)
Eit . EF. This figure is based on Figs. 2(c) and 2(d) in Ref. 29.

FIG. 5. Conduction characteristics of graphene-based FETs under linear gate
voltage sweeps for (a) graphene and (b) 7(3)/9(2)-AGNR to demonstrate the appear-
ance of the hysteresis behavior. In both (a) and (b), black and red curves correspond
to the forward sweep (from �2 to 2 V) and backward sweep (from 2 to �2 V),
respectively. In (a), results for two different gate sweep rates χsweep ¼ 0:02 (solid
curves) and 0.04 (dashed curves) V/ms are compared, while in (b), the result for
χsweep ¼ 0:02 is plotted in the linear (left axis) and logarithmic (right axis) scales.
We note that in (b), the current flowing through AGNR is divided by the effective
AGNR width to obtain the current density (see the text for detail).
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for graphene (a) and AGNR (b). We note that in (b), the current
flowing through 7(3)/9(2)-AGNR (in units of μA) is divided by
the effective AGNR width 1.08 nm to obtain the current density
to compare with the case of graphene, where the effective
width of 7(3)/9(2)-AGNR is defined by N7 7þ 1ð Þ þ N9 9þ 1ð Þ½ �
� ffiffiffi

3
p

a0=2
	 


=Ntot with N7 ¼ 3, N9 ¼ 2, and Ntot ¼ N7 þ N9.
Here, it is observed that the overall conduction characteristics

for backward VG sweep is shifted to the positive VG direction com-
pared to that for backward VG sweep. The direct reason for this
behavior is that the channel voltage VC at a given specific VG is
lower for the backward sweep case than for the forward sweep case,
where the behind physical mechanism is that the interface trapped
charge [Qit(VC) , 0] is continuously accumulated during the
forward sweep, and in the subsequent backward sweep, this accu-
mulated (negative) trapped charge causes the value of VC to be less
than the forward sweep through the third term in the RHS of
Eq. (4). This result agrees qualitatively with the experimentally
observed behavior,21,28,29 suggesting that our model can capture the
essential physics in the trap/detrap behavior. We also note that the
amount of the shift of the ID–VG curve due to the interface trapped
charge is larger for smaller values of gate sweep rate χsweep. This is
because slower gate sweep results in larger probability for electrons
to be trapped at the interface. Similar behavior can be observed for
the case of 7(3)/9(2)-AGNR (hereafter, we simply call AGNR)
channel as demonstrated in Fig. 5(b). It can be seen that the
opening of a bandgap of about 0.50 eV creates an off region where
almost no ID flows. The width of the off region (transport gap) is
approximately 200 mV if we define the off state as when
ID , 20 nA. Such a relatively narrow but clear transport gap and
the significant shift of the ID–VG curve due to the interface trapped
charge are preferable in designing energy efficient synaptic devices
utilizing a biologically plausible spike voltage displacement of
approximately 100–150 mV.

B. Synaptic FET application

So far, we have discussed the hysteresis behavior of graphene
and AGNR FETs due to charge trap/detrap processes. Such hystere-
sis behavior can be used as a key mechanism to realize synaptic
functionality as explained below. In Fig. 6(a), we show the sche-
matic illustration of the synapse-neuron system premised in this
study, where the pre-neuron is connected to the post-neuron via
the synapse made of FET. Then, the superposition of voltage spikes
launched by the pre- and post-neurons [i.e., Vin(t)þ Vout(t) in
Fig. 6(b)] is assumed to be used as the time-dependent gate voltage
VG(t) applied to synapse FET. Here, we illustrate in Fig. 6(b) the
representative example of the time-dependence of Vin(t), Vout(t),
and VG(t) ¼ Vin(t)þ Vout(t). As illustrated in this figure, the
time-dependence of VG(t) is different depending on whether
Δt ; tpost � tpre . 0 or Δt , 0. Then, the required functionality of
synaptic FET is that the electronic conduction property (more spe-
cifically the current or conductance at a reference gate voltage, for
example, at VG ¼ 0) is changed between before and after complet-
ing the voltage pulse VG(t) shown in Fig. 6(b) in a way depending
on the sign and/or value of Δt . This process is interpreted as the
spike-timing dependent update of the synapse weight represented
by the conductance value and is the essence of the mechanism

called the spike-timing dependent plasticity (STDP). Therefore, the
performance of synaptic FET can be evaluated by the current
change rate (interpreted as the normalized synapse weight change)
Δw ; (ID, after � ID, before)=ID, before, where ID, before(after) is the drain
current at a reference VG before (after) the voltage pulse VG(t) that
starts and ends at VG ¼ 0. We note that normalized synapse weight
w is updated every time a new voltage pulse is applied, and the
resulting update of w is interpreted as the update of weight in the
context of the spiking neural network (SNN).

