
Kobe University Repository : Kernel

PDF issue: 2024-04-17

Kosambi–Cartan–Chern Stability in the
Intermediate Nonequilibrium Region of the
Brusselator Model

(Citation)
International Journal of Bifurcation and Chaos,32(02):2250016

(Issue Date)
2022-02

(Resource Type)
journal article

(Version)
Accepted Manuscript

(Rights)
Electronic version of an article published as International Journal of Bifurcation and
Chaos, vol. 32, no. 02, 2022, 2250016. DOI: 10.1142/S021812742250016X © World
Scientific Publishing Company. http://www.worldscientific.com/worldscinet/ijbc

(URL)
https://hdl.handle.net/20.500.14094/90009031

Yamasaki, Kazuhito
Yajima, Takahiro



October 13, 2021 10:19 whole˙paper

International Journal of Bifurcation and Chaos
© World Scientific Publishing Company

Kosambi-Cartan-Chern stability in the intermediate
non-equilibrium region of the Brusselator model

Kazuhito Yamasaki
Department of Planetology, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan

yk2000@kobe-u.ac.jp

Takahiro Yajima
Department of Mechanical Systems Engineering, Faculty of Engineering, Utsunomiya University,

Utsunomiya, 321-8585, Japan
yajima@cc.utsunomiya-u.ac.jp

Received (to be inserted by publisher)

This study applies the Kosambi-Cartan-Chern (KCC) theory to the Brusselator model to derive
differential geometric quantities related to bifurcation phenomena. Based on these geometric
quantities, the KCC stability of the Brusselator model is analyzed in linear and nonlinear cases
to determine the extent to which non-equilibrium affects bifurcation and stability. The geometric
quantities of the Brusselator model have a constant value in the linear case, and are functions of
spatial variables with parameter dependence in the nonlinear case. Therefore, the KCC stability
of the nonlinear case shows various distribution patterns, depending on the distance from the
equilibrium point (EQP), as follows: in the regions near or far enough from the EQP, the
distribution of KCC stability is uniform and regular; and in the intermediate non-equilibrium
region, the distribution varies and shows complex patterns with parameter dependence. These
results indicate that stability in the intermediate non-equilibrium region plays an important role
in the dynamic complex patterns in the Brusselator model.

Keywords: Jacobi stability; KCC theory; bifurcation theory; Brusselator model; non-equilibrium;
differential geometry

1. Introduction

Bifurcations are key factors in the spontaneous emergence of temporal organization in nonlinear systems
[Thompson, 1982]. The Belousov-Zhabotinsky reaction is a classic example of such self-organizing phenom-
ena [Belousov, 1959; Zhabotinnsky, 1964; Prigogine, & Lefever, 1968; Nicolis, & Prigogine, 1977; Taylor,
2002]. The Brusselator model, one of the simplest models to exhibit this phenomenon, comprises two first-
order differential equations (e.g., [Nicolis, & Prigogine, 1977; Lavrova et al., 2009; Luo, & Guo, 2018; Rech,
2019; Deng, & Zhou, 2020; Qin et al., 2020]):

∂tX = A− (B + 1)X +X2Y, (1)

∂tY = BX −X2Y, (2)

where X and Y are real-valued functions, and A and B are positive parameters. This can be rewritten
according to changes in concentration from the primary values, X = A + x and Y = B/A + y, as follows

1
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[Thompson, 1982]:

ẋ = (B − 1)x+A2y +
Bx2

A
+ 2Axy + x2y, (3)

ẏ = −Bx−A2y − Bx2

A
− 2Axy − x2y. (4)

From Eqs. (3) and (4), the equilibrium point (EQP) is given by (x, y) = (0, 0).
Bifurcation analysis of the stability of the Brusselator model has generated much interest in the self-

organization of non-equilibrium chemical systems, i.e., dynamic phenomena in reacting systems far from
equilibrium (e.g.,[Nicolis, & Prigogine, 1977; Ma, & Hu, 2014; Freire et al., 2017; Zhao, & Ma, 2019]). Given
the importance of stability under non-equilibrium conditions, the degree to which non-equilibrium affects
stability must be considered. In this paper, we consider whether the stability of bifurcation phenomena
becomes more complex as the system moves away from the equilibrium state.

