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Abstract: Attacks using Uniform Resource Locators (URLs) and their JavaScript (JS) code content to
perpetrate malicious activities on the Internet are rampant and continuously evolving. Methods such
as blocklisting, client honeypots, domain reputation inspection, and heuristic and signature-based
systems are used to detect these malicious activities. Recently, machine learning approaches have
been proposed; however, challenges still exist. First, blocklist systems are easily evaded by new
URLs and JS code content, obfuscation, fast-flux, cloaking, and URL shortening. Second, heuristic
and signature-based systems do not generalize well to zero-day attacks. Third, the Domain Name
System allows cybercriminals to easily migrate their malicious servers to hide their Internet protocol
addresses behind domain names. Finally, crafting fully representative features is challenging, even
for domain experts. This study proposes a feature selection and classification approach for malicious
JS code content using Shapley additive explanations and tree ensemble methods. The JS code
features are obtained from the Abstract Syntax Tree form of the JS code, sample JS attack codes, and
association rule mining. The malicious and benign JS code datasets obtained from Hynek Petrak and
the Majestic Million Service were used for performance evaluation. We compared the performance
of the proposed method to those of other feature selection methods in the task of malicious JS code
content detection. With a recall of 0.9989, our experimental results show that the proposed approach
is a better prediction model.

Keywords: web-based attacks; feature selection; Shapley additive explanations; tree ensemble
methods; machine learning

1. Introduction

Websites are very popular; hence, cybercriminals find these platforms to be perfect
tools for launching their attacks. Web-based attacks remain a significant challenge, as
evasion techniques are continuously evolving. Attackers compromise Uniform Resource
Locators (URLs) and their JavaScript (JS) content to perform malicious activities on the
Internet. Such activities include phishing, URL redirection, spamming, social engineering,
botnets, and drive-by-download exploits [1–3]. The attacks are delivered through emails,
malware advertisements, texts, pop-ups, malicious scripts, and search results. The Domain
Name System (DNS) [1–5] provides cybercriminals the flexibility to easily migrate their
malicious servers, as they hide the IP addresses behind domain names [2,3]. Securing
websites is vital for maintaining confidentiality, integrity, and availability, and an equally
adaptive strategy is required to detect such attacks effectively.

Methods such as maintaining a blocklist [6], client honeypots, domain reputation
inspection [4], and domain and web metrics analysis [5,7–9] can detect malicious URLs and
their JS code content [4,10,11]. However, new URLs are registered every day, and a blocklist
can be evaded through URL obfuscation, fast flux, cloaking, and URL shortening. Recently,
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machine learning approaches that employ feature extraction and representation learning
for malicious URLs and their JS code content detection have been proposed [2,3,12–14].
Machine learning algorithms learn a prediction function based on features such as lexical,
host-based, URL lifetime, and content-based features that include HyperText Markup
Language and JS code. A classifier is then used to predict whether given content is
malicious or benign using a test dataset. Models such as these can be generalized to
new data, unlike the blocklist approach. However, there are challenges in crafting fully
representative features for model training.

In our previous work [15–17], we developed a system to detect malicious JS codes
using fixed-length vectors and the Abstract Syntax Tree form of the JS code (AST-JS). This
study extends our work by detecting malicious JS code content through feature selection.
Using atomic features and allowing the model to determine the relationships between them
is preferable instead of using composite features [2,3]. This study proposes using Shapley
additive explanations (SHAP) values and tree ensemble methods. While other methods
learn a set of manually extracted or engineered features, our approach adopts features that
are automatically selected based on their contributions to the model’s output.

Malicious URLs and their JS code content can stealthily perpetrate web-based at-
tacks [15–18]. Other studies [12,19,20] have shown that malicious URLs and their JS code
content exhibit features that are distinct from those of legitimate URLs. Therefore, we
focused on JS code content-based features to detect malicious websites. Our premise is
that malicious JS code content originating from attackers exhibits different AST-based
features than legitimate content. A SHAP-based model would learn such features from the
distribution of continuously evolving malicious JS code content.

The main contributions of this study are the following:

• This study proposes using SHAP and tree ensemble methods for detecting web-based
attacks.

• We detail the process of obtaining features using AST-JS node sets and patterns,
sample JS attack codes, and association rule mining.

• We compared the performances of different classifiers in malicious JS code detection
using SHAP selected features and achieved good detection performance for the tree
ensemble methods.

• We compared the performance of SHAP selected features to the performance of
those selected by other feature selection methods: Boruta, ELI5, RandomForest, and
SelectKBest.

• The proposed web-based attack detection method outperformed the other feature
selection methods in all three evaluation metrics.

The remainder of this paper is organized as follows. Section 2 highlights the related
work. We present our approach in Section 3. Section 4 presents the performance evalu-
ations of our own and other models; and we present our discussion and conclusions in
Sections 5 and 6, respectively.

2. Related Work

Researchers have put forward many prevention techniques to keep up with the
increase in attacks and new attack methods. Blocklists are repositories of known malicious
URLs and have long been employed to detect malicious URLs and their JS codes. Heuristic
and signature-based systems search for signs of standard attack patterns. The weakness
of these approaches is that new or variant URLs and their JS codes and zero-day attacks
can easily evade detection. Further, cybercriminals widely use obfuscation to perpetrate
attacks and evade detection.