C. Comparison of the conductance change rate
between graphene and AGNR superlattices

To focus our discussion on how the weight w is changed by
voltage pulses in graphene and AGNR FET systematically, we
assume the simple linear functional forms of the voltage pulse
[instead of a more realistic but complicated pulse form, such as
illustrated in Fig. 6(b)], expressed as VG(t) ¼ χsweept for t � t0,
VG(t) ¼ χsweep 2t0 � tð Þ for t0 , t � 2t0, and otherwise VG(t) ¼ 0,
where t0 ; VGmax=χsweep is the time required to reach the
maximum gate voltage VGmax for a given gate sweep rate χsweep. In
Fig. 7, we show the forward and backward ID–VG curves for gra-
phene and AGNR cases, where we set VGmax ¼ 0:1 V while
χsweep ¼ 0:002 or 0.02 V/ms. By comparing the current at VG ¼ 0
between the forward and backward sweep, one can estimate
the weight change Δw as Δw ¼ 13:8 (4.2)% for graphene and

FIG. 6. (a) Schematic illustration of a synapse-neuron system. (b) Representative
example of time-dependence of Vin(t), Vout(t), and VG(t) ¼ Vin(t)þ Vout(t).
Time-dependence of VG(t) is different depending on whether Δt ; tpost � tpre . 0
or Δt , 0.
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Δw ¼ 102:5 (28.6)% for AGNR FET for χsweep ¼ 0:002 (0.02) V/ms.
A large Δw means a large memory window, suggesting that 7(3)/9
(2)-AGNR can construct a better synaptic FET than graphene. So
far, we have assumed that the gate oxide thickness is tox ¼ 3 nm.
Next, we consider how tox and thus Cox influence the synapse weight
Δw. According to Eq. (4), one can see that Cox suppresses the effect
of the channel charge QC and interface trap charge Qit on the
channel voltage VC. If the effect of QC is large, VC becomes small
and the effect of VG degrades (quantum capacitance effect), which in
turn reduces Qit from Eqs. (7)–(9). From this observation, it looks
that it is preferable to increase Cox to diminish the effect of QC.
However, larger Cox results in the decrease of Qit and suppresses the
hysteresis behavior, which is not preferable as a synaptic device.
Therefore, it is important to optimize Cox to maximize the synapse
weight change Δw. For this purpose, we plot Δw as a function of tox

of the SiO2 gate oxide film for various χsweep in Fig. 8. It can be seen
that Δw reaches a maximum at tox ¼ 2�3 nm. One interesting
feature seen here is that a faster gate sweep rate χsweep results in the
shift of the Δw peak to the thicker tox direction. This is because a
faster gate sweep results in smaller amounts of trapped charge. Then,
a too thin tox suppresses the hysteresis behavior. We also note that
the thickness tox ¼ 2�3 nm is around the scaling limit for a SiO2

gate when tunneling is concerned, indicating that the scaling strategy
works well for the synapse FET as well.

D. Long-term potentiation (LTP)/long-term depression
(LTD) properties of synaptic FETs

So far, we have considered the linear gate sweep to clarify the
fundamental aspects of graphene-based synapses. Finally, we con-
sider a more experimentally accessible case, a square pulse train
sweep given by VG(t) ¼

P
i Viθ(t � ti)θ(ti þ Tpulse � t), where Vi

is the pulse voltage, ti is the pulse arrival time, and Tpulse is the

FIG. 7. Conduction characteristics and a conductance change rate of graphene-
based FETs under a 0–100 mV linear gate voltage sweep: (a) graphene and (b)
7(3)/9(2)-AGNR. For the AGNR case, the current is divided by the effective
AGNR width to obtain the current density. In both (a) and (b), black and red
curves correspond to the forward sweep (from �2 to 2 V) and the backward
sweep (from 2 to �2 V), respectively, and the results for two different gate
sweep rates χsweep ¼ 0:002 (solid curves) and 0.02 (dashed curves) V/ms are
compared.