We applied the Kosambi-Cartan-Chern (KCC) theory to quantify the effect of bifurcation on stability
in the non-equilibrium region (e.g., [Yamasaki & Yajima, 2020]). The KCC theory was first applied to
the study the geometric invariance of second-order ordinary differential equations [Kosambi, 1933; Cartan,
1933; Chern, 1939; Antonelli et al., 1993]. Recently, it has also been used in the analysis of stability (e.g.,
[Antonelli, & Bucataru, 2003; Sabău, 2005a; Udriste & Nicola, 2009; Neagu, 2013; Harko et al., 2016]).
Our previous KCC analyses of typical bifurcations (saddle-node, transcritical, and pitchfork bifurcations)
showed that stability varies in the non-equilibrium region [Yamasaki & Yajima, 2017, 2020]. Here, KCC
theory is applied to the Brusselator model, described by Eqs. (3) and (4), to evaluate the degree to
which non-equilibrium affects stability. To interpret the results clearly, the Brusselator model is analyzed
separately as linear and nonlinear cases.

The structure of this paper is as follows. In Section 2, we provide a brief review of KCC theory. In
Section 3, based on KCC theory, we derive the geometric quantities of Eqs. (3) and (4) in the linear case,
and compare the results with those of previous linear stability analyses. In Section 4, we derive geometric
quantities in the nonlinear case and consider KCC stability in the non-equilibrium region. Our conclusions
are presented in Section 6.

2. KCC theory applied to a system comprising two first-order differential
equations

2.1. Basic theory

As mentioned in the Introduction, KCC theory has been used to analyze the geometric structure of dif-
ferential equations. Because a dynamic system is often described by differential equations, KCC theory
has been applied to the geometric aspects of various dynamic structures, including those of physical (e.g.,
[Kumar et al., 2019; Krylova et al., 2019; Alawadi et al., 2020; Liu et al., 2020; Klën, & Molina, 2020]),
biological (e.g., [Antonelli et al., 1993; Yamasaki & Yajima, 2013; Antonelli et al., 2014; Antonalli et al.,
2019; Kolebaja, & Popoola, 2019]) and general (e.g., [Gupta, & Yadav, 2017; Chen, & Yin, 2019; Gupta et
al., 2019; Gupta, & Yadav, 2019]) systems. Moreover, it has been applied in mathematics to resolve the
inverse problem of updating the general parameters of dynamic systems [Sulimov et al., 2018], and the
geometric parameters of complex systems, including chaotic ones (e.g., [Oiwa, & Yajima, 2017; Huang et
al., 2019; Chen et al., 2020; Feng et al., 2020; Liu et al., 2021]).

The main component of KCC theory is a second-order ordinary differential equation [Kosambi, 1933;
Cartan, 1933; Chern, 1939], e.g., equations of motion. In analytical mechanics, equations are obtained
from two first-order differential equations. In this case, a single second-order equation can be derived
by combining the two first-order equations. The Brusselator model considered in this paper comprises two
first-order differential equations (3) and (4). These are then combined into a single second-order differential
equation, to which the theory of KCC can be applied. The analysis methods are described in the following.

Let us consider the following system comprising two first-order differential equations for x = x(t) and
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y = y(t):

ẋ = fx(x, y), (5)

ẏ = fy(x, y), (6)

where fx(x, y) and fy(x, y) are smooth functions. Equation (5) can be rewritten as y = h(x, ẋ). Substitution
of this equation into Eq. (6) gives the following second-order differential equation:

ẍ+ gx(x, ẋ) = 0, (7)

where gx(x, ẋ) is a smooth function. The form ÿ+gy(y, ẏ) = 0 can be derived in a similar way. In the linear
case, there is no difference in stability between x and y. Details are given in the following sections.

As a simple example, let us consider the Lotka-Volterra predation system. In Eqs. (5) and (6), fx =
rx− axy and fy = bxy − cy, where r, a, b, c are all positive parameters. Therefore, h = (rx− ẋ)/(ax) and
we can obtain gx = rx(bx− c) + ẋ(c− bx)− (ẋ2)/x using Eq. (7).