Some studies [12–14] have proposed embedding the bag-of-words model in a URL
or features of a URL and its JS code content. Ma et al. [12–14] proposed an approach
to analyzing a URL to predict the maliciousness of websites using an online confidence-
weighted algorithm for lexical feature learning. Individual feature vectors were manually
engineered. Ma et al. [12] acknowledged that other potentially useful sources of information
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for features could improve classification accuracy. However, they did not examine a web
page’s actual content, citing reasons such as user safety, the model’s operation costs, the
classifier’s applicability to the URL context, and poor reliability when obtaining a malicious
web page version. They also used bag-of-words features and therefore did not preserve
token order. Conversely, our proposed approach uses JS code content features. Since
AST-JS is resistant against perturbations in JS code content, it makes our model applicable
for various JS code contexts and varying content.

Other systems [2,3,5,21,22] have been proposed that use constructed features or feature
engineering. Bilge et al.’s [2,3] EXPOSURE conducted a passive DNS analysis to identify
malicious domains. It is a dynamic reputation system based on passive recursive DNS
monitoring. They extracted 15 behavioral features to train the J48 decision tree classifier.
Their study assumed that large volumes of DNS data requests should exhibit sufficient
behavioral differences to distinguish between benign and malicious domains. In another
study, a system to detect malicious domains using DNS records and domain name features
was proposed by Al Messabi et al. [5] using J48, a C4.5 decision tree. This approach studied
prior DNS activities for each domain and the relationship between defective and legitimate
domains’ physical behavior [21], combining several existing DNS-based and domain name-
based features from previous work [2,3,22]. They assumed that eight unique behavioral
features could accurately identify malicious websites and proactively detect an attack.
However, feature engineering is challenging, even for domain experts. We performed
automatic feature selection to address these challenges.

Kuyama et al. [23,24] sought to detect targeted attacks by monitoring the communica-
tion between the Command and Control (C&C) server and the computers in the local area
network. Their proposed method identified new C&C servers using supervised machine
learning; extracted the WHOIS feature points and DNS information; and searched the site.
For performance comparison, the malicious domains were detected separately using a
neural network and a support vector machine. Since manual feature selection is a tedious
task, even for domain experts, we propose an autonomous feature-selection method using
SHAP values and tree ensemble methods.

Other studies have attempted to detect specific URL attack types, such as
phishing [25–30], malicious advertisements, and click fraud [1,31–36]. These approaches are
suited for specific attack types and do not generalize well to other attacks. Masri et al. [1]
proposed a system for the automatic classification and detection of malicious advertise-
ments. They used VirusTotal [37], URLVoid [38], and TrendMicro [39]. Their study relied
heavily on other tools that employ signatures and blocklist services. Therefore, it was
prone to problems inherent to signature and blocklist-based systems [4].

We propose an automatic feature selection method of malicious JS code content using
SHAP values. A more thorough analysis of JS code content-based features may help detect
threats [10,40]. These features provide more rich information for the feature learning
process than URL-based ones, as much information is extracted from a web page. Safety
concerns may arise if the JS code content is executed. However, we used AST-JS for the code
structure representation. Further, AST-JS enables the capturing of more details regarding
a web page. The assumption is that more information would lead to a better prediction
model. We assumed that correlations between various web-based attack features exist, and
a machine learning model can identify these relationships with minimal effort.

3. Proposed Method

When machine learning is employed to detect malicious URLs and their JS code
content, certain considerations have to be addressed, such as privacy and safety concerns,
feature learning methods, and the development of a fully representative feature set.

Given the common vulnerabilities, characteristics, and features employed by malicious
JS codes, it is evident that malicious websites are different from benign ones, as they each
have different objectives. For example, a malicious JS code contains functions or a combina-
tion of functions such as document.write, location.replace, and document.getElementById.
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Among other things, these functions are used to perform cross-site scripting attacks by
injecting malicious JS code into the document object model, direct concatenation of user
input with the query string, and building a database query via string concatenation used to
perform structured query language injections. Therefore, developing a malicious JS code
detection system that can generalize well to detect different attack types is imperative. We
propose automatic feature selection for AST-JS features, leveraging the global and local
features that contribute to the model performance. Adequate details of a JS code structure
are also presented without executing actual code.

This section details the proposed method for web-based attack detection using SHAP
and tree ensemble methods. The method includes the following three main stages: prepro-
cessing, feature selection, and classification, as shown in Figure 1. The following sections
explain the JS code preprocessing, feature selection, the SHAP values used for feature
selection, and the machine learning classifiers used for classification.

Figure 1. The proposed web-based attacks detection method.

3.1. Preprocessing

This section describes the AST-JS node sets and patterns, sample JS attack codes, and
association rule mining.

3.1.1. AST-JS Node Sets and Patterns

Preprocessing is essential to enhancing the feature learning process. To define our first
input set, we parsed each JS code in our dataset to obtain the expression, pattern, statement,
and declaration AST-JS nodes.