FIG. 8. Synapse weight changes Δw in the case of linear voltage sweep (see
the text for detail) are plotted for (a) graphene and (b) 7(3)/9(2)-AGNR FETs as
a function of the SiO2 gate oxide film thickness tox. Results for various gate
sweep rates χsweep are compared.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 131, 024301 (2022); doi: 10.1063/5.0059066 131, 024301-6

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/jap


pulse width. We assume that i runs from 1 to 40, Vi ¼ Vp for 1 �
i � 20 and Vi ¼ �Vp for 21 � i � 40 with Vp mentioned later,
Tpulse ¼ 5 ms, and ti ¼ Tpulse þ Tinterval

	 

i with Tinterval ¼ 20 ms.

In Fig. 9, we show the results for graphene (a) and AGNR (b),
where the results for two different pulse voltage values Vp ¼ 0:1
and 0.2 V are compared. For both graphene and AGNR, the calcu-
lated Δw gradually increases as the multiple positive voltage pulses
are applied and is saturated as the charging process is completed.
When the pulse voltage becomes negative at i ¼ 21, Δw is abruptly
turned to negative, meaning that the synapse weight is turned from
potentiation to depression and is interpreted as the realization of
so-called long-term potentiation (LTP) and long-term depression
(LTD), respectively. As we can expect from Figs. 7 and 8, AGNR
shows a larger magnitude of Δw. It is also observed that the LTP

process shows larger jΔwj than in the LTD process. Such asymme-
tricity of jΔwj between LTP and LTD is more significant in the
AGNR case than graphene. To equalize the magnitudes of the posi-
tive and negative changes, the pulse waveform must be adjusted.
The confirmed saturation and asymmetry have also been experi-
mentally observed in the synaptic FETs based on MoTe2 as a
channel.33 The above-mentioned asymmetry is basically due to the
positive drain voltage VD (¼ 0:1 V), which pushes the minimum
current voltage to the positive VG side. The larger asymmetry in
GNR superlattices can be attributed to the presence of off-regions,
which are absent in graphene. Although it has been said that syn-
aptic devices with symmetry and linearity are ideal, it is noted that
STDP-based unsupervised SNNs obtain high classification accuracy
values in the modified National Institute of Standards and
Technology (MNIST) classification by having synapses with non-
linear behavior.34

IV. CONCLUSION

In this paper, we proposed a compact computational method
based on the capacitance model for the efficient design of graphene-
based synaptic field effect transistors (FETs), in which the hysteresis
of conduction characteristics due to the channel–gate interface trap
was used as synaptic plasticity. Using our method to calculate the
conduction properties of graphene and armchair graphene nanorib-
bon (AGNR) superlattice FETs, we have succeeded to obtain the hys-
teresis behavior in the ID–VG curves of graphene and AGNR FETs,
where it was clarified that the current modulation due to the hystere-
sis behavior (interpreted as the synaptic weight change) can be tuned
by changing the gate sweep rate χsweep and the gate oxide thickness
tox. Moreover, it was shown that the AGNR can achieve an efficient
conductance change rate Δw, which is approximately 7.4 times that
of graphene. It was also found that Δw was the greatest when the
gate oxide thickness was around 2–3 nm, which is near the limit of
miniaturization. We have also examined the case of square voltage
pulse train sweep and demonstrated the pulse voltage dependent
asymmetricity in the long-term potentiation/long-term depression
behaviors. These results suggest that the proposed synaptic FETs are
a promising approach to realize large scale integration chips for bio-
logical timescale computation.
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FIG. 9. Synapse weight changes Δw in the case of square pulse train voltage
sweep (see the text for detail) are plotted for (a) graphene and (b) 7(3)/9
(2)-AGNR FETs as a function of the SiO2 gate oxide film thickness tox. Results
for two different pulse voltage values Vp ¼ 0:1 and 0.2 V are compared. We
note that the first and second half of the voltage sweep correspond to the syn-
aptic long-term potentiation (LTP) and synaptic long-term depression (LTD),
respectively, as explained in the text.
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