According to KCC theory, a small perturbation uxδτ in the trajectory of Eq. (7) gives the covariant
form of the variational equation D2ux/Dt2 = Pxux, where D(· · ·)/Dt is a covariant differential, and the
initial conditions are given by ux(0) = 0 and u̇x(0) ̸= 0 (e.g., [Antonelli, & Bucataru, 2003]). Px is the
geometric object, referred to as the deviation curvature tensor and defined by the following relation (e.g.,
[Antonelli, & Bucataru, 2003]):

Px = −∂gx
∂x

+
∂Nx

∂x
ẋ−Gxgx + (Nx)

2, (8)

Nx is a coefficient related to the nonlinear connection:

Nx =
1

2

∂gx
∂ẋ

, (9)

and Gx is a Berwald connection:

Gx =
∂Nx

∂ẋ
. (10)

When Eqs. (5) and (6) are linear systems, the geometric quantities defined above are all constant. On
the other hand, in the nonlinear system, the geometric quantities are functions of x and y. As described in
the next section, these geometric quantities are related to system stability. Thus, stability in the nonlinear
system varies within (x, y)-space. This paper considers stability in the linear and the nonlinear cases
described in Sections 3 and 4, respectively.

2.2. N-stability and J-stability

The deviation curvature (8) determines the Jacobi stability of the system, i.e., the robustness of its tra-
jectory[Lake & Harko, 2016; Sabău, 2005a; Salnikova et al., 2020]. The trajectory of a one-dimensional
system is Jacobi stable when P < 0, and Jacobi unstable when P ≥ 0 [Antonelli, & Bucataru, 2003;
Sabău, 2005a,b]. In this paper, we refer to the system as J-stable when P < 0, and as J-unstable when
P ≥ 0. Moreover, we consider the nonlinear connection (9), as this is also related to the stability of the
system ([Yamasaki & Yajima, 2013, 2016]). Also, we refer to the system as being N-stable when N > 0, as
N-unstable when N < 0, and as N-neutral when N = 0.

Around the EQPs, J-stable and J-unstable correspond to a spiral and a node, respectively [Sabău,
2005a]. N-stable, N-unstable, and N-neutral correspond to linear stable, linear unstable, and neutral, re-
spectively ([Yamasaki & Yajima, 2013, 2016]). For instance, J-stable and N-stable around the EQP cor-
respond to a stable spiral. The relationship between the stability type (according to bifurcation theory)
and geometric terms (according to KCC theory) around the EQPs is summarized in Fig. 1 [Yamasaki &
Yajima, 2013].

The relationship between KCC stability and other types of stability, such as Lyapunov stability, is
reviewed in [Abolghasem, 2013b]. Finally, we highlight the differences between the Jacobi stability and
other stability definitions, such as Lyapunov and orbital stability. [Abolghasem, 2013b] explicitly showed
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Fig. 1. Type and stability of equilibrium points (EQPs) adapted from Yamasaki and Yajima (2013). (a) Diagram showing
a Jacobian J of the linearized system around the EQPs. (b) Diagram showing geometric quantities based on the Kosambi,
Cartan, and Chern (KCC) theory. Note that the N -axis is reversed. From Yamasaki and Yajima (2013), N = −(1/2)tr[J ],
Z = det[J ] and P = N2 − Z.

that the stability derived from Lyapunov analysis is the same as the Jacobi stability for a Hamiltonian
system with one degree of freedom. Abolghasem also showed that these stability concepts agree in three
cases of torque-free rigid body motion around a stationary point, circular orbits in a central force field, and
circular orbits in Schwarzschild spacetime [Abolghasem, 2012a,b, 2013a]. [Boehmer et al., 2010] analyzed
the relationship between the Jacobi and linear Lyapunov stability of dynamical systems in the fields of
gravitation and astrophysics and show that there are cases in which the Lyapunov stability and the Jacobi
stability do not agree. Few studies have examined the relationship between KCC theory and orbital stability,
although asymptotical orbital stability is considered in predation and herbivory ecosystems [Antonelli, &
Kazarinoff, 1984].

3. KCC analysis: linear case of the Brusselator model

3.1. Geometric quantities

Stability analysis based on Eqs. (3) and (4) is often applied to the linear case. In this section, we also apply
KCC theory to the linear case, and compare the results with those obtained previously.