3.1.2. Sample JS Attack Codes

Malicious JS code rarely uses raw values, as attackers endeavor to evade static ana-
lyzers. Therefore, it is essential to capture features that employ covert implementations
to hide their values. To capture these features, we analyzed the feature importance of our
first feature set using SHAP interaction values. This feature analysis exposed each AST-JS
node and the combination’s contribution to the malicious JS code detection model. To
identify such combinations, we obtained sample JS attack codes and performed association
rule mining using the Frequent Pattern growth (FP-growth) mlxtend library [41–43]. The
sample JS attack codes are explained next.

Listing 1 shows a JS code that lacks a definition of the index of an object
in the current scope. When f oo() is called, x = 0 is passed, which is a local
index of the function. We capture this attack pattern using the AST node type
EmptyStatement_ExpressionStatement_CallExpression_Identi f ier.

Listing 2 shows a JS code where the argument of setTimeout() is a string concate-
nation with binary expression. We capture this attack pattern using the AST node type
CallExpression_Identi f ier_BinaryExpression.
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Listing 1. A snippet of a JS code with EmptyStatement_ExpressionStatement_CallExpression _Identifier.

1 function foo (x){
2 var arr = ["1", "2", "3"];
3 eval (arr [x])
4 };
5 foo (0);
6 // AST for EmptyStatement\_ExpressionStatement\_CallExpression\_Identifier
7 "type": "EmptyStatement"
8 },
9 {

10 "type": "ExpressionStatement",
11 "expression": {
12 "type": "CallExpression",
13 "callee": {
14 "type": "Identifier",
15 "name": "foo"
16 },
17 "arguments": [
18 {
19 "type": "Literal",

Listing 2. A snippet of a JS code with CallExpression_Identifier_BinaryExpression.

1 function startOverflow (num) {
2 }
3 if (num == 255) setTimeout ("startOverflow (" + (num + 1) + ")", 2000);
4 // AST for CallExpression\_Identifier\_BinaryExpression
5 "type": "ExpressionStatement",
6 "expression": {
7 "type": "CallExpression",
8 "callee": {
9 "type": "Identifier",

10 "name": "setTimeout"
11 },
12 "arguments": [
13 {
14 "type": "BinaryExpression",
15 "operator": "+",
16 "left": {
17 "type": "BinaryExpression",
18 "operator": "+",

Listing 3 shows nested JS code function calls, where an attacker hides the function
arguments in another function call to evade static analyses. We capture this attack pattern
using the AST node −type CallExpression_Identi f ier_Literal_CallExpression.

Listing 4 shows variable declarations, where e in line2 is assigned to
a function c. We capture this attack pattern using the AST node type
AssignmentExpression_Identi f ier_FunctionExpression.

Listing 5 shows a JS code where the attacker attempts to detect the user environment,
such as the operating system or the browser version. We capture this attack pattern using
the AST node type VariableDeclarator_Identi f ier_LogicalExpression.

Listing 6 shows the JS code sample string concatenation and function ob-
fuscation codes. We capture this attack pattern using the AST node type
BinaryExpression_BinaryExpression.
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Listing 3. A snippet of a JS code with CallExpression_Identifier_Literal_CallExpression.

1 var p26 = new Array ();
2 function f85 (g55 , w27) {
3 p26 [g55] = w27;
4 };
5 function w25 (h51) {
6 return h51;
7 };
8 f85 (763 , w25 (’"s’));
9 // AST for CallExpression\_Identifier\_Literal\_CallExpression

10 "type": "ExpressionStatement",
11 "expression": {
12 "type": "CallExpression",
13 "callee": {
14 "type": "Identifier",
15 "name": "f85"
16 },
17 "arguments": [
18 {
19 "type": "Literal",
20 "value": 763,
21 "raw": "763"
22 },
23 {
24 "type": "CallExpression",

Listing 4. A snippet of a JS code with AssignmentExpression_Identifier_FunctionExpression.

1 eval (function (p, a, c, k, e, d) {
2 e = function (c) {
3 return (c < a ? ’’ : e(parseInt (c / a))) + ((c = c % a) > 35 ? String.

fromCharCode (c + 29) : c.toString (36) )};
4 if (! ’’. replace (/^/ , String )) {
5 while (c --) d[e(c)] = k[c] || e(c);
6 }
7 })
8 // AST for AssignmentExpression\_Identifier\_FunctionExpression
9 "type": "ExpressionStatement",

10 "expression": {
11 "type": "AssignmentExpression",
12 "operator": "=",
13 "left": {
14 "type": "Identifier",
15 "name": "e"
16 },
17 "right": {
18 "type": "FunctionExpression",

Listing 5. A snippet of a JS code with VariableDeclarator_Identifier_LogicalExpression.

1 var b = navigator.userAgent.match (/ iPhone OS ([\ d_]+) /) ||
2 navigator.userAgent.match(/iPad OS ([\ d_]+) /) ||
3 navigator.userAgent.match(/CPU OS ([\ d_]+) /);
4 // AST for VariableDeclarator\_Identifier\_LogicalExpression
5 "type": "VariableDeclaration",
6 "declarations": [
7 {
8 "type": "VariableDeclarator",
9 "id": {

10 "type": "Identifier",
11 "name": "b"
12 },
13 "init": {
14 "type": "LogicalExpression",
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Listing 6. A snippet of a JS code with BinaryExpression_BinaryExpression.