When we ignore the nonlinear terms, Eqs. (3) and (4) can be rewritten as

ẋ = (B − 1)x+A2y, (11)

ẏ = −Bx+A2(−y). (12)

Let us apply KCC theory to Eqs. (11) and (12) based on the method described in Section 2.1. First, we
rewrite (11) for y:

y = h(x, ẋ) =
−Bx+ ẋ+ x

A2
. (13)

Substitution of Eq. (13) in Eq. (12) leads to

ẍ+ gx(x, ẋ) = 0, (14)

with

gx(x, ẋ) =
(
A2 −B + 1

)
ẋ+A2x. (15)

Given gx, Eqs. (9), (10), and (8) provide the geometric quantities of the Brusselator model in the linear
case:

Nx =
1

2

(
A2 −B + 1

)
, (16)
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Fig. 2. N-stability and J-stability in the linear case of the Brusselator model. The white (black) region shows N-unstable and
J-stable (unstable) areas. The light (dark) gray region shows N-stable and J-stable (unstable) areas.

Gx = 0, (17)

Px =
1

4

(
A2 −B + 1

)2 −A2. (18)

In a similar fashion, we rewrite Eq.(12) for x and substitute it into Eq. (11) to obtain the form ÿ+gy = 0.
This gives the geometric quantities for y: Ny = (1/2)(A2−B+1), Gy = 0, and Py = (1/4)(A2−B+1)2−A2.
Therefore, the geometric equivalence holds in the linear case: Nx = Ny, Gx = Gy, and Px = Py. Notably,
these geometric quantities have no terms related to time. Thus, the types of stability for x and y remain the
same, regardless of time, in agreement with the previous linear stability analysis (e.g., [Nicolis, & Prigogine,
1977; Thompson, 1982]).

3.2. Stability around the equilibrium points

The criterion for linear stability in Eqs. (11) and (12) is the characteristic equation 1 + A2 −B. The sign
of this equation determines the type of linear stability. From Eq. (16), the sign of the nonlinear connection
determines the linear stability. In fact, N-stability, determined by the nonlinear connection, corresponds to
the linear stability around the EQPs (Fig. 1).

Let us consider the different types of stability in detail. The Brusselator model shows four types
of stability, according to the parameters A and B: (i) the stable spiral (A = 0.4, B = 0.8), (ii) the
unstable spiral (A = 0.4, B = 1.5), (iii) the unstable node (A = 0.4, B = 2.1), and (iv) the stable node
(A = 0.4, B = 0.2).

Conversely, in KCC theory, Eqs. (16) and (18) give the N- and J-stability distributions in parametric
space (Fig. 2). Based on Figs. 1 and 2, let us check the correspondence between the above results (i)∼(iv)
and the N- and J-stabilities. In Fig. 2, point (A,B) = (0.4, 0.8) is included in the light-gray region: N-stable
and J-stable. According to Fig. 1, this combination corresponds to the stable spiral, in agreement with the
above result for (i). Other points (A,B) = (0.4, 1.5), (0.4, 2.1), and (0.4, 0.2) are included in the white (N-
unstable and J-stable), black (N-unstable and J-unstable), and dark-gray (N-stable and J-unstable) regions,
respectively. These results coincide with the aforementioned results for (ii)∼(iv), respectively. Moreover,
the pattern shown in Fig. 2 agrees with the previous stability diagram for the Brusselator model (e.g.,
[Twizell et al., 1999; Sarmah et al., 2015]).

The Hopf bifurcation is a well-known phenomenon in the Brusselator model. In KCC theory, when the
system shows Hopf bifurcation, its N-stability is neutral [Yamasaki & Yajima, 2013]. When the Brusselator
model is N-neutral (Nx = 0), Eqs. (16) and (18) give Px = −A2 < 0, i.e., J-stable. The combination of
N-neutral and J-stable corresponds to the center, as shown in Fig. 1, and B = A2 + 1 gives the boundary
between the white and light-gray regions in Fig. 2. The other boundaries in Fig. 2 are now given by
B = (A± 1)2 from Px = 0.

In this section, we have shown that the type of KCC stability in the linear case of the Brusselator
model corresponds to the previous analysis, i.e., the linear stability analysis around the EQPs. In the next



October 13, 2021 10:19 whole˙paper

6 K. Yamasaki & T. Yajima

section, we will show that the stability in the nonlinear case of the Brusselator model is closely related to
the stability in the non-equilibrium region.