1 // String concatenation
2 var a = "He" + "ll" + "o";
3 var b = " World !";
4 var c = a + " " + b;
5 // Function obfuscation
6 var x = eval;
7 var y = x("do"+"cu"+"ment");
8 // AST for BinaryExpression\_BinaryExpression
9 "type": "BinaryExpression",

10 "operator": "+",
11 "left": {
12 "type": "BinaryExpression",
13 "operator": "+",
14 "left": {

3.1.3. Association Rule Mining

Algorithm 1 shows AST-JS’s association rule mining procedure using the FP-growth
algorithm. The generated association rules for benign and malicious JS codes are trans-
formed into a list (lines 14–17). For AST-JS feature selection, the lists are converted into
individual benign and malicious data frames (lines 19–22).

Algorithm 1 Mining frequent AST-JS node sets using the FP-growth algorithm.

Input: D—a database of benign and malicious JS codes defined as AST-JS nodes;
min_support—-the minimum support count threshold.

Output: Benign and malicious DataFrames of AST-JS nodes and node combinations.
1: if Tree contains a single path P then
2: for each combination β of the nodes in the path P do
3: generate pattern β ∪ α with support = min_support of nodes in β;
4: end for
5: else
6: for each ai in the Tree header do
7: generate pattern β = ai ∪ α with support = ai.support;
8: construct β’s conditional pattern base and then β’s conditional FP_tree Treeβ;
9: end for

10: if Treeβ 6=0 then
11: call FP_growth(Treeβ,β);
12: end if
13: end if
14: for each benign 0 and malicious 1 frequent patterns do
15: 0.antecedents.apply(sorted(list(i)))+0.consequents.apply(sorted(list(i)));
16: 1.antecedents.apply(sorted(list(i)))+1.consequents.apply(sorted(list(i)));
17: return list0, list1
18: end for
19: for each benign list0 and malicious list1 frequent patterns do
20: TransactionEncode.fit(list0).transform(list0);
21: TransactionEncode.fit(list1).transform(list1);
22: pd.DataFrame(list0, list1, columns=TransactionEncode.columns_)
23: end for

Support is defined as the frequency of an AST-JS node or set in the JS code dataset,
and confidence is the probability of an AST-JS node set’s occurrence with its set of nodes.
Confidence measures how often an association rule is found to be true. min_support is
the minimum support for an AST-JS node set to be identified as frequent. con f idence’s
min_threshold is the minimum confidence for generating an association rule.
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Finally, we analyzed the feature importance of each AST-JS feature selected using
SHAP values to understand how different features influence our malicious JS code detection
model’s performance. This process was achieved in two parts: first, we used our original
AST-JS features and then the AST-JS combination features extracted through association
rule mining. Next, we explain the feature selection process.

3.2. Feature Selection

The feature selection process comprises sample JS attack codes, association rule min-
ing, and SHAP values. The sample JS attack codes are used to obtain AST-JS feature
combinations based on expression, pattern, statement, and declaration nodes. AST-JS
feature combinations augment the AST-JS node features by capturing JS-based attacks. The
JS-based attacks include variable obfuscation, attacks using eval and unescape, attacks us-
ing the current context or browser objects, user environment detection, string obfuscation,
string concatenation, encoding functions, nested function calls, function obfuscation, and
attacks combining string concatenation with function obfuscation.

Association rule mining is used to measure how often AST-JS nodes appear together
in benign and malicious JS codes. Features obtained using Association rule mining are
used for performance comparison. SHAP values are used to determine AST-JS feature inter-
actions, and a feature set is selected based on the contribution to the detection performance
for malicious JS code. Next, we explain the SHAP features’ importance.

3.3. Shapley Additive Explanations’ Feature Importance

SHAP is a game-theoretic approach that explains any machine learning model’s output
that connects optimal credit allocation with local explanations using the classical Shapley
values and their related extensions [44–46]. The values show the extent to which a feature
is responsible for a change in the model’s output. SHAP values either increase or decrease
the model’s prediction values and balance out the input’s actual prediction. The prediction
starts from the base value, the mean derived from the entire prediction. Our premise is
that interpreting the malicious JS code detection model’s output will guide AST-JS feature
selection, further improving its performance. Identifying the most-impactful features may
enable us to derive other features with additional information to improve the detection
performance. This knowledge will also provide necessary insights into the distribution of
specific benign and malicious JS code features.

A JS code input is represented as Z with a set of AST-JS features z1, z2, . . . , zn, and its
corresponding output Z′ and predicted features z′1, z′2, . . . , z′n, using the tree ensemble
model g. Algorithm 2 shows the procedure for calculating tree SHAP values using tree
ensemble methods that return AST-JS features (line 6) sorted in descending order of their
importance. First, we obtained AST-JS features from the JS code dataset and saved them as
AST-JS M features. For each feature z′ i in the AST-JS M features, we used tree SHAP to
obtain the SHAP values. When predicting the observed feature z′ i, the SHAP importance
values for each feature, z1, z2, . . . , zn, excluding zi, were calculated. Tree SHAP receives g
and a background set with j instances to build the local explanation model and calculate
the SHAP values. Then, g takes Z and i as input and predicts Z′; the value in the i-th
feature, a feature in the AST-JS M features, is returned by Algorithm 3. This results in
a two-dimensional list of the SHAPsortedM features. Each row in the list represents the
SHAP values one of each AST-JS feature in M features.

We divided the AST-JS features into those that enhanced the performance of the
malicious JS code detection model and those that did not by determining whether their
SHAP values moved the predicted value toward or away from the true value. Algorithm 4
shows how the SHAP values were used to select relevant AST-JS features. For each AST-JS
feature (line 1), we checked whether the true feature value given by the input JS code was
greater than the predicted value (line 2); a positive SHAP value indicates a contributing
feature (line 3) and vice versa (line 4). If the predicted feature value was less than the input
value for a JS code (line 5), the contributing features is indicated by a negative SHAP value
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and vice versa. This algorithm returned two lists, the SHAPSelected and SHAPnotSelected
features, containing the contributing and non-contributing AST-JS features, respectively,
along with the SHAP values for each of the AST-JS M features.

Algorithm 2 Calculating tree SHAP values for AST-JS M features.

Input: Z—a malicious or benign JS code we want to explain, Z1..j—AST-JS instances that
tree SHAP uses as background examples, the g—tree ensemble model.

Output: SHAPsortedM features - SHAP values for each AST-JS feature in JS code dataset
sorted in descending order of their importance.

1: M features← feature values based on AST-JS.
2: for each i ∈ M features do
3: explainer← shap.TreeExplainer(g,Z1..j)
4: SHAPsortedM features[i]← explainer.shapvalues(Z,i)
5: end for
6: return SHAPsortedM features

Algorithm 3 g(Z, i)—predicting the ith AST-JS feature.

Input: Z—a malicious or benign JS code to explain, i—the AST-JS feature to get prediction
for, g—tree ensemble model.

Output: z′ i—the value of the ith AST-JS feature in Z′.
1: z′ i ← g.predict(Z)[i]
2: return z′ i

Algorithm 4 Selecting contributing AST-JS features’ SHAP values.

Input: SHAPsortedM features—SHAP values for each AST-JS feature in JS code dataset
sorted in descending order of their importance, Z—a malicious or benign JS code we
want to explain, Z′—the prediction for Z.

Output: SHAPSelected features and SHAPnotSelected features.
1: for each i ∈ SHAPsortedM features do
2: if zi > z′ i then
3: SHAPSelected[i]← SHAPsortedM features[i] > 0
4: SHAPnotSelected[i]← SHAPsortedM features[i] < 0
5: else
6: SHAPSelected[i]← SHAPsortedM features[i] < 0
7: SHAPnotSelected[i]← SHAPsortedM features[i] > 0
8: end if
9: end for

10: return SHAPSelected features, SHAPnotSelected features

The benefits of computing SHAP values are global and local interpretability, which
shows the manner and degree of each AST-JS feature’s contribution to the prediction,
and each observation obtains its own set of SHAP values, enabling the evaluation of the
features’ impacts.

3.4. Machine Learning Classifiers

For the classification task for web-based attack detection, seven machine learning
classifiers from the Scikit-learn library [47–50] were used in the experiments, i.e., XG-
Boost, LightGBM, RandomForest, DecisionTree, LogisticRegression, KNeighbors, and
GaussianNB. The best algorithm was selected based on the k-fold cross-validation evalua-
tion results.

4. Experiments

This section presents the experimental setup and performance comparison results for
web-based attack detection.



Appl. Sci. 2022, 12, 60 10 of 20

4.1. Experimental Setup

We used a dataset of 39,443 malicious and 40,000 benign JS codes in the experimental
setup. The malicious JS codes were obtained from Hynek Petrak’s dataset [51], and the
benign codes were obtained from the Majestic Million Service [7]. We used a JS code
parser to preprocess the dataset into AST-JS nodes, resulting in 32,430 malicious and
38,891 benign JS codes. This resulted in 25 expression and pattern and 23 statement and
declaration AST-JS features.

Next, we visualized and investigated each AST-JS feature’s contribution to the mali-
cious JS code detection model’s performance using SHAP values. This analysis indicated
the need to define more concrete features. Using sample JS attack codes, we added ten
more AST-JS features based on combinations of the original ones. These features rep-
resent JS-based attacks and contribute to the model’s detection performance. We then
used association rule mining and a confidence metric to measure how often AST-JS nodes
appear together in benign and malicious JS codes. This resulted in 33 features with pa-
rameters min_support = 0.4 for malicious JS codes, min_support = 0.53 for benign codes,
and con f idence’s min_threshold = 1 for both benign and malicious codes. This selection
reduced our original features and formed the second input set. Finally, we selected a final
set of AST-JS features using the SHAP values. This selection resulted in forty-four features,
comprising thirty-four AS-JS nodes and ten node combinations.

Performance evaluation was conducted using the three-input feature sets, i.e., the
48 AST-JS features obtained after the initial preprocessing, the 33 features obtained using
association rule mining, and the 44 features obtained by feature selection using the SHAP
value. The parameters obtained using GridSearchCV for the two best-performing models,
XGBClassifier and LGBMClassifier, using the three AST-JS feature sets, are listed in Table 1.

Table 1. XGBClassifier and LGBMClassifier parameters.