4. KCC analysis: nonlinear case of the Brusselator model

4.1. Geometric quantities

In this section, the KCC stability of the Brusselator model will be considered in the nonlinear case. As
described in Sec. 1, the model including the nonlinear term is given by

ẋ = (B − 1)x+A2y +
Bx2

A
+ 2Axy + x2y, (19)

ẏ = −Bx−A2y − Bx2

A
− 2Axy − x2y. (20)

Following the method described in Sec. 2.1, the single second-order differential equation is derived by
combining the two first-order differential equations (19) and (20). First, we rewrite (19) for y:

y =
−ABx+Aẋ+Ax−Bx2

A(A+ x)2
. (21)

Substitution of Eq. (21) into Eq. (20) leads to

ẍ+ gx(x, ẋ) = 0, (22)

with

(23)gx =

(
−A(B − 1) + (A+ x)3 − (B + 1)x

)
ẋ+ x(A+ x)3 − 2ẋ2

A+ x
.

Since gx can be obtained, Eqs. (9), (10) and (8) give the geometric quantities of the Brusselator model
in the nonlinear case:

Nx =
−A(B − 1) + (A+ x)3 − (B + 1)x− 4ẋ

2(A+ x)
, (24)

Gx = − 2

A+ x
, (25)

(26)Px =
px

4(A+ x)2
,

with

px = x
(
2A

(
3A4−2A2(2B+3)+B2−1

)
+x

(
15A4+x

(
x
(
15A2+6Ax−2(B+3)+x2

)
+4A

(
5A2−2B−5

))
− 12A2(B + 2) + (B + 1)2

))
+A2

(
A4 − 2A2(B + 1) + (B − 1)2

)
− 4

(
A3 + 3A2x+ 3Ax2 −A+ x3

)
ẋ.

(27)

Compare with the linear case in which the geometric quantities are constant (Eqs. (16), (17) and (18));
these geometric quantities include the terms x and ẋ. Especially, the term ẋ indicates that the dynamics
of the non-equilibrium region affect stability in the nonlinear case. It is therefore necessary to examine
stability in the non-equilibrium region to determine that in the nonlinear case. We will consider this issue
in the next section.

In the same way as the derivation of Eqs. (24) and (26), we can derive Ny and Py from ÿ+gy(y, ẏ) = 0
as follows:

(28)Ny =
ny

4
√
A(Ay +B)2

√
AB2 − 4(Ay +B)ẏ

,
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with

ny =−4A3y3 (A−3ẏ)+B2
(
AB

(
A2−2B−2

)
−6

(
A2−2B

)
ẏ
)
+
√
A
√
AB2 − 4(Ay +B)ẏ

(
B
((
A2+4

)
B

−4Aẏ
)
+4A2y2−4Ay (Aẏ−2B)

)
−2ABy

(
3
(
A2−6B

)
ẏ+2AB(B+2)

)
−2A2By2 (A(B+5)−18ẏ) ,

(29)

and

(30)Py =
py1

√
AB2 − 4ẏ(Ay +B) + py2

√
A

8A(Ay +B)4 (AB2 − 4ẏ(Ay +B))3/2
,

with

py1 = A2
(
2A2B4y2

(
A2(−(B− 3))+6B2− 28B+102

)
+4A3B3y3

(
A2+2(B− 8)B+74

)
+2A4((B− 18)B

+ 127)B2y4 − 4AB5y
(
B
(
A2 − 2B + 6

)
− 20

)
+B6

(
−2A2(B + 1) +A4 + 2(B − 2)B + 14

)
− 8A5(B − 15)By5 + 24A6y6

)
− 2ẏ(Ay

+B)2
(
ẏ
(
A4

(
5B2 + 12By2 − 12y4

)
+ 12A2B2

(
B − 6y2

)
+ 24A3By

(
B − 2y2

)
− 48AB3y − 12B4

)
− 2A(Ay +B)

(
B2

(
A2(2B + 5)− 2

(
B2 +B + 4

))
− 2A2(B + 1)(B + 4)y2

+ 2ABy
(
A2 − 2B(B + 2)− 8

)
− 4A3y3

))
,

(31)

py2 = 16A (ẏ)3 (Ay+B)3
(
A2

(
B+2y2

)
+4ABy+2B2

)
− 12 (ẏ)2 (Ay+B)2

(
2A2

(
A2 +24

)
B2y2 +4A

(
A2

+ 8
)
B3y +B3

(
2
(
A2 + 4

)
B +A4

)
+ 32A3By3 + 8A4y4

)
− 2Aẏ(Ay

+B)
(
−6A2B3y2

(
A2(B − 2) + 12B + 56

)
+ 8A3B2y3

(
A2 − 6(B + 8)

)
− 12AB4y

((
A2 + 4

)
B + 12

)
+B5

(
−2A2(3B + 2) +A4 − 12(B + 2)

)
− 12A4(B + 18)By4

− 48A5y5
)
+A2B2

(
−2A2B3y2

(
A2(B − 3) + 84

)
+ 4A3

(
A2 − 48

)
B2y3 − 4AB4y

(
A2B + 18

)
+B5

(
−2A2(B + 1) +A4 − 12

)
− 108A4By4 − 24A5y5

)
.

(32)

Ny and Py contain the square root term:
√

AB2 − 4ẏ(Ay +B). This term is always a real number, because
Eq. (20) gives AB2 − 4ẏ(Ay +B) = [2x(Ay +B) +A(2Ay +B)]2/A > 0.

In Section 3.1, we show that the equivalency, Nx = Ny and Px = Py, holds in the linear case.
On the other hand, the comparison of Eqs. (24) and (28), (26), and (30) shows that the equivalency
does not hold in the nonlinear case. As described above, the linear case reflects the stability around
the EQP, whereas the nonlinear case reflects the stability in the non-equilibrium region. Therefore, the
above non-equivalency means that the stability of x and y is generally different, and agreement is lim-
ited to the EQP. Let NE and PE be the nonlinear connection and deviation curvature of the equilib-
rium state, respectively: ẋ = ẏ = 0, their concrete forms are given by NE = (1/2)

(
A2 −B + 1

)
and

PE = (1/4)
(
A4 − 2A2B − 2A2 +B2 − 2B + 1

)
. For example, Fig. 3 shows the four types of curves in

which Nx, Ny and Px, Py are equal to NE and PE , respectively, in the case of A = 1 and B = 1.5. The
four curves intersect at various points, but they all coincide at the EQP; as such, one type of stability
is sufficient for the EQP, i.e., a stable spiral in A = 1 and B = 1.5. The same result holds for the other
parameters.

4.2. Stability in the non-equilibrium region

To visualize the distribution of the stability types in the non-equilibrium region, we consider the geometric
quantities in (x, y)-space. Substitution of Eq. (19) into Eqs. (24) and (26) leads to

(33)Nx =
1

2A(A+ x)

[
x2

(
3A2− 4Ay− 4B

)
+Ax

(
3A2− 8Ay− 5B+3

)
+A2

(
A2− 4Ay−B+1

)
+Ax3

]
,
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Fig. 3. Four types of curves in which Nx, Ny and Px, Py are equal to NE and PE , respectively in the case of A = 1 and
B = 1.5. NE and PE are the nonlinear connection and deviation curvature of the equilibrium state: ẋ = ẏ = 0. The four
curves intersect at various points, but they all coincide at the EQP (0,0)

and

Px =
1

4A(A+ x)2
[
x5

(
6A2 − 4Ay − 4B

)
+Ax4

(
15A2 − 20Ay − 18B − 2

)
+ 4A2x3

(
5A2 − 10Ay − 8B − 2

)
+Ax2

(
15A4 − 40A3y − 4A2(7B + 3) + 4Ay +B2 + 6B + 1

)
+ 2A2x

(
3A4 − 10A3y − 2A2(3B + 2) + 4Ay +B2 + 2B − 3

)
+A3

(
A4 − 4A3y − 2A2(B + 1) + 4Ay + (B − 1)2

)
+Ax6

]
.