Parameter AST-JS Nodes Association Rule SHAP Value

XGBClassifier
colsample_bytree 0.5 0.7 0.4

gamma 0.0 0.1 0.0
learning_rate 0.2 0.2 0.2

max_depth 10 8 13
min_child_weight 1 1 1

LGBMClassifier
lambda_l1 0 0 0
lambda_l2 0 0 0
max_depth 9 6 8

n_estimators 520 520 520
num_leaves 10 10 10

We found that these parameters are optimal for malicious JS code content detection
using the three-input feature sets. We performed 10-fold cross-validation to evaluate the
performance of our approach and computed precision, recall, and F1-score evaluation
metrics. Precision is the classifier’s ability to not label a benign JS code as malicious, and
recall is the classifier’s ability to find all malicious JS codes. The F1-score can be interpreted
as the weighted harmonic mean of precision and recall. Given that TP is the number of
malicious JS codes correctly classified as malicious, TN is the number of benign JS codes
correctly classified as benign, FN is the number of malicious JS codes classified as benign,
and FP is the number of benign JS codes classified as malicious. Precision, recall, and
F1-score are given by:

Precision =
TP

TP + FP
(1)



Appl. Sci. 2022, 12, 60 11 of 20

Recall =
TP

TP + FN
(2)

F1-score = 2
Precision× Recall
Precision + Recall

(3)

4.2. Performance Comparisons

The results of these experiments are presented in this section. Table 2 presents the
precision, recall, and F1-score values obtained using features defined as AST-JS nodes and
10-fold cross-validation. Each model performed well on the recall metric, especially the
tree ensemble methods. The best-performing model, XGBoost, could detect malicious JS
code content with an error rate of 0.0019 for recall, 0.0302 for precision, and 0.0162 for F1.
The lower precision metric revealed that the model misclassified some benign JS codes.
Even though this scenario is not harmful, it may lead to threat-alert fatigue if users and
security analysts receive many false alarms. Therefore, there is a need to improve this
model further.

Table 2. Performance comparison using AST-JS node features.

Model Recall Precision F1

XGBoost 0.9981 ± 0.0008 0.9698 ± 0.0033 0.9838 ± 0.0018
LightGBM 0.9979 ± 0.0008 0.9691 ± 0.0032 0.9833 ± 0.0019

RandomForest 0.9986 ± 0.0005 0.9702 ± 0.0032 0.9842 ± 0.0018
DecisionTree 0.9983 ± 0.0005 0.9687 ± 0.0029 0.9833 ± 0.0016

LogisticRegression 0.9839 ± 0.0021 0.9414 ± 0.0039 0.9622 ± 0.0025
KNeighbors 0.8448 ± 0.0062 0.9986 ± 0.0006 0.9153 ± 0.0037
GaussianNB 0.9968 ± 0.0013 0.5493 ± 0.0029 0.7083 ± 0.0025

We analyzed the AST-JS node features using the SHAP values. Figure 2 presents
a SHAP summary plot that shows the relative impacts of AST-JS features on the JS
code dataset.

The SHAP values are plotted on the x-axis for each AST-JS feature on a row sorted by
the sums of their SHAP value magnitudes. The vertically piled points represent the feature
density, and the colors show the feature values. The values give the distribution of each
AST-JS feature’s impact on the model’s output. The red and blue colors represent high and
low AST-JS feature values. The color allows us to visualize how changes in the value of an
AST-JS feature would affect a change in prediction; for example, high SHAP values for the
SequenceExpression feature would indicate a high risk of maliciousness for a JS code.

Using such plots, we can deduce that features such as the ObjectExpression would
influence the model’s prediction more than the LabeledStatement. A feature such as
SequenceExpression has a significant, positive effect on AST-JS prediction, and therefore, a
high SequenceExpression SHAP value may indicate a higher risk for maliciousness. On the
contrary, a feature such as the FunctionExpression has a significant, negative effect on the
AST-JS class prediction, and therefore, a low FunctionExpression SHAP value may indicate
a higher risk for maliciousness.

Additionally, interesting patterns can be observed, such as high values of the
ExpressionStatement_CallExpression_Identi f ier feature clustered in a very dense region
represented by the red blob. Additionally, low values of the BlockStatement feature are
clustered in a very dense region, as shown by the blue blob. However, features such
as the ReturnStatement and FunctionExpression have a much more uniform distribution
with high and low SHAP values, respectively, pushing the prediction to 1. The red and
blue blobs on the left and right indicate an even distribution of that feature in the JS code
dataset. Some features such as EmptyStatement_ExpressionStatement_CallExpression and
CallExpression_Identi f ier_Literal are not crucial for most JS codes. However, these fea-
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tures significantly impact a subset of JS codes in the dataset. This scenario highlights how
a globally important feature is not necessarily the most critical feature for attack detection
in JS codes.

Figure 3 shows the SHAP dependence plot for the top AST-JS feature before (a) and
after (b) feature selection.

Every dot represents a JS code. Vertical dispersion at an AST-JS feature value results
from interaction effects in the model. The color highlights the high or low forces behind the
interactions. The y-axis represents the SHAP values. The SHAP summary plot is obtained
by projecting the SHAP dependence plot points onto the y-axis and recoloring the value’s
feature. The TryStatement and VariableDeclaration features were automatically selected
for coloring based on a potential interaction in the model. Plot (b) shows that low SHAP
values of the ObjectExpession feature influence the model’s output more significantly for
observations where the VariableDeclaration feature has high SHAP values.

Figure 4 shows the SHAP interaction values plot for the top two AST-JS features before
(a) and after (b) feature selection.

It shows the main effects and interaction effects for the ObjectExpression feature.
These effects capture all vertical dispersions. Plot (a) shows that high SHAP values for
the ObjectExpression and FunctionExpression feature significantly influence the model’s
output. Plot (b) shows that low SHAP values for the ObjectExpression feature and high
SHAP values for the ExpressionStatement_CallExpression_Identi f ier feature significantly
influence the model’s output.

Table 3 presents precision, recall, and F1-scores obtained using features defined by
association rule mining and 10-fold cross-validation.

By including these features, precision was improved by 0.0127, 0.0129, 0.0131, 0.0125,
0.0188, and 0.2352 for the XGBoost, LightGBM, RandomForest, DecisionTree, LogisticRe-
gression, and GaussianNB, respectively. This improvement indicates a reduction in the
number of misclassified benign JS codes. However, there was a reduction in the recall
metric, which indicates an increase in misclassified malicious JS codes. Leveraging features
from the malicious JS code samples and SHAP selected features based on their contributions
to the model’s output was pursued to improve the detection performance.

Table 4 presents precision, recall, and F1-scores obtained using features selected based
on SHAP values and 10-fold cross-validation.

Compared to the association rule mining features, each model’s detection performance
was improved in all three evaluation metrics, with notable improvements in recall and F1-
score. The best performing model, the XGBoost model, had error rates of 0.0011, 0.0168, and
0.0091 for recall, precision, and F1, respectively. The model outperformed the LightGBM
and DecisionTree models by 0.03%, and the RandomForest model by 0.04% in the recall
metric. A high recall rate translates to low misclassification and false-negative rates. AST-
JS features selected using the SHAP values capture global and local feature importance.
Therefore, these features enhance the machine learning model’s feature learning process
and lead to a better prediction model. As evidenced by the experiments, high performance
was achieved by all the malicious JS code detection models, with tree ensemble methods
yielding the best results. Consequently, these models had the lowest false positive and
false negative rates.

Figure 5 shows the feature importance assigned to the AST-JS features by other feature
selection methods: Boruta, ELI5, RandomForest, and SelectKBest [47,52].
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Figure 2. SHAP summary plot for AST-JS features.

Each method resulted in different feature values for each AST-JS feature, and therefore,
a different number of features was selected for each feature selection method. Boruta, a
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wrapper around RandomForest, found all relevant features carrying information that can be
used to predicting malicious JS. AST-JS features proven by a statistical test to be less relevant
are rejected iteratively. ELI5 is used for explaining predictions. It is also referred to as
permutation importance or Means Decrease Accuracy. The method measures how the score
decreases when an AST-JS feature is eliminated. The RandomForest feature importance
method measures each AST-JS feature’s importance using the entropy function for the
information gain. SelectKBest ranks AST-JS features by the k highest scores. This method
measures the dependency between features using the mutual information score function.

(a) (b)

Figure 3. SHAP dependence plot for the top AST-JS feature. (a) Before feature selection; (b) after
feature selection.

(a) (b)

Figure 4. SHAP interaction values plot for the top two AST-JS features. (a) Before feature selection;
(b) after feature selection.

Table 3. Performance comparison using association rule mining AST-JS features.

Model Recall Precision F1

XGBoost 0.9763 ±0.0025 0.9825 ±0.0024 0.9794 ±0.0018
LightGBM 0.9762 ±0.0023 0.9820 ±0.0025 0.9791 ±0.0018

RandomForest 0.9757 ±0.0024 0.9833 ±0.0025 0.9795 ±0.0018
DecisionTree 0.9758 ±0.0024 0.9812 ±0.0025 0.9785 ±0.0019

LogisticRegression 0.9600 ± 0.0033 0.9602 ± 0.0040 0.9601 ± 0.0025
KNeighbors 0.8516 ± 0.0044 0.9991 ± 0.0007 0.9195 ± 0.0026
GaussianNB 0.8221 ± 0.0048 0.7845 ± 0.0044 0.8029 ± 0.0038
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Table 4. Performance comparison using SHAP selected AST-JS features.

Model Recall Precision F1

XGBoost 0.9989 ± 0.0004 0.9832 ± 0.0024 0.9909 ± 0.0014
LightGBM 0.9986 ± 0.0007 0.9820 ± 0.0027 0.9902 ± 0.0015

RandomForest 0.9985 ± 0.0006 0.9840 ± 0.0024 0.9912 ± 0.0014
DecisionTree 0.9986 ± 0.0005 0.9815 ± 0.0024 0.9900 ± 0.0013

LogisticRegression 0.9895 ± 0.0013 0.9632 ± 0.0037 0.9762 ± 0.0017
KNeighbors 0.8779 ± 0.0056 0.9995 ± 0.0003 0.9347 ± 0.0031
GaussianNB 0.9373 ± 0.0056 0.6889 ± 0.0031 0.7941 ± 0.0030
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Figure 5. Feature importance assigned to AST-JS by other feature selection methods. (a) Boruta;
(b) ELI5; (c) RandomForest; (d) SelectKBest.
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Table 5 presents precision, recall, and F1-scores obtained using SHAP selected features
compared to the other feature selection methods; Boruta, ELI5, RandomForest, and SelectKBest.