(34)

Equations (33) and (34) describe Fig. 4, which shows the stability pattern in the non-equilibrium region
for the following four cases (Section 3.2): (a) A = 0.4, B = 0.8; (b) A = 0.4, B = 1.5; (c) A = 0.4, B = 2.1;
and (d) A = 0.4, B = 0.2. In these four cases (a)∼(d), we will consider three regions differing in distance
from the EQP (x, y) = (0, 0): (I) a region near the EQP (e.g., −10−2 ≤ x, y ≤ 10−2), (II) a region at an
intermediate distance from the EQP (e.g., −5 ≤ x, y ≤ 5), and (III) a region far from the EQP.

First, we consider the region near the EQP (e.g., −10−2 ≤ x, y ≤ 10−2). In this case, the spatial
distributions of N- and J-stability are uniform. There are four types of uniform distribution, which depend
on the parameters. Thus, equivalences Nx = Ny and Px = Py are in agreement with the linear case (Section
3.1). The difference in gray-scale color across parameters A,B is consistent with the results obtained in
the linear case (Section 3.2). To see the switch in the distribution type in the first column of Fig. 4 (near
the EQP) with changes in parameters A and B, we calculated the change in the sign of the non-linear
connection and deviation curvature. Alternatively, we can check this switching by referring to Fig. 2, as
shown below. The stability near the EQP corresponds to the stability of the linear case described in Fig.
2. For example, when A = 0.4 and B = 0.8, Fig. 2 shows the light gray region. Therefore, the first column
(A = 0.4, B = 0.8) in Fig. 4 also shows a light gray region. In the case of the other parameters A and B,
the distribution change near the equilibrium point in Fig. 4 can also be checked by referring to Fig. 2.

Next, we consider the region at an intermediate distance from the EQP (e.g., −5 ≤ x, y ≤ 5) (Fig.
4). From Eqs. (33) and (34), the stability distribution of Nx and Px can be plotted in (x, y)-space. Based
on Eqs. (28) and (30), we also know the stability distribution for Ny and Py. Figure 4 shows that the
stability distribution given by Ny and Py is not consistent with that given by Nx and Px. This result differs
from the above case near the EQP, in which Nx = Ny and Px = Py. Moreover, it shows a more complex
parameter-dependent pattern than the case near the EQP. This implies that the stability structure in
the intermediate non-equilibrium region plays an important role in the dynamic, complex patterns of the
Brusselator model.

Finally, we consider the region far from the EQP. In this case (x, y ≫ A,B), the stability distribution is
not strongly dependent on the parameters and converges for x and y. The differences in parameters A and B
will move the stability boundaries; however, the amount is negligible compared to the size of the coordinate
system. For Nx and Px, the areas around the first and third quadrants are white (Nx < 0 and Px < 0), and
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those around the second and fourth quadrants are dark-gray (Nx > 0 and Px > 0). In fact, Eqs. (33) and
(34) show that limy→±∞,x→±∞Nx = −∞ and limy→±∞,x→±∞ Px = −∞; limy→∓∞,x→±∞Nx = ∞ and
limy→∓∞,x→±∞ Px = ∞. In a similar fashion, we can obtain the black and light-gray patterns for Ny and
Py using the following relations: limx→0,y→±∞Ny = −∞ and limx→0,y→±∞ Py = ∞; limy→0,x→±∞Ny = ∞
and limy→0,x→±∞ Py = −∞.

5. Conclusions

This paper applies KCC theory to the Brusselator model and derives geometric quantities related to
bifurcation phenomena. Based on these quantities, the KCC stability of the Brusselator model is analyzed
in linear and nonlinear cases to determine the degree to which non-equilibrium affects bifurcation and
stability. Our main conclusions are as follows.

(1) In the linear case, the geometric quantities of the Brusselator model are constant for each parameter.
Here, the KCC stability is in agreement with the results of a previous linear stability analysis.

(2) In the nonlinear case, this paper considers three regions (I-III) differing in distance from the EQP.
(I) In the region near the EQP, there are four distinct KCC stability patterns that show uniform
distributions and parameter dependence. (II) In the region at an intermediate distance from the EQP,
there are various KCC stability patterns that exhibit non-uniform, complex distributions and parameter
dependence. (III) In the region far from the EQP, there are two types of KCC stability patterns that
display non-uniform and regular distributions, without parameter dependence. These results indicate
that the stability in the intermediate non-equilibrium region plays an important role in the dynamic
complex patterns in the Brusselator model.
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