Our proposed detection model performed better than the other feature selection
methods in all three evaluation metrics, with notable differences in precision and F1.
The other feature selection methods have limitations because different model iterations
assign different feature values to the AST-JS features. Additionally, Boruta assigns a True
or False value to each AST-JS feature, as shown in Figure 5a. The permutation-based
methods are computationally expensive and can have problems with highly-correlated
AST-JS features, resulting in loss of important information. SHAP-selected AST-JS features
have consistency in the feature values assigned to each feature. Unlike Boruta, SHAP
values show the degree and manner of each AST-JS feature’s contribution to the model
prediction and are model-agnostic. These features also provide interaction graphs that are
instrumental in getting information on AST-JS feature combinations, further boosting the
model’s detection performance.

Table 5. Performance comparison of SHAP and other feature selection methods.

Model Recall Precision F1

SHAP 0.9989 ± 0.0004 0.9832 ± 0.0024 0.9909 ± 0.0014
Boruta 0.9983 ± 0.0008 0.9698 ± 0.0033 0.9839 ± 0.0019
ELI5 0.9982 ± 0.0008 0.9699 ± 0.0033 0.9839 ± 0.0019

RandomForest 0.9984 ± 0.0007 0.9698 ± 0.0032 0.9839 ± 0.0018
SelectKBest 0.9982 ± 0.0007 0.9687 ± 0.0034 0.9832 ± 0.0019

Table 6 shows the training and detection times for the various classifiers on the JS code
dataset using SHAP selected features. XGBoost yielded the highest detection performance
and the third-fastest detection time, making it the best classifier for JS-based attack detection.
KNeighbors yielded the lowest training time; however, it achieved the lowest recall rate,
rendering it ineffective for this detection task. DecisionTree yielded the lowest detection
time; however, XGBoost outperformed DecisionTree in all three evaluation metrics.

Table 6. Training and detection time.

Model Training Time (s) Detection Time (s)

XGBoost 0.8685 1.498 × 10−6

LightGBM 0.5716 2.114 × 10−6

RandomForest 1.6350 1.035 × 10−5

DecisionTree 0.0895 1.179 × 10−6

LogisticRegression 0.6384 1.871 × 10−6

KNeighbors 0.0037 0.0015
GaussianNB 0.0425 1.334 × 10−6

5. Discussion

Blocklists, and heuristic- and signature-based systems are widely used to detect mali-
cious URLs and JS codes. Current detection methods have various challenges stemming
from fast-flux, cloaking, and zero-day attacks. Some services that can be used for copyright
and privacy reasons in benign JS codes, such as obfuscation, can also create new or variant
JS-based attacks. Therefore, it is biased to classify transformed URLs and JS codes as
malicious without further detailed analysis. A system to analyze and accurately detect
web-based attacks is needed.

As part of our research findings, feature selection using SHAP values resulted in
a better prediction model. Other researchers limited their scope by studying specific
malicious URLs and JS-based attacks, such as those containing phishing attacks, social
engineering, malvertising attacks, and denial of service attacks, among others. For this,
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they used manually engineered features unique to the type of attack they intended to
identify. Such approaches have challenges in that they cannot be generalized to other
attack types. Our premise is that features selected using SHAP values can overcome such
challenges, as the analyst can easily identify which features significantly impact the overall
model performance. Figure 6 shows SHAP interaction values with combinations of AST-JS
features shown using Feature∗ - Feature patterns.

Figure 6. SHAP interaction values. * represents AST-JS feature combinations.

Using SHAP interaction values, it is easier to tell which AST-JS feature combinations
or interactions contribute more toward the model’s detection performance and in which
direction. Some of these interactions are directly interpretable as attack types present in
the dataset. Therefore, our proposed approach does not focus on specific categories of
web-based attacks or threats.

6. Conclusions

Web-based attacks remain a significant challenge, as evasion techniques are continu-
ously evolving. An equally adaptive strategy is required to detect such attacks effectively.
This study proposes AST-JS feature selection using SHAP values and tree ensemble meth-
ods to detect these attacks. We also investigated how often AST-JS nodes appear together in
benign and malicious JS codes using association rule mining. One expectation was that this
approach would result in fully representative features that generalize well to other attacks.
We used AST-JS nodes to represent the JS code structure and their SHAP values for feature
selection. We experimented with features selected using AST-JS nodes, association rule
mining, and SHAP values. We compared the performances of different machine learning
classifiers in malicious JS code detection and achieved good detection performance with
the tree ensemble methods. Additionally, we compared the performance of SHAP-selected
features with the performances of those selected by other feature selection methods: Boruta,
ELI5, RandomForest, and SelectKBest. The proposed web-based attack detection method
outperformed the other feature selection methods in all three evaluation metrics. AST-JS
nodes are resistant to perturbation in JS codes, and this ensures that the model is applicable
in various JS code contexts, and therefore, to different JS-based attacks. We can extend this
study to investigate malicious URL features in future work.
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